{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Comparison of climate data and continuous temperature measurements of Great Boiling Springs, NV.\n",
    "\n",
    "As part of a proposal effort in 2013, I compared weather station climate data to round-the-clock temperature measurements of Great Boiling Springs in Gerlach, NV, which had been funded in a separate proposal. The goal was to identify patterns that might indicate  influence of air temperature and precipitation on this terrestrial hydrothermal system. Results shown here are nowhere near exhaustive (having been derived in Excel spreadsheets originally), but gave me an opportunity to wrangle with datasets early in my graduate student career.\n",
    "\n",
    "Temperature data from Great Boiling Springs in Gerlach, NV were recorded by Behar's Environmental Networking, Telemetry and Observation (BENTO) box. Data used here were compiled from [BENTO box 1](http://extremerobotics.lab.asu.edu/Bentobox/bentoData11.php) and [BENTO box 2](http://extremerobotics.lab.asu.edu/Bentobox/bentoData12.php) datasets available free online.\n",
    "\n",
    "\n",
    "Climate data were collected at the MFOXN2 weather station located in Gerlach, NV, except for a brief period between 9/7/12 and\n",
    "10/11/12 when the station went offline, at which point data from station MJSPN2 at the Derby Field airport in Lovelock, NV was used to fill the gap."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Researchers working at Great Boiling Springs, NV\n",
    "![pic](http://1ofdmq2n8tc36m6i46scovo2e-wpengine.netdna-ssl.com/wp-content/uploads/2016/01/1K-GBS_Brian-Hedlund_Kryptonia.jpg \"Great Boiling Springs, NV\")\n",
    "*photo credit: Brian Hedlund*"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# read hot spring sensor and weather station data\n",
    "bento <- read.csv(\"BentoData.csv\")\n",
    "weather <- read.csv(\"WeatherData.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'nrows and ncol of BENTO dataset:'"
      ],
      "text/latex": [
       "'nrows and ncol of BENTO dataset:'"
      ],
      "text/markdown": [
       "'nrows and ncol of BENTO dataset:'"
      ],
      "text/plain": [
       "[1] \"nrows and ncol of BENTO dataset:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<ol class=list-inline>\n",
       "\t<li>7383</li>\n",
       "\t<li>17</li>\n",
       "</ol>\n"
      ],
      "text/latex": [
       "\\begin{enumerate*}\n",
       "\\item 7383\n",
       "\\item 17\n",
       "\\end{enumerate*}\n"
      ],
      "text/markdown": [
       "1. 7383\n",
       "2. 17\n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "[1] 7383   17"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "'nrows and ncol of weather dataset:'"
      ],
      "text/latex": [
       "'nrows and ncol of weather dataset:'"
      ],
      "text/markdown": [
       "'nrows and ncol of weather dataset:'"
      ],
      "text/plain": [
       "[1] \"nrows and ncol of weather dataset:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<ol class=list-inline>\n",
       "\t<li>314</li>\n",
       "\t<li>16</li>\n",
       "</ol>\n"
      ],
      "text/latex": [
       "\\begin{enumerate*}\n",
       "\\item 314\n",
       "\\item 16\n",
       "\\end{enumerate*}\n"
      ],
      "text/markdown": [
       "1. 314\n",
       "2. 16\n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "[1] 314  16"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# get an idea as to the size of these datasets\n",
    "\"nrows and ncol of BENTO dataset:\"\n",
    "dim(bento)\n",
    "\"nrows and ncol of weather dataset:\"\n",
    "dim(weather)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'BENTO temperature sensor readings from Great Boiling Springs, NV:'"
      ],
      "text/latex": [
       "'BENTO temperature sensor readings from Great Boiling Springs, NV:'"
      ],
      "text/markdown": [
       "'BENTO temperature sensor readings from Great Boiling Springs, NV:'"
      ],
      "text/plain": [
       "[1] \"BENTO temperature sensor readings from Great Boiling Springs, NV:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<table>\n",
       "<thead><tr><th scope=col>RecordTime</th><th scope=col>Battery.V.</th><th scope=col>Rate</th><th scope=col>Sensor0</th><th scope=col>Sensor1</th><th scope=col>Sensor2</th><th scope=col>Sensor3</th><th scope=col>Sensor4</th><th scope=col>Sensor5</th><th scope=col>Sensor6</th><th scope=col>Sensor7</th><th scope=col>Sensor8</th><th scope=col>Sensor9</th><th scope=col>Sensor10</th><th scope=col>Sensor11</th><th scope=col>Sensor12</th><th scope=col>Sensor13</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><td>41016.34</td><td>10.3    </td><td>Normal  </td><td>35.01   </td><td>40.66   </td><td>42.26   </td><td>54.05   </td><td>41.66   </td><td>43.85   </td><td>42.65   </td><td>12.02   </td><td>44.75   </td><td>55.05   </td><td>51.64   </td><td>55.65   </td><td>55.85   </td><td>53.04   </td></tr>\n",
       "\t<tr><td>41016.34</td><td>10.3    </td><td>Normal  </td><td>34.52   </td><td>40.86   </td><td>41.46   </td><td>54.25   </td><td>41.46   </td><td>43.85   </td><td>42.65   </td><td>12.12   </td><td>44.75   </td><td>54.45   </td><td>51.74   </td><td>55.65   </td><td>56.35   </td><td>52.94   </td></tr>\n",
       "\t<tr><td>41016.34</td><td>10.4    </td><td>Normal  </td><td>34.32   </td><td>40.86   </td><td>40.57   </td><td>54.35   </td><td>41.26   </td><td>43.85   </td><td>42.65   </td><td>12.51   </td><td>44.75   </td><td>54.95   </td><td>51.64   </td><td>55.55   </td><td>55.75   </td><td>52.74   </td></tr>\n",
       "\t<tr><td>41016.35</td><td>10.4    </td><td>Normal  </td><td>33.62   </td><td>40.76   </td><td>39.17   </td><td>53.64   </td><td>41.36   </td><td>43.95   </td><td>42.75   </td><td>12.22   </td><td>44.85   </td><td>54.85   </td><td>51.74   </td><td>55.55   </td><td>55.75   </td><td>52.74   </td></tr>\n",
       "\t<tr><td>41016.38</td><td>10.5    </td><td>Normal  </td><td>33.82   </td><td>43.65   </td><td>37.49   </td><td>54.35   </td><td>40.27   </td><td>44.15   </td><td>43.25   </td><td>15.44   </td><td>45.74   </td><td>53.84   </td><td>53.04   </td><td>55.75   </td><td>57.66   </td><td>52.94   </td></tr>\n",
       "\t<tr><td>41016.42</td><td>10.5    </td><td>Normal  </td><td>37.49   </td><td>42.95   </td><td>42.26   </td><td>54.75   </td><td>44.25   </td><td>44.35   </td><td>43.45   </td><td>20.72   </td><td>47.94   </td><td>56.25   </td><td>52.74   </td><td>56.15   </td><td>57.86   </td><td>54.05   </td></tr>\n",
       "</tbody>\n",
       "</table>\n"
      ],
      "text/latex": [
       "\\begin{tabular}{r|lllllllllllllllll}\n",
       " RecordTime & Battery.V. & Rate & Sensor0 & Sensor1 & Sensor2 & Sensor3 & Sensor4 & Sensor5 & Sensor6 & Sensor7 & Sensor8 & Sensor9 & Sensor10 & Sensor11 & Sensor12 & Sensor13\\\\\n",
       "\\hline\n",
       "\t 41016.34 & 10.3     & Normal   & 35.01    & 40.66    & 42.26    & 54.05    & 41.66    & 43.85    & 42.65    & 12.02    & 44.75    & 55.05    & 51.64    & 55.65    & 55.85    & 53.04   \\\\\n",
       "\t 41016.34 & 10.3     & Normal   & 34.52    & 40.86    & 41.46    & 54.25    & 41.46    & 43.85    & 42.65    & 12.12    & 44.75    & 54.45    & 51.74    & 55.65    & 56.35    & 52.94   \\\\\n",
       "\t 41016.34 & 10.4     & Normal   & 34.32    & 40.86    & 40.57    & 54.35    & 41.26    & 43.85    & 42.65    & 12.51    & 44.75    & 54.95    & 51.64    & 55.55    & 55.75    & 52.74   \\\\\n",
       "\t 41016.35 & 10.4     & Normal   & 33.62    & 40.76    & 39.17    & 53.64    & 41.36    & 43.95    & 42.75    & 12.22    & 44.85    & 54.85    & 51.74    & 55.55    & 55.75    & 52.74   \\\\\n",
       "\t 41016.38 & 10.5     & Normal   & 33.82    & 43.65    & 37.49    & 54.35    & 40.27    & 44.15    & 43.25    & 15.44    & 45.74    & 53.84    & 53.04    & 55.75    & 57.66    & 52.94   \\\\\n",
       "\t 41016.42 & 10.5     & Normal   & 37.49    & 42.95    & 42.26    & 54.75    & 44.25    & 44.35    & 43.45    & 20.72    & 47.94    & 56.25    & 52.74    & 56.15    & 57.86    & 54.05   \\\\\n",
       "\\end{tabular}\n"
      ],
      "text/markdown": [
       "\n",
       "RecordTime | Battery.V. | Rate | Sensor0 | Sensor1 | Sensor2 | Sensor3 | Sensor4 | Sensor5 | Sensor6 | Sensor7 | Sensor8 | Sensor9 | Sensor10 | Sensor11 | Sensor12 | Sensor13 | \n",
       "|---|---|---|---|---|---|\n",
       "| 41016.34 | 10.3     | Normal   | 35.01    | 40.66    | 42.26    | 54.05    | 41.66    | 43.85    | 42.65    | 12.02    | 44.75    | 55.05    | 51.64    | 55.65    | 55.85    | 53.04    | \n",
       "| 41016.34 | 10.3     | Normal   | 34.52    | 40.86    | 41.46    | 54.25    | 41.46    | 43.85    | 42.65    | 12.12    | 44.75    | 54.45    | 51.74    | 55.65    | 56.35    | 52.94    | \n",
       "| 41016.34 | 10.4     | Normal   | 34.32    | 40.86    | 40.57    | 54.35    | 41.26    | 43.85    | 42.65    | 12.51    | 44.75    | 54.95    | 51.64    | 55.55    | 55.75    | 52.74    | \n",
       "| 41016.35 | 10.4     | Normal   | 33.62    | 40.76    | 39.17    | 53.64    | 41.36    | 43.95    | 42.75    | 12.22    | 44.85    | 54.85    | 51.74    | 55.55    | 55.75    | 52.74    | \n",
       "| 41016.38 | 10.5     | Normal   | 33.82    | 43.65    | 37.49    | 54.35    | 40.27    | 44.15    | 43.25    | 15.44    | 45.74    | 53.84    | 53.04    | 55.75    | 57.66    | 52.94    | \n",
       "| 41016.42 | 10.5     | Normal   | 37.49    | 42.95    | 42.26    | 54.75    | 44.25    | 44.35    | 43.45    | 20.72    | 47.94    | 56.25    | 52.74    | 56.15    | 57.86    | 54.05    | \n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "  RecordTime Battery.V. Rate   Sensor0 Sensor1 Sensor2 Sensor3 Sensor4 Sensor5\n",
       "1 41016.34   10.3       Normal 35.01   40.66   42.26   54.05   41.66   43.85  \n",
       "2 41016.34   10.3       Normal 34.52   40.86   41.46   54.25   41.46   43.85  \n",
       "3 41016.34   10.4       Normal 34.32   40.86   40.57   54.35   41.26   43.85  \n",
       "4 41016.35   10.4       Normal 33.62   40.76   39.17   53.64   41.36   43.95  \n",
       "5 41016.38   10.5       Normal 33.82   43.65   37.49   54.35   40.27   44.15  \n",
       "6 41016.42   10.5       Normal 37.49   42.95   42.26   54.75   44.25   44.35  \n",
       "  Sensor6 Sensor7 Sensor8 Sensor9 Sensor10 Sensor11 Sensor12 Sensor13\n",
       "1 42.65   12.02   44.75   55.05   51.64    55.65    55.85    53.04   \n",
       "2 42.65   12.12   44.75   54.45   51.74    55.65    56.35    52.94   \n",
       "3 42.65   12.51   44.75   54.95   51.64    55.55    55.75    52.74   \n",
       "4 42.75   12.22   44.85   54.85   51.74    55.55    55.75    52.74   \n",
       "5 43.25   15.44   45.74   53.84   53.04    55.75    57.66    52.94   \n",
       "6 43.45   20.72   47.94   56.25   52.74    56.15    57.86    54.05   "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "'Weather station data:'"
      ],
      "text/latex": [
       "'Weather station data:'"
      ],
      "text/markdown": [
       "'Weather station data:'"
      ],
      "text/plain": [
       "[1] \"Weather station data:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<table>\n",
       "<thead><tr><th scope=col>Date</th><th scope=col>TemperatureHighC</th><th scope=col>TemperatureAvgC</th><th scope=col>TemperatureLowC</th><th scope=col>DewpointHighF</th><th scope=col>DewpointAvgF</th><th scope=col>DewpointLowF</th><th scope=col>HumidityHigh</th><th scope=col>HumidityAvg</th><th scope=col>HumidityLow</th><th scope=col>PressureMaxIn</th><th scope=col>PressureMinIn</th><th scope=col>WindSpeedMaxMPH</th><th scope=col>WindSpeedAvgMPH</th><th scope=col>GustSpeedMaxMPH</th><th scope=col>PrecipitationSumIn</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><td>41016</td><td>11.7 </td><td> 5.6 </td><td>0.0  </td><td>30   </td><td>24   </td><td>14   </td><td> 93  </td><td>56   </td><td>28   </td><td>0    </td><td>40   </td><td>11   </td><td>7    </td><td>25   </td><td>0.00 </td></tr>\n",
       "\t<tr><td>41017</td><td> 8.9 </td><td> 4.4 </td><td>1.1  </td><td>37   </td><td>31   </td><td>20   </td><td>100  </td><td>73   </td><td>44   </td><td>0    </td><td>40   </td><td>15   </td><td>8    </td><td>23   </td><td>0.00 </td></tr>\n",
       "\t<tr><td>41018</td><td>14.4 </td><td> 7.8 </td><td>2.2  </td><td>42   </td><td>40   </td><td>36   </td><td>100  </td><td>82   </td><td>52   </td><td>0    </td><td>40   </td><td>13   </td><td>8    </td><td>26   </td><td>0.01 </td></tr>\n",
       "\t<tr><td>41019</td><td>21.1 </td><td>12.8 </td><td>3.9  </td><td>43   </td><td>34   </td><td>19   </td><td> 94  </td><td>53   </td><td>16   </td><td>0    </td><td>40   </td><td> 7   </td><td>4    </td><td>19   </td><td>0.00 </td></tr>\n",
       "\t<tr><td>41020</td><td>22.2 </td><td>15.6 </td><td>8.3  </td><td>33   </td><td>25   </td><td>14   </td><td> 51  </td><td>30   </td><td>11   </td><td>0    </td><td>40   </td><td>13   </td><td>6    </td><td>22   </td><td>0.00 </td></tr>\n",
       "\t<tr><td>41021</td><td>23.9 </td><td>16.7 </td><td>7.8  </td><td>33   </td><td>26   </td><td>16   </td><td> 53  </td><td>29   </td><td>11   </td><td>0    </td><td>40   </td><td>13   </td><td>6    </td><td>25   </td><td>0.00 </td></tr>\n",
       "</tbody>\n",
       "</table>\n"
      ],
      "text/latex": [
       "\\begin{tabular}{r|llllllllllllllll}\n",
       " Date & TemperatureHighC & TemperatureAvgC & TemperatureLowC & DewpointHighF & DewpointAvgF & DewpointLowF & HumidityHigh & HumidityAvg & HumidityLow & PressureMaxIn & PressureMinIn & WindSpeedMaxMPH & WindSpeedAvgMPH & GustSpeedMaxMPH & PrecipitationSumIn\\\\\n",
       "\\hline\n",
       "\t 41016 & 11.7  &  5.6  & 0.0   & 30    & 24    & 14    &  93   & 56    & 28    & 0     & 40    & 11    & 7     & 25    & 0.00 \\\\\n",
       "\t 41017 &  8.9  &  4.4  & 1.1   & 37    & 31    & 20    & 100   & 73    & 44    & 0     & 40    & 15    & 8     & 23    & 0.00 \\\\\n",
       "\t 41018 & 14.4  &  7.8  & 2.2   & 42    & 40    & 36    & 100   & 82    & 52    & 0     & 40    & 13    & 8     & 26    & 0.01 \\\\\n",
       "\t 41019 & 21.1  & 12.8  & 3.9   & 43    & 34    & 19    &  94   & 53    & 16    & 0     & 40    &  7    & 4     & 19    & 0.00 \\\\\n",
       "\t 41020 & 22.2  & 15.6  & 8.3   & 33    & 25    & 14    &  51   & 30    & 11    & 0     & 40    & 13    & 6     & 22    & 0.00 \\\\\n",
       "\t 41021 & 23.9  & 16.7  & 7.8   & 33    & 26    & 16    &  53   & 29    & 11    & 0     & 40    & 13    & 6     & 25    & 0.00 \\\\\n",
       "\\end{tabular}\n"
      ],
      "text/markdown": [
       "\n",
       "Date | TemperatureHighC | TemperatureAvgC | TemperatureLowC | DewpointHighF | DewpointAvgF | DewpointLowF | HumidityHigh | HumidityAvg | HumidityLow | PressureMaxIn | PressureMinIn | WindSpeedMaxMPH | WindSpeedAvgMPH | GustSpeedMaxMPH | PrecipitationSumIn | \n",
       "|---|---|---|---|---|---|\n",
       "| 41016 | 11.7  |  5.6  | 0.0   | 30    | 24    | 14    |  93   | 56    | 28    | 0     | 40    | 11    | 7     | 25    | 0.00  | \n",
       "| 41017 |  8.9  |  4.4  | 1.1   | 37    | 31    | 20    | 100   | 73    | 44    | 0     | 40    | 15    | 8     | 23    | 0.00  | \n",
       "| 41018 | 14.4  |  7.8  | 2.2   | 42    | 40    | 36    | 100   | 82    | 52    | 0     | 40    | 13    | 8     | 26    | 0.01  | \n",
       "| 41019 | 21.1  | 12.8  | 3.9   | 43    | 34    | 19    |  94   | 53    | 16    | 0     | 40    |  7    | 4     | 19    | 0.00  | \n",
       "| 41020 | 22.2  | 15.6  | 8.3   | 33    | 25    | 14    |  51   | 30    | 11    | 0     | 40    | 13    | 6     | 22    | 0.00  | \n",
       "| 41021 | 23.9  | 16.7  | 7.8   | 33    | 26    | 16    |  53   | 29    | 11    | 0     | 40    | 13    | 6     | 25    | 0.00  | \n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "  Date  TemperatureHighC TemperatureAvgC TemperatureLowC DewpointHighF\n",
       "1 41016 11.7              5.6            0.0             30           \n",
       "2 41017  8.9              4.4            1.1             37           \n",
       "3 41018 14.4              7.8            2.2             42           \n",
       "4 41019 21.1             12.8            3.9             43           \n",
       "5 41020 22.2             15.6            8.3             33           \n",
       "6 41021 23.9             16.7            7.8             33           \n",
       "  DewpointAvgF DewpointLowF HumidityHigh HumidityAvg HumidityLow PressureMaxIn\n",
       "1 24           14            93          56          28          0            \n",
       "2 31           20           100          73          44          0            \n",
       "3 40           36           100          82          52          0            \n",
       "4 34           19            94          53          16          0            \n",
       "5 25           14            51          30          11          0            \n",
       "6 26           16            53          29          11          0            \n",
       "  PressureMinIn WindSpeedMaxMPH WindSpeedAvgMPH GustSpeedMaxMPH\n",
       "1 40            11              7               25             \n",
       "2 40            15              8               23             \n",
       "3 40            13              8               26             \n",
       "4 40             7              4               19             \n",
       "5 40            13              6               22             \n",
       "6 40            13              6               25             \n",
       "  PrecipitationSumIn\n",
       "1 0.00              \n",
       "2 0.00              \n",
       "3 0.01              \n",
       "4 0.00              \n",
       "5 0.00              \n",
       "6 0.00              "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# check the formatting of these datasets\n",
    "\"BENTO temperature sensor readings from Great Boiling Springs, NV:\"\n",
    "head(bento)\n",
    "\"Weather station data:\"\n",
    "head(weather)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The column \"RecordTime\" in the BENTO dataset needs to be converted to date/time format."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'BENTO temperature sensor readings from Great Boiling Springs, NV:'"
      ],
      "text/latex": [
       "'BENTO temperature sensor readings from Great Boiling Springs, NV:'"
      ],
      "text/markdown": [
       "'BENTO temperature sensor readings from Great Boiling Springs, NV:'"
      ],
      "text/plain": [
       "[1] \"BENTO temperature sensor readings from Great Boiling Springs, NV:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<table>\n",
       "<thead><tr><th scope=col>RecordTime</th><th scope=col>Battery.V.</th><th scope=col>Rate</th><th scope=col>Sensor0</th><th scope=col>Sensor1</th><th scope=col>Sensor2</th><th scope=col>Sensor3</th><th scope=col>Sensor4</th><th scope=col>Sensor5</th><th scope=col>Sensor6</th><th scope=col>Sensor7</th><th scope=col>Sensor8</th><th scope=col>Sensor9</th><th scope=col>Sensor10</th><th scope=col>Sensor11</th><th scope=col>Sensor12</th><th scope=col>Sensor13</th><th scope=col>DateTime</th><th scope=col>Date</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><td>41016.34           </td><td>10.3               </td><td>Normal             </td><td>35.01              </td><td>40.66              </td><td>42.26              </td><td>54.05              </td><td>41.66              </td><td>43.85              </td><td>42.65              </td><td>12.02              </td><td>44.75              </td><td>55.05              </td><td>51.64              </td><td>55.65              </td><td>55.85              </td><td>53.04              </td><td>2012-04-17 08:14:00</td><td>2012-04-17         </td></tr>\n",
       "\t<tr><td>41016.34           </td><td>10.3               </td><td>Normal             </td><td>34.52              </td><td>40.86              </td><td>41.46              </td><td>54.25              </td><td>41.46              </td><td>43.85              </td><td>42.65              </td><td>12.12              </td><td>44.75              </td><td>54.45              </td><td>51.74              </td><td>55.65              </td><td>56.35              </td><td>52.94              </td><td>2012-04-17 08:15:00</td><td>2012-04-17         </td></tr>\n",
       "\t<tr><td>41016.34           </td><td>10.4               </td><td>Normal             </td><td>34.32              </td><td>40.86              </td><td>40.57              </td><td>54.35              </td><td>41.26              </td><td>43.85              </td><td>42.65              </td><td>12.51              </td><td>44.75              </td><td>54.95              </td><td>51.64              </td><td>55.55              </td><td>55.75              </td><td>52.74              </td><td>2012-04-17 08:15:59</td><td>2012-04-17         </td></tr>\n",
       "\t<tr><td>41016.35           </td><td>10.4               </td><td>Normal             </td><td>33.62              </td><td>40.76              </td><td>39.17              </td><td>53.64              </td><td>41.36              </td><td>43.95              </td><td>42.75              </td><td>12.22              </td><td>44.85              </td><td>54.85              </td><td>51.74              </td><td>55.55              </td><td>55.75              </td><td>52.74              </td><td>2012-04-17 08:17:59</td><td>2012-04-17         </td></tr>\n",
       "\t<tr><td>41016.38           </td><td>10.5               </td><td>Normal             </td><td>33.82              </td><td>43.65              </td><td>37.49              </td><td>54.35              </td><td>40.27              </td><td>44.15              </td><td>43.25              </td><td>15.44              </td><td>45.74              </td><td>53.84              </td><td>53.04              </td><td>55.75              </td><td>57.66              </td><td>52.94              </td><td>2012-04-17 09:00:00</td><td>2012-04-17         </td></tr>\n",
       "\t<tr><td>41016.42           </td><td>10.5               </td><td>Normal             </td><td>37.49              </td><td>42.95              </td><td>42.26              </td><td>54.75              </td><td>44.25              </td><td>44.35              </td><td>43.45              </td><td>20.72              </td><td>47.94              </td><td>56.25              </td><td>52.74              </td><td>56.15              </td><td>57.86              </td><td>54.05              </td><td>2012-04-17 10:00:00</td><td>2012-04-17         </td></tr>\n",
       "</tbody>\n",
       "</table>\n"
      ],
      "text/latex": [
       "\\begin{tabular}{r|lllllllllllllllllll}\n",
       " RecordTime & Battery.V. & Rate & Sensor0 & Sensor1 & Sensor2 & Sensor3 & Sensor4 & Sensor5 & Sensor6 & Sensor7 & Sensor8 & Sensor9 & Sensor10 & Sensor11 & Sensor12 & Sensor13 & DateTime & Date\\\\\n",
       "\\hline\n",
       "\t 41016.34            & 10.3                & Normal              & 35.01               & 40.66               & 42.26               & 54.05               & 41.66               & 43.85               & 42.65               & 12.02               & 44.75               & 55.05               & 51.64               & 55.65               & 55.85               & 53.04               & 2012-04-17 08:14:00 & 2012-04-17         \\\\\n",
       "\t 41016.34            & 10.3                & Normal              & 34.52               & 40.86               & 41.46               & 54.25               & 41.46               & 43.85               & 42.65               & 12.12               & 44.75               & 54.45               & 51.74               & 55.65               & 56.35               & 52.94               & 2012-04-17 08:15:00 & 2012-04-17         \\\\\n",
       "\t 41016.34            & 10.4                & Normal              & 34.32               & 40.86               & 40.57               & 54.35               & 41.26               & 43.85               & 42.65               & 12.51               & 44.75               & 54.95               & 51.64               & 55.55               & 55.75               & 52.74               & 2012-04-17 08:15:59 & 2012-04-17         \\\\\n",
       "\t 41016.35            & 10.4                & Normal              & 33.62               & 40.76               & 39.17               & 53.64               & 41.36               & 43.95               & 42.75               & 12.22               & 44.85               & 54.85               & 51.74               & 55.55               & 55.75               & 52.74               & 2012-04-17 08:17:59 & 2012-04-17         \\\\\n",
       "\t 41016.38            & 10.5                & Normal              & 33.82               & 43.65               & 37.49               & 54.35               & 40.27               & 44.15               & 43.25               & 15.44               & 45.74               & 53.84               & 53.04               & 55.75               & 57.66               & 52.94               & 2012-04-17 09:00:00 & 2012-04-17         \\\\\n",
       "\t 41016.42            & 10.5                & Normal              & 37.49               & 42.95               & 42.26               & 54.75               & 44.25               & 44.35               & 43.45               & 20.72               & 47.94               & 56.25               & 52.74               & 56.15               & 57.86               & 54.05               & 2012-04-17 10:00:00 & 2012-04-17         \\\\\n",
       "\\end{tabular}\n"
      ],
      "text/markdown": [
       "\n",
       "RecordTime | Battery.V. | Rate | Sensor0 | Sensor1 | Sensor2 | Sensor3 | Sensor4 | Sensor5 | Sensor6 | Sensor7 | Sensor8 | Sensor9 | Sensor10 | Sensor11 | Sensor12 | Sensor13 | DateTime | Date | \n",
       "|---|---|---|---|---|---|\n",
       "| 41016.34            | 10.3                | Normal              | 35.01               | 40.66               | 42.26               | 54.05               | 41.66               | 43.85               | 42.65               | 12.02               | 44.75               | 55.05               | 51.64               | 55.65               | 55.85               | 53.04               | 2012-04-17 08:14:00 | 2012-04-17          | \n",
       "| 41016.34            | 10.3                | Normal              | 34.52               | 40.86               | 41.46               | 54.25               | 41.46               | 43.85               | 42.65               | 12.12               | 44.75               | 54.45               | 51.74               | 55.65               | 56.35               | 52.94               | 2012-04-17 08:15:00 | 2012-04-17          | \n",
       "| 41016.34            | 10.4                | Normal              | 34.32               | 40.86               | 40.57               | 54.35               | 41.26               | 43.85               | 42.65               | 12.51               | 44.75               | 54.95               | 51.64               | 55.55               | 55.75               | 52.74               | 2012-04-17 08:15:59 | 2012-04-17          | \n",
       "| 41016.35            | 10.4                | Normal              | 33.62               | 40.76               | 39.17               | 53.64               | 41.36               | 43.95               | 42.75               | 12.22               | 44.85               | 54.85               | 51.74               | 55.55               | 55.75               | 52.74               | 2012-04-17 08:17:59 | 2012-04-17          | \n",
       "| 41016.38            | 10.5                | Normal              | 33.82               | 43.65               | 37.49               | 54.35               | 40.27               | 44.15               | 43.25               | 15.44               | 45.74               | 53.84               | 53.04               | 55.75               | 57.66               | 52.94               | 2012-04-17 09:00:00 | 2012-04-17          | \n",
       "| 41016.42            | 10.5                | Normal              | 37.49               | 42.95               | 42.26               | 54.75               | 44.25               | 44.35               | 43.45               | 20.72               | 47.94               | 56.25               | 52.74               | 56.15               | 57.86               | 54.05               | 2012-04-17 10:00:00 | 2012-04-17          | \n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "  RecordTime Battery.V. Rate   Sensor0 Sensor1 Sensor2 Sensor3 Sensor4 Sensor5\n",
       "1 41016.34   10.3       Normal 35.01   40.66   42.26   54.05   41.66   43.85  \n",
       "2 41016.34   10.3       Normal 34.52   40.86   41.46   54.25   41.46   43.85  \n",
       "3 41016.34   10.4       Normal 34.32   40.86   40.57   54.35   41.26   43.85  \n",
       "4 41016.35   10.4       Normal 33.62   40.76   39.17   53.64   41.36   43.95  \n",
       "5 41016.38   10.5       Normal 33.82   43.65   37.49   54.35   40.27   44.15  \n",
       "6 41016.42   10.5       Normal 37.49   42.95   42.26   54.75   44.25   44.35  \n",
       "  Sensor6 Sensor7 Sensor8 Sensor9 Sensor10 Sensor11 Sensor12 Sensor13\n",
       "1 42.65   12.02   44.75   55.05   51.64    55.65    55.85    53.04   \n",
       "2 42.65   12.12   44.75   54.45   51.74    55.65    56.35    52.94   \n",
       "3 42.65   12.51   44.75   54.95   51.64    55.55    55.75    52.74   \n",
       "4 42.75   12.22   44.85   54.85   51.74    55.55    55.75    52.74   \n",
       "5 43.25   15.44   45.74   53.84   53.04    55.75    57.66    52.94   \n",
       "6 43.45   20.72   47.94   56.25   52.74    56.15    57.86    54.05   \n",
       "  DateTime            Date      \n",
       "1 2012-04-17 08:14:00 2012-04-17\n",
       "2 2012-04-17 08:15:00 2012-04-17\n",
       "3 2012-04-17 08:15:59 2012-04-17\n",
       "4 2012-04-17 08:17:59 2012-04-17\n",
       "5 2012-04-17 09:00:00 2012-04-17\n",
       "6 2012-04-17 10:00:00 2012-04-17"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "'Weather station data:'"
      ],
      "text/latex": [
       "'Weather station data:'"
      ],
      "text/markdown": [
       "'Weather station data:'"
      ],
      "text/plain": [
       "[1] \"Weather station data:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<table>\n",
       "<thead><tr><th scope=col>Date</th><th scope=col>TemperatureHighC</th><th scope=col>TemperatureAvgC</th><th scope=col>TemperatureLowC</th><th scope=col>DewpointHighF</th><th scope=col>DewpointAvgF</th><th scope=col>DewpointLowF</th><th scope=col>HumidityHigh</th><th scope=col>HumidityAvg</th><th scope=col>HumidityLow</th><th scope=col>PressureMaxIn</th><th scope=col>PressureMinIn</th><th scope=col>WindSpeedMaxMPH</th><th scope=col>WindSpeedAvgMPH</th><th scope=col>GustSpeedMaxMPH</th><th scope=col>PrecipitationSumIn</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><td>2012-04-17</td><td>11.7      </td><td> 5.6      </td><td>0.0       </td><td>30        </td><td>24        </td><td>14        </td><td> 93       </td><td>56        </td><td>28        </td><td>0         </td><td>40        </td><td>11        </td><td>7         </td><td>25        </td><td>0.00      </td></tr>\n",
       "\t<tr><td>2012-04-18</td><td> 8.9      </td><td> 4.4      </td><td>1.1       </td><td>37        </td><td>31        </td><td>20        </td><td>100       </td><td>73        </td><td>44        </td><td>0         </td><td>40        </td><td>15        </td><td>8         </td><td>23        </td><td>0.00      </td></tr>\n",
       "\t<tr><td>2012-04-19</td><td>14.4      </td><td> 7.8      </td><td>2.2       </td><td>42        </td><td>40        </td><td>36        </td><td>100       </td><td>82        </td><td>52        </td><td>0         </td><td>40        </td><td>13        </td><td>8         </td><td>26        </td><td>0.01      </td></tr>\n",
       "\t<tr><td>2012-04-20</td><td>21.1      </td><td>12.8      </td><td>3.9       </td><td>43        </td><td>34        </td><td>19        </td><td> 94       </td><td>53        </td><td>16        </td><td>0         </td><td>40        </td><td> 7        </td><td>4         </td><td>19        </td><td>0.00      </td></tr>\n",
       "\t<tr><td>2012-04-21</td><td>22.2      </td><td>15.6      </td><td>8.3       </td><td>33        </td><td>25        </td><td>14        </td><td> 51       </td><td>30        </td><td>11        </td><td>0         </td><td>40        </td><td>13        </td><td>6         </td><td>22        </td><td>0.00      </td></tr>\n",
       "\t<tr><td>2012-04-22</td><td>23.9      </td><td>16.7      </td><td>7.8       </td><td>33        </td><td>26        </td><td>16        </td><td> 53       </td><td>29        </td><td>11        </td><td>0         </td><td>40        </td><td>13        </td><td>6         </td><td>25        </td><td>0.00      </td></tr>\n",
       "</tbody>\n",
       "</table>\n"
      ],
      "text/latex": [
       "\\begin{tabular}{r|llllllllllllllll}\n",
       " Date & TemperatureHighC & TemperatureAvgC & TemperatureLowC & DewpointHighF & DewpointAvgF & DewpointLowF & HumidityHigh & HumidityAvg & HumidityLow & PressureMaxIn & PressureMinIn & WindSpeedMaxMPH & WindSpeedAvgMPH & GustSpeedMaxMPH & PrecipitationSumIn\\\\\n",
       "\\hline\n",
       "\t 2012-04-17 & 11.7       &  5.6       & 0.0        & 30         & 24         & 14         &  93        & 56         & 28         & 0          & 40         & 11         & 7          & 25         & 0.00      \\\\\n",
       "\t 2012-04-18 &  8.9       &  4.4       & 1.1        & 37         & 31         & 20         & 100        & 73         & 44         & 0          & 40         & 15         & 8          & 23         & 0.00      \\\\\n",
       "\t 2012-04-19 & 14.4       &  7.8       & 2.2        & 42         & 40         & 36         & 100        & 82         & 52         & 0          & 40         & 13         & 8          & 26         & 0.01      \\\\\n",
       "\t 2012-04-20 & 21.1       & 12.8       & 3.9        & 43         & 34         & 19         &  94        & 53         & 16         & 0          & 40         &  7         & 4          & 19         & 0.00      \\\\\n",
       "\t 2012-04-21 & 22.2       & 15.6       & 8.3        & 33         & 25         & 14         &  51        & 30         & 11         & 0          & 40         & 13         & 6          & 22         & 0.00      \\\\\n",
       "\t 2012-04-22 & 23.9       & 16.7       & 7.8        & 33         & 26         & 16         &  53        & 29         & 11         & 0          & 40         & 13         & 6          & 25         & 0.00      \\\\\n",
       "\\end{tabular}\n"
      ],
      "text/markdown": [
       "\n",
       "Date | TemperatureHighC | TemperatureAvgC | TemperatureLowC | DewpointHighF | DewpointAvgF | DewpointLowF | HumidityHigh | HumidityAvg | HumidityLow | PressureMaxIn | PressureMinIn | WindSpeedMaxMPH | WindSpeedAvgMPH | GustSpeedMaxMPH | PrecipitationSumIn | \n",
       "|---|---|---|---|---|---|\n",
       "| 2012-04-17 | 11.7       |  5.6       | 0.0        | 30         | 24         | 14         |  93        | 56         | 28         | 0          | 40         | 11         | 7          | 25         | 0.00       | \n",
       "| 2012-04-18 |  8.9       |  4.4       | 1.1        | 37         | 31         | 20         | 100        | 73         | 44         | 0          | 40         | 15         | 8          | 23         | 0.00       | \n",
       "| 2012-04-19 | 14.4       |  7.8       | 2.2        | 42         | 40         | 36         | 100        | 82         | 52         | 0          | 40         | 13         | 8          | 26         | 0.01       | \n",
       "| 2012-04-20 | 21.1       | 12.8       | 3.9        | 43         | 34         | 19         |  94        | 53         | 16         | 0          | 40         |  7         | 4          | 19         | 0.00       | \n",
       "| 2012-04-21 | 22.2       | 15.6       | 8.3        | 33         | 25         | 14         |  51        | 30         | 11         | 0          | 40         | 13         | 6          | 22         | 0.00       | \n",
       "| 2012-04-22 | 23.9       | 16.7       | 7.8        | 33         | 26         | 16         |  53        | 29         | 11         | 0          | 40         | 13         | 6          | 25         | 0.00       | \n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "  Date       TemperatureHighC TemperatureAvgC TemperatureLowC DewpointHighF\n",
       "1 2012-04-17 11.7              5.6            0.0             30           \n",
       "2 2012-04-18  8.9              4.4            1.1             37           \n",
       "3 2012-04-19 14.4              7.8            2.2             42           \n",
       "4 2012-04-20 21.1             12.8            3.9             43           \n",
       "5 2012-04-21 22.2             15.6            8.3             33           \n",
       "6 2012-04-22 23.9             16.7            7.8             33           \n",
       "  DewpointAvgF DewpointLowF HumidityHigh HumidityAvg HumidityLow PressureMaxIn\n",
       "1 24           14            93          56          28          0            \n",
       "2 31           20           100          73          44          0            \n",
       "3 40           36           100          82          52          0            \n",
       "4 34           19            94          53          16          0            \n",
       "5 25           14            51          30          11          0            \n",
       "6 26           16            53          29          11          0            \n",
       "  PressureMinIn WindSpeedMaxMPH WindSpeedAvgMPH GustSpeedMaxMPH\n",
       "1 40            11              7               25             \n",
       "2 40            15              8               23             \n",
       "3 40            13              8               26             \n",
       "4 40             7              4               19             \n",
       "5 40            13              6               22             \n",
       "6 40            13              6               25             \n",
       "  PrecipitationSumIn\n",
       "1 0.00              \n",
       "2 0.00              \n",
       "3 0.01              \n",
       "4 0.00              \n",
       "5 0.00              \n",
       "6 0.00              "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# create column converting RecordTime into proper date/time format\n",
    "bento$DateTime <- as.POSIXct(\n",
    "  bento$RecordTime * (60*60*24), # (seconds)\n",
    "  origin=\"1899-12-30\", # Excel's origin time\n",
    "  tz=\"GMT\") # origin time zone\n",
    "\n",
    "# create a column for date only\n",
    "bento$Date <- as.Date(floor(bento$RecordTime), origin=\"1899-12-30\")\n",
    "\n",
    "# convert to date format\n",
    "weather$Date <- as.Date(weather$Date, origin=\"1899-12-30\")\n",
    "\n",
    "# check that formatting is correct in both datasets\n",
    "\"BENTO temperature sensor readings from Great Boiling Springs, NV:\"\n",
    "head(bento)\n",
    "\"Weather station data:\"\n",
    "head(weather)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'Number of days BENTO recorded:'"
      ],
      "text/latex": [
       "'Number of days BENTO recorded:'"
      ],
      "text/markdown": [
       "'Number of days BENTO recorded:'"
      ],
      "text/plain": [
       "[1] \"Number of days BENTO recorded:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "315"
      ],
      "text/latex": [
       "315"
      ],
      "text/markdown": [
       "315"
      ],
      "text/plain": [
       "[1] 315"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "'Number of days in weather data:'"
      ],
      "text/latex": [
       "'Number of days in weather data:'"
      ],
      "text/markdown": [
       "'Number of days in weather data:'"
      ],
      "text/plain": [
       "[1] \"Number of days in weather data:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "314"
      ],
      "text/latex": [
       "314"
      ],
      "text/markdown": [
       "314"
      ],
      "text/plain": [
       "[1] 314"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# aggregate average daily BENTO sensor readings (degrees C)\n",
    "bento_daily <- aggregate(bento[, 4:17], by = list(bento[, 19]), FUN = mean)\n",
    "\n",
    "# check to see whether length of bento_daily and weather match each other\n",
    "\"Number of days BENTO recorded:\"\n",
    "nrow(bento_daily)\n",
    "\"Number of days in weather data:\"\n",
    "nrow(weather)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'Tail end of BENTO sensor readings:'"
      ],
      "text/latex": [
       "'Tail end of BENTO sensor readings:'"
      ],
      "text/markdown": [
       "'Tail end of BENTO sensor readings:'"
      ],
      "text/plain": [
       "[1] \"Tail end of BENTO sensor readings:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<table>\n",
       "<thead><tr><th></th><th scope=col>Group.1</th><th scope=col>Sensor0</th><th scope=col>Sensor1</th><th scope=col>Sensor2</th><th scope=col>Sensor3</th><th scope=col>Sensor4</th><th scope=col>Sensor5</th><th scope=col>Sensor6</th><th scope=col>Sensor7</th><th scope=col>Sensor8</th><th scope=col>Sensor9</th><th scope=col>Sensor10</th><th scope=col>Sensor11</th><th scope=col>Sensor12</th><th scope=col>Sensor13</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><th scope=row>310</th><td>2013-02-20</td><td>48.56727  </td><td>49.96273  </td><td>50.20364  </td><td>NA        </td><td>49.16273  </td><td>NA        </td><td>NA        </td><td>NA        </td><td>52.90818  </td><td>78.76773  </td><td>NA        </td><td>NA        </td><td>56.45500  </td><td>NA        </td></tr>\n",
       "\t<tr><th scope=row>311</th><td>2013-02-21</td><td>49.54800  </td><td>49.76800  </td><td>51.03600  </td><td>NA        </td><td>48.88400  </td><td>NA        </td><td>NA        </td><td>NA        </td><td>53.37480  </td><td>76.29560  </td><td>NA        </td><td>NA        </td><td>57.38400  </td><td>NA        </td></tr>\n",
       "\t<tr><th scope=row>312</th><td>2013-02-22</td><td>49.33200  </td><td>49.37200  </td><td>50.88000  </td><td>NA        </td><td>47.10000  </td><td>NA        </td><td>NA        </td><td>NA        </td><td>50.96000  </td><td>71.89040  </td><td>NA        </td><td>NA        </td><td>56.10880  </td><td>NA        </td></tr>\n",
       "\t<tr><th scope=row>313</th><td>2013-02-23</td><td>46.49833  </td><td>47.29000  </td><td>48.36917  </td><td>NA        </td><td>45.43917  </td><td>NA        </td><td>NA        </td><td>NA        </td><td>49.54417  </td><td>67.82333  </td><td>NA        </td><td>NA        </td><td>53.59667  </td><td>NA        </td></tr>\n",
       "\t<tr><th scope=row>314</th><td>2013-02-24</td><td>47.83600  </td><td>48.25200  </td><td>49.36000  </td><td>NA        </td><td>46.82440  </td><td>NA        </td><td>NA        </td><td>NA        </td><td>51.13200  </td><td>74.54600  </td><td>NA        </td><td>NA        </td><td>55.30200  </td><td>NA        </td></tr>\n",
       "\t<tr><th scope=row>315</th><td>2013-02-25</td><td>48.77571  </td><td>48.69000  </td><td>50.12571  </td><td>NA        </td><td>47.40429  </td><td>NA        </td><td>NA        </td><td>NA        </td><td>50.61857  </td><td>      NA  </td><td>NA        </td><td>NA        </td><td>55.72857  </td><td>NA        </td></tr>\n",
       "</tbody>\n",
       "</table>\n"
      ],
      "text/latex": [
       "\\begin{tabular}{r|lllllllllllllll}\n",
       "  & Group.1 & Sensor0 & Sensor1 & Sensor2 & Sensor3 & Sensor4 & Sensor5 & Sensor6 & Sensor7 & Sensor8 & Sensor9 & Sensor10 & Sensor11 & Sensor12 & Sensor13\\\\\n",
       "\\hline\n",
       "\t310 & 2013-02-20 & 48.56727   & 49.96273   & 50.20364   & NA         & 49.16273   & NA         & NA         & NA         & 52.90818   & 78.76773   & NA         & NA         & 56.45500   & NA        \\\\\n",
       "\t311 & 2013-02-21 & 49.54800   & 49.76800   & 51.03600   & NA         & 48.88400   & NA         & NA         & NA         & 53.37480   & 76.29560   & NA         & NA         & 57.38400   & NA        \\\\\n",
       "\t312 & 2013-02-22 & 49.33200   & 49.37200   & 50.88000   & NA         & 47.10000   & NA         & NA         & NA         & 50.96000   & 71.89040   & NA         & NA         & 56.10880   & NA        \\\\\n",
       "\t313 & 2013-02-23 & 46.49833   & 47.29000   & 48.36917   & NA         & 45.43917   & NA         & NA         & NA         & 49.54417   & 67.82333   & NA         & NA         & 53.59667   & NA        \\\\\n",
       "\t314 & 2013-02-24 & 47.83600   & 48.25200   & 49.36000   & NA         & 46.82440   & NA         & NA         & NA         & 51.13200   & 74.54600   & NA         & NA         & 55.30200   & NA        \\\\\n",
       "\t315 & 2013-02-25 & 48.77571   & 48.69000   & 50.12571   & NA         & 47.40429   & NA         & NA         & NA         & 50.61857   &       NA   & NA         & NA         & 55.72857   & NA        \\\\\n",
       "\\end{tabular}\n"
      ],
      "text/markdown": [
       "\n",
       "| <!--/--> | Group.1 | Sensor0 | Sensor1 | Sensor2 | Sensor3 | Sensor4 | Sensor5 | Sensor6 | Sensor7 | Sensor8 | Sensor9 | Sensor10 | Sensor11 | Sensor12 | Sensor13 | \n",
       "|---|---|---|---|---|---|\n",
       "| 310 | 2013-02-20 | 48.56727   | 49.96273   | 50.20364   | NA         | 49.16273   | NA         | NA         | NA         | 52.90818   | 78.76773   | NA         | NA         | 56.45500   | NA         | \n",
       "| 311 | 2013-02-21 | 49.54800   | 49.76800   | 51.03600   | NA         | 48.88400   | NA         | NA         | NA         | 53.37480   | 76.29560   | NA         | NA         | 57.38400   | NA         | \n",
       "| 312 | 2013-02-22 | 49.33200   | 49.37200   | 50.88000   | NA         | 47.10000   | NA         | NA         | NA         | 50.96000   | 71.89040   | NA         | NA         | 56.10880   | NA         | \n",
       "| 313 | 2013-02-23 | 46.49833   | 47.29000   | 48.36917   | NA         | 45.43917   | NA         | NA         | NA         | 49.54417   | 67.82333   | NA         | NA         | 53.59667   | NA         | \n",
       "| 314 | 2013-02-24 | 47.83600   | 48.25200   | 49.36000   | NA         | 46.82440   | NA         | NA         | NA         | 51.13200   | 74.54600   | NA         | NA         | 55.30200   | NA         | \n",
       "| 315 | 2013-02-25 | 48.77571   | 48.69000   | 50.12571   | NA         | 47.40429   | NA         | NA         | NA         | 50.61857   |       NA   | NA         | NA         | 55.72857   | NA         | \n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "    Group.1    Sensor0  Sensor1  Sensor2  Sensor3 Sensor4  Sensor5 Sensor6\n",
       "310 2013-02-20 48.56727 49.96273 50.20364 NA      49.16273 NA      NA     \n",
       "311 2013-02-21 49.54800 49.76800 51.03600 NA      48.88400 NA      NA     \n",
       "312 2013-02-22 49.33200 49.37200 50.88000 NA      47.10000 NA      NA     \n",
       "313 2013-02-23 46.49833 47.29000 48.36917 NA      45.43917 NA      NA     \n",
       "314 2013-02-24 47.83600 48.25200 49.36000 NA      46.82440 NA      NA     \n",
       "315 2013-02-25 48.77571 48.69000 50.12571 NA      47.40429 NA      NA     \n",
       "    Sensor7 Sensor8  Sensor9  Sensor10 Sensor11 Sensor12 Sensor13\n",
       "310 NA      52.90818 78.76773 NA       NA       56.45500 NA      \n",
       "311 NA      53.37480 76.29560 NA       NA       57.38400 NA      \n",
       "312 NA      50.96000 71.89040 NA       NA       56.10880 NA      \n",
       "313 NA      49.54417 67.82333 NA       NA       53.59667 NA      \n",
       "314 NA      51.13200 74.54600 NA       NA       55.30200 NA      \n",
       "315 NA      50.61857       NA NA       NA       55.72857 NA      "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "'Tail end of weather data:'"
      ],
      "text/latex": [
       "'Tail end of weather data:'"
      ],
      "text/markdown": [
       "'Tail end of weather data:'"
      ],
      "text/plain": [
       "[1] \"Tail end of weather data:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<table>\n",
       "<thead><tr><th></th><th scope=col>Date</th><th scope=col>TemperatureHighC</th><th scope=col>TemperatureAvgC</th><th scope=col>TemperatureLowC</th><th scope=col>DewpointHighF</th><th scope=col>DewpointAvgF</th><th scope=col>DewpointLowF</th><th scope=col>HumidityHigh</th><th scope=col>HumidityAvg</th><th scope=col>HumidityLow</th><th scope=col>PressureMaxIn</th><th scope=col>PressureMinIn</th><th scope=col>WindSpeedMaxMPH</th><th scope=col>WindSpeedAvgMPH</th><th scope=col>GustSpeedMaxMPH</th><th scope=col>PrecipitationSumIn</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><th scope=row>309</th><td>2013-02-19</td><td>-1.1      </td><td>-3.9      </td><td> -6.7     </td><td>24        </td><td>20        </td><td>14        </td><td>95        </td><td>80        </td><td>50        </td><td>0         </td><td>40        </td><td>21        </td><td> 7        </td><td>33        </td><td>0         </td></tr>\n",
       "\t<tr><th scope=row>310</th><td>2013-02-20</td><td>-2.2      </td><td>-5.6      </td><td> -7.8     </td><td>19        </td><td>14        </td><td> 6        </td><td>94        </td><td>72        </td><td>47        </td><td>0         </td><td>40        </td><td>26        </td><td>17        </td><td>38        </td><td>0         </td></tr>\n",
       "\t<tr><th scope=row>311</th><td>2013-02-21</td><td> 0.6      </td><td>-4.4      </td><td> -8.3     </td><td>17        </td><td>15        </td><td>11        </td><td>92        </td><td>70        </td><td>40        </td><td>0         </td><td>40        </td><td>20        </td><td> 9        </td><td>29        </td><td>0         </td></tr>\n",
       "\t<tr><th scope=row>312</th><td>2013-02-22</td><td> 3.3      </td><td>-2.2      </td><td> -7.8     </td><td>26        </td><td>20        </td><td>15        </td><td>94        </td><td>73        </td><td>47        </td><td>0         </td><td>40        </td><td>11        </td><td> 5        </td><td>26        </td><td>0         </td></tr>\n",
       "\t<tr><th scope=row>313</th><td>2013-02-23</td><td>-0.6      </td><td>-5.6      </td><td> -8.9     </td><td>27        </td><td>16        </td><td>11        </td><td>96        </td><td>78        </td><td>53        </td><td>0         </td><td>40        </td><td>26        </td><td>14        </td><td>46        </td><td>0         </td></tr>\n",
       "\t<tr><th scope=row>314</th><td>2013-02-24</td><td> 1.1      </td><td>-5.0      </td><td>-10.0     </td><td>15        </td><td>11        </td><td> 6        </td><td>87        </td><td>62        </td><td>42        </td><td>0         </td><td>40        </td><td>21        </td><td> 6        </td><td>29        </td><td>0         </td></tr>\n",
       "</tbody>\n",
       "</table>\n"
      ],
      "text/latex": [
       "\\begin{tabular}{r|llllllllllllllll}\n",
       "  & Date & TemperatureHighC & TemperatureAvgC & TemperatureLowC & DewpointHighF & DewpointAvgF & DewpointLowF & HumidityHigh & HumidityAvg & HumidityLow & PressureMaxIn & PressureMinIn & WindSpeedMaxMPH & WindSpeedAvgMPH & GustSpeedMaxMPH & PrecipitationSumIn\\\\\n",
       "\\hline\n",
       "\t309 & 2013-02-19 & -1.1       & -3.9       &  -6.7      & 24         & 20         & 14         & 95         & 80         & 50         & 0          & 40         & 21         &  7         & 33         & 0         \\\\\n",
       "\t310 & 2013-02-20 & -2.2       & -5.6       &  -7.8      & 19         & 14         &  6         & 94         & 72         & 47         & 0          & 40         & 26         & 17         & 38         & 0         \\\\\n",
       "\t311 & 2013-02-21 &  0.6       & -4.4       &  -8.3      & 17         & 15         & 11         & 92         & 70         & 40         & 0          & 40         & 20         &  9         & 29         & 0         \\\\\n",
       "\t312 & 2013-02-22 &  3.3       & -2.2       &  -7.8      & 26         & 20         & 15         & 94         & 73         & 47         & 0          & 40         & 11         &  5         & 26         & 0         \\\\\n",
       "\t313 & 2013-02-23 & -0.6       & -5.6       &  -8.9      & 27         & 16         & 11         & 96         & 78         & 53         & 0          & 40         & 26         & 14         & 46         & 0         \\\\\n",
       "\t314 & 2013-02-24 &  1.1       & -5.0       & -10.0      & 15         & 11         &  6         & 87         & 62         & 42         & 0          & 40         & 21         &  6         & 29         & 0         \\\\\n",
       "\\end{tabular}\n"
      ],
      "text/markdown": [
       "\n",
       "| <!--/--> | Date | TemperatureHighC | TemperatureAvgC | TemperatureLowC | DewpointHighF | DewpointAvgF | DewpointLowF | HumidityHigh | HumidityAvg | HumidityLow | PressureMaxIn | PressureMinIn | WindSpeedMaxMPH | WindSpeedAvgMPH | GustSpeedMaxMPH | PrecipitationSumIn | \n",
       "|---|---|---|---|---|---|\n",
       "| 309 | 2013-02-19 | -1.1       | -3.9       |  -6.7      | 24         | 20         | 14         | 95         | 80         | 50         | 0          | 40         | 21         |  7         | 33         | 0          | \n",
       "| 310 | 2013-02-20 | -2.2       | -5.6       |  -7.8      | 19         | 14         |  6         | 94         | 72         | 47         | 0          | 40         | 26         | 17         | 38         | 0          | \n",
       "| 311 | 2013-02-21 |  0.6       | -4.4       |  -8.3      | 17         | 15         | 11         | 92         | 70         | 40         | 0          | 40         | 20         |  9         | 29         | 0          | \n",
       "| 312 | 2013-02-22 |  3.3       | -2.2       |  -7.8      | 26         | 20         | 15         | 94         | 73         | 47         | 0          | 40         | 11         |  5         | 26         | 0          | \n",
       "| 313 | 2013-02-23 | -0.6       | -5.6       |  -8.9      | 27         | 16         | 11         | 96         | 78         | 53         | 0          | 40         | 26         | 14         | 46         | 0          | \n",
       "| 314 | 2013-02-24 |  1.1       | -5.0       | -10.0      | 15         | 11         |  6         | 87         | 62         | 42         | 0          | 40         | 21         |  6         | 29         | 0          | \n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "    Date       TemperatureHighC TemperatureAvgC TemperatureLowC DewpointHighF\n",
       "309 2013-02-19 -1.1             -3.9             -6.7           24           \n",
       "310 2013-02-20 -2.2             -5.6             -7.8           19           \n",
       "311 2013-02-21  0.6             -4.4             -8.3           17           \n",
       "312 2013-02-22  3.3             -2.2             -7.8           26           \n",
       "313 2013-02-23 -0.6             -5.6             -8.9           27           \n",
       "314 2013-02-24  1.1             -5.0            -10.0           15           \n",
       "    DewpointAvgF DewpointLowF HumidityHigh HumidityAvg HumidityLow\n",
       "309 20           14           95           80          50         \n",
       "310 14            6           94           72          47         \n",
       "311 15           11           92           70          40         \n",
       "312 20           15           94           73          47         \n",
       "313 16           11           96           78          53         \n",
       "314 11            6           87           62          42         \n",
       "    PressureMaxIn PressureMinIn WindSpeedMaxMPH WindSpeedAvgMPH GustSpeedMaxMPH\n",
       "309 0             40            21               7              33             \n",
       "310 0             40            26              17              38             \n",
       "311 0             40            20               9              29             \n",
       "312 0             40            11               5              26             \n",
       "313 0             40            26              14              46             \n",
       "314 0             40            21               6              29             \n",
       "    PrecipitationSumIn\n",
       "309 0                 \n",
       "310 0                 \n",
       "311 0                 \n",
       "312 0                 \n",
       "313 0                 \n",
       "314 0                 "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# BENTO and weather data start on the same day, but weather reports end a day too early.\n",
    "\"Tail end of BENTO sensor readings:\"\n",
    "tail(bento_daily)\n",
    "\"Tail end of weather data:\"\n",
    "tail(weather)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'TRUE'"
      ],
      "text/latex": [
       "'TRUE'"
      ],
      "text/markdown": [
       "'TRUE'"
      ],
      "text/plain": [
       "[1] \"TRUE\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "'(Should be TRUE for date match between BENTO and weather datasets)'"
      ],
      "text/latex": [
       "'(Should be TRUE for date match between BENTO and weather datasets)'"
      ],
      "text/markdown": [
       "'(Should be TRUE for date match between BENTO and weather datasets)'"
      ],
      "text/plain": [
       "[1] \"(Should be TRUE for date match between BENTO and weather datasets)\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Snip off the last day in Bento for a complete date match between datasets.\n",
    "bento_daily_trim <- bento_daily[1:nrow(bento_daily)-1, ]\n",
    "\n",
    "# Then make sure dates match between BENTO and weather datasets:\n",
    "levels(factor(bento_daily_trim[, 1] == weather[, 1]))\n",
    "\"(Should be TRUE for date match between BENTO and weather datasets)\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<dl class=dl-horizontal>\n",
       "\t<dt>Sensor0</dt>\n",
       "\t\t<dd>49.3142003352776</dd>\n",
       "\t<dt>Sensor1</dt>\n",
       "\t\t<dd>51.3317082267499</dd>\n",
       "\t<dt>Sensor2</dt>\n",
       "\t\t<dd>50.9098408529728</dd>\n",
       "\t<dt>Sensor3</dt>\n",
       "\t\t<dd>&lt;NA&gt;</dd>\n",
       "\t<dt>Sensor4</dt>\n",
       "\t\t<dd>50.1325051749363</dd>\n",
       "\t<dt>Sensor5</dt>\n",
       "\t\t<dd>&lt;NA&gt;</dd>\n",
       "\t<dt>Sensor6</dt>\n",
       "\t\t<dd>&lt;NA&gt;</dd>\n",
       "\t<dt>Sensor7</dt>\n",
       "\t\t<dd>&lt;NA&gt;</dd>\n",
       "\t<dt>Sensor8</dt>\n",
       "\t\t<dd>55.6142325108879</dd>\n",
       "\t<dt>Sensor9</dt>\n",
       "\t\t<dd>&lt;NA&gt;</dd>\n",
       "\t<dt>Sensor10</dt>\n",
       "\t\t<dd>&lt;NA&gt;</dd>\n",
       "\t<dt>Sensor11</dt>\n",
       "\t\t<dd>&lt;NA&gt;</dd>\n",
       "\t<dt>Sensor12</dt>\n",
       "\t\t<dd>56.7064976338187</dd>\n",
       "\t<dt>Sensor13</dt>\n",
       "\t\t<dd>&lt;NA&gt;</dd>\n",
       "</dl>\n"
      ],
      "text/latex": [
       "\\begin{description*}\n",
       "\\item[Sensor0] 49.3142003352776\n",
       "\\item[Sensor1] 51.3317082267499\n",
       "\\item[Sensor2] 50.9098408529728\n",
       "\\item[Sensor3] <NA>\n",
       "\\item[Sensor4] 50.1325051749363\n",
       "\\item[Sensor5] <NA>\n",
       "\\item[Sensor6] <NA>\n",
       "\\item[Sensor7] <NA>\n",
       "\\item[Sensor8] 55.6142325108879\n",
       "\\item[Sensor9] <NA>\n",
       "\\item[Sensor10] <NA>\n",
       "\\item[Sensor11] <NA>\n",
       "\\item[Sensor12] 56.7064976338187\n",
       "\\item[Sensor13] <NA>\n",
       "\\end{description*}\n"
      ],
      "text/markdown": [
       "Sensor0\n",
       ":   49.3142003352776Sensor1\n",
       ":   51.3317082267499Sensor2\n",
       ":   50.9098408529728Sensor3\n",
       ":   &lt;NA&gt;Sensor4\n",
       ":   50.1325051749363Sensor5\n",
       ":   &lt;NA&gt;Sensor6\n",
       ":   &lt;NA&gt;Sensor7\n",
       ":   &lt;NA&gt;Sensor8\n",
       ":   55.6142325108879Sensor9\n",
       ":   &lt;NA&gt;Sensor10\n",
       ":   &lt;NA&gt;Sensor11\n",
       ":   &lt;NA&gt;Sensor12\n",
       ":   56.7064976338187Sensor13\n",
       ":   &lt;NA&gt;\n",
       "\n"
      ],
      "text/plain": [
       " Sensor0  Sensor1  Sensor2  Sensor3  Sensor4  Sensor5  Sensor6  Sensor7 \n",
       "49.31420 51.33171 50.90984       NA 50.13251       NA       NA       NA \n",
       " Sensor8  Sensor9 Sensor10 Sensor11 Sensor12 Sensor13 \n",
       "55.61423       NA       NA       NA 56.70650       NA "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "'Sensors with &lt;NA&gt; did not record the entire duration.'"
      ],
      "text/latex": [
       "'Sensors with <NA> did not record the entire duration.'"
      ],
      "text/markdown": [
       "'Sensors with &lt;NA&gt; did not record the entire duration.'"
      ],
      "text/plain": [
       "[1] \"Sensors with <NA> did not record the entire duration.\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Check how many sensors logged data the entire duration without malfunctioning.\n",
    "colMeans(bento_daily_trim[, c(2:15)])\n",
    "\"Sensors with <NA> did not record the entire duration.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'\\'Ave\\' column added for daily average across all \\'good\\' BENTO sensors'"
      ],
      "text/latex": [
       "'\\textbackslash{}'Ave\\textbackslash{}' column added for daily average across all \\textbackslash{}'good\\textbackslash{}' BENTO sensors'"
      ],
      "text/markdown": [
       "'\\'Ave\\' column added for daily average across all \\'good\\' BENTO sensors'"
      ],
      "text/plain": [
       "[1] \"'Ave' column added for daily average across all 'good' BENTO sensors\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<table>\n",
       "<thead><tr><th scope=col>Group.1</th><th scope=col>Sensor0</th><th scope=col>Sensor1</th><th scope=col>Sensor2</th><th scope=col>Sensor3</th><th scope=col>Sensor4</th><th scope=col>Sensor5</th><th scope=col>Sensor6</th><th scope=col>Sensor7</th><th scope=col>Sensor8</th><th scope=col>Sensor9</th><th scope=col>Sensor10</th><th scope=col>Sensor11</th><th scope=col>Sensor12</th><th scope=col>Sensor13</th><th scope=col>Ave</th></tr></thead>\n",
       "<tbody>\n",
       "\t<tr><td>2012-04-17</td><td>42.82192  </td><td>43.56885  </td><td>46.87154  </td><td>54.56423  </td><td>44.95423  </td><td>44.25538  </td><td>43.51231  </td><td>21.25962  </td><td>48.10308  </td><td>55.31962  </td><td>52.34885  </td><td>56.35115  </td><td>57.09692  </td><td>53.14308  </td><td>47.23609  </td></tr>\n",
       "\t<tr><td>2012-04-18</td><td>38.58652  </td><td>40.59826  </td><td>42.11913  </td><td>53.61348  </td><td>40.10130  </td><td>41.98913  </td><td>42.14696  </td><td>16.88174  </td><td>47.00739  </td><td>55.00565  </td><td>50.91391  </td><td>55.92652  </td><td>55.91783  </td><td>      NA  </td><td>44.05507  </td></tr>\n",
       "\t<tr><td>2012-04-19</td><td>38.47087  </td><td>44.17870  </td><td>42.12043  </td><td>55.86000  </td><td>43.41304  </td><td>      NA  </td><td>44.02130  </td><td>19.10565  </td><td>47.88783  </td><td>56.19174  </td><td>53.02522  </td><td>57.38217  </td><td>57.99043  </td><td>      NA  </td><td>45.67688  </td></tr>\n",
       "\t<tr><td>2012-04-20</td><td>39.82760  </td><td>48.24040  </td><td>43.68240  </td><td>58.67320  </td><td>48.13800  </td><td>      NA  </td><td>47.19200  </td><td>23.26680  </td><td>51.71400  </td><td>60.08480  </td><td>57.31240  </td><td>61.20160  </td><td>61.72920  </td><td>      NA  </td><td>48.88860  </td></tr>\n",
       "\t<tr><td>2012-04-21</td><td>45.12130  </td><td>47.57261  </td><td>47.86957  </td><td>58.41783  </td><td>47.52000  </td><td>      NA  </td><td>49.96174  </td><td>26.11000  </td><td>52.84304  </td><td>60.45348  </td><td>57.28087  </td><td>62.03609  </td><td>62.13565  </td><td>      NA  </td><td>50.51036  </td></tr>\n",
       "\t<tr><td>2012-04-22</td><td>43.88391  </td><td>46.29174  </td><td>46.46957  </td><td>57.03739  </td><td>43.46348  </td><td>      NA  </td><td>48.55304  </td><td>27.07913  </td><td>51.36739  </td><td>58.67130  </td><td>55.46870  </td><td>60.83000  </td><td>60.54435  </td><td>      NA  </td><td>48.67007  </td></tr>\n",
       "</tbody>\n",
       "</table>\n"
      ],
      "text/latex": [
       "\\begin{tabular}{r|llllllllllllllll}\n",
       " Group.1 & Sensor0 & Sensor1 & Sensor2 & Sensor3 & Sensor4 & Sensor5 & Sensor6 & Sensor7 & Sensor8 & Sensor9 & Sensor10 & Sensor11 & Sensor12 & Sensor13 & Ave\\\\\n",
       "\\hline\n",
       "\t 2012-04-17 & 42.82192   & 43.56885   & 46.87154   & 54.56423   & 44.95423   & 44.25538   & 43.51231   & 21.25962   & 48.10308   & 55.31962   & 52.34885   & 56.35115   & 57.09692   & 53.14308   & 47.23609  \\\\\n",
       "\t 2012-04-18 & 38.58652   & 40.59826   & 42.11913   & 53.61348   & 40.10130   & 41.98913   & 42.14696   & 16.88174   & 47.00739   & 55.00565   & 50.91391   & 55.92652   & 55.91783   &       NA   & 44.05507  \\\\\n",
       "\t 2012-04-19 & 38.47087   & 44.17870   & 42.12043   & 55.86000   & 43.41304   &       NA   & 44.02130   & 19.10565   & 47.88783   & 56.19174   & 53.02522   & 57.38217   & 57.99043   &       NA   & 45.67688  \\\\\n",
       "\t 2012-04-20 & 39.82760   & 48.24040   & 43.68240   & 58.67320   & 48.13800   &       NA   & 47.19200   & 23.26680   & 51.71400   & 60.08480   & 57.31240   & 61.20160   & 61.72920   &       NA   & 48.88860  \\\\\n",
       "\t 2012-04-21 & 45.12130   & 47.57261   & 47.86957   & 58.41783   & 47.52000   &       NA   & 49.96174   & 26.11000   & 52.84304   & 60.45348   & 57.28087   & 62.03609   & 62.13565   &       NA   & 50.51036  \\\\\n",
       "\t 2012-04-22 & 43.88391   & 46.29174   & 46.46957   & 57.03739   & 43.46348   &       NA   & 48.55304   & 27.07913   & 51.36739   & 58.67130   & 55.46870   & 60.83000   & 60.54435   &       NA   & 48.67007  \\\\\n",
       "\\end{tabular}\n"
      ],
      "text/markdown": [
       "\n",
       "Group.1 | Sensor0 | Sensor1 | Sensor2 | Sensor3 | Sensor4 | Sensor5 | Sensor6 | Sensor7 | Sensor8 | Sensor9 | Sensor10 | Sensor11 | Sensor12 | Sensor13 | Ave | \n",
       "|---|---|---|---|---|---|\n",
       "| 2012-04-17 | 42.82192   | 43.56885   | 46.87154   | 54.56423   | 44.95423   | 44.25538   | 43.51231   | 21.25962   | 48.10308   | 55.31962   | 52.34885   | 56.35115   | 57.09692   | 53.14308   | 47.23609   | \n",
       "| 2012-04-18 | 38.58652   | 40.59826   | 42.11913   | 53.61348   | 40.10130   | 41.98913   | 42.14696   | 16.88174   | 47.00739   | 55.00565   | 50.91391   | 55.92652   | 55.91783   |       NA   | 44.05507   | \n",
       "| 2012-04-19 | 38.47087   | 44.17870   | 42.12043   | 55.86000   | 43.41304   |       NA   | 44.02130   | 19.10565   | 47.88783   | 56.19174   | 53.02522   | 57.38217   | 57.99043   |       NA   | 45.67688   | \n",
       "| 2012-04-20 | 39.82760   | 48.24040   | 43.68240   | 58.67320   | 48.13800   |       NA   | 47.19200   | 23.26680   | 51.71400   | 60.08480   | 57.31240   | 61.20160   | 61.72920   |       NA   | 48.88860   | \n",
       "| 2012-04-21 | 45.12130   | 47.57261   | 47.86957   | 58.41783   | 47.52000   |       NA   | 49.96174   | 26.11000   | 52.84304   | 60.45348   | 57.28087   | 62.03609   | 62.13565   |       NA   | 50.51036   | \n",
       "| 2012-04-22 | 43.88391   | 46.29174   | 46.46957   | 57.03739   | 43.46348   |       NA   | 48.55304   | 27.07913   | 51.36739   | 58.67130   | 55.46870   | 60.83000   | 60.54435   |       NA   | 48.67007   | \n",
       "\n",
       "\n"
      ],
      "text/plain": [
       "  Group.1    Sensor0  Sensor1  Sensor2  Sensor3  Sensor4  Sensor5  Sensor6 \n",
       "1 2012-04-17 42.82192 43.56885 46.87154 54.56423 44.95423 44.25538 43.51231\n",
       "2 2012-04-18 38.58652 40.59826 42.11913 53.61348 40.10130 41.98913 42.14696\n",
       "3 2012-04-19 38.47087 44.17870 42.12043 55.86000 43.41304       NA 44.02130\n",
       "4 2012-04-20 39.82760 48.24040 43.68240 58.67320 48.13800       NA 47.19200\n",
       "5 2012-04-21 45.12130 47.57261 47.86957 58.41783 47.52000       NA 49.96174\n",
       "6 2012-04-22 43.88391 46.29174 46.46957 57.03739 43.46348       NA 48.55304\n",
       "  Sensor7  Sensor8  Sensor9  Sensor10 Sensor11 Sensor12 Sensor13 Ave     \n",
       "1 21.25962 48.10308 55.31962 52.34885 56.35115 57.09692 53.14308 47.23609\n",
       "2 16.88174 47.00739 55.00565 50.91391 55.92652 55.91783       NA 44.05507\n",
       "3 19.10565 47.88783 56.19174 53.02522 57.38217 57.99043       NA 45.67688\n",
       "4 23.26680 51.71400 60.08480 57.31240 61.20160 61.72920       NA 48.88860\n",
       "5 26.11000 52.84304 60.45348 57.28087 62.03609 62.13565       NA 50.51036\n",
       "6 27.07913 51.36739 58.67130 55.46870 60.83000 60.54435       NA 48.67007"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Note these normally-functioning sensors as \"good\".\n",
    "good_sensors <- c(\"Sensor0\", \"Sensor1\", \"Sensor2\",\n",
    "                  \"Sensor4\", \"Sensor8\", \"Sensor12\")\n",
    "\n",
    "# find daily average of all \"good\" BENTO sensors and report in new \"Ave\" column\n",
    "bento_daily_trim$Ave <-apply(bento_daily_trim[, good_sensors], MARGIN = 1, mean)\n",
    "\"'Ave' column added for daily average across all 'good' BENTO sensors\"\n",
    "head(bento_daily_trim)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAQlBMVEUAAAAAAP8A/wBNTU1o\naGh8fHyMjIyampqgIPCnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD/pQD//wD///+e\nQzc1AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO1diWKjug4FsjRpp20K+P9/dbAt\nyfLC7lBodN67SScBWxAftFiWCyUQCFaj+G0BBIK/ACGSQJABQiSBIAOESAJBBgiRBIIMECIJ\nBBkgRBIIMkCIJBBkgBBJIMgAIZJAkAFCJIEgA4RIAkEGCJEEggwQIgkEGSBEEggyQIgkEGSA\nEEkgyAAhkkCQAUIkgSADhEgCQQYIkQSCDBAiCQQZIEQSCDJAiCQQZIAQSSDIACGSQJABQiSB\nIAOESAJBBgiRBIIMECIJBBkgRBIIMkCIJBBkgBBJIMgAIZJAkAFCJIEgA4RIAkEGCJEEggwQ\nIgkEGSBEEggyQIgkEGSAEEkgyAAhkkCQAUIkgSADhEgCQQYIkQSCDBAiCQQZIEQSCDJAiCQQ\nZIAQSSDIACGSQJABQiSBIAOESAJBBgiRBIIMECIJBBkgRBIIMkCIJBBkgBBJIMgAIZJAkAFC\nJIEgA4RIAkEGCJEEggwQIgkEGSBEEggyQIgkEGSAEEkgyAAhkkCQAUIkgSADhEgCQQYIkQSC\nDBAiCQQZIEQSCDJAiCQQZIAQSSDIACGSQJABQiSBIAOESAJBBgiRBIIMECIJBBkgRBIIMkCI\nJBBkgBBJIMgAIZJAkAFCJIEgA4RIAkEGCJEEggwQIgkEGSBEEggyQIgkEGSAEEkgyAAhkkCQ\nAUIkgSADhEgCQQYIkQSCDBAiCQQZIEQSCDJAiCQQZIAQSSDIgA2IVAgEB8OCUZ6fOL/QhUCQ\nE0IkgSADhEgCQQYIkQSCDBAiCQQZIEQSCDJAiCQQZIAQSSDIACGSQJABQiSBIAOESAJBBgiR\nBIIM2JRIX+9Xk993vX89qwuB4FewIZF+zixX9vKULgSCX8KGRLoXp3/f5q/H56m4P6MLgeCX\nsCGRTsU3/f1dnJ7RhUDwS9iQSN7ap+GFUEIkwcEgGkkgyIBtfaTPh/lLfCTBX8OW4e8Li9qd\nf57ShUDwO9h2Hulu5pFO13eZRxL8LUhmg0CQAfsh0sraRgLBb2LL8PdpxKBb34VA8EvYdB6p\nuA6GGNZ3IRD8EjYlko56T6KSEElwMGyb2fBzLYq3z+d1IRD8ErZOEfrWAfDrx/ewYhIiCQ6G\n7XPtvu+n0cCcEElwMPxK0ur3x/UsRBL8JfxW9vdzuhAIfglCJIEgA/aT2bBxF38TZVn+tggv\nCiHSH4JhkVDpVyBE+kMo2atgWwiR/g7K4F2wIYRIR0TaFRIi/SKESMdDnyskRPpFCJGOh15X\nSHyk34MQ6XDoVzwStfs9CJEOhyELTuaRfgtCpMNBXKE9Qoh0PIgrtEMIkY4HcYV2CCHSgUAe\nkLhCu4MQ6TAQRbRnCJEOgyHXSFTUb0OIdBQMBOtEV/0+hEhHwRCR+r4QbAYh0lEwkNDQ+41g\nMwiRDoORFDsh0q9CiHQY9HpCSSJJ+GFbCJEOhD5yxLpKwg9bQ4j0BxDT5k+HH3apbIVIfwLB\n2PrLXtNOla0Q6S/iTxOJve4IQqS/iD9MpL1emhDpT2Knj+0MECLtrIsjYrqXvVNHIgOESDvr\n4niYR45dhrZyYKfKVoh0GOx0BG2NnSpbIdJRsFebZnvsUtkKkY4CIdKuIUQ6CoRIu4YQ6TAQ\nH2nPECIdBjv1sjfDLl0jghDpQMg7lPY9MEPs/TEiRNobNhrfex+YIfZu2AqR9oXNxvfeB2aA\n3YdahEj7wlbje/cDM8Du5RUi7QqbjZfdD8wAXN7b7faboqQhRNoVhEh9IFVtWLQ/KgmRdoXt\nxvfBfCTnPN5MOEaItJcudorNxvfRonYYzryB4HtjkhBpX9hwfB9rHglxg0eNEGknXewWxxzf\nm+EWvO8FQiTBoQCq6La3p40QSXAolBC1EyLtpIs/gT2ZgVvJUpp5pP1cN0CIdFzsKfC2nSx7\numoGIdJxsaepoC1l2ZMeJgiRDos9JSfsSZbfgRDpsNjT4N2TLL8DIdJhsafBuydZfgdCpOPi\nVX2kXUKIdFzsKX41KMsuowOZIUQ6MpaN0OeM695WUxz7e9QSIr0aNtdjsdW3J1WaC0KkV8Pz\nvRlf3STiEH/RoRIivRieHl8L1U3c4Z8M8QmRXgzPJ1LQ/O8SabP6DkKkF8OzR3EfbyLLbgsi\nbVjfQYj0aniyg5IgUhRa2MxHurHXJ0OI9Gp4csgspW7CYPdKESaba1uuphUivR6eO480Sd2s\nEGGGuTaPSCTTIuGESIIccErm2ZNEM8y1OUQisRfKL0Q6MvaTIOBpo+dIZS26WVpmBunoAhY6\ncEKk42JHCQLPD8ShRTePSJPNQLqApVciRDoudpQgsAGR4PUGqmlqvGFiYEKItBn2Y0YB9pQg\n8HRZnCJ6ztyQEGkj7MKMGk1i+z1k046RCoFKxfj1syZZxUfaBjswo8aT2H4RmR40jiXw0MB2\nb+yAOabdZEjUbhNMmWbcRobdJlFnuR3oCblhbdv2fCR2ZE7IPNIGmJL4sgcRdufIzQOxBPnj\nLnpR1G5DCJEmYUIq5vYiRLzZhSPnQNItzunxXH9oZcP8uTkQIk1DyJvtHZQJPW5A7unLEtzO\nYLNyesqy7CESSTC5uS0hRJqGHXj6ozTZblZ0CiLvZlIH5jbf3JWkLlr2kN1TF7Px67HnUcNt\nu1nRkaP0QCdhFqUiuGD0vqzVfgiRFuI3QmYjoYQNZ0WHDvK3XZlFpBJZyPizKH6yfdBFiLQQ\ne3xUPnvHk2lEsq9LiYTva6jwG7+NEGkx9hdqfrYfPoUTUQR7fgr2ap36G9aCEOkAoDVzI1OG\nN/PFEz3xCZxwRFoQtctDgV9J+RAi7R44IkeTWJ4/VzmBE0yI+fNIeYwy8rTWNTMPQqTdw5/l\nL/sf21tM+o9zYkBrTSHUEoM5aPdXtpkVIu0doaHSn+g/k0hPmo7p1VpTTLwlGulmwT9hr+6g\nWY3OhhBpb4hK7oTv/aGtWVOfzwtM9AzaKdIN+Uh9uiq6EnTPbv2H5MemRPp6vxYa1/vXs7o4\nOvqKwKWIFB07Z7xkS1mbaotN0ZdJZXuDZRUqravgetllh4lGm+TnbUikn3PhcHlKF8dH4pHc\n6yOVZrwkBt0EDA/rZ0QHFhIpynUYbzf6ZAvncUMi3YvTv2/z1+PzVNyf0cXhkXok90XtUCMt\n8qmHxtZz4tVLiWRf+0PaiXZv5kkwwKwnYEMinYpv+vu7OD2ji91i6nBPj5f0PBJ9uESgm+pf\naPqkGdTBZkEHRrwMOZAgkjPt8P6ET4KFRJoVoNiQSEXR949sXewU0+2fOQNz+NixUdCvdhbm\n9IxiQNHRV7Hb59775obI+KNzQ420yEeKg4GDEI20AWbM1885dEAjjVtnqSPCOiMTZAjeXSvp\nPvv0kXuNA5E3qNPQN67xmyAnyfOaFkTt9kukzkf6fJi/XsxHmqVmpk+kDPlIo4/ghGkX1RmZ\nJAS9BtVK1MrIR2imDXHBX7eRbG72PNJtgLopbBn+vrCo3fnnKV3sEnOINCd6kIjaAca5kDiC\nPdGnp+zFkRBqZboWiIVhZppt5gZCJdsrsWOrmGa6RD2PIux4WiMbzyPdzTzS6fr+UvNI84g0\no91e7bWESOyJPssQAsUI54Z6YSmRcEFIqDnNuz88SDGT3HNcot7ExRt/G4dkNmyAGY7PzIb7\nJvuD995DIoVkyTB7WVM8WzxJLeADPxTGZcuFzaSIhGLfsOMc8fvjEqngeE4Xv4XtF5qNP5Oj\nwRZzgR8+dXHuHCI5EUJhSoi7lSzY4E7xR6Drkfl4k02yXmuha6G75qebdkWM8RN/7jpU934u\nisu/7FLtG0umTdcsHJzyTA4HSWydMVHU8JOAqzP7PlMpBlmnzkFJBRt6iERRxxkaaYhIWwQb\nlhDpceoO+jlJipBGNMcaH6BWabH56c4UN8B/s6/CDyLB6Qi3ns+KMSBhHDikr5z+weHMh3Uf\nkbDdwa79G9Pvv24T/o54M4FIb8X1p3t5e3Scenul8HeMKNaVOIS9utOeax5iBDvsOh5tkeDs\ngxKD32pYLQzExVz+NlMM7si0j0T8GVKGPRZtfF9L6HfqHd+QSEXxAy+dlXfYCdksg9lZUX0B\n7CX2VS7ELImEGVdRalQpDrjzLthNJOJfF16PTgei8upXdYkYS89dLYPpqTFsnSJ0Ktg/snfx\ndCwdzD1F8fqnVKfZV89C0m5jfZfKzd0shkekPh8JuARDP3ImAh1IVmDUIjYcvLOzA8yds9iQ\nSG86Rejd5gn9DDtJ+yUSe51xVkC/IMY1jUj8k9/bCINzf6UUXkTBRMjYd4qrlpAUhS+TOwle\no1y74JBJc0wzf+rFRHq8fei3n/PH1PO+i9P9W11PHZM+z8VnZqk2wdzHlHd4mhN9zQ04Ks+3\n8aJVuoFPx58Ai+nELLCb9khKTiSK1fURKb53FLUbCLgNu0/epzPv8lIiPU7FVb9/FsXpMfHE\nz5NTy++5pdoEy4jU62IkNRL8ngOOyrNtvNQQCvIXSPCh4TZGMadBEmzh1t0t4SMliASiDBEp\n7JP3hy+T5fewlEjn4s1my31divPkU/+9mVWy1/cR7v15IsGjPH6ks98zLt5gEw4WqsW58g7Z\nm07wflKPP9FdSk9v2GGeRrL/vvU3R33GtOk3B6dhIZE+mUq5FiPTq8u62CVS42b0wZUa+fiE\nD6N2A1Mg+OPPjSfNRT9RKcZAIgyQeorehDE/YHDBTJIfHSi4dlR0OyDAl+SloyIL6LG54IEA\nBe+5/6deSKS3wmVvP0ZmVxdgj0RyI8ePwE0wpfsf8exkr15H2iqxSdnPLts2QKQoP5QdG0f6\nJtN9OBAejO+yvBU3blTi7SCDLjbtQgXEbjNXUanuvMtX/T91jnmk/Klx+yMS/RTpalkjROr/\nBTw/qRzKUHNfDWitOeh7vE7RMrCPURTIZ4fOoDtXB7Hv4vKDIFDeDQ/zJ0a97XElcKlMEYm9\n8r+cbmJ3l86d9VMvJNLp5YjEXjkmOiwTzb8eInnTi7e4bNtM9OjWUJbEF6iR8IHilqVG55Q4\nvidJhFG7VDoEOTSGP/qowrYLX9BhYOYpleYRu6vhQ4krRVK2/dGeFBabdi58/WnjdzmxOyL1\naopMnj81kyBs8KC+uVG8CJ6m6NGSKs0xMtfQqaDh1hNDY4+GEZlgHqlf2QJ/zHeFYvSi+4LP\nlzLSSPGvd8Pngec5KXdW4gY9hUjfLuj9OL1AsCE7kcJJC3xPPJJxcPnvy4nkndxj3UU0skGG\n0B0hAyhFpFl6M9AuSamLOLOB344Sni+TiGQ1GktSx6gdO7aqKn5FTyGSLsDwrnMUvt9P+WMN\nByLSskmdiC7sR4qcBDoHR8cqHwlOwwE+TXDUUdRzeAHJYPR8vTlGJHCZCq6gMQjjVMktWpYe\nL54vMRJCjyeMVOAplUWkkvL6SDrXB/E2v4lpXewJSZPLPpDxZQijRbr7f6QEkRKOxGRMIlJI\nZjTTUMvE7nws/xK6O5Mx9U1xSyzccU4N2IclqEyechRKy4gfhPqcs9RxqCx9Ij0hatfhcb9M\nmVtdhB0SKRy87oPxCfDwF0g8eBM/EkapeIfwz74A7QT4fScld5cG/ZTunJKlWXtEiuRfRPf+\nkzDYoClSgD7BeMftdnOUSEbtJhAJrxA+qMzzoqMSFyL/PNKTsT8iRYN3zgM3fFwnLZhQabnR\n7P49vct+QHMDj1dn7UC/pfeFuxXeHRlYRjGd9xOIZFQTRgO8CLwhGfC84MSJI4iMSP6VkGqq\noEOPSAMQIi3DnGEdORDs5N4x5ogaRu34QQs0U++MWCQdicCjdQooxsygqR1OOLTHtPMsOmAJ\nhalJOPtByZVWcEUqULKp4ipYLuJmMiievbDP+EjDiadr8OeIhK6tP4c49ADm797g4gZL39kj\nst8G7cN4bDE3hByKgQaS7U071IX6QgOAYgy3W13UN5pHKl0oEZqINRJXNwqfIoqFT6KnR/dH\nZYZhNfX2LiXS+12p+9OYdEwi9aYK4E8dZrUMT5uE37GDeW1hjxTTE5YHORwyFydMA898EpHm\nPHJo8inlkmqLznpBXN1w4wycphtkEd2iZvvuIVO/jkhVNwyrpxPJvTwDmxNp/qKaiAPc6ejx\np5ivhEM1DhHfmGPkEyl4msbP2TlLaAb0RMAS6+DbWJ3rkEw75zBNU3BBT96/SatE0pFGClni\nQol0W7S6KpQXtQN/Kvl4sqGGzhsqqhs7pKy6D6rJ+SOrcu3YyXnThDYm0sw1XAbRok7HkvBx\nGs5Nln1f8HNTA92377lZb99nzGkND2/l68swtkAOCo89K++ap/QUn1N61PTNWCKSGR4lZR6Q\nAqWbWYLSYtEd+LEGHk+d7im0FnJmd9kRaXoe1mIiBabdsYnEXiefU0KMyGvDm+NDhIrHku2m\nUmk0/uBNjsw4hhZ8MOVCQvuNf4XqJiC13yOc7VtEaQXX91X8RRlI5cxW/f8Cu1WWGsqF6qy6\nLMtU8oOiRoY0ErhEoI/nlmzctkDkvC62w6I0n5B8YUCV/VoxkSL/WAXn+A/mHnETWS2TrmMk\nXMCao7CEwjd0QzylNU3BDfQTHstojp/cbK7djWWVY+TGrJC0mUGF/qKEYEPiPtxInQYXqT/S\no64SIi3HEiJF5wwQKVh04HRWXDuNnzu6zIFc/+Dk4evwHZvUAbH8NJrhQlJE6lNwrLexftyd\ncuRDDqNpF92z7u+maeBTQ6QKfKQq7tpxNLw0RUTSH29GpCdjx0Ty/JRYJZXpgWhfopjrAJEm\nLHOgmACSYpKJSiNT9Yzw0CNSzv5h/IEh6a6kr7kRQQI7i1InFLcqvWFdd9/WZB533Gs6/jQl\ncOFmVJQmUpny3PgNg6skV88QKdGhEGkMtKqOvQ7DRc6wCdYYvoQP+2geifsa3pHs3AGZwD1z\nA94RFetADFwBmnb9KiQ1/BSYU/ZCHAduwbs9ehqfklfve0T8mQPr+XQCXGV8IwggNGa8NIY+\nhaFP931R6si16wGN1OAXcE+ASlVFhQpJf9S2XbNt20y6lJcmkhv506N27pdJDPRwkzn6PHhn\nIdbeqF1SS5LLQqoIuWC/4UTqG82B7kgT6eY7EqiRmHfmPscTsNX+KEncT3jkzV2azfVOaSSb\nTEpzW7jST3OsiIINqOBwvRPZBO5edl/5J2lGdURSTdEoIdI4PG1U+u89YNbIIPn8YRiTwhlP\nLgpBbsvtljzHjbsbH2/81W1s1D+afcOtZ7yHnkXw7u0iRioE34caHu6H5DakKIPm2qLVf1Z6\naDcVXTeEFnwq6LnUG8tWJ98O5ad7ieq9MjpQM8ios1vbOV5F91876UJemUiJoTqqmbwRNWES\n13OoYk6w5kItkCISvDrXH9tCy4tZYJ64vkhMslk2mIL0G2uq0tmehbhy2aF7RNhwgfuoM7I6\nInXmVmVVREPX0Vgide9mEibh3dCc0y3IUb3x24E5qvBHR6TuPSDSgNEqRCrDjwa0THKU9N5d\n51DFBL3xkJTyRmaPLNxbgP+QjtAMyzZLyel1fLsxucecGv84xh8ntxuZ/V2PwxGJKpw4IhmX\nBWZ6rFFglVanT7RrVOnchMI4O5D8gNOpTvOH23p6TyWTo6oXIGnVVFYdh4rWI9Lgs0eIlJxT\njeDpkFv8RaqH0P7pbTU0uIwQjHy+9XTjA4zrMWdfeTZjJJSnQ0bGh38l8UpTpybxSqL20xfe\nfz+gHR1sMJdguuwopEdF21Z09UZphZMwenl4BRyrKFECAhQ3jPW5O4aTcRTpKyHHrgQVyHyk\nQaP1dYkUP/MHiWRfE/4xe02d4o2yxEHwYA/OMWL4sYsbzeCz0cZI6CmbgYIJkcCD4wNbdqJ6\nx4YcdsdOaK7ni8A6Kwu8Ej0q2s6C6zwXZ4vpUzpnJiQUmnbW3zJTSnp6CW08YrvjGmYeQYpD\nqanrRe2Gde0qIn1etRV6zb9GduOoHX4QvDOEtgD/ou8BzM7x/p3C0I9ED32Xgq2AWYqZVUqh\nT31TQz2Go3iaLRZ4QgMnu/b7bd64Q6p/T6+2LrHROxAnNETCWgr6VnT2W8QcnS5HeXMYQQLS\nuaqSTkhw+yjZuyOSVmcdkbRbplpn2j2PSBfrzk2voj+/i+diegXA3pt46x8ybnwnTg75GJl2\niWZCi46bU3AAFP0Yrs7o9z2NSD2Hpj65oQXac0GJk1jeHMYajKNijrHVguyAbjWRbjf7Apmp\n9pC0RrLtluA0wb9QLkska/V1TNVR7zBUwX2kpxHpo7j86M4+8pc/2YhI4fjvj9oNEIm/pU5K\nhSgSFuL4sHMxBlq3hi6Rr6LmlQefQaSEKokNRVSTKaUYzEe7z61dhRpfv3YOirXK7IQSWlr6\ne/PVDRYoafZFpp0JuBnuYRkxPx3c3jrzy2CNE1hGUXb/1FnfOthgwIMNQ/dpBZFOxY9N+j5o\npdXU2B23RlKlFfoo4Eyv0L9nr9TxLd15OOzMOCvYOm9Sia4fZqT2XtGAMP2Hjj8A+p8evatS\njbhgyWFlhrYb+a0h0s14Otr3b034+9aG5YRMilDTaOemqKqmvTVmzqmh9iurtGz9BWQqyI0Z\nDaUxBzvjz5l22hdrN4jaGbPuyERir/BJ/51CWynUWQOmnft8kluCbUTTU5HhdgsruzFDCsti\n26YGf/sZ0YH4pL5PyCFMEQlfwzvviKQgNQhidEapFtbIMy6L7c5mr2JCXWNGfkekqjJRu/YG\nATfqwB1LDywUQUf5wsAfRu1MnyNXT1hBpDNopO8ZGyTN7OKZSPzSg89mZiv5szvj0d4Z/n1y\nyknRAEDzrTCv8HTl5hTVl1fs4T+kLunSpmHs0GDZLPRtfk+nJsP7wYkEqUEJv4fkRn1s55Ea\nYEnTKR4bbOiI1B3CiQTRB3erSG9WEKSrIPVV17EzKUKkAidivY/0eSom7345t4tnIh7N/JN0\n2sJAvsFwT0i2PidB4a+bjHd4cQbziXXAcTw6JQCpnngBA4ydYdBxQfAl9d1NOfXohyoDIkV8\npNiCckSCs5vO/SkbFoSujANkppO0udY04GA12hHSE7JVC04kkeAGDtDNf3Lof+OcEwX2Kmiu\nQhU4EWuidld4VByzZPEQkVgmt/eLe0RicanhxzQRyRU/QV3ijgHTMegIv7TeAgS0Qo3Er4SG\nYU+8uv/qp2BQwRWc1P6NiYjUd7bCILf9uNW3y6SeKijF3R1VNYVJtbPnNNTszWR/x1osodYU\nTSJgbKEz+7RfZSPkxdy6A2odkcw8UnHNXkL/t3wkRiSIfaVsEHjnLBoZjaRQnJMQhRZAmNRg\n8027eFhwKwo1Usq+Slz8TCINK7gi5I/rv2AXFQ1R/4rgGYHp2k1p3IeyMSyqvGP1oZ2DRMso\nOs/IrOfTeXfFrXH392YCe/zZRbZdVRqXqDvLpCCljMlpeOHMhkQICl7DUmnuCDcWEg/nsZCf\nC0pHRAqHaBmf7UIDN1o3ADFw1j9mqMGZvSokM5G4MkzcBiBS3+yCDQb4g9iGE0xgXGd9d+Nd\nB9HM+gbtAOn8BpNU2hGp6XRK09iZWv0eBxsaG9izpl1hH0s6PcKnTREQdSsiXe/zz53ZxZMR\n/uRILZbsaP+gI5hxFn7Vb+MxF0dZfroUhKAZvisPhvyCr5ybTWrHjI60Z94vVCD+FHi2I/1G\nRfhNDDy2J2Ge8nNIsZXGQfEvqTtZx7ixbpYyzNKNVh1ttE6pKpOb0OKaPEYks7aouZERqVmo\n1RSHMfEcQWdiZfj7Sdh2qTnDjT3Pg3cYBF6tVI9Ikd/jvvFUx82l9XO2hG4UUuCGgQNkHwVz\nuTsC8fBwXWm/mpzg23kooL0Cr3mcSKEh2vur0tlhM53H0lb6vLaEDITK5f8g4HZoJhU6x6e9\nwSwUCdPc7AxtY2XS6siag+aRZYN0cE6r6CtVF/XEezNXfcFp8H5mGzJnxuZEChwWN9Dtv1W0\nijsi0sCEUkqneOd4L8RUSLRme6lA0irEuHiPFK2zwzBlg0WiDfl28Q+AcUIvKMC+sUFpr3l8\nGf09ydOPiVSVjZ4cKrv/6dibJpJRN45I3b+1gjZp4VpVVZ0qsokMFHNrIBvCqBnrWdl+Gt2+\n5phu3bhROklVay/V1HX3RT1EpeV2oPLuys/18jX/7FldbITw6ezGrv2n4jYd+zCy7PAtGKP4\nlaOE4keBwVfaHbJsP7wKNgXn7DtGakmL6TYCteDWO6DKm6eAeogEjPUP6aklx29Qb3MWFHu+\nwSjmRMKoGtwl4g2eXIFOgVVIgSzmsdTAxFJjkuf0KiOFRFLQvk4+KvSqpwaOaGpzSIJIRRrj\nN7XvHqxqZFoXGyHyF3Ac0vAruTJJhr3ZsI4GrVMdweaMdC6teKaUBFKK4X6TjkhcBwaWF4rA\nDUT/EocR/QBIIOOdeYdQKN7XSDcY3zd+bF8HLkfV2mAU1KlaKGTSGW51XVcmF85YcsCfYDSX\ngTFpn0YNJEo0itYHIpEa3b4PKnpiTDtiUg9/cPwLkZL+DhuM1kHyDvEVimL/uvUMWu57WcpF\nRFKKVzV2X+HSM17GznO5zCtYXsYBUMrF77H96BKHEfwAaNLB45sd4rQjs8nMX7wI/QiRWiBH\nyzpS0aq9zkeqmxtsoVdWtv2QBNrLKdFr0kzsDivdsvGmNa59C9l4OrwOGgkXxHZH6K/azrTr\niNT9N8yfvju24CY/A31djE7ZLMIEjwJsOpznSTlCPIbWc5DTD0QkYF7olZXesvGSog9cnaUm\nlooCAuzBla0l0vAD2Y0rTiSbezOJSKDptBowCg7fOx5YFdKpIlPzxC68019073rA6+CDmaGt\nbviuGanD3yY+Ed+gfvE1w3S0sGumHTxwwh1bcJOfgXQXcwNNUzFhlAULfJJEsiwafvpTeKHk\nq2+IQYldfyJl5Uw6rtd80y4nkeLRVlFOnBet84nkZVyPE8l84IhkNZPfdee32KXgOtqtk0o7\nVdK9VOYP/9C6a6Uu3YI+0tW2K+oAACAASURBVEgtBJvB0dIpddbqK9vEhGxw6aBjR+/YVPwe\nkdhrVkxomAo69R06RSOp4JsbTeAzR0iBVwbGWYpI+B+bjeKxrltMpJn3zng3vrycLh6RolGM\nRGJbR475SK3pUa98YBWBbOtmVUOnd25m3VBHDyAQ1lbo9BAsmqDZI1pbhCXvSqhRZ6gK0XSw\nJS3HhlUVykp19lM4kI8096k6HeOqzlQRLMs41cEd4Ryk0UHrrDXcfrsE3pREWAoTlqi+KN5B\nGskJHxDJLaNgsjGnrPc+3NLzuixwUAQ6Cjwh556BMBUol3DcpYcoPusjl8v4MDpeoLNRu25q\n7fcUevkQpm03kMXaQAxd1SXUFSppoteFGDq7rTu4LeMLCdBxrdUvbma2cleWgBDJtjkyxm4K\ndxVRfZRz9BnlJekS5xk5tUNp2zgDTMoKOOY0EupAFRMJo+iBVzZ8D+AlfvLebMVFlhlNwQZQ\nHT6Rkmzx4H+I/g7PkkMiGc+nrGtzpXXdxulEloUNBipqHdordDEutg4JqkuqdtB6Kwr0kVq9\nsq/7F+1qPnZJ6027r8t1fhvzurB4JpHGcKNHJYu1+eOS02eUlzfvoBtN+CaukdwmKnZNK/yC\neSQW/nZxauhlivUKr4knrx9MK137ZMBxj8gKM+hR9DthEZpSL6OgbUNbWMFaoWnX1EZF1d27\nftYFA94ca4k00o8Jh5slsSZqV7ZmQrZ1c/BP00iIn61qNiz0kbKE+vgYhVYV8WZuRy7w5prq\nX0CEZhpubRaadsxjYYkHbuaUtzdsb9r32CijT2BSxwirLV36JmX0FYGn5cH7hTUrClsayN5m\nbcJ1o9hYdmWnIPQzptZwM7QV+FWVnjrtju04UJvJ3Fov7NPpPu3NlB8egk5BsseWmLrXghlY\nNib83ZRMzCf5SO6DjeaRFkXt5p3Ux4VYI0XMmgR4sDolo9DQw47cK/aEz2Lye7x4HRyE3kxB\n3KS1si5XfSKReJggIofVMTihVLFUBLIuaTwMjIuQSFa7OCIlona1TtrxVIhJFaJUBPs+pnes\n7imVWXJhApDG6ivJ+mtNM51N13REaipOpCdH7T6K0/xG5nWBWKBc5qixBOlcjqrvI9EHc2Tx\nKaFoazlfBFggx2QpYUEB/ANnaMPdNzVceMDQvLfeSOLi6T16RjCjxj62S1jFU1JJe2/WqI9I\nLFkxIBIEDtzzyt7dWq8jN25ZCYw1qqg/zDY4f6qzi/SEbGXmbHU6uaKCqiXFI8BHasE58xbJ\nDujYLMGG98HjFyCfipvlWEWks+MwfJxhhK6YS2xaI1HCvDvUW/OFKNJODZ9iKmGHhWhZAnhG\npCDcUsKwuRh4iJeTYIFGjWGRXgOE5UjtA1rXSbDrVs3RSCSXTmT/yZcj9WkkqDQGzlitr9AE\nz3AqqMSJ2JKGdbTeItY/YJKaYF+hZ22JSA3EFJrWZATZ/S5Mu7gPk4f+gZmBSOfsJRu2J5Lz\n2r1jvXV8hffURiNkhiykU9iYCgabBs10BrLg7CJqIn4iKgrjTwSWllIj5YSwKzjkBqu6OZHA\nqIGdIMgQ0sFhU7zHG7iWSCSMf/lJImHeKQb/aohx186HKY1GGmRMoH8MC6yYqYwjvdFS5WaU\nau1hBQqtLMOqDU8h0hOxMZHiIJqFG/meHx8QaXqMgd5RI6neucqE3MRlb0Rq2GzmvucxHDtB\nTPC64q5hoDcwMBudm9bZP2aWxZQIMctNb0A0IJJdn5C4+gh6YWuh62nhbS4h3ae04W+92AGn\ndaoyJG4w+Nu6s/60dDan2wQOMGyvPzMp4Yb9Wq11zpWJCrp0PAzFJ4ufvC6RJvlIPHim0kRS\nXnazzSsoysDjHwAlBChn3lAZqvjQxGh2+yWAPnNrOkBRlLjkwAhY8C32emVKAcrUs09AIzW4\nHSSlYDes1HyBkhgiYSkF6npIFtR4dqlVwAyj2LTTMqJ/kHwu+cFO3vqtRYrJ+l7dFehnRUc/\nUIH9Acc0Vpl28Mdps2DDAkyxafihsWVnvRqa2tNHRM/8oP14SXXh2isVejcDRIofADewA8k3\nooklnHx3IQA38eNdRyBkbFWy++DdssqMto42dtGO1kUm/N0qmOak5XDeteLTwxieqBUTnTYQ\n/m6cb1d2HouJrzeDcTiFCy0CWpkJ2QrtNsrPU6CjjK1n4vfdv8MMb1qmMQsZiPTY+TIKsml6\nY9vegfwgNw4x2YSOCHwk3nKqyEfBv+Dl3HtnJkNZ2CDD2VtIdSAiUQgANVJ/vZGhqlNm0xTl\ncmMU1sGuElFpG35oU7FnIBJFKGKCmlsQMAOCJIP2WycQpIVresBME4Tb+FQTlh+GusSlvUU+\nbB3Irr2Oum3VeNkbIQYq3S0k0qcnyyEqrfarJkaGgGsu4U3h8xWOYMtUvTbMd+wVgYEsSAtQ\n0Q7ATpqih/e0dg7TiaCfm9NIGCpmMcW+DTrh2MQ3DdwplmXW6HiwJhJUp2/BabLuUeOmMd21\nUt1GF6G4WbGdCMjlpklM5/bC5qhWbSr6oB0kTRyrkZAMxq/SxVSV0U2qchpJQUHVjkfdOR2T\n2NOoDhaap4oYE5ZqpDPnUfYV508hEnud/hWNfPincn9480i+GvMmfgy8K+rRSKYdL6gRfGXL\n5+DZrmvnI1lLZkJMkVteAaD4PCcSjLYbTr828PSnvRq0l6STQZ1pRzRpXLP+5LDjcjMcjgu+\ntJGEFmo3tGUb5/9A+e4KDE9UUY2Oc+vaXSYerqmlatgGiby+7qtONVUmu0/5NRta9hohh4+U\nH09oeSh8N+5HpYhkB2JMQk4TQkAkG7VLESmVMBFpryCdCIwnHdvqfPPumRqGv9MXFBOpJ87R\nmBHZVq62vZu+NAcYzWR8dtNKKK6Jpjdhu0aEIf6Yga7XG7W6NL65Np9R2u9pO7roKVXjEhVl\na2ZdcaUF6JDO+9InVzqFDhbEatNRa00d9m6auu7unU5k6IjU1t0RdVtaCjEitcG7jz8ftUMM\nx8FHY8ORuYaPU1pS5L4p+VuqYm5/1O7GKx3w9mzJFLsNA34OHCZ3XkGIWI1qpCIhlEJhbrhv\nOH3cVrFrQaPZMKqFwLitMWxkBqWlIwmGCpxIQ/wxWyKj4tADOZqnsuE1mO1qKZJg34NjzU4w\nLsFVYQmIRk/MamUGD6ES4imlWeqnkEecSWTGpm9pz60eQHTKV/b0782JNAo9te5PL4LlEufp\nBESyCDUSvQVEirMKkMM32Hf7Rq6Qr0j9ETSad5H0kYBIdmwxIjVm0DYt7v/lHuwQ/EMfyWSt\nWU0H2svUy1Km6s/wom9dQuEGszo3CCBU4KeY1RM2TojVUFqMFzboAFWGfFWtXSKT3VPZvAuv\nFz3FVFGAQhPJdNGw4LkJtaeIBPclP5HujviZsbGPNAEmkd+vv0kJqMofkFNMu4SPZM01nrOm\nqGmI1kEEvo/DDXhRDQtM9ALztz1g5D2YR6IhhB5cC4H2VsWrg7p/YrRbN9fZWsP00QeipXgD\nnXojW6xzYjRldChcy+ufa8JtLcXoYCERFTTRQtuMiWQdBpty2xqitmQO1vBLxER6mo/kePQ5\nv5FpXeTEotxxggsJk2w0O6LhG30jwYZEZgNQy1/XQy0XiptrjgM+E9obbfk4ELPAZgeIFN6p\nFpKrbxhh0W5YcTOGkFVsuBzOrN02Eb5ypH5V8G+zO57Z4VKXLbmBuaYjAbXqPqlpsrmCQzAA\nQrkJVVN3X9RNRas9aP1hBe5TRbVUTMuGdF3bdSibRh35SHzyOcYKIp2Kf+pSPB6X4hBRuxm5\nPDFYSBhkQ9saDvBUUvQJnYXB82gSB84JljDgNwWciuYazqX6c6pYiNd04a9HigHZbP6HeN/D\nO2XrJjIigY1HOrXEeHic0RaPUdUYI7ChCiTkxpc3M5tzQ/3QQIEhrflwJhWT78yA1vVMas3C\nfsIqUzvSKDpNJM0267a1ZhFGbWTRaebmwdIoJFAUtaN0qOT9XBm1e++00Xf+DZI2iGfMAwsJ\nI5Hsa5JIpXuBz+2IZ496pAAWgnfN0KI6YktU3AYMoZCOHpFG7iHWDknSPToZw9+4YVc34PVA\nZ0QanD/VTVQtNese7RCgaGGItkRQzEXSqigqAmlVk+GPCV9b46xJb8zSu+TCCGUW1urlGoxI\nFiqaR2qCdx8rifSpd+s7ho+0CpSfQ4MBvmiY+nGWUsm55BQQd9PsrCXufEAn0ipMxxKcHcLa\nOAoWQ0fxgpudzEkqgRBs3tFI458TZw/BBq6wWOJm3fkh8tiuzdQtrLRQjkjUpA1QtMAs7alE\nuXYmmla6lbIQSUABjfVX1zo3wRp0jSmIosMO1CWtxXBrcc25VUdCHfvWEfDSLKPwiBSiYa8R\nVhDp2pl2j+Ksvl6BSC7XLiQSY4tKmWvxsDZ6yVhefFMEewo4BzyqhhZQGdck8KeCOu9IOyq3\nZqxgwnD4uz97iKzLwfhbY/ZGRi1j53EgyGbbB0uuhbieUUp66OppHlhNhymkbef86PmdNhVs\noMZAndEUUegjlaVRoJ0Wo6+A3F3HVrGVsGC9VJFvRMBcp/Qt7bvX/cBTPvWlXPQVbVSz4Rdx\ng0UBnEhG7TSkiFIzTfadvBxsDGMBvJa7iod35JJ7X7VoBjKVBNHpkfICGumUsgIFjyPjowk8\nxkyrTP6qruXIg1uUogZjv4FP7ROCaaQWw9LwINCxC106oW2ASGVFUQdQa+TMaM51HZc46xrc\nMrOcom6hulcLG2m2qIBo4WAiWufQ9O+btCb8/a7/eiuK/BuO7Y5IZuMRH04BGWljZ2mISDYA\nx3KmUZ/h7Ivz4nGlTAnjrkRng1b6UY+NLrCof+vhgjcjGilOehjijzUDXYcNTxaK+jWvEE13\nVRpb8PjdGoYqkUgHRKJgg7XocMjXZW1SEkx9FJxHgq1Z9H3VgfZOI5XmbEoeUkSk2vRYDxNp\nADkmZPNjh0SiQYvxaluLWv85lUiUTkQZPBC5tfEGk0KJqTZlarOFXh1FfUIBjwr+GlJJNjHa\n/xCvxJZHGOKPDZs4xwedDh3cg4CbA7kcIGhro90wvHEtRnhplZ0TwiURSDEMf2sWdVyiEY/r\nyUuXIqRgaxaXhEjeEiWgAg01gwrDRpS5/9YlscZHOvzWl9N7LmElDhGpZPNICSKxj0pnK9mo\nXfRIZ0YUqJ/gCFNvt3VTNlCb11sjZc62A4hmIIdWp8FMfuLqB/kDu3FVOoLXVi5HNbFXMt5K\nMza9L+woRuPMZI5G/RpX0UyumotswFhtsAKqsek0jWpD1OBkW9CkBun0Ej9TestG0U2RSbAn\niTem3peOBfb7SINYGbV7EnZHJBrFjEj0nvAsLJHiSgGw5CmVDxCOJFpjgMEtZwnZqN0NbD1H\nJBdigDK+AxcKWxizKx8AXixsO9nCklWjlXHCyjodTbSjnjIVTOzIpLtrpm5xIbjOXjBKQscC\nTOp1Beu97RoizQFMl3MpQtg6oirNhGypK5yYvyoiUg2Gc22+alvlov5EJJIyzvqehBVE+ktb\nXyKSq0ZToypBJB7rQvuvKBNRO8rxJiOKuiIPo1LofDRQJJ7mL5FZLCRv0drhl+RABNifeAp/\n3MUC+7rhasd84mi7TqhxTHKjmP2uWpmUrqQc8NLF2yA/r1IUBMCuWygMSUTCke9i3JouHR0t\neQ2RkKjKrnzVwXMwN2smEPInHfwewQoi/Z2tLxH9q0apRgabJiUFRA9sx8LCew83yuZhAnLr\nbVmR1O4iUZwjqkRg7ZQKarTp0BkMuzCLiDDMH3MlTF58b9HKpLyOm5l+MYFCayfq+RudbMeI\nZM9lRMKhT+VRzJe8jCqEp3UhIVPdp8Z5ARvaK20CXm3NOmjN1Uyl/dDAR6rBkDNax6SslkQb\nZ8kt4o+7octPmfDYW4reacSe5Z6Z+knHfQ1wGx2qMRXPuPPmPCLBAlBkUnRaU1LaJtXpcXWD\nqeII0EThzGOL+wfj0k0gUqQn2E0b5o+FV8iEboyy7hlYmRBmK28QF9O7fJkyQLYikLbJ/HO5\n7u6GreZITc+t0o5iXxztIGkzzTC1wlVH+icwXGpRhdRAAR1+KLSFZzqzzzTcUBn9KYVZjrWq\n7Tax8yy5Aa4diUjxlGfefuK4LwFHM68xRQqIWukjErIDPyCjpjSVDuysqyGq4xylnTagBmAj\nVG+w6a0b2lIlfHUbSsD13kMESlyslYHfGXvnaVtIDHp1RLLP/BtUXKUNjSpcvaNwhZwjUg36\npkbNl0yvMHUUND+isj/WLmREMmjBoGPL3RXsA8vYgjEFLVptH22TNdEg544U/o6mPHP2Mzy6\ngAull2Hn228qHud2klLRwmw6FsrCKVJwbs86awU2sJNKorm2gplHV20XuqfV13pJq0l3HuAP\n3MzUdI+zRF3yqrUFwHrSrDCjuaaFiHBjNI1sASAFWeAK12xzIpm3qkbN5yYKYPlECQquJTOt\nAg5XOH9UOtPONsrXSIUPN6eRjC+lk4LMx80sjTQYzzsQkeKZmmkYsAenayRHJHdEikj8L1xl\nw+co/cCEl/9siQQxALdUlkoXkl3VGCI1CSKBHzFB/zgvh18lWp8mBMJybOsowIz1SXHnJBjR\nZutjHSsoVYvTNSWGFhB29ikWy5hdUBHIGH+t/bCw1X/s0qIS5o+wPc0Rs1hcf1aUvcW/8Vh7\nElxn3czwkYZnmFYR6fOqBbw+5rcxuQuGZUQatAcHfKTgK6iHpnqIFP5owa+IVTwhVtzRxeaj\nUSYMfoWsUVRnxM7R+qjD4DnIMYFAdKmwlMF6FOb+RKlkLscWH9u2brCpdKAHbTd4wU/r/BMd\nxjNFQ+zybszbbdgv0D0AdIsVDN7KNNKwH6mFqhOtVTvBVevAuHbPjHZxRIK00xoS9mBeCWgB\nO73gsfAXEKm2ud/2z1HN9DwiXWDQnLIzKSeRhs4JicSidiGRIKvFUs0fo3H4G+sXWC3Tggpx\nC0wxBgizjGYlnhmQirQBbFZyM/nNvfTQPQ7xpzd8Ql6OG8UsudkMK5fRhM/xEhxD7emboap3\nJzJZSbi1OJpp2sKzUTejVYioZvFsRQFrd8dooSKskbBqh6VK4TOnho2S3MI7WCxewxXVLsaA\nRipagIxIoIIYkbC5XjyNSB/F5UcT6WOrpNUlPtIw+6LogItg+3Ybus6pySIkEo1ZV78AiITM\nwhJBdna+Z+xb91ivibBrUqk5DNI1ZcJ9CviDpTySAX1Yv6svqHS31S23gXHOiARXQqk2NcRG\n6gpSuyuwKmubBlvBJq/egidr2Zr132ZcV6Df2MAsISEIAxSGSOaG0CbmNQSwSYWQ3BBJtKQo\n8LuCXZHjS90YtdZE7BhnUn4f6VT8KJiRn9/ItC58LIna9REpeLL3+ztEJPtuVUmqjYKsPrc8\nAPyeNtrSB/Ynxeo22lm3W3Pjw5QtyQU3u72NbqSFAXK+bI8eDZiCjY9++9byOwQLQGHApIhk\nHxZlDeS29lxtuWST4/SMTwUzn4ViOQSYTtRgPlHCJaXSWpTarSAHjjqozTSQ7gLMMUckdHRo\nHpaSgp3dhgdR1A6ZBa0MEulJUTvrC6jtiLRkHmmmRholEl/C7R3ihgXXRIWyyz9N1A5yVUP+\nhRM/+mGqTUlTJKKFPNYh/qQWgkar7uxicboTpcIsWTfbapWLs3bIR8JHvMuirs0f2rYzx1RQ\n97S1s0MmTRQiLJxIVYVhdWP1hXkdvsDauqtd1A7r29XGw6qrWCN59pslEm7mR1+5ZXt1g8Fv\nxeMMI/GGp8wjnUEjfU8uWfz1fjX36HofSYnIyMyJPtIIkbCCjFvxQ5nWSSKZ77GyW+v8HXPI\njeJtlFJmvgrJEX8WMBCXnGPXkAVgTFCcOMbduKDCAd4JHOCMSLjYzRGJRe2UXY5gmvWkgBQE\nYJYx2oyPU0GInyZmzXRtUVUUzaDsH/ZjYdQOfKRazzmZaSkKmVeYWsd8JNM8iyigaUdz2fSV\nYvFyJEUdZDgsw3of6fNUTNtp7IeXOR4u85CTSM4ejPVZTKToAyRSG80RKSx2HfhIbE4ossWs\nj4SpNiWZdg2uUEokugaAesF+s9aPsOM9oJtJY4Wx1PCFTuay6K+yhTnVlj2ccR4JYgultWzN\n+gTdY60qqHhX4RQWTu3UVHAEbqMvlO3SDGD+m1CtWBrWNe6KiUlDFUTtKpISo418sgjsY5zm\ndleEiMy0hbmqhDVRu+skUhDuxenft/nr0ZFvcA1GVlsRV7AmPKwkkcIHP0A7ECzhGrigMMzG\n2keTDsNgFOXG0BwmSNDO3FA/a4g/HHb1Na1dsn6EfwjQHFfKErkdkXBBDgqOG8RWmMHj3Slc\nJQXLEWqTX90daCfH4hvWqYxgwZOeYtVRO6eiIMuABdxphSwZXFQHn+Lr8JUjEs5/eT6Qsd+o\nHl+sbhIK6Ndy7ew8UnH9N/G8U/FNf38Pb+Cc3elSaRsvMQPkvgq/KFzphvCZz5bmKZ43Z+Ci\n3J11V9zMkrZy1O2hfrHmToVTNq0p4OYdBTuuUrQXo2q0wM8RiWlOyqCmRa4aFa9WgpeQ2Pah\nqG2irHZEtGtldFXr7KWwbITZf7xgiw3Zan2yr9CQg1hd7eaciOYVt+w4F5xGwmvDWGsb65/o\n7LVYRaSZ5xV9/8jWxQBSUQfQJbzHPh9JAZFsxPbmdniDcJs/n0mpdaYX2sqnSQUbknAZNlRO\nrbI0DDlsa4UaKtQ0/4i8oQV+zMihiDh7AttjregVRqfxO1+wQu+Ix+oR2xgAqRJaiaDCPcAr\nSOwgJwlDACxPh6f5mHABzTlVLJnPxAkjncJKaOHyV2fQhurm0ET6XY0UE8mbyYce3W8fEcnU\nU4RapqUz16hGG5vPtGc5IgHZbGGDQf1TujU6lLDTGKOmgdVGukcbD8OoYEMEAs+FE8keWrnt\nIxSyjj+kzUVijW6nmuhOtdHG4aTgsJQ9Lhs3IzY8ltorVEX3RUFJOYXjOerCsBFYzdSk9ZdC\nLUMxBIoMsRBLiJ0R6Z827d6mFizufKRPmwOxrY9kkSASe4WhxJZfB0SySzepgKFmhdkEDmu0\nNd7iA0hWhQ664TxY/5qNTFVSKhIBhlBTxbXk4lUTdka/tYnVtUudgMChuyYoQ+VdvVEuSSJh\n3RXIgWeWIlTObw2HjeBUFY7Cmu46iooTCZ9kNKxL3PKSchPo6oE/PMnW1zKOG26uoqWgf4i1\nQboIa4h0gd9u6mYUF/Z7nwdX127hIzXeux1KbIF2SCQ7L2gKGJrtFSngBmY4EClixwBoc2PT\ng81oiHa90O6B7qGCqiIRkawyLOwEvg0BkP3WuizqRFkeZbNn2EXaUQsdOyLRXqxAR0YkzDSi\nZePuJHZtcKfdPJK5MLh1NSeSCeCXmM/gpPJ/rRScRnJE4o5g4uhV0YUAK4ikNUz3Njn8rdTX\n3QT6Ttf3pfNIKxgWRu1iIoEP07CioPgOKf9NiUngVFUAA0NMI0WRch+Nokoe5GBhxLaFXS/Y\nr0/jGg5ubVjda9KerH39AqYxzV9la7PgTHP++t0artUjktcj82+oYgUl9TjjyWaKljCPxIlk\ndRRrN1gozCZ+8C+aYHMywf31fq3kKHA+EidSP9YF6SKsIBL6PNMnZGd3Mf2LKfDnkRJEYu+8\nx5AIJssfRgURyaiFIdjYgRlJzGnCunYwh8jcYwQjko0tYKIEzvPqc8zzu6H859JZXOYafD2E\n5C3ir2xPYdSOpk4hpFA7dx5GL1LNjc0WHw38ZnoFFpmfgoZWaWpthXrT/EjcEE+PAhe1I5pv\niBVEKqI/1kmS+El7+84B/tP0bo2MGklBPBlLN5BG0u7HEH+UGXBmgLcp+8qmsNQuY9w676xr\nDADb4r2GSC3uxW0JBcfiNo5sbxUKhUQptRCYSI/MYOqaJpAha90MVts0CNeyCicWLT4aWDtt\n5QXVnZ9CyzQws4FkoscdDw31EIlaoqJ1G2KVaYcaadaOfR/nzqsaCVDkJVLPSe6nwaUzaHEp\n/9kZUsMSKSyi46Nm5hk9tlVKwRkmYBZo43xr7p4ZHrXGfzC1G4BIZnVG26KP5LaUK2H7CCCU\n3599JIDCYLERQjR1TWsuoFqWohvErChvey6W3+E+MU8IRiXup1hDy834MiJhjNz9JH2jwFlr\nfa7R87Am2PBufKSv08TMBvuch4jDcHHJTYjkfhqMQ9AcouMYHkJL8KbMo5ox2jY0PJxGsrK0\nENXARa8NzaDitscekWDiBHO7SRNhGFyRjWfjyXq9nmmmbCBs1bi8NjfAtUZqVCIqEE9dl7YQ\nXWNDLp10lJaDadpRFKwGLcaoVblXPMjzU2Jd7hK3G866Z8Si1mKVaRdf9+B5+pB7cf9R6nEf\nDlA8iUg9Z5e42IiKJqLV5wjVDuqfZH4O/fZUIx47bCHO7qiAhlAFC1e9eEe0HTFoIrYtis3b\nBsKa1AllFkmgt1A2cY29Ata80eSqux3eu2nJJPNUODdMN4hW01FWNYJWWriL9t/thfk1LLt7\nZhbNtm5Gj3qyrQ79jr+KrYl0slUlf4YDFBsTCesXUMEr+KIZCSBUvMIbPdgxFaHB3762+y2Y\nMWU1kis7B/tkt5C4TRvaq8jgokd8C9OMmFTR0lwLeURoaZGxR5V/rUYK+WRT9vB2YKSC9Q0Z\n3SidC1HiarqISMpFJC1iIiVSkSDTqCHboIYr8GZQ/xiRZp9X4At7n9zFTNYmW+slknlrcDJk\nLAAXrE6t7HZG9GDHhAQcQ3pJgNEYRCRM2IEYXahuzLqeyOAim8xtggI1VXBREG7q0PDcGJjl\nIiIxBWTnZam4ClpaiTkhjHdgCh8jEmjdyLRruBNm5I+JxF7xp4DSjphsyyab4luV/jV/CVsT\n6Q2JtCxFKK9GAmsL69TFiTAheyHlpqlo1R6tqEZrpI0foqaYtVkAQESyEz6kW8hRIU54BpcN\n5NWmA1u72rpMsO+DusAYqgAAIABJREFUC5Bjzo0tJ+nm9FuqtsCidsaWVI505IW4CB9eATaD\nvh1P48Alc0ZIxySKydOND30kf+LX/jalWbFeuq94jLyuRSOZ84rr+8dnoZPFf+4LU4RmqqKA\nB/7ZFCRtxjYQbqCitYJ9e1TlPH70zF1FINVYcCKZcAHGuDXJzAbcDaWwUKX81K4O9mwqttXA\nYusGd/dzRGpgETV6TTSj4jakUyAEJeFQkhMqFVetH+GIhAXsoQySO4JqPiK8lCkgkh+184hk\nb0wJiVel+4rs478bbFD30ywlyw4uitOiFKHAbZiIHo00rH+M9U5TTeAdVNbkMBvT2UhZBRV0\nqxbqjbSggpi5U0Hmf0WmI25cClFqmyPgzSOh09RS+FubbkVttgyCrSBgq1SWt03eO3IMHxb+\nalR7HyAJJ9z1XndptJdHJEhNxeTssN4Sq/mIwLwlduP9eSRGJFrrC/F1DP9UjvB/mEj3udbq\n9/fHx/VqQg734Y0s0g3i0u2ZiHdoGNY/Zj2cSW9TkGFj83NsNM1UolaUAVNBHcTKJVq7RH/4\n7WlRGpprNbRWk3XpHCAbOmeeC03IYol8vYw0mEA2MrAMacoUp1RpKBrkDUSaqYGiJxY1c5oQ\n2DBVbMYCd9gMWzZkPgruafr3dD4S3hi760qtt9xTmKuFK5OWmXaZE4H6sSpqNzXHbnEXPmCo\nzmvKsW+EP9rHh+c3PSupNHwDv6ybacI1Ruh/s3ibGyC0QNqW2kE3iqIP9JhtcU4Vn81U8MoJ\ng0QqIbG1G3V6r0dTJbi1u6Jgx5TsRHUYvMwDj0hxzQOq/0oApQhhiARLwnWrtkla7tVDJOI9\nHALlg1rajcKdzaN2bBlZH2pcFtW6tYbPxSoiZZUk1YUHGmyzmhpcwGAO0C8wTw+WliOSfTMU\nMsrALuezPjRU4rY6qnVzLIyGtg0IM3BYgrJpTHhIoBtVux0kHZFA5ZWgXXCnk0pBLUZnKzki\nwQd1lHng7rKreWCFYRE+atCOTFot5VmKBTuicheeWtwVAo5kRKJl7yznG4gE0Yxwj5wE3PNp\nu1yhVabdthuNTUvqpSZG+KPIEec9WkvLkcLC7K1iC0JhfjX+kBRjADukamIausIdNqhrdidp\nW+V2nTOqrGAR8hojCQ25Hy0UQdC7Lmj3Se90ovWDq8HoXHTSk/RJFJ7m4DUPUneqim+ofaaZ\n9YdGP3AtrODxoaIylvGvFDZs4ygoN1/igm3zFMkesAk8jXYLlbQm2HC55K/6HXTBMYlIg/wp\nvLO9xxUOGViDSaEF+6nNuW7Jhanp96SgtMuS88O6lkEW3AwslNvi1TxujcYDIvly24Zp81Q9\n0oqqchopJhLuP8mIxHz1XkTzSJAgRc2UcdatzaRlk6v0+MCpIDUwytwzzfhIpv5jVdMThhMJ\nQi7jC5OcGTjv0bsOa4j02f+kWYlkgxSnTZ0wxB9zVpxESZ4+9UijAVUIfFnxLJ/C/kI4WUTT\nMlCYStFQckSiYAPwh/YogSNqN/xgXQ/fThnObkujtDSRoEB2ZT5gROJqAaw+Z3FNdrtLnCJz\nRhQ2jPOlDfzRKAiru9vFHyMF/nuUSOAZQvS/Ss5U2yuZRiQ7iXsQIr0PqOyV6IvaqcDiHeWP\nY1+KSGGPOF4oCE0js4Ud7R2R6MciImG1koiGNdQdqMDFcBqJDK6E8WRrbpkvrIPSmsknvWGD\nvz9xxZNuo0ko5WJpE+G2baUANsZYYB4JNw1M3fAUkfqjA/RD24mN2hZBbnFO2x1EzTae+5QE\nzYjTIo9Z178MK4g0fWXs4i580FAd548DsS/MzYx7dG49nuviSnG3KvyA1QeoPCOHZishKG0K\nKeopoZaiSuhdV7iutIKNkhwHyOKqIBhQQdSuZesekL5UwJFHv6il4cLPuA4WHz3WuitMyMXO\nlbECY6nARPDO9k+PVjcU/l817CJWk1UZ/TbpS/JBbpRh0iY8OlLUbhZ/CMS+wQiO1RTwj4qZ\nBBhXIo1kxjlbG1CjjuKxi5rX7VB1TcXm7YOdkhRg3HgRchsMZDu+xJduK5tgOWyTEgDcoLCv\nncbkmTto2hHr+tbssMwGVlYMRrPd7cutD4Z0IqYfmI8Ep+CUQeIXCIkEUvlGqGctKD7FlAYt\nvVB0f5+PVabdNlG7RfxhoGdbcuQk2qvitcouUdQE19gXuKKakc859jAbipOJuA9di1vcuycm\n+NJurZHLOEI7szRrL8yGeNakw0giCUMd10BvN/viZHKJhX3PFZhH8itn47RUAeFHmyqF5h9T\ncc4MtP9wyyWjuxoRKR1c9PzXyiU99IEtBtxuhd+aYMP7ZaSGyWLEdtN8/kwAPqT9pLXksxOi\ndngk/8LaYuRXJUaDb6r7l6I1Vusi5LhCqQGuNTSE6kQFe01FIyYWgodawxRFJwFIJj/Elxxl\nbmNOZgzzaSkXf0wUwlc0fxQUJfJd//AHBSKlZlC9iGpoOiYwIR6RH6tMu9wD23XxVP4A3LQd\nVoBH+0vFTzLKW8AUIRy8UcApUXyQLTU3bdWokegc5iOZEdoyLuOohJ2QTSC9qCoKWbTYvssc\nJY1EMypk40GJVbcbRQxTKik10E2irP5PQcCQNsBIllQHAxc+DIjkHcluc2yLBQVbg/cUJkw1\nZccRiJS7dYALmeHzFbNNk8CUB5rIV/ACmbSkzmIiwZhyRMIVsnBO6zIDcIGF8+1cvMrEFhpO\nJFu7ATWRyxzVpCoqXGpX1yw7GzYZb0tcUxiB7VfBklfBtLPAaS8TKiwqFQQvrL+DmYYwrKcR\nKTqiCkqIp1YxhYh2w90Aa0y75+GZ/EG48U70SMxa+rMvnEiuEWvDw8O0ShLJgvbqrkzqeOXS\ntnH7rBZqPOovwtlQnBvCBAkKTCBL2MPa6VasTm+/IdsOV/amiQSJQIktZpBIyr6md1HEwIF9\npehA61Wdc0fyG0T2Mb/lHm8mRO28mN9G2CmRnt8FJxJpJPtBZJPRvx2ReDwMZt6tee9zzAc5\nzDCNyRNdbfadK7vg9WlPtuaUtqywEpgRmzQRS8GuTGEuN9rcV7W32ihp2YFWxI0u7ae+j4S7\nfZlJ2jLUD757Rpm/g1E7Kw7ZutHVe7dx3sTYJlhFJL2ti1LX/IlCGxEJqEA+kvvG+wv5xRIQ\nFFusZ8FGcW86DqTYmfP12gBHvhoWbLCtudlZ5tVl7Lmond1bhQYbpWDjEj8acO6r2hps4Sok\nQuiW4tJFz7RzuxV594XaUMrTyzDyabdk/0gGZ+v6Fz9iyu0Ba4h0ATf0lJ1JfVItWl3SdxJL\nD3OJbuYEFfxREznIN6CtTCnl0xlPfV1WmAtLRIIVf2wmElwjj0hIIAX/4fZktNsXcpj2YyG/\nhHUNAx5UKOwBzjcnQlClbzTxzKc+kUDLhNt+JXxb/lTC2KJD8EOzJYpOcO99t1hBJNj6snt/\nyyqS6pNqUuLl9JMwDVIpWh7Ez6h9Ill/Hpdw8/qnyi5CIHe+F64ID9aHcynNrRm5LSbA+K3Y\ngB701Fl3OofCG7LIcmwuHn7O1agp8UejUSoMsbSuvgMGHRQSCZb61uD31MGCPoDvIyH8OinD\nd4h9FFzIXrEqRehn213Ne32PIfQ7LNwqaWE2Bl4cl+Dsmox38JfpUYyh1jpJAb9HCDZU+Ghn\n1iUWouunYwXLdquWZTRYI8rtDAZGlFvTwc6GFwjouRBx6L23oC/bhI/ErEvrK3E9TPCidgQW\niu+9Q8H6lYR0e8XKFKEtidQfDRsAPymOwPF3e0DNVBGbxsS8U5oRCp2DZgLNyZXmZYXsSW0J\n28Y4izEEGVUt5JnjgOcZdUQk+4+GJdahiw5lEdzmRCEX6jbekjbykayCrtJ6GH4+fy4uUbIr\ncZHslV340Ck7wQoinUEjbbUbxUoipSJw/N0e5lnxbik4MAhsjo5IdfDMbyILKQYjkg2qOeHK\nxlYQLoM9u7loOIZd2R+717hz592cC+zyF0anfXYE4XUnJ+VBsa1g4BBrZZI+Tuphm+wdxuji\nXyCBo+ifGOt9pBn7I83uwsNaIoUn91vfXpDB/AMewVTkkH5yRySWFtEDNg5t824ZRQmpQWWq\n9gEIgyERCrjVtK0dTApXdoJJmTUEpjBXXMbbW8LBdWrFOypslge1D3RBfdmAs5TSw7iKKYyv\no00w8vMdQ//EWBO1u8KTbWIR/SVdeFjlI8U05E8/3+pLHcsMJ5PyjQrIVeyi2EUfKCbliISj\nuYRkVdwjOdEMmVNU9odSvNmCW1pyYKuZw7k8pxQnzfAKo3gBN2MLBfFr8+IMOXpqxFomqKzh\nM2n2z7cWm/Fy9TxScf2XUZyoC45VUbuUPquIRkHDccQJBhef5rHkQ18jHb/yQMkPLGhMixtM\nrkPJ4gbR2Th9hJsY1+QjMW4QkWyrwTt8WTg56/gJUPlHKuJ1RetBXJ2y8BnkilkE7wt/vnXY\n0FI8VmbDinmkoahazJvwN3caKZpThHmkKRMeULXNPfPdV1CQAf15JzcTwSbMVpa7qViAGiIS\ntOoWOuHtCG1S/kjAqCB+Q+GY3iScfiIlfr5J+mLFSogNY+fHItIaRd3/dEJXyLPuglFMYSoV\nPFUpNxOPnCICzesaJLLZkly2k080B4zrBHEDM+II65F8JOoaFzrhybZpfg7Tlybx2ru26EaF\nIKexPwfJXRG/Cz1YU1Frym+SCyvD3wanwYL4S5CWap2i7vdhMDg3MD5Yik1wGPlgyRmV8FCc\nNsJ5XQTuT9FQK1E+DZl2ZKQCs6AsXBCvhopAGLVzz2bMi4hI53oC85KCgE4jsUvuAzqN4wyA\nWk2DrSlYmjx8UF8HwfszkYFIj60mZFcp6nDih4FnNPSfXlVV4mTnenGapzUnP9atHrIGl/Kt\nsipOukMFQUSq7NRqkBwXen12HokNKahiDvOyaW/MvrhHD5ZwnuLmsM3ZhhVJnA+UQNufpT6O\nAxDp0/vxtplHWnpbwL/pP3sSkXq0IQuv0zzS6LGUm+kMLoh1MSKZd0akGnQIBfIrmFr19lLC\nNXVeh8HVw8YwcHLyaovKe/TwvIhxLxXdp5G1DJN+z8Q27zOcpgP4SGfOo+wrzjMSiR6v/WdP\nMO0maCTXQu/Ph8ObZKEjcQ8/VzEfDmFBL1gNSBObVUXrktw2HX6mKF1RdPX85AQK/xxXs286\nRlfXTSNS8D7PaTpG1G7rKkILiYSv/U+nVLBhct+x2zBwrAtMVOB7uHfDEjKngpJsgQME87qM\nC/SjeOKEKsmJNItIi4ogjK73jtdMpFrBNA53GnsdxzHmkZ6GfD6SGw0DT6dxH3qcHFOORaXF\nkj/xX7AkirynFuurmtMSfpB39gQiBVfvZqWSKNwFVMuqiUw4p39GnDUTrptKhdX3gEMRaYGi\n5qO6d9iM+9Dj5Bg+Nugaa4tjaIKnPcOn3uyOvh9NaeaRSiwuXjF9FhIp9WjgIoQZqSGgMD5t\naoMfJ66+DxPOcbHLgR8AtpJyJwXve8GRiLREUU+0B0d96DnaMDo2oQ5aWw4Iv47F9GLDsCzI\nxABKCgLwZkMiTXk09IW/MVvOpS8sKMsziXwYNkjwHr8KXS0h0i91kSlwM0cbRsdGDgrqEjLO\n4mCAtzLHEKmyxYNKmtMalGns0VCF1XkA4eywooE8s57IOPncSg6Umb7iEYUg+DfPR9oMf59I\nuQI3UeKOUyhR60GqQPDOP6Bgg39EcA4QyQz9krIsuGm35IKK9JkNdMgWNS0pyzNOPqJagkjs\nNcCGm4fNwZ8nUt7AjTOZKKw+TlRGClyVAf929IkS3rx3E0SDDVwrXJg0bLVOuOrkXY7cp2ou\ngwgj5GNLueAvItKw/bZZGeI5eAEi5YQz5mMu9IJGvFsnGLEwWhYIDPKgSxaXlZcS0dP3JD3c\nc5dRI010LxeDl40wf4QKaYcGXD9WzSMRLvesQu2WSCzJB/6aNNqQbGy8hHYhYyhG7ZSjAoxr\nk+5jXKqqci0M9TgEmsQNgVkWYSmizPDqryiMjfg1aZ/U9ROQh0hFkTdv9a8RCYy3oBW/YTsn\nzPjDjDNbMMHmkrplgb6F53U4LtWAq0F7tkDZoqFLWwMejqiRRvZlpxGFAawx7d5On93r56n4\nUtciq076Y0RSmPXtt8IbxiwlpkpY3M3Oj6I96KJ2y4hkzqHyySngBss2VfVZSIQjUDHvNKIw\ngBVEuhff5v27uKifvImreyXSMh/JP7mHSPbNMcCbCQIiWd441eS6Dvz6YffJzWFVffk5HnOf\nhzAcwe7QLiMKA8iRa0d1ubJhv0RaErVzZ7PXRLs+kfixuOLb6rUo2BA/2ofcJ8iqcP9IAH6A\nzTLVAAOPmqUtbrW2fQWRTqSRTi9DpInzSL3n4kv4A6Np5wJ8+IV5LRQfZM6mg3mkeO6zn95A\nHfyuR/TNfwCo+wz/yjX4NywTscq0Qx/prv7lLSW0YyKtQ+BTu88p2GD+Ge4N4xMpzItg4S+m\np3rojQSy72PrUzdCkOOQbeRnbm4Ia4INFwx+a4WUtbbdnyUSIP6BaakSqJLEs5k2tlSUnW2z\ni4hIU8zMCgPoUZXteZjgw0w3q1yOQ1YVkt9S7MeqCVlbjkurpeI9n0jqzxPJuTvuI+Z8VXCM\n8odAmKMaa6RJs0fkYeEWhEswIao2gxM8wTWnU3MYIj0NOyZSDv87WTE78ppUMA55yTuYWIIg\nXjBz6gsY3ksk0qqQ3IR5nhlm1aKFgxMgRNotkfJEhCdUHFIRszyaBCtY/ZnTQSJVsAqoGnok\njKWoTsg8mDOIn0Wko/hIz8N+icReV7QSBLtndM2JhEFDBSN/GpHinVNCjOdtZybS07YhP0bU\nTr1TBZScEnldbIWJBlumPM5gn7uJJ/F3z0cKDglaDYk03ndjlOGmRFqw3mkajjCP9D60WHkd\nNibSZIMtF5FUb4290c6dj6SiykbJ64h8JHztLToMVBtnUi4fSQ0ak5txYRVWTchm384l7GIj\nTDbYMhFpmYVoaRItF6r8Y6JGg3uJgY5+JQAb2A4TKWvUbmYzu2TWgcpxPQ0z6JHHR1oas3A0\nmZLCk65wgqH3frdkmus/Zx5pTd5cpNh+YVOLKVhBpGvxk1WURBfbYA6RcuVxroyiz7hBoUay\nZhTum55gC24vu3isBrwZ0F7juiV2tTaMxM3BCiI9TpfsJVaDLrbBLINt6zzONJYTKXDsk0Sy\nR3hjdbpSiXjT609N0S3R3PWWc0NzkGdhX1aR1H59pN1gDZHM8B2y33guksWc5UEhb/ojfIO6\nBbMSw7lrIdKSLjbC8xfeZIZdeMcwYCMF97KBgwembuLbMWPBasSbXiINUYJlTFmRJp31m5AJ\nWYN9GGwTgQUcCYM2UkwkbKRv6ibafnNOCYVMRMLXeNrr7/lIT8RuMxueiOlcjpTJ4NjqI1Lv\n1E3sMq4iUq86GyASW3sVTbn9raidXRT7V0y7HaC//kKEyL0ZtnYiH8k/OSFK8D6zqE/Em14H\nq5//HpECYf7WPJIQKTNmuGmMSDaWNs9taCwGRAne1bwywQne9IT8olp+7hv3fpRAkJh2uwBP\nQB0DEQmHbGYiJcbuvKI+U0PlYXVZBqesjhIIWjMhm7kqZKKLl8G0qSyw/dA4Iz0xy/+m8Hev\nheTGrqPEM4r6DCgb7ggdIxAkKUK7wBQi0fgO9iduZ/nflEk3dE4FNFIz9NBsDF/zLh2hAawg\n0vmvpAjtAFNMO/YAN6YZDwHMLY9ABU6HDn1yudNcGcD7wAoi/Vz/SIrQHjDuCkTjLhVLG999\nBb7H1IYBJj27ALcQCd8lapcP4+HvVFRaey5snE9ZHxekpC4mUgbT6ygBuUkQIu0FEY3CfWeD\n94QPM2nFts+2hUTKMit6lIDcJEj4e6eIR1n0AA81UjIRNQq31XVn/6E+6aGCPWnAR8qUp3OM\ngNwkCJF2itjuoU3GAZHGSBApGXizNV37dQruNt4ftdtr5ugvYhWR/ukCkW+fGcWJunhVJDxx\nt8m41RiTiOQf4WHWPFJwavAuyFKy+JpTIL+Ll0WKSPgKmiL2YSIfaVHgDcoY921UoSFEipCl\niH72IihCpJhITt+gmonUTRS1W0SkKWHpna5l+EWsqiKE27pk3WSMd/HCiHwkl2IHf3Q6qXOa\nfOMrmEd6HpH2uZbhF5EjRUjC309AFLWLiaRZ1A5PGy1JTgCbbmSjiswpPIeP360y7VAjZXeS\nhEgqHlt+rqomEvu4B4vS5WBPv3knpdqZTI4/MKO0qmSx8ZG+Tln3GPO7EDiQBwQaw6++0IcF\naduwy6z32XwFNIccfyDHIU9mQ+7sBiFSEg0Gv81LqrRwptUOoS5Z4hLNIMdfyLoTIh0INL4N\nX+LSwk9b97AgSDeHHC9OpCdCiJRAaCt1DNLMYoUcn7XuYcm0kRDpGafssIvjIarwFtZObEFn\nZWfSs4n04j6S+jgr9TgX5/yrkoRIMaKRWVfGaWJEAmbtgkizyPHaUbtP7RedtHuUnUlCpBgR\nkaJ9/ybk9izEkkSGeeR45XmkS/HPZDX8K7LHv4VIMRJECoqQTptJnQNabTEraoekODw55mBl\nZsN3cZfMho0Q2kpVWIS0gqidN3zHF5/3gtNn+jzSHzDTlmAlka7F5wwifb1fbbr4fcQYFCIl\nEI3QBLPCfZaHFp8PzDnxwpOzJ2IDqV4Eq0y778/ipCabdj9nNus0fIoQKYlw8fkYs4YWnw/M\nOcFXy9ZK/IVQ9hKsCzYUxbtWSNOW9t2L0z+bnff4PBWD1SWFSB5Qd0Q6JGJWULp0YBekgTkn\n+EqINAerwt+WDud/087DZRca31qVZZXq7wJ1R6cj6tqnUuC5RMW0+4k0sMAi/Go2kRbs2H58\nbDgh67lSw36VEImB1vEZ35+N/CiWFjk164i00EcyUr0aj7YkkmikRQjHtRv64UBP2GKQRTTQ\n6lCHi1bvSdTuiacY6KXpD/OX+Egz0CYqFBtw3ngbFrOh3z+qx30ktWj1Xh0I8yrYMtfuwqJ2\n58G64UIkhzaqmQ9gu3H5SXecSDaLKNXsaNRumbipEMXRCuIvwaZJq193M490ur7LPNJ0YBAt\nCKZF29pVsY80GEIbnUdahJhIr1HfQbK/9w7cT6yJFAXyhugSDdnfiEVHbH6NikP7IdLTVgke\nHLjDZaNj360XpAPeMLoERtSvEClg84vUwPsVIo0SRYjkwELYka9hPxigy6/k6/hiCpHGTiE6\nnAZD2akWhEgzMF4sqJ8uO4hFC5HGTkE6PCZaYjNqPAiRGMZ3PRqiy++vZRAfaeCUT48T0yqt\nfp2ESMswvhTi9+nSD4naDZ3CM7mnrjX/uRYXMyMrpt1rQeaRBk9ZEFv7VxT/ppwpRBIcDBtH\n7R6X4vojRJqJV3iiHx3rNhrTST/XiasoAO/F6VOINAev4WMcHTk2GptX++T7PD7hKkRieFbU\nS/RcTqwg0sfSjcbehEgzsHIepo8uoufyYgWRzrLR2BZYRaR+urzG7M52kI3G9o51ROo7dbhV\nsfpmI4tGmpsiNLkLgbLrjao1PErRZYhIYvUtwG/4SNO7EKhV+XILidT7jaAX20ftZnUhMAv2\n2FqJWRigSz9bXiTLNDPWzSNd588jzexCsGpN0QBdhsIQL1l1YR32s7Bv4y4Og3VEGnB3egPj\n4b5LggkQIu0dK1e5LgjAvWj17nUQIu0eW4/raLsYwQSs27HvWSUWhEgMiajdU+d5XrXo8Dqs\nINL782qVCJE8VCGN1DPneV61DP46rCDSE+aPwi4EKTx7nkd8pAXYdmHf3C4ECTx9nmcHFVOO\nhxVEuheDZYfXQIg0gA0mTPdcAmKnWBNsuF6yb2cediGIsQGRJGl1NhYSaUZprY2keiE820eS\npNUFECIdD88e6JK0ugAyIXtEPNX0kqTVJRAiHRFPDQYIkZZAiHQ8PDk8LURaAiHS8fDsCVPx\nkRZAiHQ4PD2FR6J2CyBEOhw2yIWTeaTZECIdDpJUukesqSL0/sgqSqILQQqSVLpDrEpaLZ7F\nJSHSECSpdIdYQaSff2/P4pIQaRiSVLo7rPSRvt7Pz+CSEElwMKwPNnzrHS0zL/ETIgkOhtVE\n+rw8oUikEElwMKwj0s97p47Onz8dm675ZBIiCQ6HNUT60sGGu62kn3cphRBJcDCs2o2iOH/g\navO8O1IIkQQHw5p5pOtnVlESXQgEB8GaeaSsgiS7EAgOAllqLhBkgBBJIMgAyf4WCDJAiCQQ\nZMBi084z73YglUDwmxAiCQQZIKadQJABQiSBIANyEOkra8JqsguBYN9YQ6S7+EgCgcWq/ZEQ\n2XPuhEiCg2HV1pf/1KV4PC5F9m2ShEiCg2Hl1pfvnTb6zrw8VgmRBIfDSiJ96moN4iMJXh4r\niHTtTLtHcVZfQiTBy2MFkT41gUzpk7esIikhkuBwWBP+ftd/vRXFPaM8QRcCwTEgmQ0CQQYI\nkQSCDJAVsgJBBgiRBIIMWGPaXU86N+jrlD1oJ0QSHA2rcu1skdXv/GE7IZLgYFiZ2eD/kQ1C\nJMHBsCppFTVS1nLFvAuB4CBYZdqddNr356l4zykR70IgOAjWBBsuELPLvkBWiCQ4GlZNyP67\naho9oZS+EElwMEhmg0CQAUIkgSADhEgCQQYIkQSCDNgpkQ6A598FwYGwUyI9v4u1OICIgg0h\nRFqIA4go2BBCpIU4gIiCDbGKSJ9X7SpcHxnlCbvYLQ4gomBDrE4R6v59ys6kA4zSA4go2BAr\niPRRXH40kT5eshzXAUQUbIhVyyh+7FKkl1yPdAARBRti5cI+IZJAoLGCSGfQSN/FOatI6hCj\n9AAiCjbEeh/p86QL6efFAUbpAUQUbIhVVYQgWSb7ri5HGKUHEFGwIVbPIxXXfxnFibrYLQ4g\nomBDSGbDQhxARMGGECItxAFEFGyIVeFvwiVzicgDjNIDiCjYEHmIVEwrbff1buMT1/vI9s0H\nGKUHEFGwIdbZ25LqAAAVlklEQVSYdm+m9vfnqfhS1wlli3/OXIfllmprHEBEwYbIUvv7on4m\nTMrei9M/e8ajI98g8Q4wSg8gomBD5Kr9PSFNCEsca4yUOZ4s1c+9U3OXpRPC91Nxuv8sO1eI\nJODIVft7ApG8Q4aPnyrVzwk8tEVssJViF+Y3CZEEHOtqf4OPdFf/JqQ3rNJIdV0njnsrLo/O\nUrws2ljmqzh9q2/t4S2BEEnAkaP290UrmHHzShPPLgGc7SMZFiWoVBRGFf0syj+/F/o58G/h\nFgBCJAFHhhQhPRwnjcYLi9qdB42xiEjs1TvOO/DjXJw+7MePa3EyIn12nV4+8eszfP1zLq7q\nWmhafy/cA0CIJODYNLPh627mkU7X93nzSHXwTrgXb26Z+5Xi6l0X+s93naFuoPlzYV93h96R\nhQtXUwmRBByHSBHqJZJmxxlmdz+Ly4/6uWh7rdB/fugwgvHL/um//oFH9A++VkIkQUbkINJX\nlg2SBsqY9hNJfb5pFadtt6vxl360pVaYAIKNyuOmM1fz16d16L6UEiIJcmINke7Lyvd+nMBX\nmS5Vn49k8PVuIm9MGCuQfu1EvH5/47+UN+clRBLkw6rwN2LiVmPfVx0MeF+QItQXtcOGte2W\nJJJ6196SrhcWE+kkRBJkw6oJ2X+dj/J4XCbOxHybYX4v3n7U4zocLp84j9SXW8GI1Flz97Pl\nWXikjdo9JGonyICVKULvnTb6nrjW/E3PHd3tTOxIbt5EqZCOP7rRq1OMHpHgL/SRrvTFO3yy\nbAmIEEnAsZJIn3ooTzSOYHhf2T9WSvVVFB8/3dtFS2HCcurDMUW/nnWULo7awdmS2SDIhRVE\nunaD8tGN0a9ZRPpnlUiepFV004xKtBNFzh/Sr//s91/Kn0eyZ58neGurRRS8BlYQ6VMPSDM8\np5UsftPekcXPW6ZlFN9vp44KUH7lo2OGmaBlpp3JbLA6h6KFSKQfk/09taulIgpeAmvC3+/6\nr7diqpOhU7WxiZEVtQcYpQcQUbAhNs1suCN9xvTAAUbpAUQUbIg1PlLmiieJLnaMA4go2BAr\no3ZPwgFG6QFEFGyIFUQ6FwtXaU/vYsc4gIiCDbGCSD/Xy7IpmOld7BgHEFGwIVaZdsuSVmd0\nsWMcQETBhhAiLcQBRBRsiEMs7NsjDiCiYEMIkRbiACIKNsQqIuniJ0pdHwMHL8MBRukBRBRs\niDVEusAyulN2Jk2Wal2lVZ0svvRMIZKAYwWRYA/Z7n1a0uqCLsawrtKqWWu47EQhksDHqhWy\ndlfzJ6Q4xA02TZM4blWlVaUXIwmRBFmwMkVoIyIZFiWotKrSqlapQiRBHqxMEdID8XtpHfrx\nLhANe/WO8w6cWWlVuSKRGUQUvDbW+0ifpwl1vxd2AWiCd8KqSqvqe40yFSIJONZE7a58oXdW\nTCXSqkqrpiMhkiALVs8jFdd/GcWJujDoJ9KaSqtKCZEEuXCMzIY+H8lgaaVV9mkGEQWvjTXL\nKLIKkuwC0Re1AyyrtErHZBFR8NpYE/6+TCxVvLwLh+Q80rpKq14LGUQUvDJWhb+L4v6cpX0T\npVpXadU/5kkiCl4Ea3ykx3vHpfP7E0y8iVKtq7SKxzxVRMGLYGWw4XE/FU8w8aZKta7SqhIi\nCXJhfdTu4zdXyK6qtKqESIJcWKuRjHWXfSbpAKP0ACIKNsRqH+l0z7+u7wij9AAiCjbEyqjd\n269G7X4TBxBRsCFWzSM9ITnI72LHOICIgg2RIbPh+z68tcQCHGCUHkBEwYZYG7WzflIuaZJd\n7BMHEFGwIVYR6eef9pOekCl0gFF6ABEFG2IFkf7ZKc4nBO2OMEoPIKJgQywlkl0HdF9Rhme0\ni33jACIKNsRCIp00i3D1XH4cYJQeQETBhlhIJNo4VogkEKjDa6R1lVZ12aH7wuR1IZKAY6WP\n9PW7RFpXafW+pkqrEEnAcZSoXdu2ieNWVVr9Lt5+lhdcFiIJODLMI12fP49kWJSg0qpKq1e3\n+HwBhEgCjmNkNrTs1TvOO3BupdVUG4tFFLw21i/s2yDXrg3eCesqrRr8LKxvKUQScGQg0hMw\nlUirK61qqi2zTIVIAo6DE2ltpVX1OF3jRheIKHhxHIJIvT6SwZpKqz+npYXLhUgCjoMQqSdq\nB1heafWyeEcaIZKA4xhE6plHWltp9XG+LJ4FEyIJOI5CpCRWVlr9XLMhjRBJwHFoIq2rtPpY\ntbGTEEnAcWgirau0+uacqieKKHgNHJtIqyqtFkIkQTYcnEi/hwOIKNgQQqSFOICIgg0hRFqI\nA4go2BBCpIU4gIiCDSFEWogDiCjYEEKkhTiAiIINIURaiAOIKNgQQqSFOICIgg0hRFqIA4go\n2BBCpIU4gIiCDXFwIq0rEKl03uvCE4VIAo5jE2ldgUjbwMIzhUgCjqMQqaqqxHGrCkRqXBdX\nihUiCTiOQSTDogSVVhWIVHaVxbIzhUgCDwchEnv1jvMOnF0g8lFchEiCLDgEkargnbCyQOSl\neAiRBFlwbCKtKxD53v1DiCTIgoMTaU2ByG9eCGWtiIIXxyGI1OsjGSwtEHnWQXMhkiALDkKk\nnqgdYFGByDejooRIgiw4BpF65pFWFYgsGPOyiCh4ZRyFSEmsKhApRBJkxKGJtK5ApMKDnimi\n4EVwaCKtKxCplBIiCTLh2ERaVSBShX8/R0TBS+DgRPo9HEBEwYYQIi3EAUQUbAgh0kIcQETB\nhhAiLcQBRBRsCCHSQhxARMGGECItxAFEFGwIIdJCHEBEwYYQIi3EAUQUbAgh0kIcQETBhtiU\nSF/vdjn4FRa1PqGLzXAAEQUbYkMi/ZxdwvXIhuIHGKUHEFGwITYk0r04/TOLVdXj8zRciW5y\nF6sqrf7cT8XpvrC2pBBJwLEhkUwhEsC3XkG0votVlVYfJ0oXXwAhkoBjQyJ5idbDWdfxl2VZ\nJo5bVWn1zZx1L94WnCtEEvg4hkYyLEpQaVWlVbb4fMnZi84S/FVs6yN9WjNqto9UslfvOO/A\nmZVWoX7+MKUniyh4bWwZ/r6wqN150KsJuiiDd8KqSqvvYNq9L7oYIZKAY9t5pLsZ7Kfr+7x5\npF4irau0+mFKdS0M+QmRBByHyGzoJ9KaSqudSgK9lUFEwYtjP0QqOILv+nwkg6WVVj+0affz\nVixTSUIkAceWROoGLTr+M8PffVE7wKJKq+oMKuy86GKESAKOLVOE7ATo1TaSYx5pVaVVCX8L\nMmLT8HdnRP18nEya3VwiJbGq0iqEv38k/C3IgE0nZM3b43R+ZCLSukqr90Ln2d0X7j8rRBJw\n/EKK0M/lkolIKyutuk8WQIgk4NiQSNa5N39dMhFpZaVVk/094woWiSh4CWxIpA9KDx3dBPkA\no/QAIgo2xJbh7zux53NkM5UDjNIDiCjYEJtOyH5f8a/HmxBJ8Jewn8yGjbtYiwOIKNgQQqSF\nOICIgg0hRFqIA4go2BBCpIU4gIiCDSFEWogDiCjYEEKkhTiAiIINIURaiAOIKNgQQqSFOICI\ngg1xcCKtqrSqdNoS/nGeWXRViCTgODaRVlVaVXppLfR0n92MEEnAcRQi3W63xHGrKq0qvTzJ\n9vRdvP3wrNpFIgpeGccgkmFRgkqrKq12xMEk9Ov8VedCJAHHQYjEXr3jvANnVlpVnR7zGxAi\nCZbiEES6Be+EVZVW1XdAnZ85q2WFSAKOYxNpXaVVFRDpw5VPmS2i4MVxcCKtqrSqfCI9Tlc1\nHUIkAcchiNTrIxksrbTKPtX4Oc0qgyJEEnAchEg9UTvAskqrdIzFZV7FVSGSgOMYROqZR1pX\nadVr4XG+zNsCU4gk4DgKkZJYV2mVH/M5u7ydEEnAcWgirau0iscoUx/sSSIKXgSHJtLKSqvu\nz7ee7WQyiCh4DRybSCsrrTLPSYgkWIWDE+n3cAARBRtCiLQQBxBRsCGESAtxABEFG0KItBAH\nEFGwIYRIC3EAEQUbQoi0EAcQUbAhhEgLcQARBRtCiLQQBxBRsCGESAtxABEFG0KItBAHEFGw\nIQ5DpHSvawtELocQScBxbCKtLRC5AkIkAcexibSyQOQaCJEEHMcm0roCkasgRBJwHJ1I/F9z\nC0RafF470/Cu2WiLNpw1OampOSIKXhjHJtK6ApEG7/aIuz5At2UWy7qm5ogoeGEcgEgFR3Dg\n2gKR+h9mMbpZTat12HvXAGtqmoiCl8cBiDTY68oCkdS6bt7YdufCa2qOiIIXxtGJpNYViNR4\nfL7bXSneOtvuoY28KSvPhUgCjj9ApDUFIhX6Tvqjr862uwecnCOi4IVxaCKtLxCp1dD54/Nh\nPzqd9f8jlTVVRMEL49BEWl8gEv4BRLoXHybgcJ2wLYUQScBxaCKtLxBpIw/fsHNfxycTZmBN\nzRFR8MI4NJHWF4h0TZhA3hnmjlxTvWaeEEnAcRgipbG2QKQyVVYvX59W+/xDm46aEiIJJuHg\nRPo9HEBEwYYQIi3EAUQUbAgh0kIcQETBhhAiLcQBRBRsCCHSQhxARMGGECItxAFEFGwIIdJC\nHEBEwYYQIi3EAUQUbAgh0kIcQETBhhAiLcQBRBRsCCHSQhxARMGGECItxAFEFGwIIdJCHEBE\nwYYQIi3EAUQUbAgh0kIcQETBhhAiLcQBRBRsCCHSQhxARMGG2CmRBIKDYcEoz0+c38K+L0Wk\nW459S2dxBBknYt+XItItx76lsziCjBOx70sR6ZZj39JZHEHGidj3pYh0y7Fv6SyOIONE7PtS\nRLrl2Ld0FkeQcSL2fSki3XLsWzqLI8g4Efu+FJFuOfYtncURZJyIfV+KSLcc+5bO4ggyTsS+\nL0WkW459S2dxBBknYt+XItItx76lsziCjBOx70sR6ZZj39JZHEHGidj3pYh0y7Fv6SyOIKNA\nsHsIkQSCDBAiCQQZIEQSCDJAiCQQZIAQSSDIACGSQJABQiSBIAOESAJBBgiRBIIMECIJBBkg\nRBIIMkCIJBBkgBBJIMgAIZJAkAFCJIEgA/4KkT7wQu6n4nT/+VVZYuxSKIs937iPM4m0Q+l8\n/BEifeMGAhezmcD5d6UJsUuhLPZ84+5GpJOmzw6lC/A3iPR9gvHwVZy+9b++flkgD7sUymLP\nN+67ePvRGvNtl9KF+BNE+iguMB7uxWf3+q94/12BfOxSKINd37irlUwLuEPpQvwJIhV3BePh\nWjyUfpZdf1cgH7sUymDnN85AC7hf6Qh/gkjfCseD/7YT7FIog53fOI2f4rJj6Rx2LNos7Hk8\n7FIoxJ5vnMaHtup2K53DjkWbhT2Ph10KhdjzjevwOGlzbq/SMexYtFnY83jYpVCIPd+4zrA7\nXfTbTqXj2LFoo+AbUMP7aY93fJdCIfZ845S62KmjnUrHsWPRRpEgkg3vPPYV3tmlUIg937jH\n+fIwf+xSOh9HJhIHjId3M+HwWdx/VxofuxQKseMb91lc4K89ShfgjxFpl1PguxQKsd8b9yAe\n7VG6EH+MSOpszL3L8MFbY5dCAfZ7496Kgoz3/UkX4q8R6cekCf+uLBF2KRRgvzeuYETan3Qh\n/gqRBIJfhRBJIMgAIZJAkAFCJIEgA4RIAkEGCJEEggwQIgkEGSBEEggyQIgkEGSAEEkgyAAh\nkkCQAUIkgSADhEgCQQYIkQSCDBAiCQQZIEQSCDJAiCQQZIAQSSDIACGSQJABQiSBIAOESAJB\nBgiRBIIMECIJBBkgRBIIMkCIJBBkgBBJIMgAIZJAkAFCJIEgA4RIAkEGCJEm41ScMrcYbOWo\n/zmyu2P89WcuYSY25DZJBHy/nYq3z/R3L4SXvfDZ+OxGSbZRa5GBSOdcP+DUhoAs70Xxbv59\nt1uvnB9KiCSYgrfiXrzlbTIx7OaOxGwjd2pD9rj3e0chzaT34tQ9XX66t0dWcQ6Hl73w2egM\nu1Pmu3VcIuHLAwjUPWbesopzOLzshc/Fv+LemTH/uqdvYbesPxc/Sn2ci9OH/ldR/Jz1ptuf\n14K2lrufunPs0KLjEO47d4Y17bB9fE8dcsb9vWlfdyaI1hLvxua623/fSaJ+caEhoAnvJRDd\nJ9IdDDz1c/1w374iXvbC5+JSfKkvs4vpBfaqv+ht63Fr06K46oH7bj2Guz2jw5sZWu44aq0w\nZyh+Bozkq91z+B+O0fiQa4H7eyORuCDm8M8LnAL/Nn0PiJsgku0lFN037S7Ft3eXhEiCYfyY\nkN1JayE7wvWO9Z/F5Uf9XHQMotB/6rd/+gCjaWAn7kLx4yz+ue/YGTCSP62V9FY84OjoENMV\nfqeUigT5gNeT/rft6l98VNSyTyRzRCQ6UAWCDSFxhEiCYfwzOsDYdsrYXDrKddW86jh21SOI\nbV0PSkIPvs/CP87CKp1PN+w4kazRqJxlFx0SdhULUhQPOtqKcR0RNybSV9Ay7zD9LyGSYAxn\nM66+zejWuuJB9hC3iTo8Pt8vbGTCoHT7c9OH9Oadof/70A/7L7LsUocov6VIEE6IlBh94ibO\nS4ue/JcQSTCCBw2ohx3jd02sxMi80LCbSiT/DP2fMSPfybJLHaL8lhYTKRR3LpGu5CN9/sTf\nvhJe9sLn4Z0GlNYTp7P+vzds4M+34vzx+YiJFDTHvgvOMH/cO3Ps7Cy71CF+S5EgPUQaFTd5\nXkp0ui+gN7+sJSpEEgziDPrhYcbLvTDWF7hBBnzcPWIfKUiJsB980YANWPJdXL6ZZZc6xO83\nEiT0dUwAY1Bcdt4X6yUS3acKzSNdCgl/C0bxTc62ifdqQ09bMib41rk0VzYyv9S3dTpY1I4d\nZ/HJo3Z0hhu/5+LELLvkIfTdIyUIJ5Lt6nNEXNvQuePDz4X1EokeUOXNZDY8rpCHKEQSDOFO\nz+VPE707w8SKdTH0QxlGEGSeGS1wcd6FOw5gZmfMHBM7w43fTo+dee+JQwDnwgzhUBBOJDtn\nNSaubejDHBt7UU70kCpwledH8tvXwcte+CycTv6f/5BYH934e8NIs0ZHjsvXpx2391P3t/2C\njkO8U2aDO8ON35+Cx+yShwC+zlYXBIJ4vs6184RGxYWGOrne/F4C0SOq/Ot4d/nX9+3L4GUv\nfCvwfIbJ+CyKx/hR0/rP/AsPtydEEuSGyRr4uWIyzyyA655HjFwtTWlPiCTIDYiYL1gMWBSL\n1FhfY9magvb6Wxz67q/jZS/8+fjo/PDzEn10cjGy9RAibYOXvXCBICeESAJBBgiRBIIMECIJ\nBBkgRBIIMkCIJBBkgBBJIMgAIZJAkAFCJIEgA4RIAkEGCJEEggwQIgkEGSBEEggyQIgkEGSA\nEEkgyAAhkkCQAUIkgSADhEgCQQYIkQSCDBAiCQQZIEQSCDJAiCQQZIAQSSDIACGSQJABQiSB\nIAOESAJBBgiRBIIMECIJBBkgRBIIMkCIJBBkgBBJIMiA/4DenzGEdqNSAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "plot without title"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Plot Bento Sensor0 daily average vs. average air temperature\n",
    "pcols <- c(\"red\", \"orange\", \"yellow\", \"green\", \"blue\", \"purple\")\n",
    "\n",
    "plot(weather$TemperatureAvgC, bento_daily_trim$Sensor0,\n",
    "  xlab = expression(paste(\"Average daily air temperature [\",degree,\"C]\")),\n",
    "  ylab = expression(paste(\"Average daily hot spring temperature [\",degree,\"C]\")),\n",
    "  ylim = c(15, 70), col = pcols[1])\n",
    "points(weather$TemperatureAvgC, bento_daily_trim$Sensor1, col = pcols[2])\n",
    "points(weather$TemperatureAvgC, bento_daily_trim$Sensor2, col = pcols[3])\n",
    "points(weather$TemperatureAvgC, bento_daily_trim$Sensor4, col = pcols[4])\n",
    "points(weather$TemperatureAvgC, bento_daily_trim$Sensor8, col = pcols[5])\n",
    "points(weather$TemperatureAvgC, bento_daily_trim$Sensor12, col = pcols[6])\n",
    "points(weather$TemperatureAvgC, bento_daily_trim$Ave, col = \"black\", pch = 3)\n",
    "\n",
    "legend(\"bottomleft\", legend = c(good_sensors, \"Sensor ave.\"),\n",
    "  col = c(pcols, \"black\"), pch = c(rep(1, 6), 3))\n",
    "\n",
    "# Add trendlines\n",
    "abline(lm(bento_daily_trim$Ave ~ weather$TemperatureAvgC), lwd = 3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\n",
       "Call:\n",
       "lm(formula = bento_daily_trim$Ave ~ weather$TemperatureAvgC)\n",
       "\n",
       "Residuals:\n",
       "    Min      1Q  Median      3Q     Max \n",
       "-7.5013 -1.1874  0.2734  1.4836  5.7459 \n",
       "\n",
       "Coefficients:\n",
       "                        Estimate Std. Error t value Pr(>|t|)    \n",
       "(Intercept)             50.81960    0.17109  297.04   <2e-16 ***\n",
       "weather$TemperatureAvgC  0.16744    0.01286   13.02   <2e-16 ***\n",
       "---\n",
       "Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n",
       "\n",
       "Residual standard error: 2.222 on 312 degrees of freedom\n",
       "Multiple R-squared:  0.3519,\tAdjusted R-squared:  0.3498 \n",
       "F-statistic: 169.4 on 1 and 312 DF,  p-value: < 2.2e-16\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Summarize relationship between daily average sensor reading and air temperature.\n",
    "summary(lm(bento_daily_trim$Ave ~ weather$TemperatureAvgC))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is a positive correlation between average daily air temperature and the daily hot spring temperature averaged across BENTO sensors at Great Boiling Spring, NV, though with an R-squared of about 0.35, this correlation is fairly weak. That said, a small p-value (< 0.001) indicates that the slope of the correlation is unlikely to be zero. If air temperature indeed has an effect on hot spring temperature, it could get convoluted by other factors such as punctuated rainfall, etc. Certain parts of a hot spring might also be more or less influenced by air temperature, such as a shallow area vs. deeper down, so taking an average sensor reading might not be truly representative of the complexity of the whole system."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAANlBMVEUAAAAAAP9NTU1oaGh8\nfHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD////xw1/KAAAACXBIWXMA\nABJ0AAASdAHeZh94AAAgAElEQVR4nO2diaKjKhYA0SQ3SWf1/3+2o2ZRBEU5oGjVvOnrflCp\nCIiqCgDwRs2dAIA1gEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAA\nIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiAS\ngACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEI\ngEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACI\nBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgA\nAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAA\nIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIEEEkBZAY\nE3K5vDgzhACQBJEABEAkAAEQCUAARAIQAJEABEAkAAEQCUAARAIQAJEABEAkAAEQCUAARAIQ\nAJEABEAkAAEQCUAARAIQAJEABEAkAAEQCUAARAIQAJEABEAkAAEQCUAARAIQAJEABEAkAAEQ\nCUAARAIQAJEABEAkAAEQCUAARAIQAJEABEAkAAEQCUAARAIQAJEABEAkAAEQCUAARAIQAJEA\nBEAkAAEQCUAARAIQAJEABEAkAAEQCUAARAIQAJEABEAkAAEQCUAARAIQAJEABEAkAAEQCUAA\nRAIQAJEABEAkAAEQCUAARAIQAJEABEAkAAEQCUAARAIQAJEABEAkAAEQCUAARAIQAJEABEAk\nAAEQCUAARAIQAJEABEAkAAEQCUCAqCJdTwdVcjheQ4UAmIWIIj126sc+SAiAmYgo0lHl/27V\n0P2Sq2OIEAAzEVGkXN2+wzeVhwgBMBMRRVLKNiIWAmAmuCIBCBC3jnS5V0PUkWBtxGz+3jda\n7XaPICEA5iHufaRjdR8pP5y4jwTrgp4NAAIsRyTVJEwIgFDEFOlxLJvqTjul9v8ChQCYh4gi\n3fPXleaR00VoYTznTsAqiCjSnzo8Xv/83V9O/dH8vRgQSYKoPRse739epTxuyC6FJyZJELuL\nUK4aI+IhYDyIJELUot2tKE51P6FHfyUJkeKBSCJEFOmm8uOtOOQvky47dQkRAsaDSCLEbP6+\n5L8bRacwIWAsz4LmBgni3pD991c9JXs43YOFgHEgkgzL6dkQOQTUPL//gA+ItHEQSQZE2jbP\n1h+YDCJtG0QSApG2DSIJgUgJ4NiyNsUGRBICkRZN3RQQTqRnZwCmgUiLplao+ncwqw8v0d06\nIkmBSPPgmHG/Ijl05PmK1Lvkszn4RCQpEGke3DLu83M5+ojUt5qTSM+WSGPTA1YQaR6miWQu\nvT1/C9cD9o03L2zP9gzwApHEGJUXx4tU/WfU4Pn5F5HmA5HEGNP907FhQBPp2QjQFOlT6tON\n6k/iszMLpoNIYowSyW3JjxO/gp2XSK1q1tMwDyaDSGI8ey4FnWVHitT1p1lEQ6T5QSQxnk+n\nElvjEuO0aHvoN9Cc9CxcRHo2/kUkYRBJimchI5KxfbojUvteqi6SeestkfQlQoq0BUkRaZgx\nDQPDyz6/rQe90do6SIj0NP1pzQ2V4RFJapUFhhhBLJE6V4xeHTSRfssPrKmV8Jqzn4alBehc\np9coFiINE02k5pynZVuTRdIuagaRnog0HUQaxu2mz7Pzo25fzLxgs1OdVcqOSM061/M3rq31\n1Bv+BkTStu9Dd0cQaeoqCwyhY8x/7zmWakVnA2NEMizpJNLXg2GRDFUsw7xG9AkiaTHMRUpE\nklplgSF0ZEWyL1rldaNIn4LdgEgtc7TR31qtCNqGbGU/rUOrbqwpIc3rnK35H5HkVllgCI1v\n7wDDLGeRfv8KiGQNp81vifTNy1omNwQybffZHekT6WlORd92BzaZLohUYxPpV9gaqio1ROrL\nKe0imD7nq9iASI0NGIt2LZFMF4QBkZplxL4rUucSPCRoI7HrApEqnrbs1SiwCYrUGmhN0Cxx\nSKw5YkMk204NJc7pyti+EiNS4FUWGKKNTaR3UastkqUA+P3TK4KbSL05rZVY29Wy71nAcSLZ\nEuMoUncLiDR5lQWGaPO58HRLQb/6jJNI9mtbZ2VTiau5iYHEtnNwV6RnQwXzBnoSN1Yk+8+D\nh0hJ6YZIFZIifYtEz0b5Sl/MsJmmYv4i/S6kpi30u9HYtKdIxp8VW/O/YyKXCSJV2EVq/jDb\nilGfJYrfUu8NmuouhkFt/DlUHWs4tGiRPpfFKSIlVgBEpJL3ie28nqpZwvmWhwZE+qyplfW0\nxYpOTupRrBPLRaRCz+OWYKYVXER6auuYttwj0qAnz+5q8+AWF5FK+kT6jFtE0st7z8by3yFj\nPrOL5JLcoi+TF0MLuIqkHwbTJtpRnq1FLCJpB8Up7bOV9BDJnY5Iz04Oejay1VNbtTAc7cbt\nUHGR2qn2WMC0wq9g2RZJ35CTSMZi3LN5NPuS0pFyFhDJnXdO6RPpNzpapELLdd3h0TnebS1J\nkTq9MZq7ZPl5MIv02dpYkWYyyfFKuGaR3A+8j0iW0o/letPJis9PQWdCNhlfzxjeYmOrbZG0\nNLZ+Bcwi/TbWFanQp5pT0hqfSSS3uIj0XbIlkvFUf6YJivQ0/Na7J3vIvikiGQx5fi4uU0Uy\n7XZ/0kxrIdI8Idx/439XmvZvsb4Bu0iDoSwi+eUNl6hyIrWzlKtI3d+Zp2FRU0L0IIgUI4Rh\nZx2+39D6+zTkHMPyJpEcnH22/nxGAucNP5EaPyyd34GnfZ3WYJ9Itqv2b1hb1GVfnE+6I66H\ncL0iDedSLXs0ilgjRXI/we0lg7fozirSs/OveQnTaOdnR1CkcU/UI1IgkbTpT1cdTCKFL6yM\nVdUmUmN+e0LROdDasu4iGe4SjBdpcIe7529w+W2J1NlbhyYt7XS5iKSfUD+RgiMkUnN+449x\nqREiWbfT9bXxW9eLk0jN7Tosv3mRBo7AUz/LU0VyTKG2ZhTmF6l3WF+xc8nXB6KL5HzWViKS\n4fLztJ/K9gKtkzVBJOckjlpciLEBtZY5D5HMdvUPv6/vhsLfs7WQHZeeR63N2koKzT1FpOZo\nJ/cPimQ4up2MtG6RTAe1u9H+zof6SO/0Z2HumtjK+cZr3ndKv2cdkSznpXWmTT+qOtsRqXN6\njAexeeBkRXI6HbPTbtKy/FDLiaQfSf0Rru7Gmi9cGS2S7QJnfBCtkSpjrDarEclaDvuOtk/G\nL1+bRTIWEjYmkq3Eo4tkHHMTSV9cP0jGA/6daDjnfYfYfKV7Grak/cgOd1Zfr0jaMW2NtkQy\nZIMwIg2WOxbBzCJZkmMKof9SPk3n05LQtkjGbPDUlkOk7miPSI0LleHIIZKzSGa7DNt8Gqf2\nz61O0lPf7EBvLWuRsdvZ8buhnnRrbFGkxk9Qz3pGkbS/iNQdDSBSZ+azs9rTvvB7AdOOWX9p\nW0EsCW+zHpEMp04/fb/D97QcrKZIljDteaPMSOt1HoVNpP69kBfJmIr2av1Xjmenm7whkY3O\n7d9tb0Ck/utPa0rnx6olkrHUMBR1KyJ1mShSzxEbKI8ZZ+qdUvozvL1ooYn0yTDP35T+zTRY\nkUidt8A3j0tHpI9ko0TqRt+aSA7lU6MZz85Aa5Z9k+Z43YuHIZQ9pE3AdtK107UFkQxWPNuT\nNZF+vzqINI6FiNQTzBq6O3Hg6rgBkSw/FnpR+X2OtI4gTZG6Wy4Gc4o5oAurEGloJ4xH0EMk\n07xWZh+4cowQqf9nonfHUxXJcjXXfk0+56jdM8T4k9lcD5HsBBGpZ5ODneeMZQr7aGsqIvmL\nZN9yQJFWwNJEsiTANtaeakhMb1J60rINkbpFu75NI1IPqYhk/6hNY7JhJiK1BzSRmnMHTozT\nmduuSMO7bMxvMUWqtzhRpN7N9iyfpkjPhijNvwMi9deOvssgUh/iIvU3Zk4T6TmkiktOGJWU\n1YvUvXJJieRWm1odLuXemUVqnGdE6uWdhw1fLGpPCSnSs7N1qBkt0tiNuSajb9NTfgb7jE9b\npG5B2F8kt9um+qOc8KOvu+9okaYf4wAi9cxDpO7GnUTaaMHOiR5ZJrUcTE5FbyMGIn2FMDXN\ntKaYRHIp4w+zht4+wViGSEN1L0T6iPQshkV6dtaTMQCPxjGLSEMzJU9iwiL9rjfd4tvXJ0Ra\nBnOINLjZzYukX4BmEAnGMV2kQCBSMSBSa1JXpMWcyW2BSCKrCIcYIVJnxcWcyY1hPiHzgUjF\nkEhNXRBpKSCSxCrCIZ7aMCItn6WJJJ0XEhOp20rXL1Jn9eWcyI2xQJFE07JGkXqOEfdR5wKR\nJFYRC4FIqfI+T8s5/ojUvW+ESMvn2eqKsgC2LZL5BmxHJOshQqS5WF53edm8kKJIwzdZEWlx\n1N3ll3T4FyGS6hInVb4ieSQKfKiLEos6/oikT0GkRFiWSKJMFkmfOJtIo0re6z2RSYBI+iqp\nigTzst4zlX5jAyIlxHrPVGoiGapEKy4vQDJMFun+dy7/PHZn0fQ0QxhBJFgiU0W65+pQ/r0o\nld9lk1QMiOR++xUgFlNF2qm/RzV23audaIq+IcwgEiyRiSJd1Ok7flD/5NLzC2EBkWCJTBTp\nTz2+43e1l0vPL4QFQxsdIsHsSNxHkr2H9Alho3sBQiSYnYki5TOK5DAFIDKTi3aX7/ilbr+T\nBJEgMSaKdPs1et/zqI0NaANLZGrz91Hlp9vr7+2Uy7c1xOg8ASDJ5J4Np+/zE3/CSSoQCZJj\nel+7+3H/suhwku/XgEiQHMl1WgVYIogEIIBPHek0sOB0EAkSY6pIp2NRHIOZhEiQGFNF+v0T\nAkSCxEAkAAEo2gEIMLn3t9bYEOstQgCLJLXXcQEsktTetAqwSBAJQAB6NgAIEFWk6+lQXbwO\nx2uoEACzEFGkx65REOx/hgmRIDEiinRU+b9bNXS/5OoYIgTATEQUKVe37/BN5SFCAMxERJFG\nvMILkSAxuCIBCBC3jnSpn0unjgRrw0uky6EsoR1c39qwb7Ta7R59SyISJIaPSPu6Q4P7d12u\nx+o+Un44cR8J1oWHSGe1f5QineVfyIVIkBgeIuXqUTe+yfSzC9ZxDyA8HiJVxbpJIg2ugEiQ\nGB4i7d5XpNvoT/YhEqwN/zrSJVdu32Me8dgFIkFi+LTaHZw6oH655ogEa8X7PpI6OH/U5XFQ\n+6qlnKIdrI24D/b9U9W3lBAJ1oaHSIfeXj5m7nt1eCASrA7P5u/xnFR+QSRYG57N3xO47YZv\nuCISJIaHSI/DfqDLnIU/RIK14VW0C9ajB5EgMRAJQADeawcgACIBCIBIAAJQRwIQAJEABPAv\n2l33B5mk2EMALB2BOtKDdzbA5pFobKBoB5tHQKRz/1tTp4BIkBgijQ3iXzdHJEgMAZF2bq9s\nmBICIBG4IQsgACIBCCDxhGxOYwNsHQGR7jR/w+aZKNKl9Yq6sW9aDZEqgDmZekVqfqF8N+2J\nc9lUAcxJ9LcIjQoBkAi02gEIICHSVbz7NyJBYviIdOR5JIAaD5F+Hl1Ek1QgEiSHh0i5+lfs\n1f2+V7TawdbxbLU7va5GN9cPJI0PAZAIniJdyq/1UUeCzePzWZdX0e6udsUVkWDzeIhUfZ1l\nXzY28M4G2Do+zd+ncuhPqQkfHHMNAZAG9GwAECDypy9HhgBIBDqtAggQ/9OXY0IAJMIcn750\nDwGQCLxEH0AARAIQgOZvAAEQCUAAL5Euh7JUd7gLpkcPAZAEPiLt6+qRysVNQiRIDA+Rzmr/\nKEU602kVNo/XE7KPuncDrXaweTy7CCESQIlnF6HSoRuvLIbN419HuuRK/EtjiASJ4dNqd3j3\naxB/9wkiQWp430dSh3+CyemEAEgCejYACIBIAAJ4ifSvLNr9ib+wGJEgOby7CJW1JMkEtUMA\npIHXS/Tz8mJE8zeAXxehW/WXG7IAEm8RoosQbB6vot3nisQX+2DreL2yuKojXXN6NsDmkXn5\nifQLUBAJEgORAASgZwOAAIgEIAAiAQjgI9Ix502rABVe95F4ZTFAjVernXgfOz0EQCLwoTEA\nAbyKdnxoDKDG63mkvfxbv7UQAGngI9KFxgaAGg+RTrTaAbzxerCPVjuAGlrtAATwKtrRagdQ\n4/Vg3/4qmRRTCIA0kHkeSTRJBSJBciASgAA8RgEgACIBCOD9WZeiOMh3FEIkSAzvd3+/xnNx\nkxAJEsP/05evv3+iSSoQCZLDq4vQg6+aL5Vs7gRsDc8uQoi0UBApMh4i7d5XJL5GsUAQKTL+\ndSS+j7RAMkSKjE+r3eHdr4GX6C8ORIqN930kdfgnmJxOCJgEIsWGng2rJKOSFBlECoJUNi63\nk1WXl3FbRKTYSDwhm+dSqdFDJItQNn4rhEjLR0CkO/eROkiJVBsxWqSM9u/YTBTpoppwH0lD\nqK6f/S5H47aISNGZekXaNT0Sf+J8FSL5ZeX3FhApEXiLUAgy/6zsI5K/xjAWWu1CICHSu73g\n/Q8iLRxECsGUJoL24lkxXaTfehANRApB1mxvc16nactXJMOYw5YQKTaIFICsmCJSZhdp3Kay\nxr8QCUQKwFekUQWyrH0NapmASEsHkQLwE2lU9pcWCZUi4vNg3ynUd8Y2KlLxs8Ww2miR6AEe\nE783rYZyCZEs8923hEhx8RDp8e8vlEvLFMk5Y9Z9tseJ1KzYGB2gaLdoPOtI19MuhEtrEKn4\n3VR133hPO8FYkUatAr74Nzbc8td1SfitDWsRaeQ6vbeAEGnReIt02Qd4b0PaIn1tQKTt4CfS\n4/S6HO0uj5dNB4c1r6f6fSmH40B/8fWINNxskDX/9HQrmi4SPkXAR6Rr2dhwvNUThzf0aD56\n0X8FW4FI9pW0loRMrx3Ji4RJ4fF6QaTanT+fkVXDj5sfVf6vtu5+ydVROFURiCOSLQoiLRqf\n+0iHy6j1cnX7Dt/6xVukSM75sV8kQ5+F7DfN3s7nU7TDpOD43Ecau56yjVhDLIpgIjWn9QQZ\n2W7xG0KkCEwUSbVxWm+bV6ROJo4uUk+9C8SIKNKrjnSp79ymWUcKKNLvotETA5GWTMze3/vm\nC1N6C4bziDSQ25xLSDOLlGmDiBSDqI9RXI/VfaT8cFrkfaRoInVqMU5XuykXxJ67WSDK5KJd\nq3i3gFT5M5SZXUUymaONRhcJk0KzHJHGV7qEcRZp4I5pv0h1tq4pRovUu5gpeVkzojl9IEHM\not3jT6n9+97TApu/I4r0Hfyu4yZS/2J9Iv1mcHs2CBFFeuR1R7t6I4sTabDkNlUk+32lTM/k\nwwnoW86YPO35dUQKhIRIV5cOq2Xz9/ll0zmvutkhUtHK004iZb3LfdKniaQ14vVvA6biI9Jx\n7A3Z6s89392XKdJADpMXqdvo0E/2Lt+Za0uf93/ZRSqybEBGmIqHSD+P3Prcfdx57PeINJWe\nd7g6iCSSBDDhIVKu/hV7db/vldvXKHbqcxN2t1+eSMN3WwZFss7WG6R9+Hx7zCyS4YKDSFHw\n/BrF6XU1ujk+HntWf++hu9qnJ9I3i1pq673XCvPwFLJPrE6xEJHmxFOkS9mA4Hrb5/hd8DJQ\nr0pZJMNcSZG+sVxF6k8OCOEh0uFVtLurXXF1vn96+zbv3f+2JFJzWgiRss+GHdsSMEkeD5Eu\npUBVR9S/3uUnkK5I5kZ0aZFawja+/+L44n5Eksen+ftUDv2p/iciJhFfpG9e7FtiUCTrLdOR\n7dyDINLS4CX6NbFEEszDv+b2RuIRaSYQqSawSI1cL0Zjk79yKSLNRMQnZMOmqh+3lizrUu+M\nahcpS1akRrdw8ACRGgv0idTMq8ZbM/2fFluqSMNXYnDCp2h3yMu+QddcvNEugEhDeSVr/GuY\nmfWL9G517ml8DidSVjRFsl4SjakZ2G9wx6uvXf1WoJt8s520SMO5a0ikVn2+K1KRxRepkeas\nGWCMSJk2DlPx7NnQHhBDXqSBvNKTobJm9aj+xyqSZRMDEabyS9lEkX61I0zyxavT6ueKNPy6\n4okhpOjL4d8FLMs077H2iDQUIqhIjTSNEkmfAJPxKtrlZbfvS65OkilqhpDCTyQtv3Wz6rtU\nF1+kbyvhJJGyzhSYjE9jw+c9dW4PyE4K0cOYUz/YNtVbtGuLZCgmuoskml8RaUF43ZD9V76m\nbuSr9EeGsBNJpEwf6RFpMAkBRNIbQCaKhEmeJNuzYcxdxOFMbK90O4g0qKlbGsaTIdJiQKTW\nvMREamx3vEimvYCppCvSiDO/BJEclxrFZJFMrS9cn7xApNa86SI5JSJY/kSkuUlVJEOVv3fh\nwk2k7kLDIjmmI6xIjR1wFMnQYmIZAQcQqT1vtEjOfafDdrP2F6m9VxJp2hSI1J7V+zttFMk5\nFUGRECmjy9B0EKk9ayMi2RZDpKl4iXQ5lP1VD3fB9OghbCBSm9EimZfK+meDFe8uQq/xXNwk\nWZGy1h/TetsTybIUIk3FQ6Sz2j9Kkc4zvI4r+/7jgGbQKkX64qnA5+K9tN1aPF6PUTzqR5Fm\neB7JS6Tueoj0Xf3979J2a/F4PtiHSEvLcYg0Dx4i7d5XpJvaiSapkBJJrxR9i3Y9t1AGRcoK\nRIIu/nWkS16+SF+WpYpUZIgERrzeIvR+sM/tqy6TQthwEalzd/HbCi4o0uIyHCLNg/d9JHX4\nJ5icTggLiGRFTKTl7dqSSbRnQ9b417qMgEhdr1Yu0ucnCpFGgkjahrrNdO3xjYjk3hkXKrya\nv7/shV8ROZSqrPXHtgwiTV0dkUYjI5ISfrWdjEj6YmIi9dSp5geRZsGnaPdXvfv7kqtrcZB9\nbbGoSFljSoFILqtXIi1w3xaMyLu/98VD9qZsYJH6mhQQqfgcu+Xt24KReve3bDchRJqOb4re\nxweRxiH17u9ZROo91Yg0fX2XRlFo4ffu73cd6Vj8k+3eEFAkTYTOZhCpQKQJSLz7e19ekET7\n2yHSdAREcik5QxuBLkLlZUn4gxQCIhl+WBHJcX2jSMvb00WRZs8GRApIhkgTQKRilEh67WGF\n2QuRpiAh0lX8A0mLFalTDV9h9mqJ9Dt4K9xTSXxEOn47CEmmqBXCTNYZMC9jKoYh0hCtToqI\n5IhX8/cH8U+NIdKcNLvN/4bXuKeCeN2Q/Vfs1f2+V1fRJBViIrULJxNE6m4fkcCIZxeh0+tq\ndJN/1jyMSKarVGcMkZpV0Eql+pA57OkqD4YjniJdyhux89WRek5dHJHWnXWy5lF0EWndh6MX\nD5EOr6LdXe2KKyKtlJZIw/u66QcvPES6lAJV3YRiv7LYQyS9aNYZGyPS2nPOaJFWfjz68Gn+\nPpVDf0r2mb52CDNjRNIaErLGXONGBkRqTl/9s2+I5E6SPRtmF6n41L/XnXEQyR2fOpL8lUgP\nYWEZImWrr11/figyJ0kMtc8NIfGErDxTRDLVe6aLZKpLaUutX6RG10KzSK03pCDSxFXKl+gH\nYoJI2WSRjC0PiFTSalQxidT5JVv5AbHjIdLjsBfv0qCFsBBSpF9DQndWZ0sbF6k9FZEmrtJ4\nq51okoopIun1/sw0VVykteebMSKZCs0bApEQyQ4iObOW5m+zSFrZS16kbYBIw6Qokl7BfQ8Y\nG98mi2SrXxeN2VvBcjDaDTKINH2V8uUnRXG4C6ZHD2FiskiF8Slqk0ifxgR7GraUYVxE0nza\nHN6v43qN5+ImOYvUPH8uIplONyINgUjD+H9D9vU3cqfVMSJpa44TqSdTbEqkem8RqQ+vJ2Tr\nr5pHfx7JYEHnRAcXqTeFa8Pc8oJIDTy7CK1AJP3MI1KXdrOCcSoiTV5l974i3WQ/6dIMYcZB\nJNvp1BtrDYu6ibQtjCJlxnlbPWb+daRLLvve72YIM4gUG0QaxKfV7vB7ib4wiLQsEGkQgZfo\n/xNMTieECQ+RDAvYRCq2ddPVAUTqIfGeDa2z2dOC0LMNRHLFLJJ27Ld6zHweoxBNiDGEGUSa\nB0Tqwaf5ey/+qmI9hBlEmgdE6sGr+VupY5hH++YW6b25rWYKC4jUg08d6X56ubQ7BSji9aYq\n6450WpUQKQBOIm31oHk2NtyPuQpQxPMVafhkItJ4MvOY1mK60YPm32p3jv2ELCLNBCL14HtF\nqkp34neS3EVqFSxGFNQRaTyI1IN3HSk/yj/Xh0iLBJF68Gy1+5uh1U5WpO6iGSJZMBSqi/Ei\nrfOoet1HCtA5qB3CiIhI7TYnfQ4iGRERaaWPRAr0bLgdc6nU6CGM2EXqscO6lR6R1nnGPUAk\nO76tdnU9SSo1xhBNtJNWIFJMJERa63XeS6THv7KeFKCn0CJEWukZ9wCR7HiI9K96i5AK0GjX\nk6oMkeZDRqR1HtepIl3+VNn0fQvzbZc+kTJ9QqGd1AKRAoFIdiaKlJcWlU3fixApa425nSlE\nGk9mHs4QabJI3w/Hxhap0wQQQiT369q2sIpkmWHZxiqPa2pXJDGR7LYgkg1EsuNZR7pGF0mq\naIdI40EkO6m12kmLZFgUkWwIiNS9fxGPoHEF7iMdIt5H6mJqMxISCXTMbQqIVCTXs6HLZJGs\niyKSlaRFCttTReB1XLH72mkYGl8RKRAWkbIekUyjI06SIIsXKQCItExcbhe1Z5gaWecSKWhI\nRDJMRyQLE0TqjBeINH2VkCEQKR6jReo0dn8PevS+9YHb3dcm0ojarG1JRLLiJVL7YrQskWxz\n3BO5RpEc9x6RRiMpUuyjjEgDTBbJtigiWZki0nfC70O0c4jUW1KxXR5HXDbXIFJ/qbxvTUQa\nR2YYsi9TIJL0KiFDiIvEM+ZWxorUbM/JGnk5m0eknhKcec6mRNL2FpECMkmk779ZexiRxq8S\nNIS8SHPcOGsAABCHSURBVGOibwo/kX4HPL5IzZSYZloywoZFGrH31t+hMdG3RdYZ6FlmWKRW\nFUo0oXpibCJ9LlSI1BXJeecRaTThRApUns5Mf5qzNZ27cx1ZgUgFIkVjkkiNn/1mw0NW/y+w\nSK1LkUGkVt2tM9M9L6xQpBHrIdJI/ET6WfMZy3453aX+NZ5y843e6VohLmv/U7RnbU6kqSDS\naMaJ1Kyg1Nm1VWXJ3tekekIwkTRzup4bgyLSCCzFCUSyElCkxrblTkBW6CLZjO2IZC/yGUEk\nw+Q40VNEVqTiJ1AwkdopbYmkzdHWzMxFPhvbFmnUZJgq0k8XN5Gmn4Gscy9kskiWupMNRIIR\neIpkXC1r/P89YbpIRUckbQFHkTLzZDuIBCNwyV+GjLogkQrLTiQl0vV0qF6FdzgOfDETkRbK\nZJEy+3q6SHpxbFz6NiDSY6d+7IOEgMD4imRbIZpIjYm9Sy5ZpKPK/92qofsl/7yEXzYEhKbn\nyqItModInVXdRbKsuESRcnX7Dt/6XyqJSEtlhEhZcxIiiaxSr6dsI+8pDSaGgNAEFKkw3Jsd\nn7reNu3W1GRF4oq0AqaJ1H+P9SvS7x7oRJO2IdKrjnSpP11BHSlZpoo0sFFEGsO+UXbbPYKE\ngMCEESn7LKQ3hY9PnYxIhgaTAeLeRzpW95Hyw2kZ95FgNOsRSZ9nFcktLZvu2QCjmSjSwEZb\nFwBEkgORloo5ExoWGSXDckUaaHD8gUgwhoWKlGXGNceIZCmK6v3JbSASjOLbsNa/xNBC9nWH\nAxjXQ6SZQsA0wopUjH0M6BfK5KBlM+YQmXkQkSAEziJNq+YsUCS3xCASjMIhnzvUo3rWtQbo\n2SAizRcCphFYpML+qoRBkbpxJURy3BNEglE4tKlFFylrrCkhkrYJRAJ5QovUyeW/tgubFva3\nqY4Sqd0I3xh2qvQhEoxj+CfaT6TmNoqi+eKhPi3MowIiFYgEQViJSIZZiAQRGW7FkhQpMwxZ\nFjWMIlL4EDCR4TuUixHJloQBkfRZrbYMG4gE0gQRydrIYc72vUmwbcty6UEkmIW1ifRpnOjd\nI0QCacKJZLoqINK8ISAYwUTqbyLojiMSIqUMIrmBSNCLoEhZgUg+IFLKJC5Sd07WSokZRAJp\nJERqbKS1OXMut4wjEiKlDCK5gUjQS1SR+iaMFelTGTJNRySIDSK5gUjQiy07jt/IckQa3CdE\nAmnSFslceUIkiI81o47cRmNLWXNy1lnOPEFeJPteIRKIE1ikLLpInzdJ9OwUIoE4SxfJemnp\nrzwhEsRFQqSfP+3SXKZZEFUka2IRCQIgJtLPoZ9I2sbjiDQMIoE4EUXqhvEUaWq6EQnECSpS\nawyRZg8B4UCkUKssMASEI6RIRXtMVqTeO0X9IBKI4/HDbtjKSJH6Z35m2ESanG5EAnHiiGSY\nXrQnIRIiJY2USI27N5k+z08k2xxEgiUxvaph2AgiTQeR0mZ6fmxtpfGnK5J+Z1ZfzTJ34oxB\nEAkCEEMkWwky6wzYF3GeMQgiwcIJIFIAEAkWjrEulCHSQkJAMpgqQ4i0lBCQDIg0GUSCH0aR\nPrUk8+LtgRggEiwdYzs3Ii0kBCSDsQhX2YVI84eAZLD2OEKkBYSAZLCL1D8VkRAJGiDSZBAJ\nfozsTI5IUUNAMiDSZBAJfox9vCnT/kYBkWDpINJkEAkajHxOEJFihoCEGPegICLFDAEpgUjT\nQCTwIGv9iQMiwepApIghYL0gUsQQsF4QKWIIWDGNF+LFApFgfdjeHRkQRIL1gUjxQsCKQaR4\nIWDN2F5nHI6FipQw4Y8ODIJI0UKEIuGkr4mxPca9QSRhEk76mkCkWCFCkXDS1wQixQoRioST\nviYQKVaIUCSc9DWBSLFChCLhpK8JRIoVIhQJJ31ViHzGdgSIJEzCSV8ViBQpRCgSTvqqQKRI\nIUKRcNJXBSJFChGKhJO+KhApUohQJJz0VYFIkUKEIuGkrwpEihQiFAknfVWMe6ekP4gkTMJJ\nXxWIFClEKBJO+qpApEghQpFw0tcFIsUJEYqEk74uEClOiFAknPR1gUjSIb6vUdDfp3AZub7b\n0mMWhnAgknQIm0g7xyiIlCSIJB3CJlKYF/4g0kJAJOkQiATh2Z5I553anYv3u/O+C132Su0v\n9UJHlR/r5R87dahWU+p+UPmpWvSYq6PdQkTaJpsTaV8JtNdEOtcvdzyXk0/vBV6DB/V2Rqm8\nnHr6bOAPkaBFMiI93TBtrPkW1H8qvxW3XP1rF+1ydSvn7SplfgvsH0XxFuk1eC7nX97zEQma\nJCOSx8aaIh1UWX671Jek5jKX1tDlVaR7DV7rKZ/B5gYQCZpsQqTGwHukMVhxfBXjbrfG0sZl\ntYnhkw7JgEg1p7IOlN8RCaaBSB8ux11dR7Ivi0hgY2siHZpVINOSdW3oov4sIlFHAhNbE6nV\nanf/LrMrJ7Ra7S4WkWi1AxNbE+l3H+klj8o/y/yrW/WuVUN3OXQoLCK9N4BI0GJzIhXnvO7Z\nUFx3P5Hqng3vJu7DewGzSGXPhv0VkaDFBkQaGdotdnVNM86QSwokBCLpoQdiq7I29Tioo22+\neIogBRBJDz0Q+1TXkHLbfETaJoikhx6KfX7Vpna26xEibRVEEibhpIMHiCRMwkkHD6KKdD0d\nqgrG4XgNFWJ2Ek46eBBRpMeu8UCDrfXYL8QCSDjp4EFEkY4q/1c9qVDcL7m1+dgrxAJIOOng\nQUSRqqdQ39zs7cc+IRZAwkkHDyKK1GpY7m9lFs+N+UfcMK8OaoBI22QbV6SL+jxLjkgQhLh1\npEv94EL0OtKfOpYPGMUAkbZJzObvfaPVbvcIEsK2vfx1PRTepi1UnDCwMOLeRzpW95Hywynu\nfaR/r+vfsexs+nkmonrxYxgQaZtsomfDXl2La33rqhapevFjGBBpmyQjUuaGaWuPqmUjV623\nPUZMOmyAmCI9/t7v1y7iNn//qy4/ddnu936TQCDSNonZRShXn7chxBVpV4lzK19tYnoPlyyI\ntE2iNn+fXzad829dRdtsk4khjNy/W70jEgQi6g3Z6s89392jXpFOX5FOiASBmKGL0GO/jyrS\n7v3+uvvnRaqIBOJEFGmnPm1lu31EkW7fW0Z7dUMkCENEkc7fXjr38iWMIUKYOH6/2HL5fjVM\ncPM6iLRNYjZ/H785+DLQniCZG/O8OYhIEISoN2Rv334597+4j1HEI+GkgwfJ9GxIhYSTDh4g\nkjAJJx08mEOk4TpKwrkx4aSDB4gkTMJJBw8QSZiEkw4eIJIwCScdPEAkYRJOOniASMIknHTw\ngOZvYRJOOniASMIknHTwAJGESTjp4AEiCZNw0sEDRBIm4aSDB4gkTMJJBw8QSZiEkw4eIJIw\nCScdPFioSACJMSGXy4sjw6wJm/mozBl+m8fdPzAiLS44IqUYGJEWFxyRUgyMSIsLjkgpBkak\nxQVHpBQDI9LigiNSioERaXHBESnFwIi0uOCIlGJgRFpccERKMTAiLS44IqUYGJEWFxyRUgyM\nSIsLjkgpBl6sSAApgUgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAA\nIgEIgEgAAiASgACIBCDAUkTKD+d7NXA/H/IZ06G9P33K69Qn8DjulNqfo8TSUOryGZgj/EyR\n5bPbUkRSSv1VA3+TvgUgmI6+0UA88vobCPkjRrQ2r6ifgfjBZ4ssn92WI9KuPqH5bnsi/an9\n6/fxvlfHGNHavDLS6T0QP/gnCTOElM5uyxHpqG6vv7fX382JpFR1KXrMseevLKXu9UD84J8k\nzBBSOrstR6SLKusIZ/Wv3rPL4VXoOJa5a1ct8PkbPB2ff6p/Y4nUHDvvVH5+Tz5WxyBs7Js6\n/BLxCr47/472TkUobbZPeDl+P6j8FDakJbtVv2q7+oiM26JsAifzSn6V+oO6V3t2qmsNx3LK\ntVzgnwp6ZH/pKOKLdFR/9+/IodrxfZWA02cwHK89/KuOcLWr+0/wfXWZugcO/k1C84SX1Tb1\nLXGGCmnLbq9ZBzWhjL0ckV6/fuXf/JOX/5XyvAYvdbXwT937tyCWjvgilfl3d6x+L167u38U\nj33ZlvbKULfilpdHIhyvPawvP+Wu/vtGrH+3Tp8mvaBoJ/w1+DoE56AlEHt2q6NP2KJsAidT\nFWOuxfVlTSPzVoN18SJOyW4mkYpL2XqUl7n2UO1t9XtZt0xfJpQzRlDu4bks5pQDh3fE/ft4\n72KXbN+H/1oEPvQ92a2OPn6LUknz5LUP5Y/g6fXL8N6z++W0rwbP5Y/jNU7Jbi6RXlxPeXkK\nG98DfgcPm4bvb5UWsSwB3OM0I+on/Hf4Q4a0ZbeJcRckUlkgL4vm9Z7sv5+XfpR3Ok5xSnYz\nilQ2Ie1mEunzy9yIWP5yHaf9OE9KQuOExxHJlt3SF6nIVeVMtSd/ane+1BXB1/m8FLvwJbvD\n9zBGFukbRIsYT6TXvt90dfNd+V9gfse8ccLjiGTLbisQ6U8dy4aF3+68Rbqp/S1Cya66m/ML\nfo0m0kHVnYOq83r41e/r0vq7sSUU9R7e1a5ZRyprZUd1Dn/QtWMeVSRLdluBSP9U1XjyrfLd\n9u+d2qk8Qsnu8KoRnKo8tHvl7Mc+mkgvZc+v/HTdl0JVDWeveuHh12oXtOXsvYcn1W61q7JV\n+JtIv2PeOOGRRLJktxWIVJ66+3tPju+aQlVIv6gYbXbXb8BzOXCIV0f67Gx106YurefVgaiG\ngzbaffcwrwb2v3S8fk7C30T6HfPGCY8kkiW7rUCk18nMP4Nlb8L99d30+wh7d+7DZad2de36\nlLdr36G5/b3y8f59v+j8KmVVN2hfwQ9VP4OQfPbwUg+c82/EfzFuIv2O+e+ERxLJkt0SF6mX\ni4rUZrcsojYZgh9JnKu9muVRnblBpIRI4FwF7262VBApIRI4V3ng6vZiQaSE4FwBCIBIAAIg\nEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIB\nCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIiVB/mnF3\n7HzWNcJn9WAYREqE90dOq4/LNtlxBhcBpyER6o8l3ff6R9f4iNIy4DQkwkeYnfaJZERaBpyG\nRPh9ffyv/PfwKuQdi3eJr5x+3ql8k1/aXQiIlAgfkR5qVxSnur50/Il0qAa2+a3dRYBIifAt\nwpUDSv0rin/VpHr6Re0fxWOvaMKbC0RKhJZIjaF69KDKZvHHVj9bvQAQKRE0ke6X074h0qdx\nnNM5Fxz5RPg4cq8qQvuvNoi0DDjyifBx5F/ZxPCndufLvSXSjEmDApGS4Xcf6foeubfqSDQz\nzAsiJUKrZ4N62XT71JHKPkP/VH4rijONDbOBSInQ6mt3fI9cyyuUyotPpUnviAfRQKREqM3Z\nn+qxv9fg9VJegK67SqSyZ4P6w6PZQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQA\nARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAA\nkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhDgP1GiQInOmtPuAAAAAElFTkSuQmCC",
      "text/plain": [
       "plot without title"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Plot daily average air temperature and daily average hot spring reading against time\n",
    "plot(weather$Date, bento_daily_trim$Ave, type = \"l\",\n",
    "  xlab = \"Date\",\n",
    "  ylab = expression(paste(\"Average daily temperature [\",degree,\"C]\")),\n",
    "  ylim = c(-20, 70), col = \"red\")\n",
    "lines(weather$Date, weather$TemperatureAvgC, col = \"blue\")\n",
    "legend(\"bottomleft\", legend = c(\"Hot spring\", \"Air\"), col = c(\"red\", \"blue\"),\n",
    "  lty = rep(1, 7))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "At first glance, it appears as though there could be a correlation; both daily average air and hot spring temperatures look coolest in the winter and hottest in the summer. There is much more variability with air temperature than with hot spring temperature (which has a much more subtle variability), though this is perhaps to be expected given that the heat capacity of water is so much greater than that of air."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    " Seasonal fluctuations become more apparent with data plotted on two y-axes:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAilBMVEUAAAAAAP9NTU1NTf9o\naGhoaP98fHx8fP+MjIyMjP+ampqamv+np6enp/+ysrKysv+9vb29vf/Hx8fHx//Q0NDQ0P/Z\n2dnZ2f/h4eHh4f/p6enp6f/w8PDw8P//AAD/TU3/aGj/fHz/jIz/mpr/p6f/srL/vb3/x8f/\n0ND/2dn/4eH/6en/8PD///8Yw7XHAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2d\nC2OUOBeGybTW0R1rP7d2u7Wb2qqrq+b//71vuCchQICTK++zboeBwOFyngFCgEIAADZThJ4B\nAHIAIgFAAEQCgACIBAABEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAABEAkAAiAS\nAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAABEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQC\ngACIBAABEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAABEAkAAiASAARAJAAIgEgA\nEACRACAAIgFAAEQCgACIBAABEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAABEAkA\nAiASAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAABEAkAAiASAARAJAAIgEgAEACRACAAIgFA\nAEQCgACIBAABEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAABEAkAAiASAARAJAAI\ngEgAEACRACAAIgFAAEQCgACIBAABEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAAB\nEAkAAiASAARAJAAIgEgAEACRACAAIgFAwEaR7q6PRcnxdEczPwAkySaRHi+LniuqWQIgPTaJ\ndCoOH+6rrofbQ3EimSEAUmSTSIfivuu+Lw6bZwaAVNkkUlGMfTEUBSAEWxJ8Ab72SKgdBEFI\nQqTzOdLtQ9U1e44EkUAQkhBJXEm70MtHd3EAWEkaIom7U3Ud6XC8nrmOBJFAEBIRKbo4ACjk\nkOAhKk8AUEhDpMdTWVV3fVkUVx9cxgFgJUmI9HA472keD/UuZ7qJEEQCQUhCpLfF8fH85+3D\n2am3qP4GEZKESEXx2Pw5H+XhgiyIkEREEmXzBumLmzgArCUJkd6WTYSu63ZCj9MnSRAJBCEJ\nke6Lw+leHA9nk24vi1tncQBYSxIiidtDf6Ho2mEcAFaShkhCfHhb3SV7vH5wGweAVaQiUmxx\nAFDILcEhEghCbgkOkUAQcktwiASCkFuCQyQQhNwSHCKBIOSW4BDJCmZXjLudi5zILcEhkhUQ\niZrcEhwiWQGRqMktwSGSFRCJmtwSHCJZAZGoyS3BIZIVEIma3BIcItnAIBI1uSU4RLIBIpGT\nW4JDJBsgEjm5JThEsgEikZNbgkMkG6xFgkm25JbgEMkGS5E4dknW5JbgEMkGZlf/DZHsyS3B\nIZINEImc3BIcItkAkcjJLcEhkg0QiZzcEjw5kSzrz6YnwKraA/tJQSRyckvwnYokIFJgcktw\niGQ3CkQiJrcEh0h2o0AkYnJL8N2JxFgnBkQKSG4Jvj+R6t0RRApMbgmemki2rd7GJ9Ad19lP\nCiLRk1uCJynSWpna0yOIFJ7cEhwi2Y0HkYjJLcEhkt14EImY3BI8OZGss9o48iqRrN2FSPbk\nluB7E4kJiBQFuSX4vkSqx2bNhByIBJNsyS3B9yRSf1QnIFJocktwiGQxmoBI5OSW4CmKtPai\nLESKiNwSPFWRFhyWsb5bFclyIhDJBbkl+B5FGn6Zm4RdPC4gkjW5JXhiIjGxVKRRd6wnApFc\nkFuC70wkaTSIFJTcEjx/kZgkklgtkk1ZiLSA3BIcItnEFBCJmtwSPFGRFlxMhUhRkluCJymS\nYCFEmi0NkRaQW4KnKpLtsZ1a/T0caDcJAZGoyS3BdyTScIxFIs3vBCHSAnJL8B2I1Bb1IhJM\nsiS3BIdIVpOASNTkluAQyWoSEIma3BI8PZGa2m/vItlVNkAkS3JL8MxFkpv3QKSYyC3B4xHJ\nKqubHcwKkUyHZgsvyM4Vh0gLyC3B9yPS2pAT16E0INICckvwREVa3nIbIsVFbgkOkexnzEok\nmGRHbgmelkitEstFMhaHSOHILcEhkv2MQSRCcktwiGQ/YxCJkNwSPCORmOGLA5HGR4JIC8gt\nwRMUaaw8REqJ3BI8H5EYREqJ3BI8W5GkrCcWaXQsiLSA3BIcItkHhUiE5JbgOxHJPHGIFI7c\nEjwbkZg2UD6hGWuZB5HCkVuCZySS3If1OyNBLdLoaBBpAbkleMYi9c+RhEjxkVuCRyOS1ZPq\nlogk9RrNfSuTmNoFkUjILcH3IdLYtFeINFpzAZEWkVuCQ6QFQSESHbklOERaEHRaJK58gGly\nS/B0RdLy2aNII6NBpCXkluD7EMlqevOFIBIdM4l3d30sSo6nO6dxyPAp0mTaOhBJuyy7dI6G\nhSASHZOJ93hZ9Fy5i0PILkRaN0fDMhCJjsnEOxWHD/dV18PtoTg5i0MIRBqH62UgEh2TiXco\n7rvu++LgLA4heYrE2o/RiQ4ksSljJRJMsmIy8Ypi7AttHEJyEqnv04o0Pk2IFBjskdYTm0gc\nIoVj7hzp9qHqwjnSkGlVbEQaXoNVv9iLxFeJ1B0/GseDSEuYTrwrqdbu8tFdHDpyEUnN7ymR\n6gcLQ6TAzF1HOlXXkQ7Ha1xH0oFIoCe3BI9OJGMh87ChSDWLRJqYqeHVXCYH0gdCpCUUMi7j\nOJx2iDjCh0hd55xIXGwTqesPkdYynXiPb4vi6rYpiepvFX8itV+cilR9gUhrmW4idKgb2tUl\nIZKKf5GME5NFmm77AJEcMlP9fXO26eZQNbODSBrkIumXeLrOBSJNmTQUSRFPFYlDpEXMXJCt\nPh4Olw8QaYAvkaRAEClarJoIPV5dQaQB/kQy9m2xFonxYVU304XtvnMOkZYwmXiXRXsR9vIK\nIunEJ9L0SRJEcslk4t0Ub5uuh+IKImnEK1J9UWgwdc4G1XqDZehFwqHdIqYT79TZc7vxMlN+\nIs3cHEQo0jSqSE1N3JRIshgQiYqZxLs/tl0PbyGSQjQicV2kZrezSSSpEESyIbcEh0gQKQi5\nJXjSIg3PhiySuBap+sf7yMzgiEGkUZch0kJyS/Adi9Se1UCkEOSW4EmINDpspUhtfYN0nwQb\nzt+8SBwirSa3BI9FJDa61xH9BRtPIrVzApEckluCxyNSk9ATIg0HkYjUzd1QpCowH50oRFpP\nbgkOkfq5g0geyS3BIVI/d6pIpUDzIhkCQyQbcktwnyJNmbROpL7XapF4O75+PyBEckpuCQ6R\nhrMHkTyQW4JDpOHstSIJDpGckVuCpyOS8RwrFpG41hfMkVuCexPJeB1IGTwpkuGCaTtVuQMi\npUJuCZ6GSK1KxqnKHetFEiaRBERyRW4JDpEGU2vvjJ0ViUOk9eSW4JmIZLguOgZEioLcEjxx\nkbpWCM3XZSI1/7SJsfqZ4BDJKbklOEQaTGwg0thUIdIGckvwNETizkSSdjccInkktwSnizNh\nSTt4pEgzaEQkRitSf240J5KASA5JL8F9xXEsEo9QJMEVkdqXvcAkC9JLcF9xiEQaFOpEMo7t\nQaTRqQ5Eav6HSBakl+C+4sy8cm9KJOm5ch5Eat8yNi4SXyBSPVIn0kRxIJNegvuKs1qk9vTH\nLBJrRTKPvUqk+tNGpHp+IBI96SW4rziJitSPoorE+FKRWDsnEMmC9BLcU5yZhwT5EWm0XqDH\niUj9DgkiWZJcgvuKw8Y86YePitQdFJlEKv9zJVJ7UakdUs/CJpHOHxDJguQS3FecQCL1+4GS\nxSIJMpEYg0hLSC7BfcWZEalXxTTavEjCkUhCE4mtFqmfIYhkQXIJ7ivOJpHkIqMiTUyYWqQq\nJkRySXIJ7ivO+KFbN9goEpsX6ZyaMYrEhVEk7dGswExyCe4rzmqRmFZELcREGiJJcw2RbEgu\nwX3FyUUkBpG8kFyC+4oDkbo5gkgWJJfgvuKMmTIzWBJng0jtOHYiqUV1kZjYKNJkpQtoSC7B\nt8axzQoakQZ1f61Io/d7Q6Q0iSbBfcVxK5Kef2MiCXKRJKP6DlbXEUIk90ST4L7iWGaFcqoy\nNhwigZZoEtxXnPAiCX8iCYjki2gS3FOcmZsj+nLS3wXD50RqNIleJGWmOUyaJ5YE9xVnTyLV\n7RMqgyxE4gIibSCWBPcVByIxYTapFUkMGtRCJAtiSXBfcfYjUvsoE4jkhVgS3Fec6EVqR1Ob\nK4zjWyRIZSaWBPcVJwaRxHaR+LDLKFLTAyI5J5YE9xUnCZG6XIdIyRBLgvuKE4VIHCJlRywJ\n7inO3LOBpIL93/HhgwIzIrU7JP8iMbFEJKYNkb5DJDORJLivOPGINFqNsA+RZitRUiOSBPcV\nJxKRlMdmDSdBL5KASI6JJMF9xQkqUnfT37RI0isgohGJSU/nIgEipR3HsUiDigVVpLZjUqSu\njPAqEu/+GESS5h4imYkkwX3F0WvRpgqKsCLVe4hJkbqdiBA0IlV/ByK1fqkLsQ2IlHYcKpGY\n9mn6mqpI7WvQlWEcIk0TSYL7iuNBJC5/8SiSOggieSaSBPcVZwci9f4oIjVlrUTSF1sRicYk\niJR2nAxE6msFEhZp/Hp0qkSS4L7i2Io0dxyTtUiDxXYvUvpeRZLgvuKsE2k4CkTaBkRKPE4m\nIvHFIrVlGTOPpIikD4ZI80SS4J7iNLk9D0TShkkiUSQ9REo7zlqRBuNEI9KoEo5EYjSPAodI\naceBSGMicfkDIi0njgT3FScLkXgvknEqLkTiEGkG7wnOhziJYyQekWZzx4VI5X4FIrkBIo0W\nlD/0kUKL1HgBkaIhgEjaEIhkJDqR6tmHSCOkJNLNZVEcby3jGJkXyVjvHUAkLlyJJBUxjWQa\nbBRpU+5DpCBximrsq6LitCGOV5Ga0daKJDidSN0IYyJx5XNGJHOhRUCkIHEqkU7F6VGIh1Nx\nsz6OF5GkXZJbkUYeoeJapJFCi4BIBHF+ffm3/Pj9+V/rkcuxD8Vj2f1YXFrGMbBOJDYcKTOR\nuNJh0IxYpMF8Q6TlcX498Zfy8wfnT78sRy7aP9LnXBwTiYlkLAWRosS/SJ/5l99Vx3/P/LPl\nyOXYb1uRDnZxTHgQScoRTaS+7AKRDFlNLxJXuyDSCryL9IN/63q+8O92IxfH65vb4sO58/E0\nXdvgT6Qqn2MUqUt0k0gCIrnBu0hf+O+u5y/+bDdyQ9V5eLSKYwQimUTiWuesSCNV6PZApO1x\nlPoa22tI9/c3N8djVeVwmvTIQqRJk9g+RFJHg0gEeBfpaY1IK+IYcSxSfRkJIum1F4bBEGlr\nnC/8R9fzR11/t3naMpMlfYrEg4nU6jAjkjHZzSG3iTQsCZG2x/nZV3r/erKsbGigaSJEKpI6\nwI9InUBhROJsrJmRPgej04NIFHG+8qdvP8+fP789WdY10DYRikIkkYFIEwvQDePNuIZlGM5x\n0gRo2fCtu3/ii+3IRE2EmPR3pEREIrUNwAcDNojEDSINzpcMiQ+R5gjR1u7X1+fzlnn5Ztmu\nga6JEKVIHCKNzzpEijMOVROhGEUaSSEKkZqBbkQaCS0sRdLGhkhe4lA1EQoiUlfEhUjmsSdE\n4utEEktE6ueLjxQcipS8SWHOkb6NFzSOTNREyFokNffjFWlkbIjkH/8iffsqxNdlJlE1EVov\nkj4SmUhjGeRIJLFWJMEXiGQ6PRtOTx1nZGLJ4F8k+efYFqImQotF6k2ASL1IYkYkoYg0Oj1t\nlMRJQ6Q1cQyQicTEbkVqFwsiqQRotKod2nl8ihBEki7ISjVrelzTBJtRrUQScmiI5CYO51pl\nQ1wiqbkfqUi8S/hxkfpxIZIPdvWASLVu21wiIpGMWU0uEjeOOgzaiSSq40OIpAKRtBJ+RRrN\nIDciCYjkiiQuyFLF8SkSh0gQKdc460RS+7S9jSLxOEQSXBpXixNApGFJiJR2HIi0UiQBkeaI\nIsF9xSEUiUu/0n1vYpGUDuk7n0j4ttBKkUbtrJe1foQQRBoSRYL7igORPIjEB38h0hLYECdx\nZoBIQiwSyXToODJJs0j62oRI28hCJKZrs0akJnUjFakvAJEoIRRpsgdEikokwSESLRBJK7Af\nkaTBw1GNM8Qg0ihhE9zzAyKjE2lcB2qRhpPh5mnYi9SUg0gVEEkrsE0k3uVI+5QDPhSpTzKI\n1M9N4hCK9OmP/5Uf/7z6n9s4k6Qj0rQOFiJN5J5HkQaH9BBpI58u2Jvy8yNjF58cxplmFyKJ\n8XwfTtqRSMxCJK70mggCkSResT/+qTr+es1eOYwzDYlITO4xJZL28O/eL+ciTeceRPIOWYJ/\nZO+77jfsz5k431/KB63+0Ettx59IgickkmEyEIkUMpH+YP903Z/Y6+k4z82dSCQvo5iIozKs\nPjOUgEjjIpXWQCQzbq4jDdauGucrfyp3Rj+euPWLzW0JLVKfv5GLNBZ9RqR6kkFEits1MpEu\nFoj0xH9Wnz9t38ZsD0TSJ+1KJAaRZAgP7T523R/r+rvROP1zN8hXTnYi6cMhUpyQifR3X+n9\n6WKmsuFrt0ciP0kKKRLjGYg0NuG6J0Qag65a+h27eP/3+fPv9xfDugYtzrfqHOm/p2ey6OY4\nKmQiMUErkiFFXIs0rvHUg/l7kRj3LVLkTzUmvL7zvrt/4o+ZOIGeIsQGHYYSQUQy7ReGXcrX\nMCIJSaRaoVmR2Hhw6TtEkvj07vV57b55P2zXAJFEdiK1K4dMpJk82JFIsccJK1JfssvJNtuG\nOcKNnfLXaETS1+ZAJAaRMosTr0iDJMpZJA6RpjmfI70fHQiR5kTSMsvUKX+dEalPZ4jkBboE\nf/9OiHejJqlxvj65OD8axlFZJxIbjjIuUp9AS0XiWmaZOuWv6YjUVPVpkZeKFHsrohmR7q6P\n1bvyjqe7uSkZLreMxfnqpqJhEEdji0iqMctFYl5Fkh/IMCKSMtQwqqlw+7FEJCYgkni8LHqu\nZqa0QCRO38bOGEfDu0j1h41Iep5ApGH8hEU6FYcP91XXw+1h+iXIiw7tHB7uUojE9B76OE0b\n6P2KVLcVWicS36FIh+K+674vDjOTsq9s+Mp/W8zaKmIRqTtLsRRpkFmmTvnr9I8RRPLNpEhF\nMfZlyKLHcT0//5qftVVEKFKTcOMiGVI9L5GUKHsUackeaZFIP6KubFghUrUcEyIxeXW0Odmm\nHFd6692jh3ZTuBGpX75FIqm7pNUixW3S3DnS7UPVNX+OtOSRxd/irrXLUSRjIeNQC5EEr0Ti\ng9XVT3C5SDO7nKRFEldSrd3l42TRJSI5uDPWGEcjK5Gm2SDSyAj7Fmk+9Nx1pFN1HelwvJ69\njrQgTn61dlwpslokrhXROgffRpHSOU+RPEu1WSQytEO7aGrtmF7AQiTWphVXmy3IqtiI1Jdt\nvzsQaWKEkaFWIokpkVh7J63YkUgyDudEu7Hv+T8vcVRCi8S7oepHwiI1a0wr17YK2pVIHuZi\nEMfRvUiDOBoGkRhEGhvX0Jd3S8VaYQREqoFIegHmSySpbNuRjkjVp4VI9YpRFoe3eze95wKR\nfDcFj1SkQHFciNT0Z2pGGUQS+xGpW9h+9cjDV4mkjZKYSEVBdgoFkWxEMhVZJVJfOhGR+mmP\nzmvCIt04E+nHS7kqXugbCi0TSXviQC2SWtG9SiQp5Xifb4mINFpYdIfim0SS7n5Ue+Yrkrg/\nzN08YYvh2d/n2XsiNymMSHxcJMEzF4lDpJKZ3cz93M0TZmYeWfwvf/5drop/+Zc1U58iEpHE\nCpHkXEpdpLp+ASL13EjtVu2Zffb372Ztkq+PWEQSA5FETiKJsCJ5bwq+XSQqBk2EMhCJi1Ui\n6cvMJXsg0lR46RtEKvnc7JECvY0iLZEGKbcAiESDxQ9+EJGac6RQ70dyIZJUsmG3ItVrESJt\n4s835aO/Pw4HqHFemnYNz7TRB3EU2LALIi2ZVEwi+TXJu0ivmzuRBq9HMl1H4i/fSYOb4sis\nEakvMSkS41MitZOcE0nMiDTIv1moRRJDkfhgsTuRuOlXyCRSvzZnwq+acwJ8i/SOXZQ7o48X\n7H9O40xgJVLXGZ1IpjIQSexNpAv2d/X5N3vlNM4EEEmbBy8iKftUiLSZLgdnriN18/X0RBl+\nEEdlnUhMG0VsEIlLA/SC6hezSMvzZy47IZIV/g/t2j2S3Ttkf3m9jmQrkjoSiUhNn20i8RX5\nM72CA4jEBUSy4H11jvTXxcSrL39wGZ/XkZIWiYcWqZsDaUTOCEUSkwu3L5GsniL0WfaI/I7z\nRSLpyQ+RJgtLB5mqSFxJcTuRVPkgkoLt47gcNjmESOq0HYskIFJDBLVpvuKkLFJ3C2lIkbje\nXYvEGUSKIsF9xbESSb8sEpVIy3flEIkEiCRjFEnJfjbcPv0BqtKxTKS2zyaR+hRcAEQiwbtI\n7y5M50f0ccbZIlJriHmsSZHahyVKOBFJn7s5AohUr4VapOHuHCLZ8M5c0UAeZ4I8RVolkRRy\nbCiJSMKDSNoYuYvEhm3snMSZIIhIfIlIgwhJi1R+QiThqomQ4zgTRCaSssW3ibQKPyIJPyL1\nw3MX6R37xyqOdEn2+SvlDCQp0nAsQpFmhkIkK/zfj/T6k00cpZUQbbtViGSa3OjQeESantu9\nifTRsrLhy9OP898fT/w/8cJJ90nkIg1HbyvJVZEE26FIIoxI03svB/gW6b1lrd1X/rP6/Mmf\nxW/ahqvxiNRu7mUi6b+9+jRIgUiW+L+xz67Wrn9KAbeayQVApAU4FKleSxBpHba1dk/dHukJ\nImmYRHKVNBDJEv+Hdna1dl95e470VXynfZQQRFoARLLE/419r/+yivPcP46L0z7bDiItYKtI\nzSeT5jcdkVYu+hiu7keaiVM/jqvcLfFvlHOwVaSJnx4ikeY2SdoicQGRCLAXyRkQaQHbRao+\nyETSZmdQYqFI00UWLfp86QgS3FccApGUvKkf6tOLxLRxqURyd0NxyiJZzDpEchPHIBKHSKsK\nrxZJWjqINMXHN+VR3ZthQyE1zrfuCSi04QOJVCeNlUizCwyRhr3diGS/7P5Fel2fHrGLgUlK\nnG99SzvS8HocBTbshkgQyQbvIv2Pvf6nFOl/7I/JOA5e52KMozAUiUnbvem7RCThTiQtoXYv\nEld7ZC/SBfuneb/3dK1dkMdxBRfJ7ilAOYkkV3R2w8VwGcdE0vvvRqTqsM5CpBf+mzLsaByF\nWZEqUyCSTeEJkaSdUNQiLVl27yK9avZIc2+j+PX0TP6IVVMchYRFmhtnLRDJqqh/kZpzpNn3\nI/E4Khu8i2STuUmLJK1PiLSFN027homH6JcEF6n+EkAky62fjEjVX0ci8UH/ZSLNPa/COAcW\nZc04uI7E3vzpPM4ocYnEhZoluxJJemgtRCIjfJwRkdStvTORlkwZIk3iPcHrm2LjObRbIpJ2\nSqCLpI2wP5Hk1QmRNtDl0sXFaByINI1dktAAkYyBZ8qacSLSpxhvo4BIw1hbRWpgkiAQaSMf\nmcz0daQX4qdCjsVR2CqSaF6o1Z0rNeuXjYukbnA7kVT53BKLSP2akyfLVXEGn3MzPyuSskAz\nZT3ukV7JHg3uOI+riVAnEodI1oX9i6TvidTvuYokhPVThD6HbiK0UaR+e0KkkjAiza2lhEWy\njfP7JXATIYhUh4JItmXjFCmeWjt107sXyWIJPIq0KA6hSFong0j25CFSIw5E2pVIVlskfLW0\nrzgQyRzLvixEmiB8gnuJwyDSWCz7shBpgkAJ/r18QOSXH87jtECk0Vj2ZSHSBKQivXlnGad9\nZPELZXRDnA4PIgkLkWyASH03F7JPlCKpmyY2kWyvI/UP0Sd/CApEWkIkInHT8HmR9NnQZ9he\npJkJCd8ivbJ8G0X/WhfSl4wN4vSsEklbeRDJ2C0WiGReu3MicX2c7EX6543d2yi6RfRX/a3t\nLCFSF8u+rAeRtF3WXkWyfYh+/+pL8pOkRSJxbdNDpMmy/kWqV7EvkQblpXBxiiS+VedI/z09\nU0Y3xJFnTf1a/Wk2BOt7WYnUb0eIVGESqVy7m0RqV960SONLML+XiVck2zhcxVkciVUicW0c\niGToFt0qkVamIBOJD0WS8x8ihReJCYi0qKx82DUmUr8S8hNpcm2RiVQ/ZTXaF42FEGlwIGIH\nh0hdl71IBgu2iiRvQIjU4FIkxvcnkjJoRCSp2zAaRFqFGuffz0L8+sw/09+VBJGWkIJI8mbQ\nRRo+1mFkfgfkIdKPchafytMjcpNGl2ebSHW5fYtktqBkVqS2k16k8bU7KdJw12aYRAQi/fVm\nMs4z/161avjOyeu/t4qk/uyqv3ejIok9iDRiQQnrEy1hkQYjaCJN14rRivTO7hypnKWf/Ovc\nvK3Bp0gieZEW4UUkbZVPiySvqkUiaVsmOpF6jz5Oxiln6YX/SFIkJtQiEMm5SPpAbyJJ8fyK\ndMH+FK/Zp0+v2fTjuJ75zx/8SSR5aAeR9G6PIrU9pa/tSl4gEhtsEj6MJE3Bv0jlEd37897o\n7+F7XfTKBs6/lbNGfmuf5fK4EElfzxCpLz4lEhNxitRNPIxIH8uXjM1dR/r3qTxDEp+/U0Y3\nxBlFEalpMFT+gUjjjIvUpKYDkdTLSAFFMu2xFGjvkD0f2n1ir8Rf8V2Q1VgnkhgXybCaIVJf\nfL1IhpGMIg1X/7hIWowZkdoZ8SjSx1Kg12Vlwx9O40zgUiTOIJKhW8yLJJaL1K88apFY/CKd\nT5DOf/5g7J3jOOPYxmHN1m93NRBplqUiCSKRBvPAB318iDSzWWJLcF9xINJiHIokhiZtFWl8\nLUIkyjhLRaoSxY9IM8cQwVgqEhsViSmTaEVSyxCINLIa14k09/sWW4L7imMhkrzmINJikbha\nQO4XWKR+JiHS5jgbRNISCiItFYktEMk0DxApojgQaTE7F2l0ejWBbjVvOp6enMaZwCwS11Yb\nRJLIRqThY/QakQZTTkWkXz5f66ICkRbjSSSDLFrcwY5D6OuMT4gk17bLIukjdN8jFemH8twT\nX09aHQCRFkMlUrfCpJG3iqTuTdqq6oRF+vim/Ll582kizmfZI393yGpApMU4E4mLRSIZjuGy\nE+l1fU8fuxiYFP6t5iqKSN12nBeJDdY2RLIWqVvZTC5NLiW2ilUAABsLSURBVFJ3urNEJNNv\npPQzO1wkDVKR/sde/1OK9L/o29pBpOUkJFKzCpMV6YL9U59Jzrb+/l6+IemF/i6K9SK1hxvL\nRKpWP0SiEKmrlXYtktQgaU6kqUXSIL8fyUqk9kVjz5TRDXHGsROpX9PzIg3WMkSSC/S9INIs\nr5o90t/s1WScf72/aGzASpEERBp0iw0iVb+6xCLVZcZEUprIKiIxs0gj7xPUcXGO9PGivEt2\nIs5n7y8aGwCRFhOxSErv6svoREZFEhGJJN40DxEaPLIh+IvGdJaJ1PzALRRp5HMWiLRGJHX3\nMi4SF9MiKf1Ukaa2i4PrSOzNnzNx+j1SwCZCTPIGIi1kTKSxpHMrElcCLhepma+YRLKLE8U5\nEpVIbYuX3Yuk7pD0At1Y0qWG2h1Wj2grkj7EKNL4RJg8m6pI8jFKGiJFUWsHkTYAkXRcvfry\n9bvJON9fgl9HgkgbiFgk6YtRpH52khCJsQt3cSawjsOoRRpEgEhygW6sNpMjFYnrkwlyaPfH\nRfnQ748X7C/xRn2UUOoiVf98iRS9R2QiVf9ciGSayypwPw/aKE09ri6S+XnKQ4gfov939Vk+\nsvgf9aIsRIJIUYgk/Y1XpG4v2LUVGonzb3cvBWX4YZwJCEUa2fI5i6TDlosk+IRIY2vAKJJq\n0KRIPA2RLro90sWkSN/cvNF8EGcKRaR2K86KxPQtCZEqqERSaiIMrBep2b4jIrFeJGX/FuzQ\nrj1Heif+VJs3KHEcXD8yxplijUj1I9HMIg2BSNLw6m96Ip1/PEOIVN/YVzcRYmp7u9hu7NNF\n6rY0RFoDvUjDGwiaKWwQqWtlp4vURY9FpKaJULlbYu/H43zlv2nDjsSZYlKk7g9EsgMihalN\ne3kmf1iDMc4AaU0wWRWItI2lItVrfyBSV0m1XiSullbmYEqkWuGBSCPvnBniXSSu4iyOGQKR\n1FmGSBVWIvG+c0ykRiYXIlVV9HMi9S8260WSFsq7SH+9GY0TqUjdYDqR9Jj2y7ojkdo217pI\nzDypjSJ102RKAdb/z7XpBBKpf6252zjjQKQgbBep6TaIJE9zSiRp08k92qkw+f0YrKscbCNo\nIvGuVAiReo8+Oo0zgb1IQlGl61GvRi4g0hICiiTdJtoHkXq0U9Hf16SJ1M2UJhIXAUS6YH+K\n1+zTp9fsL6dxJnAoUrlKIZIZe5H6s5T6LL69wdtOJGFo0EsnkmCRiFSug/fnvdHfw3vNcxFJ\nrwmASBUOROr3E+ouaZ1IUhOkJlovUr8BdZFYQJE+lhdiUzhH6tYYV/pApDWkJxIziySiEOnN\n+dDuE3sl/spQpKofRBqBSKTuCMyFSEz7KixEkuvMhT+RPpZzVzUTon5k8d31sSg5nu6mCy4X\niUOk7ZCJJFaIpHSMiiQSEul8gnT+8wdT7+nbHufxsui5miwKkYLgVCR5qrQiNfM8KpIIJZJ1\nnB8vZUK+/LIb+VQcPtxXXQ+3h+K0II4ORHIDRKI9R3pnGee5btTAn+xMOhT3Xfd9cZgqSiRS\n26WLpE8CItUsFkmwUZE42yBSP5RpJ0W6SN3GjFAkc/uoYZx/+fPvMi//5V+splsUY1+m4wwx\niCT3WyXSXN5DJBuRelqJtoqkmaPtoCxEYnJfNdQQ8ofo28R54r+boye7lHG6R4JIBKwXSQQR\nqasdFEORuiwIJ9I/b14PmjSY4lSHdQtEOp8j3T5UXRvPkdR40yLJR9yySNoUBUQSnUijRyRS\nFVnXx7dIyohMxCyS9FS7yTifmz2S9dsorqRau8vHqZKLRRIGkbigFMkQx26EhLAWifV9EhRp\nYssEEak5R1rw7O+7U3Ud6XC83nQdKaRIC+xIUqSpIzunIknDchFpAu0O2UDP/lY3wzKRzL+4\nEKlijUhdRThEWoDhOhLZs78LmcmSEMkRzfW1sCKpA9MWqXz4iRBvPjmJc3NZFMfb6TJuRTJN\nESKJTSINFteLSP08yUOiEel1fXrELgYmbYpT72eaGofJSjsykdRXVUGkGSIRSR6WskjNO2TP\nn9ONVqVnNjx/tZhuJdKpOD0K8XAqbiaLTk4IIrmC0YkkSERiYoVIdaTwIl00bzWfux9JefyJ\nxdsvK5EORVXv/VhcThadnJBRJKkfRFoLrUg8O5Gsb1+oIzJhJZL40r768j/xwuf3SZVIbT3C\nliZCm0QamSJEKrEUiUl9HIikRoxHpAW3L1S8avZIf6uvdBnE+dq9jPlZ/La4KFu587YVaUMT\noUREShCIND5bi25fqGjOkT5eqM/9HsTp72nkwqaZ0HmPeH1zW3w4dz6eNjURgkiOcCBSXz++\nXSQmFojUBqETaUFj0Zo3/UP0p+I8dXukJ0uRumtERXHY0kQIIjnCjUhMKzkjkhZRu0BEJNJI\n/MmLmQtuX2ioH6L/pyGO/OUrb8+RvorvNs0b7u9vbo7HqsrhNOkRRArEYpGk8+hZkaTR/IjE\npS+2Ik3NzOI90jiGG/vqJkKc9l1JECkMTkRiuYi04PaFitG7kUaaCJW7Jf5tdrJLgEhhWCFS\nt0LyF2nB7Qt1xNeDRxXbxaGDTCQBkZZAKVL7TiLWviIifZHsb1+oeHVe9HfmW/sgEkQSqYgk\n6EVayKf3Z5devTcc4pnj/PdCGn40TgtEcgWtSKwZKahITOvZDPAi0plP7y6Y4RBPjfM10PuR\n6EWaWLVaHIgkFovUnh9RiDQYL3KRRHlddqaJUO/RD+rYECkM8yKpyelRJC6mRFL3VWMitd0+\n90jV0d3gSpJ2Qfa7eOa/fj1z8lfJ0okkD4JIcywXScyKJIKJpHYHEKmy6OLd8L6+YROhb+e9\n0U/6e82diDS17SBSRbwi8QRFKmvt/rCotSuX7Ud5ITbmcyRpEESaBSLZzZYd7LWhcZAhzsv5\n0O4X/yz+y0Kk2WXYjUijHi0UaZDDkki2q5FQJMEkkcbi0z4gsvn8+93FZJwf5cJVzYTsHlm8\nAIgUBohkOV/21OdJ03G+lbPzhVvc07cUiBSGaEXqnhO2RSTmXaR//izPkwwthdJr2SANgkiz\nxCOS3B5isUhK/bw2yXrWvIj0Z/UUIWaotNPOkej3RMY4AyCSK9hkXcNCkZQ9xGKRRC+S4AmK\n9PEPVlZ9/21+t4v5Dll6iEWqOyHSLCmLxLWeg06vIl2UFv1VRZ2NUz5E3xGTy8MFRHJErCI1\nW3TwOFcRrUjdi2MtRPr98kzepMEURwciOcORSJIWw2FjkWhEkpWKdY8kPdWOKrwxjg5EckZM\nIkkytS8DNolUz1R0IrXnSH9BJEPYmYmkD0Sama9F2NbaOcRGJF0gXaSBbBBpFjuRlAJeRGqm\nn5hI7XWkN5FeR4JIzpgTyfD+JIg0jU3LhurhJ0K8/CKPDpECoea7YTCtSKOh8hFJzLe1q9vZ\nnWfridykOZFkUSASIXGK1E4/UZHm4jTvkD1/+m20Gk4kDpHWiSTYKpGYXGa7SCJSkZ6at5r7\nvh8JIrkjEpEag7aLxJSekYrUPTs/DpGUHhBpHWzSI78iCbYTkT43e6SfFq902RJHByK5g1Ik\nZUQakUxrf4VI4z/9Ic+RfjzRPvd7EEcHIrnDlUjmygY2FowN/i4TqRspCZHES/8QfadxNGpR\nOERygFORpERuHTEGY2yhSNX07EVisYnUPET/u/M4KhDJHc5EaqeudI2JZPy2WSQpbGwihYkD\nkdzhSSQGkSSc3Y0EkYIBkfygVn8/kz+q2BhHJ5hI3EFFf2TMicSbQj1RiMT0eEmJ9Pl8gvTV\nza19NiK1aw4iETJaj9YMXiCSceptR2iRxuYwzLnLr29nlz5/c3CI510kG0U4RCISiQmIpPHr\n6xN3cIgHkQIBkfxgivNvgDtkZ0XSjtUgkiWGV/kog4OKZPRouUgsRpHqozvyK0nRijRbKG8g\nEhGGc6Snr/T39UGkSJkQyWbVaCIxMch0pZj6bZFI7VhJiFTW2n2JtNYOIjkBIhGhXUdy0DjI\nEEcnoEh7J6RI5WvSxya6TKQRI0uCtmz4+fXJaRwdiBQMiETEME59nuQ+jsRKkWa2NESyACIR\nocX5/b08T3LQUggixYkDkQz17XQi6dOOU6Tv1VOEuINKu3UiKT0gkgvoRTLtk0ZFGp1owiL9\n+MLLqu+fbrILIsUJRCKii/NUWlRWfYcSiQuI5B9DeiYp0ugcehepe3FsIJEEuUjzQCSIREU0\ne6R5kbg+CkTajheRTDVtVYQcRWrPkf6DSHsCIhERTa1dEJG2TiB9aERiAiKpX+vrSC8BriMZ\nRWo6IZIzchCJGUJ27K5lA0QKQgiR+u9ZiyTCtLXrRdIr5yCSQzaK1I8viTQujv49d5F8x4FI\nwYBIREQRR910EMkjEImIKOJApGBAJCKiiAORgpGOSEoEvSxEqoBIwUhdpCY0RKrgSoc/kQBE\noiKGOFpLBojkEYhERAxxJkSS+kAkFxiyEyKtIYY4ECkcEImIGOJApHBkIBIz9e6IIcF9xVkp\nEjwiIDGRhiOwEcFaYkhwX3EgUjggEhExxIFI4YBIRMQQByIFZJie60ViUk82KGT4TinSiEox\nJLivOBApIBCJhhjiQKSAOBKJ+RZp7NguhgT3FQciBSR1kZpIEElApKAY0pMrH/OjU4skmien\nWopU/4VIECkoEImGGOJMidQ3YYBITtgoUlf5rEyHqef+PkQam78YEtxXHEuR9N4QiQKIREMM\ncSBSQFyJJE8UIvmJA5ECkpRIo7qME0OC+4oDkQJCIZL8f91TSfpB+kMkN3EgUkAgEg0xxIFI\nAaESSclzdaIQyVMciBQQiERDDHHmROJiojfYRqQiGTYwRJqLw9VOiOQTiERDDHEgUkCciNQO\n0Lv0HhCJNA5ECkg6IompF/ONEkOC+4oDkQICkWiIIQ5ECojhgGmRSN0EPIi0wqMoEtxXHIgU\nEIhEQwxx7EQajAORKIBINMQQByIFBCLREDiOfgV2gUjwiARnIinVEINRtA59ODNtYIg0Hgci\nhQYi0RC9SCPKQCQqhpXKS0VizSedSMy4gSHSeByIFByIRAJE2jvD9FwmUjsBDyJZzpACROp7\nQSSXQCQSINLu2SxS9zEQia2tbIBIC+OsFkl7zB1Yj2uRhvkPkcjjQKQIWShSg1EkU+1632fK\nDKpDDojU94JIfoFI6cWBSBECkdKLA5EihEikSiOI5CcORIoQiJReHIgUIc1GgEgJxdFFMmxA\niOQbiJReHIgUIRApvTgQKUJ4vXYhUkJxIFKEkInETH0FRHIQByJFCERKLw5EihAqkQRE8hYH\nIkUIr9c5kUgGWyASeRyIFCEQKb04EClCIFJ6cSBShPBWpUWYn8y9WiSqDQyRuj7mFQqRnEEp\nkvGJJRCJPA5EipBq1S5evxApZByIFCEQKb04EClCIFJ6cZr2kUoPfQVCJM/QijTRDyKRxYFI\nEQKREoyjiwORwgOREowDkeKjPnGFSEnFWS8SwUwBI6QimYuqn+a5gEhL4kCk+IhDJD9NhO6u\nj0XJ8XTnNA4ZECkd9iPS42XRc+UuDiEQKTF2IdKpOHy4r7oebg/FyVkcQiBSYuxCpENx33Xf\nFwdncQiBSImxC5GKYuwLbRxCIFJihBeJBuyR5F7mEYFDXIrUlgwu0vkc6fah6sI5EnDDLkQS\nV1Kt3eWjuzh0bBBpdETgkOXXQxe8dDwakcTdqbqOdDhe538daXRE4JCdiJRNHIgUKRAprTgQ\nKVIgUlpxIFKkrGgzCpECxhmIY/v4GojklmxEknEZx+G0beJApEhxer9XLHukoiDzDCIBI7sQ\n6QYiAdfsQSRxf9h284RtHDogUmrsQiRxv61hkHUcMiBSauxDpPPR3f1MCZo4VECk1NiJSLnE\ngUixApGSigORYsXpZmDSX7eETnBfcSBSrOxKpO3XaiESMAORHMTZDkRKDYjkIM52IFJquBfJ\nh0cQCQQGIjmIsx2IlBoQyUGc7diLBI92QGwipR8HIu0SiEQdByLtEohEHQci7RMmIBJpHIi0\nTyAScRyItE8gEnEciLRPIBJxHIi0UxhEIo0DkXYKRKKNA5F2CkQacnNZFMfbdXEg0k6BSPLI\n1djNO2amn8YyLpImDkTaBxBJHrkc+1ScHoV4OBU3a+JApJ0CkeSRy7EPRfWms8fick0ciLRT\nIJI8ctH+kT6XxYFIOwUiySOXY79tRZp8KTREAgoQSR65OF7f3BYfzp2Pp+naBogEFCCSPHL/\nFP+iOEy+FBoiAQWIJHN/f3NzPFZVDqfpl6tDJKAAkWjjQKSdApEWTNviJU4QaadAJPNk5qYD\nkYAKg0imyUAksAyIJI1s/wpOiARUIFLP3QEigZVAJInHY3H1UE0Gh3ZgGRBJ4UNRNWyASGAh\nEEnl4ao4Pq4XaSAORNoJEEnnujjc0omEZ+jvBIg04P5ypqZhKg5E2ikQycBbiAQWApFo40Ck\nnQKRaONApJ0CkWjjQKSdApFo40CknQKRaONApJ0CkWjjQKSdwrx4FD7BfcWBSDsFItHGgUg7\nBSLRxoFIOwUi0caBSDsFItHGGXgDkfYBRKKNA5F2CkSijQORdgpEoo0DkfYKRCKNA5H2CkQi\njQOR9gpEIo0DkfYKRCKNA5H2CkQijQOR9gpEIo0Db/YKRCKNA5H2CkQijQOR9gpEIo0DkfYK\nRCKNA5H2CkQijQOR9gpEijkOAAq5JThEAkHILcEhEghCbgkOkUAQcktwiASCkFuCQyQQhNwS\nHCKBIOSW4BAJBCG3BIdIIAi5JThEAkHILcEhEghCbgkOkUAQcktwiASCkFuCQyQQhNwSHCKB\nIOSW4BAJBCG3BIdIIAi5JThEAkHILcEhEghCbgkOkUAQcktwiASCkFuCFwAEwVeCe4qzmAAz\nFmJd+I+Z/YoNk9IQKWhIiJR6tLBRLch+e4eKmf2KhUgK2W/vUDGzX7EQSSH77R0qZvYrFiIp\nZL+9Q8XMfsVCJIXst3eomNmvWIikkP32DhUz+xULkRSy396hYma/YiGSQvbbO1TM7FcsRFLI\nfnuHipn9ioVICtlv71Axs1+xEAmAZIFIABAAkQAgACIBQABEAoAAiAQAARAJAAIgEgAEQCQA\nCIBIABAAkQAgACIBQABEAoAAiAQAARAJAAIgEgAExCLS4XjzUHU83BwP3qNrj1p3+eT1x9Nl\nUVzduAugUxS3bYe/oD7jhU2dllhEKoribdXx1t8LBOToU18peTzU70g4PDoLoXGO1Xb4Cuk3\nXtjU6eYiWGSVorist/fhMmuR3hZX55/Ph6vi5CyExjm7rpsOXyHbwL7ihEydbi6CRVYpilNx\nf/68P3/mLFJRVLuiR38Lec6z4qHu8BWyDewrTsjU6eYiWGSV85F8UZ443BQf6rVxezwfk5zK\nlLusCrSfjqK3f6q/TkWSv91cFoebpvepWlwXEe+LYx/6HPLypl+dl4WzY0x1O5bfH47F4dpB\nnJHUqX62LuuFd048Ij1WS3wsHqq1cV2fSpzKPndlgQ8F/SaQogtPIp2Ktw/dl2O1jFdV1Ou2\nk5rzwrytVmG1VFdtyKtqN/XgJGQXWN6O5cla0R1nksYZS53zoGPh6SA6HpHOP47l56HN6g+l\nPOfO2/pU8m3xMD2FjdE9iVRm8uWp+mk4L9nVo3i8KmvVzkl2L+4P5UJTc16YevdTLtWHLk79\nw3TdVuk5QNuO587z4t7QH1iMp04d0g8RiXQ6/27ena2R0rjqrI8+XB7Z+RRJ3JaVS4cyf4/V\nglU/p3Ud9a2Lw5ByYW7KY5+y49jEuWpW6KXDJdW3Y9HvF6njjKVOHdILEYlU/kZen39NmrXx\ncHt9VXXelL+ddy6P7LyKdObu+lBuYel9wU1EF4G7HyMtTrmLf3B53KNvx379kscZSx2PlQ8R\niVQer5dH7vXSX3XvpH4sL4Rcuzyy8y1SWcN06VWk9udailP+NJ1c/mLr29GhSGOps0+RxKGo\nnKmW/m1xeXNbnzyeN/etuHR1ZHfsVrgPkbopa2Fci3RezHtd2MNl+c8J/UqVtqNDkcZSZ6ci\nvS1OZcVCvwoake6Lq3tnR3bVhZ0+5J1bkY5F3Tio2uzH/ky/Pphv6lVoqRfmobiUz5HKc7FT\nceNqrWor1b1II6mzU5E+FFWFS3eaeH/VrIjL4uDsyO54Pk24rhLr8pzkj1duRTp7enPOsbur\nUqiqCu18Cnjsa+0c1KE1C3NdqLV2Va65uojUr1RpO7oUaSR1dipSuWUfmqU/NacP1TH8beGu\nzu6uC3NTdhwdnyO1y1VdvqkP5g/VMlfdLq4dtgtzqDqu+ujnXw5XF5H6lSptR5cijaTOTkU6\nb+tD21m2QLy6a+qDHx1cxuu4vSwu61Pu64N6Su6E+7fnjL5qrhfdnI+3qgu054jHqsUBPe3C\n3NYdN4cuzgd3F5H6ldpvR5cijaTODkWa5LZwWmcXAR63OHBCEhvwqvB4/04QIFLqJLABHbVB\niwqIlDoJbMCDp/a7IYFIqYMNCAABEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAAB\nEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAABEAkAAiASAARAJAAIgEgAEACRACAA\nIgFAAEQCgACIBAABEAkAAiASAARAJAAIgEgAEACRIqN+bePlafB2V2dv1wMUQKTIaF6AWr1Z\nVuYSWypqsHkio35T0sOV/nI1vEEpbrB5IqMV5lJ7UzJEihtsnsjoX0L+tvx7PB/knURzxFf2\nv7ksDrm/UTdFIFJktCI9FpdCXNfnS6depGPVkf07ddMDIkVGdwhXdhTFByE+VL3q/rfF1aN4\nvCpQhRcbECkyFJGkrvrrsSirxR938Hrq1IBIkaGJ9HB7fSWJ1FaOY7PFBrZIZLSOPFQnQled\nNhApbrBFIqN15ENZxfC2uLy5fVBECjhrYAJsmMjoryPdNV8elHMkVDPECUSKDKVlQ3G26b49\nRyrbDH0oDvdC3KCyITogUmQobe1OzZe7cg9VHER70qQ3xAPBgUiRUZtzdV1/e3vuvLstd0B3\nl5VIZcuG4i08ig6IBAABEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAABEAkAAiAS\nAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAABEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQC\ngACIBAABEAkAAiASAARAJAAIgEgAEACRACAAIgFAAEQCgACIBAABEAkAAiASAARAJAAI+D/r\nX0mka7eygwAAAABJRU5ErkJggg==",
      "text/plain": [
       "plot without title"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "x <- weather$Date\n",
    "y <- bento_daily_trim$Ave\n",
    "z <- weather$TemperatureAvgC\n",
    "par(mar = c(5, 4, 4, 4) + 0.3)  # Leave space for z axis\n",
    "plot(x, y, type = \"l\",\n",
    "  xlab = \"Date\",\n",
    "  ylab = \"\",\n",
    "  col = \"red\", lwd = 1)\n",
    "mtext(expression(paste(\"Average hot spring temp. [\",degree,\"C]\")), side=2, line=3, col = \"red\")\n",
    "par(new = TRUE)\n",
    "plot(x, z, type = \"l\", axes = FALSE, bty = \"n\", xlab = \"\", ylab = \"\",\n",
    "  col = \"blue\", lwd = 1)\n",
    "axis(side = 4, at = pretty(range(z)))\n",
    "mtext(expression(paste(\"Average air temp. [\",degree,\"C]\")), side=4, line=3, col = \"blue\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Do precipitation events affect hot spring temperature?\n",
    "\n",
    "*Hypothesis*: if cool meteoric (rain) water is seeping into the hot spring, this could result in a sharp dip in temperature readings from BENTO sensors.\n",
    "\n",
    "*Strategy*: find local minima in hot spring temperatures and check if a rain event occured sometime prior within 3 days. Additionally, find rain events within a day of local hot spring maxima, as rainfall "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# function for finding local max/minima (taken from StackExchange)\n",
    "# m is the minimum number of points on either side that must be lower/higher\n",
    "# for a point to be reported as a local max/minima.\n",
    "# For minima, use -x when using this function.\n",
    "find_peaks <- function (x, m = 3){\n",
    "    shape <- diff(sign(diff(x, na.pad = FALSE)))\n",
    "    pks <- sapply(which(shape < 0), FUN = function(i){\n",
    "       z <- i - m + 1\n",
    "       z <- ifelse(z > 0, z, 1)\n",
    "       w <- i + m + 1\n",
    "       w <- ifelse(w < length(x), w, length(x))\n",
    "       if(all(x[c(z : i, (i + 2) : w)] <= x[i + 1])) return(i + 1) else return(numeric(0))\n",
    "    })\n",
    "     pks <- unlist(pks)\n",
    "     pks\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'Local minima in BENTO average daily temperatures:'"
      ],
      "text/latex": [
       "'Local minima in BENTO average daily temperatures:'"
      ],
      "text/markdown": [
       "'Local minima in BENTO average daily temperatures:'"
      ],
      "text/plain": [
       "[1] \"Local minima in BENTO average daily temperatures:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<ol class=list-inline>\n",
       "\t<li><time datetime=\"2012-04-18\">2012-04-18</time></li>\n",
       "\t<li><time datetime=\"2012-04-27\">2012-04-27</time></li>\n",
       "\t<li><time datetime=\"2012-05-06\">2012-05-06</time></li>\n",
       "\t<li><time datetime=\"2012-05-18\">2012-05-18</time></li>\n",
       "\t<li><time datetime=\"2012-06-05\">2012-06-05</time></li>\n",
       "\t<li><time datetime=\"2012-06-23\">2012-06-23</time></li>\n",
       "\t<li><time datetime=\"2012-07-09\">2012-07-09</time></li>\n",
       "\t<li><time datetime=\"2012-07-19\">2012-07-19</time></li>\n",
       "\t<li><time datetime=\"2012-07-27\">2012-07-27</time></li>\n",
       "\t<li><time datetime=\"2012-08-27\">2012-08-27</time></li>\n",
       "\t<li><time datetime=\"2012-09-13\">2012-09-13</time></li>\n",
       "\t<li><time datetime=\"2012-09-24\">2012-09-24</time></li>\n",
       "\t<li><time datetime=\"2012-10-07\">2012-10-07</time></li>\n",
       "\t<li><time datetime=\"2012-10-13\">2012-10-13</time></li>\n",
       "\t<li><time datetime=\"2012-10-23\">2012-10-23</time></li>\n",
       "\t<li><time datetime=\"2012-11-01\">2012-11-01</time></li>\n",
       "\t<li><time datetime=\"2012-11-09\">2012-11-09</time></li>\n",
       "\t<li><time datetime=\"2012-11-22\">2012-11-22</time></li>\n",
       "\t<li><time datetime=\"2012-12-02\">2012-12-02</time></li>\n",
       "\t<li><time datetime=\"2012-12-17\">2012-12-17</time></li>\n",
       "\t<li><time datetime=\"2013-01-01\">2013-01-01</time></li>\n",
       "\t<li><time datetime=\"2013-01-14\">2013-01-14</time></li>\n",
       "\t<li><time datetime=\"2013-01-30\">2013-01-30</time></li>\n",
       "\t<li><time datetime=\"2013-02-09\">2013-02-09</time></li>\n",
       "\t<li><time datetime=\"2013-02-15\">2013-02-15</time></li>\n",
       "\t<li><time datetime=\"2013-02-23\">2013-02-23</time></li>\n",
       "</ol>\n"
      ],
      "text/latex": [
       "\\begin{enumerate*}\n",
       "\\item 2012-04-18\n",
       "\\item 2012-04-27\n",
       "\\item 2012-05-06\n",
       "\\item 2012-05-18\n",
       "\\item 2012-06-05\n",
       "\\item 2012-06-23\n",
       "\\item 2012-07-09\n",
       "\\item 2012-07-19\n",
       "\\item 2012-07-27\n",
       "\\item 2012-08-27\n",
       "\\item 2012-09-13\n",
       "\\item 2012-09-24\n",
       "\\item 2012-10-07\n",
       "\\item 2012-10-13\n",
       "\\item 2012-10-23\n",
       "\\item 2012-11-01\n",
       "\\item 2012-11-09\n",
       "\\item 2012-11-22\n",
       "\\item 2012-12-02\n",
       "\\item 2012-12-17\n",
       "\\item 2013-01-01\n",
       "\\item 2013-01-14\n",
       "\\item 2013-01-30\n",
       "\\item 2013-02-09\n",
       "\\item 2013-02-15\n",
       "\\item 2013-02-23\n",
       "\\end{enumerate*}\n"
      ],
      "text/markdown": [
       "1. 2012-04-18\n",
       "2. 2012-04-27\n",
       "3. 2012-05-06\n",
       "4. 2012-05-18\n",
       "5. 2012-06-05\n",
       "6. 2012-06-23\n",
       "7. 2012-07-09\n",
       "8. 2012-07-19\n",
       "9. 2012-07-27\n",
       "10. 2012-08-27\n",
       "11. 2012-09-13\n",
       "12. 2012-09-24\n",
       "13. 2012-10-07\n",
       "14. 2012-10-13\n",
       "15. 2012-10-23\n",
       "16. 2012-11-01\n",
       "17. 2012-11-09\n",
       "18. 2012-11-22\n",
       "19. 2012-12-02\n",
       "20. 2012-12-17\n",
       "21. 2013-01-01\n",
       "22. 2013-01-14\n",
       "23. 2013-01-30\n",
       "24. 2013-02-09\n",
       "25. 2013-02-15\n",
       "26. 2013-02-23\n",
       "\n",
       "\n"
      ],
      "text/plain": [
       " [1] \"2012-04-18\" \"2012-04-27\" \"2012-05-06\" \"2012-05-18\" \"2012-06-05\"\n",
       " [6] \"2012-06-23\" \"2012-07-09\" \"2012-07-19\" \"2012-07-27\" \"2012-08-27\"\n",
       "[11] \"2012-09-13\" \"2012-09-24\" \"2012-10-07\" \"2012-10-13\" \"2012-10-23\"\n",
       "[16] \"2012-11-01\" \"2012-11-09\" \"2012-11-22\" \"2012-12-02\" \"2012-12-17\"\n",
       "[21] \"2013-01-01\" \"2013-01-14\" \"2013-01-30\" \"2013-02-09\" \"2013-02-15\"\n",
       "[26] \"2013-02-23\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# find dates of local minima for hot spring temperatures\n",
    "minima_date_index <- find_peaks(-bento_daily_trim$Ave, m = 5) # minus for minima.\n",
    "hot_minima_dates <- bento_daily_trim[minima_date_index, 1] # dates of hot spring temperature local minima\n",
    "\"Local minima in BENTO average daily temperatures:\"\n",
    "hot_minima_dates"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'Local maxima in BENTO average daily temperatures:'"
      ],
      "text/latex": [
       "'Local maxima in BENTO average daily temperatures:'"
      ],
      "text/markdown": [
       "'Local maxima in BENTO average daily temperatures:'"
      ],
      "text/plain": [
       "[1] \"Local maxima in BENTO average daily temperatures:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<ol class=list-inline>\n",
       "\t<li><time datetime=\"2012-04-21\">2012-04-21</time></li>\n",
       "\t<li><time datetime=\"2012-04-29\">2012-04-29</time></li>\n",
       "\t<li><time datetime=\"2012-05-09\">2012-05-09</time></li>\n",
       "\t<li><time datetime=\"2012-05-15\">2012-05-15</time></li>\n",
       "\t<li><time datetime=\"2012-06-02\">2012-06-02</time></li>\n",
       "\t<li><time datetime=\"2012-06-13\">2012-06-13</time></li>\n",
       "\t<li><time datetime=\"2012-07-02\">2012-07-02</time></li>\n",
       "\t<li><time datetime=\"2012-07-24\">2012-07-24</time></li>\n",
       "\t<li><time datetime=\"2012-08-06\">2012-08-06</time></li>\n",
       "\t<li><time datetime=\"2012-08-15\">2012-08-15</time></li>\n",
       "\t<li><time datetime=\"2012-09-03\">2012-09-03</time></li>\n",
       "\t<li><time datetime=\"2012-09-21\">2012-09-21</time></li>\n",
       "\t<li><time datetime=\"2012-09-30\">2012-09-30</time></li>\n",
       "\t<li><time datetime=\"2012-10-11\">2012-10-11</time></li>\n",
       "\t<li><time datetime=\"2012-11-04\">2012-11-04</time></li>\n",
       "\t<li><time datetime=\"2012-11-17\">2012-11-17</time></li>\n",
       "\t<li><time datetime=\"2012-11-25\">2012-11-25</time></li>\n",
       "\t<li><time datetime=\"2012-12-06\">2012-12-06</time></li>\n",
       "\t<li><time datetime=\"2012-12-14\">2012-12-14</time></li>\n",
       "\t<li><time datetime=\"2012-12-21\">2012-12-21</time></li>\n",
       "\t<li><time datetime=\"2013-01-09\">2013-01-09</time></li>\n",
       "\t<li><time datetime=\"2013-01-25\">2013-01-25</time></li>\n",
       "\t<li><time datetime=\"2013-02-01\">2013-02-01</time></li>\n",
       "\t<li><time datetime=\"2013-02-18\">2013-02-18</time></li>\n",
       "</ol>\n"
      ],
      "text/latex": [
       "\\begin{enumerate*}\n",
       "\\item 2012-04-21\n",
       "\\item 2012-04-29\n",
       "\\item 2012-05-09\n",
       "\\item 2012-05-15\n",
       "\\item 2012-06-02\n",
       "\\item 2012-06-13\n",
       "\\item 2012-07-02\n",
       "\\item 2012-07-24\n",
       "\\item 2012-08-06\n",
       "\\item 2012-08-15\n",
       "\\item 2012-09-03\n",
       "\\item 2012-09-21\n",
       "\\item 2012-09-30\n",
       "\\item 2012-10-11\n",
       "\\item 2012-11-04\n",
       "\\item 2012-11-17\n",
       "\\item 2012-11-25\n",
       "\\item 2012-12-06\n",
       "\\item 2012-12-14\n",
       "\\item 2012-12-21\n",
       "\\item 2013-01-09\n",
       "\\item 2013-01-25\n",
       "\\item 2013-02-01\n",
       "\\item 2013-02-18\n",
       "\\end{enumerate*}\n"
      ],
      "text/markdown": [
       "1. 2012-04-21\n",
       "2. 2012-04-29\n",
       "3. 2012-05-09\n",
       "4. 2012-05-15\n",
       "5. 2012-06-02\n",
       "6. 2012-06-13\n",
       "7. 2012-07-02\n",
       "8. 2012-07-24\n",
       "9. 2012-08-06\n",
       "10. 2012-08-15\n",
       "11. 2012-09-03\n",
       "12. 2012-09-21\n",
       "13. 2012-09-30\n",
       "14. 2012-10-11\n",
       "15. 2012-11-04\n",
       "16. 2012-11-17\n",
       "17. 2012-11-25\n",
       "18. 2012-12-06\n",
       "19. 2012-12-14\n",
       "20. 2012-12-21\n",
       "21. 2013-01-09\n",
       "22. 2013-01-25\n",
       "23. 2013-02-01\n",
       "24. 2013-02-18\n",
       "\n",
       "\n"
      ],
      "text/plain": [
       " [1] \"2012-04-21\" \"2012-04-29\" \"2012-05-09\" \"2012-05-15\" \"2012-06-02\"\n",
       " [6] \"2012-06-13\" \"2012-07-02\" \"2012-07-24\" \"2012-08-06\" \"2012-08-15\"\n",
       "[11] \"2012-09-03\" \"2012-09-21\" \"2012-09-30\" \"2012-10-11\" \"2012-11-04\"\n",
       "[16] \"2012-11-17\" \"2012-11-25\" \"2012-12-06\" \"2012-12-14\" \"2012-12-21\"\n",
       "[21] \"2013-01-09\" \"2013-01-25\" \"2013-02-01\" \"2013-02-18\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# find dates of local maxima for hot spring temperatures\n",
    "maxima_date_index <- find_peaks(bento_daily_trim$Ave, m = 5)\n",
    "hot_maxima_dates <- bento_daily_trim[maxima_date_index, 1] # dates of hot spring temperature local maxima\n",
    "\"Local maxima in BENTO average daily temperatures:\"\n",
    "hot_maxima_dates"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'Dates when it rained:'"
      ],
      "text/latex": [
       "'Dates when it rained:'"
      ],
      "text/markdown": [
       "'Dates when it rained:'"
      ],
      "text/plain": [
       "[1] \"Dates when it rained:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<ol class=list-inline>\n",
       "\t<li><time datetime=\"2012-04-19\">2012-04-19</time></li>\n",
       "\t<li><time datetime=\"2012-04-23\">2012-04-23</time></li>\n",
       "\t<li><time datetime=\"2012-04-24\">2012-04-24</time></li>\n",
       "\t<li><time datetime=\"2012-04-25\">2012-04-25</time></li>\n",
       "\t<li><time datetime=\"2012-04-26\">2012-04-26</time></li>\n",
       "\t<li><time datetime=\"2012-04-27\">2012-04-27</time></li>\n",
       "\t<li><time datetime=\"2012-05-04\">2012-05-04</time></li>\n",
       "\t<li><time datetime=\"2012-05-05\">2012-05-05</time></li>\n",
       "\t<li><time datetime=\"2012-05-15\">2012-05-15</time></li>\n",
       "\t<li><time datetime=\"2012-05-16\">2012-05-16</time></li>\n",
       "\t<li><time datetime=\"2012-05-17\">2012-05-17</time></li>\n",
       "\t<li><time datetime=\"2012-05-18\">2012-05-18</time></li>\n",
       "\t<li><time datetime=\"2012-05-25\">2012-05-25</time></li>\n",
       "\t<li><time datetime=\"2012-05-26\">2012-05-26</time></li>\n",
       "\t<li><time datetime=\"2012-05-27\">2012-05-27</time></li>\n",
       "\t<li><time datetime=\"2012-06-04\">2012-06-04</time></li>\n",
       "\t<li><time datetime=\"2012-06-05\">2012-06-05</time></li>\n",
       "\t<li><time datetime=\"2012-06-06\">2012-06-06</time></li>\n",
       "\t<li><time datetime=\"2012-08-18\">2012-08-18</time></li>\n",
       "\t<li><time datetime=\"2012-08-19\">2012-08-19</time></li>\n",
       "\t<li><time datetime=\"2012-09-06\">2012-09-06</time></li>\n",
       "\t<li><time datetime=\"2012-09-08\">2012-09-08</time></li>\n",
       "\t<li><time datetime=\"2012-09-23\">2012-09-23</time></li>\n",
       "\t<li><time datetime=\"2012-09-28\">2012-09-28</time></li>\n",
       "\t<li><time datetime=\"2012-10-09\">2012-10-09</time></li>\n",
       "\t<li><time datetime=\"2012-10-11\">2012-10-11</time></li>\n",
       "\t<li><time datetime=\"2012-10-25\">2012-10-25</time></li>\n",
       "\t<li><time datetime=\"2012-10-26\">2012-10-26</time></li>\n",
       "\t<li><time datetime=\"2012-11-12\">2012-11-12</time></li>\n",
       "\t<li><time datetime=\"2012-11-13\">2012-11-13</time></li>\n",
       "\t<li><time datetime=\"2012-11-14\">2012-11-14</time></li>\n",
       "\t<li><time datetime=\"2012-11-17\">2012-11-17</time></li>\n",
       "\t<li><time datetime=\"2012-11-18\">2012-11-18</time></li>\n",
       "\t<li><time datetime=\"2012-11-19\">2012-11-19</time></li>\n",
       "\t<li><time datetime=\"2012-11-20\">2012-11-20</time></li>\n",
       "\t<li><time datetime=\"2012-11-29\">2012-11-29</time></li>\n",
       "\t<li><time datetime=\"2012-11-30\">2012-11-30</time></li>\n",
       "\t<li><time datetime=\"2012-12-01\">2012-12-01</time></li>\n",
       "\t<li><time datetime=\"2012-12-02\">2012-12-02</time></li>\n",
       "\t<li><time datetime=\"2012-12-03\">2012-12-03</time></li>\n",
       "\t<li><time datetime=\"2012-12-04\">2012-12-04</time></li>\n",
       "\t<li><time datetime=\"2012-12-05\">2012-12-05</time></li>\n",
       "\t<li><time datetime=\"2012-12-06\">2012-12-06</time></li>\n",
       "\t<li><time datetime=\"2013-01-07\">2013-01-07</time></li>\n",
       "\t<li><time datetime=\"2013-01-08\">2013-01-08</time></li>\n",
       "\t<li><time datetime=\"2013-01-09\">2013-01-09</time></li>\n",
       "\t<li><time datetime=\"2013-01-24\">2013-01-24</time></li>\n",
       "\t<li><time datetime=\"2013-01-25\">2013-01-25</time></li>\n",
       "\t<li><time datetime=\"2013-01-26\">2013-01-26</time></li>\n",
       "\t<li><time datetime=\"2013-01-29\">2013-01-29</time></li>\n",
       "\t<li><time datetime=\"2013-01-30\">2013-01-30</time></li>\n",
       "</ol>\n"
      ],
      "text/latex": [
       "\\begin{enumerate*}\n",
       "\\item 2012-04-19\n",
       "\\item 2012-04-23\n",
       "\\item 2012-04-24\n",
       "\\item 2012-04-25\n",
       "\\item 2012-04-26\n",
       "\\item 2012-04-27\n",
       "\\item 2012-05-04\n",
       "\\item 2012-05-05\n",
       "\\item 2012-05-15\n",
       "\\item 2012-05-16\n",
       "\\item 2012-05-17\n",
       "\\item 2012-05-18\n",
       "\\item 2012-05-25\n",
       "\\item 2012-05-26\n",
       "\\item 2012-05-27\n",
       "\\item 2012-06-04\n",
       "\\item 2012-06-05\n",
       "\\item 2012-06-06\n",
       "\\item 2012-08-18\n",
       "\\item 2012-08-19\n",
       "\\item 2012-09-06\n",
       "\\item 2012-09-08\n",
       "\\item 2012-09-23\n",
       "\\item 2012-09-28\n",
       "\\item 2012-10-09\n",
       "\\item 2012-10-11\n",
       "\\item 2012-10-25\n",
       "\\item 2012-10-26\n",
       "\\item 2012-11-12\n",
       "\\item 2012-11-13\n",
       "\\item 2012-11-14\n",
       "\\item 2012-11-17\n",
       "\\item 2012-11-18\n",
       "\\item 2012-11-19\n",
       "\\item 2012-11-20\n",
       "\\item 2012-11-29\n",
       "\\item 2012-11-30\n",
       "\\item 2012-12-01\n",
       "\\item 2012-12-02\n",
       "\\item 2012-12-03\n",
       "\\item 2012-12-04\n",
       "\\item 2012-12-05\n",
       "\\item 2012-12-06\n",
       "\\item 2013-01-07\n",
       "\\item 2013-01-08\n",
       "\\item 2013-01-09\n",
       "\\item 2013-01-24\n",
       "\\item 2013-01-25\n",
       "\\item 2013-01-26\n",
       "\\item 2013-01-29\n",
       "\\item 2013-01-30\n",
       "\\end{enumerate*}\n"
      ],
      "text/markdown": [
       "1. 2012-04-19\n",
       "2. 2012-04-23\n",
       "3. 2012-04-24\n",
       "4. 2012-04-25\n",
       "5. 2012-04-26\n",
       "6. 2012-04-27\n",
       "7. 2012-05-04\n",
       "8. 2012-05-05\n",
       "9. 2012-05-15\n",
       "10. 2012-05-16\n",
       "11. 2012-05-17\n",
       "12. 2012-05-18\n",
       "13. 2012-05-25\n",
       "14. 2012-05-26\n",
       "15. 2012-05-27\n",
       "16. 2012-06-04\n",
       "17. 2012-06-05\n",
       "18. 2012-06-06\n",
       "19. 2012-08-18\n",
       "20. 2012-08-19\n",
       "21. 2012-09-06\n",
       "22. 2012-09-08\n",
       "23. 2012-09-23\n",
       "24. 2012-09-28\n",
       "25. 2012-10-09\n",
       "26. 2012-10-11\n",
       "27. 2012-10-25\n",
       "28. 2012-10-26\n",
       "29. 2012-11-12\n",
       "30. 2012-11-13\n",
       "31. 2012-11-14\n",
       "32. 2012-11-17\n",
       "33. 2012-11-18\n",
       "34. 2012-11-19\n",
       "35. 2012-11-20\n",
       "36. 2012-11-29\n",
       "37. 2012-11-30\n",
       "38. 2012-12-01\n",
       "39. 2012-12-02\n",
       "40. 2012-12-03\n",
       "41. 2012-12-04\n",
       "42. 2012-12-05\n",
       "43. 2012-12-06\n",
       "44. 2013-01-07\n",
       "45. 2013-01-08\n",
       "46. 2013-01-09\n",
       "47. 2013-01-24\n",
       "48. 2013-01-25\n",
       "49. 2013-01-26\n",
       "50. 2013-01-29\n",
       "51. 2013-01-30\n",
       "\n",
       "\n"
      ],
      "text/plain": [
       " [1] \"2012-04-19\" \"2012-04-23\" \"2012-04-24\" \"2012-04-25\" \"2012-04-26\"\n",
       " [6] \"2012-04-27\" \"2012-05-04\" \"2012-05-05\" \"2012-05-15\" \"2012-05-16\"\n",
       "[11] \"2012-05-17\" \"2012-05-18\" \"2012-05-25\" \"2012-05-26\" \"2012-05-27\"\n",
       "[16] \"2012-06-04\" \"2012-06-05\" \"2012-06-06\" \"2012-08-18\" \"2012-08-19\"\n",
       "[21] \"2012-09-06\" \"2012-09-08\" \"2012-09-23\" \"2012-09-28\" \"2012-10-09\"\n",
       "[26] \"2012-10-11\" \"2012-10-25\" \"2012-10-26\" \"2012-11-12\" \"2012-11-13\"\n",
       "[31] \"2012-11-14\" \"2012-11-17\" \"2012-11-18\" \"2012-11-19\" \"2012-11-20\"\n",
       "[36] \"2012-11-29\" \"2012-11-30\" \"2012-12-01\" \"2012-12-02\" \"2012-12-03\"\n",
       "[41] \"2012-12-04\" \"2012-12-05\" \"2012-12-06\" \"2013-01-07\" \"2013-01-08\"\n",
       "[46] \"2013-01-09\" \"2013-01-24\" \"2013-01-25\" \"2013-01-26\" \"2013-01-29\"\n",
       "[51] \"2013-01-30\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# find dates when it rained\n",
    "rain_date_index <- which(weather$PrecipitationSumIn > 0)\n",
    "rain_dates <- bento_daily_trim[rain_date_index, 1]\n",
    "\"Dates when it rained:\"\n",
    "rain_dates"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "'Dates of rainfall in and around hot spring temperature local minima/maxima:'"
      ],
      "text/latex": [
       "'Dates of rainfall in and around hot spring temperature local minima/maxima:'"
      ],
      "text/markdown": [
       "'Dates of rainfall in and around hot spring temperature local minima/maxima:'"
      ],
      "text/plain": [
       "[1] \"Dates of rainfall in and around hot spring temperature local minima/maxima:\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<ol class=list-inline>\n",
       "\t<li><time datetime=\"2012-04-19\">2012-04-19</time></li>\n",
       "\t<li><time datetime=\"2012-04-23\">2012-04-23</time></li>\n",
       "\t<li><time datetime=\"2012-04-24\">2012-04-24</time></li>\n",
       "\t<li><time datetime=\"2012-04-25\">2012-04-25</time></li>\n",
       "\t<li><time datetime=\"2012-04-26\">2012-04-26</time></li>\n",
       "\t<li><time datetime=\"2012-04-27\">2012-04-27</time></li>\n",
       "\t<li><time datetime=\"2012-05-04\">2012-05-04</time></li>\n",
       "\t<li><time datetime=\"2012-05-05\">2012-05-05</time></li>\n",
       "\t<li><time datetime=\"2012-05-15\">2012-05-15</time></li>\n",
       "\t<li><time datetime=\"2012-05-16\">2012-05-16</time></li>\n",
       "\t<li><time datetime=\"2012-05-17\">2012-05-17</time></li>\n",
       "\t<li><time datetime=\"2012-06-04\">2012-06-04</time></li>\n",
       "\t<li><time datetime=\"2012-09-06\">2012-09-06</time></li>\n",
       "\t<li><time datetime=\"2012-09-08\">2012-09-08</time></li>\n",
       "\t<li><time datetime=\"2012-09-23\">2012-09-23</time></li>\n",
       "\t<li><time datetime=\"2012-09-28\">2012-09-28</time></li>\n",
       "\t<li><time datetime=\"2012-10-09\">2012-10-09</time></li>\n",
       "\t<li><time datetime=\"2012-10-11\">2012-10-11</time></li>\n",
       "\t<li><time datetime=\"2012-10-25\">2012-10-25</time></li>\n",
       "\t<li><time datetime=\"2012-10-26\">2012-10-26</time></li>\n",
       "\t<li><time datetime=\"2012-11-17\">2012-11-17</time></li>\n",
       "\t<li><time datetime=\"2012-11-18\">2012-11-18</time></li>\n",
       "\t<li><time datetime=\"2012-11-19\">2012-11-19</time></li>\n",
       "\t<li><time datetime=\"2012-11-20\">2012-11-20</time></li>\n",
       "\t<li><time datetime=\"2012-11-29\">2012-11-29</time></li>\n",
       "\t<li><time datetime=\"2012-11-30\">2012-11-30</time></li>\n",
       "\t<li><time datetime=\"2012-12-01\">2012-12-01</time></li>\n",
       "\t<li><time datetime=\"2012-12-04\">2012-12-04</time></li>\n",
       "\t<li><time datetime=\"2012-12-05\">2012-12-05</time></li>\n",
       "\t<li><time datetime=\"2012-12-06\">2012-12-06</time></li>\n",
       "\t<li><time datetime=\"2013-01-07\">2013-01-07</time></li>\n",
       "\t<li><time datetime=\"2013-01-08\">2013-01-08</time></li>\n",
       "\t<li><time datetime=\"2013-01-09\">2013-01-09</time></li>\n",
       "\t<li><time datetime=\"2013-01-24\">2013-01-24</time></li>\n",
       "\t<li><time datetime=\"2013-01-25\">2013-01-25</time></li>\n",
       "\t<li><time datetime=\"2013-01-26\">2013-01-26</time></li>\n",
       "\t<li><time datetime=\"2013-01-29\">2013-01-29</time></li>\n",
       "\t<li><time datetime=\"2013-01-30\">2013-01-30</time></li>\n",
       "</ol>\n"
      ],
      "text/latex": [
       "\\begin{enumerate*}\n",
       "\\item 2012-04-19\n",
       "\\item 2012-04-23\n",
       "\\item 2012-04-24\n",
       "\\item 2012-04-25\n",
       "\\item 2012-04-26\n",
       "\\item 2012-04-27\n",
       "\\item 2012-05-04\n",
       "\\item 2012-05-05\n",
       "\\item 2012-05-15\n",
       "\\item 2012-05-16\n",
       "\\item 2012-05-17\n",
       "\\item 2012-06-04\n",
       "\\item 2012-09-06\n",
       "\\item 2012-09-08\n",
       "\\item 2012-09-23\n",
       "\\item 2012-09-28\n",
       "\\item 2012-10-09\n",
       "\\item 2012-10-11\n",
       "\\item 2012-10-25\n",
       "\\item 2012-10-26\n",
       "\\item 2012-11-17\n",
       "\\item 2012-11-18\n",
       "\\item 2012-11-19\n",
       "\\item 2012-11-20\n",
       "\\item 2012-11-29\n",
       "\\item 2012-11-30\n",
       "\\item 2012-12-01\n",
       "\\item 2012-12-04\n",
       "\\item 2012-12-05\n",
       "\\item 2012-12-06\n",
       "\\item 2013-01-07\n",
       "\\item 2013-01-08\n",
       "\\item 2013-01-09\n",
       "\\item 2013-01-24\n",
       "\\item 2013-01-25\n",
       "\\item 2013-01-26\n",
       "\\item 2013-01-29\n",
       "\\item 2013-01-30\n",
       "\\end{enumerate*}\n"
      ],
      "text/markdown": [
       "1. 2012-04-19\n",
       "2. 2012-04-23\n",
       "3. 2012-04-24\n",
       "4. 2012-04-25\n",
       "5. 2012-04-26\n",
       "6. 2012-04-27\n",
       "7. 2012-05-04\n",
       "8. 2012-05-05\n",
       "9. 2012-05-15\n",
       "10. 2012-05-16\n",
       "11. 2012-05-17\n",
       "12. 2012-06-04\n",
       "13. 2012-09-06\n",
       "14. 2012-09-08\n",
       "15. 2012-09-23\n",
       "16. 2012-09-28\n",
       "17. 2012-10-09\n",
       "18. 2012-10-11\n",
       "19. 2012-10-25\n",
       "20. 2012-10-26\n",
       "21. 2012-11-17\n",
       "22. 2012-11-18\n",
       "23. 2012-11-19\n",
       "24. 2012-11-20\n",
       "25. 2012-11-29\n",
       "26. 2012-11-30\n",
       "27. 2012-12-01\n",
       "28. 2012-12-04\n",
       "29. 2012-12-05\n",
       "30. 2012-12-06\n",
       "31. 2013-01-07\n",
       "32. 2013-01-08\n",
       "33. 2013-01-09\n",
       "34. 2013-01-24\n",
       "35. 2013-01-25\n",
       "36. 2013-01-26\n",
       "37. 2013-01-29\n",
       "38. 2013-01-30\n",
       "\n",
       "\n"
      ],
      "text/plain": [
       " [1] \"2012-04-19\" \"2012-04-23\" \"2012-04-24\" \"2012-04-25\" \"2012-04-26\"\n",
       " [6] \"2012-04-27\" \"2012-05-04\" \"2012-05-05\" \"2012-05-15\" \"2012-05-16\"\n",
       "[11] \"2012-05-17\" \"2012-06-04\" \"2012-09-06\" \"2012-09-08\" \"2012-09-23\"\n",
       "[16] \"2012-09-28\" \"2012-10-09\" \"2012-10-11\" \"2012-10-25\" \"2012-10-26\"\n",
       "[21] \"2012-11-17\" \"2012-11-18\" \"2012-11-19\" \"2012-11-20\" \"2012-11-29\"\n",
       "[26] \"2012-11-30\" \"2012-12-01\" \"2012-12-04\" \"2012-12-05\" \"2012-12-06\"\n",
       "[31] \"2013-01-07\" \"2013-01-08\" \"2013-01-09\" \"2013-01-24\" \"2013-01-25\"\n",
       "[36] \"2013-01-26\" \"2013-01-29\" \"2013-01-30\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Find potential dates that obey either criteria: 1) dates when\n",
    "# it rained 0-7 days before a local minimum in BENTO temperature readings,\n",
    "# and 2) dates when it rained within 1 day of a local maximum.\n",
    "potential_dates <- c()\n",
    "for (date in rain_dates){\n",
    "  # Check if any local minima in hot spring temperatures occur\n",
    "  # 0-7 days after a rain event.\n",
    "  for (hot_date in hot_minima_dates){\n",
    "    result <- findInterval(as.numeric(date),\n",
    "      c(as.numeric(hot_date)-7, as.numeric(hot_date))) == 1\n",
    "    if (result){\n",
    "      potential_dates <- c(potential_dates, date)\n",
    "    }\n",
    "  }\n",
    "  # Check if any local maxima in hot spring temperatures occur\n",
    "  # within two days of a rain event.\n",
    "  for (hot_date in hot_maxima_dates){\n",
    "    result <- findInterval(as.numeric(date),\n",
    "      c(as.numeric(hot_date)-2, as.numeric(hot_date)+2)) == 1\n",
    "    if (result){\n",
    "      potential_dates <- c(potential_dates, date)\n",
    "    }\n",
    "  }\n",
    "}\n",
    "\n",
    "potential_dates <- unique(potential_dates)\n",
    "potential_dates <- as.Date(potential_dates, origin = \"1970-1-1\") # R's date origin\n",
    "\"Dates of rainfall in and around hot spring temperature local minima/maxima:\"\n",
    "potential_dates"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAXVBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD/AAD/TU3/aGj/fHz/jIz/mpr/p6f/\nsrL/vb3/x8f/0ND/2dn/4eH/6en/8PD////hxaF2AAAACXBIWXMAABJ0AAASdAHeZh94AAAg\nAElEQVR4nO2diXabuhZA8RDHmUyatLnNa8v/f+Yz2ExCgIAjNLD36qoxg44snR1AxpBkALCY\nxHUFAGIAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAE\nQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABE\nAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQA\nARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAA\nkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJ\nQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAE\nQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEQCQAARAJQABEAhAAkQAEWCjSy+MxyTme\nXmTqAxAki0S67JOag1SVAMJjkUinZPf0Wky9Pe+Sk0iFAEJkkUi75LWafk12iysDECqLREqS\nvjeaVQFcsCTBJ7DWHonRQRfQ6qs1wdJzpOe3Ymr0HIkudQGtHoZI2aGxC91f7MWBedDqgYiU\nvZyK75F2x8eR75HoUhfQ6qGI5F0caEKrR5HgLgZPoAmtHohIl1M+VPe4T5LDk804MA9aPQyR\n3nbXPc1ld9vlDF8iRJe6gFYPQ6SH5Hi5/vfwdnXqgeFv/6DVwxApSS73/65HeXwh6x+0eigi\nZfnlDY03duLATGj1MER6yC8RerxdJ3QZPkmiS11Aq4ch0muyO71mx93VpOd98mwtDsyEVg9D\npOx5V39R9GgxDsyDVg9EpCx7eih+JXt8fLMbB+ZAqwcjkm9xoEmn1bd3jUlsCb6x7vOEdqtv\n8nqt2BJ8S33nD61W3+aVj7El+Ia6ziPatwLoN+k+86D+FkZZ7/KQtK5fyRebS3naJbtT+0dr\nZ5N7FSzTPrYERyQXNFp98FYG1VzFJGW1ozI4O0mk249A981Zr0Y3/UAkF3GgiblIxctp7Mrj\n5E15b57mL8nuNXvdNVV93RltjEgu4myCNDVccaJIYznbPSJszjsMfiN/Kr6wf2rs0c7JAZG8\njbMJUlOT6lZXPWpnZ1uk5+sh3O5Uvr/uho7J7rEsoru4LmR36v828VjszV6TYx301L2fWxUs\nK86pDm+3+ady3nmf7M7F1PPVwmF11SawS2xxNoEtkW6Hdo+35aeszO3i8pXHUqTO4rKQy1Od\n290w96lG3NdMJ9I92P2calf8vKC4L0juz+1G83klz7fSzxOawC6xxdkEFkS681q8ecqPwZKs\nzO3D5Zq3+/vb7uJGOZfnh9tuyUQk9V072FM+VfzIrZ73nE9dDvlBYnFLxaf22MVIE9gltjib\nwJZIh9fmrKzM7Zfm2+7idsjLUX9OYypSGeyYTxU/cmvOy0fPL/nhYTJ8jbSuCewSW5xNMEMk\ng8GG/a7Mzbfnx4NiSlMkzeI71R5JUxVDkdpT9Uq3eVXlT9cDvtfXbJzYEhyRBLEj0ks5un2o\n1tCKpFucM3yOtJMVKXvMT6Z2I5dKZ/ElOCIJYkek65FTMaT2kOzPz2+9ImkX31apd0bdOLdR\nu7fGqF02Q6Tmxs+nPedIsIQ5ImUDHt0z9LUcbMjyjO8TSbs4Z3gw+rE4qXlu3yJnQKRD4xyp\nnHdUT4wMvmKKLcERSZBZImX9HpUJedsl5Sf3r/3nSNrF42iubBgU6ZyP0J1uo3blvKe8jOuS\nay33t7FD9kiwgHkiaY636iXFy6XYJZ3uK73oRdIuNuD2mNRDI9ygSM3vkdrzijOjp6oSk5rA\nHrHF2QQzRcpuLunWu888Fbukh/w68OfbILNmsEG32IBLcfV3K9ygSMXA3FvWnne+6vhQnIgV\nVzYYPAE8tgRHJEHmi7Q9YktwulQQRDIntgSnSwVBJHNiS3C6VBBEMie2BKdLBUEkc2JLcLpU\nEEQyJ7YEp0sFQSRzYktwulSQ1NQkWj26BKdLBUEkc2JLcLpUEEQyJ7YEp0vluFqESKbEluB0\nqRzyIt2vQ5W/06qbu6u2SpIqaGNxtoA1kcTvtOro7qqtkqQK2licLWBDpOJF+k6rru6u2ipJ\nqqCNxdkC1kQay1/dD2u7mzxXNrq6u2qrJKmCNhZnCywRafj3SLfXmXdaLXg7NXY5ru6u2vpo\n01afTWxxtsACkbS/j1UO7ebeaTW7Z/rTRSm2sco6d1cdbAJLxBZnC9gQ6c6SO63mO6OH50ur\n2OZLe2b9Rv7uqoNNYInY4mwBayItu9PqdS/SHug2Fkn67qqtcNM3mUVscbaApXOkpXdanb9H\nak/VK93mVTdsMb67aivcxPXnElucLWBp1G7pnVazzjmSq7urtsJNWns+scXZAraGvxfeabVA\nM2q3/t1VW+EmrT2f2OJsAVsiLbzTakn9PZKru6u2Vp+09nxii7MFrH0hK32nVVd3V22Fm7T2\nfGKLswWsiSR+p1VHd1dtfbRJa88ntjhbwN4lQtJ3WnV0d9XWR5u2+mxii7MFcovMTKLVo0tw\nulQORJpAbAlOl8qBSBOILcHpUjkQaQKxJThdKgciTSC2BKdL5UCkCcSW4HSpGIVDiGRIbAlO\nl4qBSFOILcHpUjFuDhmZRKtHl+B0qRiINIXYEpwuFQORphBbgtOlYiDSFGJLcLpUDESaQmwJ\nTpeKgUhTiC3B6VIxEGkKsSU4XSoGIk0htgSnS8W4K2RiEq0eXYLTpWJMEQliS3BEEmOCSBBd\ngiOSGIg0hdgSHJHEQKQpxJbgiCQGIk0htgRHJDEQaQqxJTgiiYFIU4gtwRFJDESaQmwJjkhi\nINIUYktwRBIDkaYQW4IjkhiINIXYEhyRxECkKcSW4IgkBiJNIbYERyQxEGkKsSU4IomBSFOI\nLcERSQxEmkJsCY5IvUw1ApGmEFuCb1Qkk2xPJyqBSFOILcE3K9J4uiOSTWJL8A2LNJbxiGST\n2BJ80yINpzwi2SS2BN+cSOVNsxDJLbEl+AZFKp6rh0iOiS3BEWl4zUklN19gmNgSHJGG15xU\ncvMFhoktwRFpeM1JJTdfYJjYEnyTIpX/EMkdsSU4Ig2uOaFYRJpEbAmOSINrTikWkaYQW4Ij\n0uCaU4pFpCnEluCINLjmhGLLBywgkhGxJTgiDa5pXmz1qBJEMiK2BEekwTUzUzEQaSKxJTgi\nDa6Zme6YEGkisSU4Ig2umRmLxDnSNGJL8LhEMvy5nhWRJtQB4kvw2EQazWLrImGSEbElOCKN\nFda/WnMBIk0ktgRHpLHChkTS2oNIJsSW4Ig0VpiRSD07J+gltgTftkiDayOSTWJLcEQaWBGR\n7BFbgm9dpP4NEMkqsSU4Ig1ogkj2iC3BEQmRnBBbgm9RpHSqSD2rINICYktwREIkJ8SW4NsU\nKRsSKU2rFZuvg9EQaSqxJTgiaURqCYRIVogtwREJkZwQW4IjkoRIrTUQyYTYEhyREMkJsSV4\nECIZp+YSkRoTiGSf2BI8EJEMc9NcpPqLWcUfRFqH2BI8FJHMshORgiG2BA9HJJP0tCNSeVuT\n/miINJnYEhyRRkWqbrTVHw2RJhNbgiMSIjkhtgRHJERyQmwJvnGRUgOR+s6RUkRaQGwJvmmR\nMjORetRApCXEluDbFilDJFfEluAbF6l7QQMirUNsCY5IiOSE2BIckRDJCbElOCLpREob/iCS\nFWJLcERCJCfEluCbFKm5qoRI7eWIZEJsCb5BkdqrIpIbYktwRJorUmM+Ik0ntgRHpAUiZWoZ\nmnegJ7YER6R+kbL7qAQiWSC2BEckRHJCbAmOSOIiWTCp74ccARNbggfRPzZF0s3wS6SkQrRY\nx8SW4EF0zqZFSpIoTYotwYPomy2LlCRxmhRbggfRNQYilUPVsYmUJJGaFFuCB9EzRiKlWb9I\njdlTRWr40i0TkWYTW4IH0TMCIqX1pDJrpkjl3qpZhBJCAkQijhzbFUn1KB6TYkvwIDoGkRCJ\nOAKYitS7FiJ5R2wJHkTHmIvUk8QTRSoLMhRJXYxIBsSW4EF0jKBIjYkQRGKwgTiCIBIiEUcA\nIZFaTiCSW2JL8CB6RkyktCmSMiEqkpxLkXoUXYI77xqTlLMhUqcCwiJZMUmqTA+ILcGd941J\nym1aJH5GQRwTbItUKSQrUlMhyyJl/LCPOOPYFykNXyS1POHSXRBbgiOSgUi9W5mIJLIz6YgU\nvEmxJTgiWRZJ5uQGkYgzgpxIKSIFRGwJjkgNkdJyBiJZJ7YERyTLInGOpCe2BEck2yJJJL36\n8RFpepy0i5U4rkAkAxBpeRxEWkekehkirYEDkZQliNS3ioxId3sWiJS1qotIWkIS6bxPkuOz\nYRxXhClSvZF+aVekRamPSG7i3MaJDrcrHU/24kgQtEi9S3UiLch9RHITpxDplJwuWfZ2Ss7W\n4kgQpEjVe0SaiwOR/v78L3/59+M/443zrXfJJZ++JHvDOG5YQaQUkfxjfZH+vqef+et3mr7/\nNdw4Kf9rvI7FcYRzkWp/jEVqWtJdikgmrC/Sj/Tnv2Lifx/pD8ON860fSpF2ZnEcsa5IulIQ\nyQWri/SdflUzP9PfZhsnx8fzc/J0nbychkcbVhNJvzcIUqTGO0Say+oi/Uz/VTP/ph9mG9c/\nTU6S3cUojm36ZDDIiXSpSCkieYfb75FM2+/19Xw+Hoshh9OgR4iU1TYYitR8YyZSeYI2G0Ra\nHud9jkgz4thmqUgjn/12/BaqSNWynpUQaXmcn+l3NfP7Nn63uGwXd3gaE2kgNfwQSZvsYiKl\n9UR3xc5MRJoe50896P333XCw4Y5XlwiNi9SbG7cN1xWp7c99XmN1ZVNNzGbFhj9fR6RueYi0\nPM6v9P3rz/X1z9e74ViDl5cILRKp/n9gHUQKCQdXNnyVuZD+NN3Yw0uEPBapeTSniJQikiVc\nXGv399fHteU+vwyva/DzEqEwRbqfRdoUqVn2/VMgkidxfLxESEikgXQUF6kekbErUr06IvkV\nx8dLhMRE0q9mQaTm2CYiSePmHOmrf0Xtxl5eItQr0qAhmSuR1OepIJIo64v09SvLfk0zKbBL\nhIREygZEqvQwFqnzhK9GsitVExOpVY92FERaHCet/jMnrEuEVhIp1Q2INTaeI1K5qSZmvcIk\nkToRMkSSiTNHpDlxLONOpGy6SNnKIrU+IiJZiZOmyqGdbBuu9XlSGZH6Ds7ERVI9ykfubInU\n/oiIZCdOmiqDDYjUt46vIlWV6/90iGQ9TtrFShzL9FW9kb/Ri9Rfc0SyHweRTESqjp4ciNQt\nE5HGCeILWQ/jhCbShMEGRJpDbAnuVKQqwbPYRKpnIpKe2BLcsUhpOkkkbdpWq/Scr7RE6g1g\nKpJSRF+hiDRCbAkek0iticaSWqSBAKpIiknV3myiSA3DEalJbAkem0id5bNFal+0ulSk4d0h\nIhHHkABFylrHdYgkS2wJjkhq0bVI2c2luvqa8hFpJrElOCKpRbdEale/r/iBCiFSD7ElOCKp\nRTsRqakTItmPI99+iKQWPU2k20BEf4UQqQdEmsUtnQ1E0n1Cj0W6D433VwiReojtkMs/kbop\nskSk+1ZGIjWyuU8kzQ4JkWYRWYJvQqSqAgO1Q6SViSzBEalR9AyROEeai6ME//15bbuf3/p1\nBePYwm+RyqX9ImV9ImXdT6XGRSQdbkT6uA96iTyMYiCONUZFShEJkazH+ZW+5zuj7/fU+MHm\ns+LYQ0YkfSrXq7SnWm9DEqmzpk6kUZM8d82JSO/pn+L1j+nTmGfGsQciORDJa5OciFQ1iXzb\nIJJa9soiNQ/nEMlynF/VHkn8JAmR1LIRaRXcDDZ8FedI/3s3fNDY7DjWEBVJs85ikZoO6aqB\nSMI4OrRrYS2OPYZEuvsRvUj6CiDSinEQKVNEUlfalkj6NuhWbHgFt0R2xQEiVRXJvBapNU/f\nmkb18obIEtypSOVRWowiqYLMF0mzMSJtNo68SO31ohapExmR5sb59W7j/KgbxxrCInUKW0Gk\nHhcQaR6OvkdKEWklkYaroZ2NSDNwNGonfo2dNo495EQqD+wmizSUV4i0Om4vEbIcxx7yIqnZ\n1p1qvXUkkroz7VtPXKThPbAHODq0+7dKHHuIiKS+dlbpzJ4gUrkyIq2Do98jffxdJY41BkUq\nl97mWRNpsHoGIvUkp5xI1XJEshXnO7LBhkZ++SpS34fo21a/MiL14USkrzQ6kWp/MlmRlPzR\nHi1pIigi9X+Ivm21K9flIpKCox/2RTZq1/CnsbRe0tm4sWSeSGPV81akNESRDEIzajeLPpFa\nS+slnY0zrUjaAzpE0tR1ZakMDp0cHdpFNmonJpIm9RBJU1cLJwVD+CpS9vXxv1XiWGOOSOVU\nLVD5ikiIZErf75GsxrHHPJHqHGusndbzEcm0rohUgEitoqyJ1KNK60P0bqtbGZF6ieznDYjU\nWguRZEAkW4yJlLoVqVXNiUt7NkCkYRwl+PdnXrVP+QuFvBApmyhSY6O6/Kw72d3YpJozl+pW\n9kUkGycFQ3gr0se9Md/FTfJDpGw7IqkljIiUlke9iDSPVpz/0o9/edX+S39ajWOPsutrB7Ju\nvtRLsuZkbCKpH6d6mSjSYGUQSRfnPf2n/3MmHMceYyJV71yLZJ6co0Uh0hDOLhGKTyRdRqXT\nRMrq6XY5Pe/Gq4lIEvgq0o/7Hinop1FkFkVSskwtdUI11xap+Zeg+dGVYhBpLrpzpHCfj1RJ\ngkjridTawyFSweftuCgN9Sb6lkRqHRi1yul5N15PRJLAW5GK75HSz9/W41jCikiNZVqR7gVO\nqyciSeCvSIHHcSRSN8hoPSMRqf1HBJFiiYNILZEapSCSZfS/kH1/txrHGopI3dTI4hQpSZLG\nhg2ROsogkiW0Iv2Vbw7/RVI/c0AiJcnNJETqsrpI9Z24cgL9Hml1kW7leyZSVStEcrFH+tH0\nSPwX59GKdE9A30RKletNEckycd1FyJpIWXedRizXIinnSIjUIK7RtOhFmpg/0iIp04hUE1eC\nL45j2D+ItECkLDiRTNo9kARfK45hpq4tUpVpE9MHkURApMlsTKQJ5SHSMIEk+FpxPBSpTlfT\nD9EqO1KRVjUJkSbjs0imn6G3bM1SRDIBkSbjRKTuO0Wk2Umzukg9uY5IYvTdafXjl8U403Eg\nkqbkeEUqG0Uj0mDLIJI2TtpE9rpVRGqXFopI7dV00RFJE+fn+/f1/+/39H/ZZyq6T0Kkbmn9\nS4VEUkQpJxDJAspTzf8Ur3/Sj+yf7IWrfovUSof+ksVEGkZIpEwVRV0dkQTRX2sn3yKIZI6A\nSFUD1Eu6qyOSIMoNIss90jsiaUr2XaT6o4Qr0v36WyO8FelXWp4j/cp+y95KyHuRRgIgUl90\nWZHKX4QY4a1It5vop8XtuFLZe9shkjk2RWoXPkukZqbPEWnQlEhEut+OK98tpV8240xllkip\n9muQyEVqFWBDpGaqK61iJNKwKrGI5GscROpfOSqR4jhH8jfOcIt18sFApOZG7ROHgRCIZF2k\naZ8dkQbpNs+YSM0eX1Gk4W1m47VIzX3GHJFG9jlxiPRV3QHFbpwRuvERqX/dtUVqHRV3Shmv\numFfGuCtSF9pikh9Ier/jeq0BE9E0myt1A6R9HEsPM5FG2eM9UUy6f5MKcprkaqFBa2jMc9F\nimHUzlpmINIkZEVKkvb4gLhIrUPApSJNGf/2VqTP9N8qccZAJDGRkop6FUSyQCvO3/cP8Vus\n6uKMYV2k1uyYRUoS1aQ5IvV+btsijRTmrUj1WIN4iiDSBMRESpKOSb6L1DpHGmkIRBoBkaaI\n1Er9lkhJ0jVJUqRWs2dCImk+T++qBtG8/KJ0rThzRarSCJGKt4jkaYKvFafTfiOZjkjtDa2L\npBEo0zVRX40nfp7eVX0U6daInh7aCYvU7vH5Io1tM5dJ7d8vkurR/dEvGlUam2lP9VcVqRUX\nkfrimBCGSPZYLlLxbo5I7ZFydb0yCCKFEUdOJE1j60UyqFMWjEh3nIg03kYbEOlT+K6QfXHG\nQKTNitQ+hAhVJIt5gkgTEBLJfLChFmnxOdJ4I21ApB++XiIkK5LylxORmiJp9UGkUVpx/n16\neokQIpmtvFSk5jx3IrW6ZrAgX0VKa6zGGQORZEQyvkSoudmYSI0W1Ys00krDrY1IU+KMgUhC\nImUdj+aJlLSuf+vsehDJ0ziIJCWS4c8oRkRqbo9IAcVBJDGR0psGrdUXi5R1WrC3NG19NyDS\n7/wGkT+/rccZZqJIihpzRDKpUxaoSO1aI5Id9Lcs/rQcZ4RhkRL1F5SLRTKrk/Gqi/FNpM5d\nilPt05eWi1R9adz3eZSSfBWpvom++E1Q5ERKEtUkROrdUEgkdTLVPg+wLs3k+KFDfToXvEj1\nY11EHzLWiTOGjyI1DmmsE4FI/R+gb2FzgDF0kabm1tw4YyCSVZGUxcoajkTSfOUVrkj1oy/F\nT5KCP0dCpMakIlLWbtE5IukuwrhXtrN6o9aeipR9FedI/3sXfcaYJs4IwyL1LkWkCEVKtf1d\nRvVUpLSNtThjdIIjktnK9kW6JTkiDceJRqQ6gRBJUKTmaMCASD2uDC1UPWpeGNgnUtkhw43l\n5RUHa8VBJN9EKqZbea50SWv9hmTdT2JBpKHW8jLB14ozKtKgGojUXJgptZ4vUjvRjUVSP8om\nRPrvR5b9/ZH+kP9VEiJNwEuR1ExHpP4433mV3vPai5tkR6SyRVv5Yk+klTzaoEhzBhs8Fukj\n/V1c1fA7FR//FhUpaX3P0BWpkUCBijRp5aBEShpXALVnm4qU+i9SXqM/6S8bhzCSIrV2/fXS\nTjYEK9IkVhKpe/A1S6Tblt1PEZ9In+k3IukrhUj2ROq9RChIkT7SP9/pe+b7oV1XpPpwrtog\nkxap5+DeOeuI1PVoWKTyjbFIfRetDouUaZYrxQ4sk0QdbEjTr7x24j/ts3uOhEjd6fuMzEAk\nZYXulM6jeSL1nSO1YqRTRBrpFkfD3+/5GVL247flOCOMidT4S4pIrkQaHmzoFWnoCDm9H2qE\nL5IncRBpAjGJpB5pItKyOIg0gVVE0pjULafVohIi3SxSN0AkYxBpAuuIlKlfJCm53VeMvEjV\n+/J/ROoFkSawkkgD+6MBkbpthkgrxrEtUr1Ka2JqrfxgVKTOgVF7caY1oD01eIKUZa3MVmZN\nEKnTI4i0MM6qIhnbsV2ROh5127SnGDsiNXe0iDQAIk3AvkiaIbtOHdRSVhRpuAe9TPC14iDS\nBKyLpPGoe/sZtZTVROoEVnB7O673d6txxkCkCcQtUha0SH/lMwaRbOGDSNo49//bPWdDpMEu\nXF2k4jq7Cud3WpUTqZtbiNRcnGXdRG1OaT3S7ZJMREq7K2oiG4mkCNrH+nukH02P/P6FrBuR\numnqBeGIlG5DpGxKTi2LM4L2cAyReghGpHREpO6hWrAieRIHkaYQkEjZdkT6nT8h6VP+VxT2\nREoRaUCkblu6G2zYkkjlg8bc3vsbkabgi0idLlPnzxep07W+i/SfHw8a0x6PIFIPPovU6pYR\nkTRiVCury3wX6YcfDxpDpClYF8ngEiFTkbr7F13cbteEJpKu4jbijDBRJM2+flsiNadtiKS5\naFVTCY1I7b3JMpFa83wXqd4jOb1EaJ5I3Wyoek4pPS6RmhiJ1H0zJpJqki6wRqRqTLUuzUyk\nTr2qwgIRKcxzJESqMBBJXdp4yZQ3rdmFQHqLtGGqOYYiDQoemkj+jNoh0iwsiqTrlqEwepGS\n+2PKequir1dwImW/P/34HgmRZuGRSFWfNdv5dmC4BZG8iLOOSNosGqkXItkSSe3v9kxVJCUe\nIulBpLk4FEnXzojkNs6wSM2liNSmW0ETkbRJ3C1tmUi3l95zpMhE+q/6LYXdOMMgkhyeiaQr\nN+u2bGebOieDEOkrTeMTqVs6IjWWZt227k5Vb2eI1A3Sv6qyxpBIzS28E8nC90faOCNIiqQr\nHZEaSzMvRNLPMBVp6CNu/Id9iCQEIvUukaUV51f6b5U4I/SK1DlgQ6QxQhBJd/jdqYp6xuW1\nSNnnh/jNGrRxVLpd2SPSfUlSP7EPkQZBpN4lslRx0jbW4mjpNsugSNWVk4Mi9XyIajYiIZIc\n2xOptU42vlpfLcPAqUg9QTTlaus1IJImY3rw8YtSe3Hmi3RfhEg9IFLvEln8iDNRpMY5UmMR\nImkYPrpAJDH8iDNVpEZLI9Ig8YjU6nhE0oNItvBFpOZiU5EU9xBpPI7OgnbTI9I8IhGpEx+R\ntOhFav5Bqm1BpCkYiNSb14g0gYVxXh6PxRDa8fSyJM5ykdQsTwdHq6owGSJNEam3LERaFOey\nb9xa5rAgDiLZApF6l8iixPn+zOv0+dds41Oye3otpt6ed8lpQhwFRLKFByJ1jgk3INLHrUHS\ndzOTdslrNf2a7MzjqMwUqVyxWwQi3YlXpJEiShzd1+7jX16n/9KfZhsnfW+G43RYIFKGSEPE\nKpJufS2Oftj3T9u2ffiwR6pFUkpEpBxE6l0iS+eHfVNEup4jPb8VUxbOkZqVSMtLU/tF6pSI\nSDmI1LtEFuXe37c9kvHTKA6NUbv9xThOB+2pY7tHK7sQaQouRWpObUuk+znShHt/v5yK75F2\nx0fh75EyRBLBnUjtErclUvaZ3lj73t+IZAtPRNL1b8/belbAIhXfI4nd+3vkUSANEMkWPoo0\n+K4xK2SRZnHeJ8nxeUkcRLKFHyIN7oMQ6f7V0X3EYXDQDpEcMS6SutxnkfqC+CZSWvPxy2Tj\nfOtTcrpk2dspORvH6YBItvBEpL4QmjD1rChESk2eflmItEuKce9LsjeO0x+9BNsAABJGSURB\nVGGZSPoSESknIpEGgvgmUvazfPTl/7LPdHyfVIhUjiPIXiKUGYvUV6INkUzX9AdE6l0ii3Kn\n1fJhzB/ZP4MvZQt3HkqRRC8RyjwUKUQQqXeJLPp7f+saWLdxcnw8PydP18nLSfYSoaxHpAyR\nJuGHSIMzIhTpvdojvRuKVH1HlCS7VS4RQqRp+CCSNmzfu8asSSL1LXJ0aFeeI/3Kfptc3vD6\nej4fj8WQw2nQI0RyhP8i6TYMXaTbD/vS4hKhVPZZSYjkhphE6p5sGVTN6SVC+W4p/bIZp02K\nSLYYTvBBkTQLEKkXL+IgkjUQybxai/AijqFId4UQaQIriTQSRxNW/6Y1MwKR/ve5Tpw7bZHK\naUQSAJHMq7WIdpxf1QVCduMoIJI1EMm8WotQhr9Lvq3GUWm3w5hIWYZIxngpUivuJJH6y/NK\npPf0d/aR/v37kYo/SlZMpOYyRBpFVKTB9p4u0kD760UaKtArkfLKfF33Rn/kf2uOSG5ApAnV\nWkJHpO/8i9jVz5EQyRKINKFaS2jF+bwe2v1Nf2T/80Kk9gQizcJbkcrS9NsFLtJ3XpviMiGz\nWxbPjaPiRqTxQiIAkSZUawntOF95bX6mBr/pWxZHAZGsgUgTqrUEL+IgkjVGElzTTIg0i/Y5\nkvyeSBtHBZGs4atIVeAoRbKYU4jkBkSaUK0ldG6iv0YcFUSyBiJNqNYSWnH+fX6IX9Kgi6OC\nSNZApAnVWkLffe2sxlG5tWp5g3BEEsRbkYabH5GM4qgU3Vndah+RBBkVqbu8nINIU/AiDiJZ\nQ1ak2XF0ayOSeBxEsobvIvVsFrxI+c1Psuzzr+04bThHsoavImXiIvUscXg7rmu13sVNMhCp\nczkwIi3HT5Hq8uMU6f4M2euri4tWHYhUH6rHCiJNrdZMlF/I/pv8EebEUXEoksFqQYNIU6s1\nk84lQogUFSOfDpGk6FwilNfoj8EjXZbEUUEkVyCSFLpzpO932ft+d+KoWBApSRJEGgeRpGjH\n+bxf1yB+75O1RSq+lEKkURBJCu1N9H9bj9PGpUib9kibgWuJVJ+S6xcFLZKTOJUniLQ6iCRE\n+2cUK8VRmCvSUEMbnyMhUndW+3VgVcOFvdv0dmHgIqUf4rcq1sZRsCGS9uhfswoiTRBpWjkG\nsWMV6ce1Pr/s/LQPkfxkgkhTyzHYJlaRsr9fV5d+fFk4xPNXpJGVIgeRhOjE+fvrPbVwiCcg\nUrOtEEkIRBJCF+c/C+mFSH6CSEJ090jF0Z34N0njIqWI5ABEEkJzjvT+S/53feuLZNC1iIRI\nYnRG7X66GbXLXIk0sk7sIJIQyvdIFi4O0sRRcCnSyCrRg0hCaK9s+PPr3WochT6RWl1qR6SR\nNeLHrUi9GwUuUsHtPMl+nBpEcgciCaHE+fc7P0+ycKUQIvkJIgnRivO7uItQamHQDpE8BZGE\nqON8/0zzoe8/drILkfxE0wRhitS3ZHWR3nOL8qFvdyLdQ4uJNFYnRNKypkiDdRDpntVFqh4c\nG4tI4yCSFkRaFMfHPVI5iUhrgkjL4tzPkf6HSBsHkRbHcTxqh0hegEgCcW7fI326+R4Jkbxg\nRZGGF4UsUubsyob8oS4dkRpPTEKktVhNpJE6yJTo9DZZDq61u90/SxGpfPaYXqTFDY1IWhAp\n1DiI5BWIFGocRPKKmSKJVwKRpsaZcY4k0tCIpGWWSBYqgUhT41Qt1hGpMQeR1gKRQo3jTqSF\nBcQJIoUax5VIoAWRQo2DSF6BSKHGMRVJ2QaR7IBIocZBJK9ApFDjIJJXIFKoccZEuv+HSOuA\nSKHGQSSvQKRQ4yCSVyBSqHEGRLqfHmWItB6IFGocRPIKRAo1TtVi9bXerWWItCqIFGqcssXu\nv5pAJLcgUqhxEMkrECnUOIjkFYgUahzOkbwCkUKNU7dY/bVRc45eJDyyBCKFGgeRvOLesG7b\nF5FmxEEkr0CkUOMMiVTdEwWR1gKRQo0zIFJ9ly5EWgtECjUOInkFIoUaB5G8ApFCjcM5klcg\nUqhxhkSqWhSR1gKRQo2DSF6BSKHGQSSvQKRQ4yCSVyBSqHEQySsQKdQ4hiIp2yCSJRAp1DhG\nInW2QSRLIFKgcRoNhkgegEjhxVHFQSQPQKQA4+SNhUh+gUgBxkEk/0CkAOMoInXeI9L6IFKA\ncRDJPxApwDiI5B+IFGAcRPIPRAowjolI2gZFJGsgUoBxEMk/ECnAOIjkH4gUYBxE8g9ECjAO\nIvkHIgUYRyOS0n6ItDaIFGAcRPKPe58gUkhxEMk/bn3iuH0RaVocRaTqdpCtVRBpVbwQSZMI\nMwuSKMT/OE2RkgpllR6RZCsIJT6IdLvDrkhJEoX4H6chUpLoTUKklUGkAOPUIiVJj0mItDLF\n6QkihRWnEilJ+kxCpJXxQSTOkSbGQST/SNMiix03sFQFEKleBZFWJb0/SweRAopTiqR61DAJ\nkVYGkQKMg0j+gUgBxkEk/+AcKcA4iOQdt4FnRAorDoMNflF3gOsGRqRJcRDJK5o9gEghxUEk\nn2h3geMGRqQpcbhEyCP6/5i5AJGmxOGiVY9ApHDj8DMKj0CkcOMs+WGfXOUgR/XIsUmINCWO\n+lNzzWANIq0EIgUcB5H8AZECjoNI/uCZSELxEakxR7shIknjm0ciNUCkxhzthogkDSKFGweR\nPAKRwo2DSD7R9shxA3OONCWOkUj6DRFJnpZHcTQwIg2DSFZoehRHAyPSMLH0s3/cz01iaWBE\nGiaWfvaWWBoYkYaJpZ+9JZYGRqRhYulnb4mlgRFpmFj62VtiaWBEGiaWfvaWWBoYkYaJpJv9\nBZGCijNbJLBMLP2ASOCUWPoBkcApsfQDIoFTYukHRAKnxNIPiAROiaUftiNSot5XNY4ODJ1Y\n+mEzIim/hEQkT4ilHxAJnBJLPyASOCWWftiISDeTWu8j6cDQiaUfXCf4WnFUcRDJE2LpBtcJ\nvlYcRAKruE7wteIgEljFdYKvFQeRwCquE3ytOIgEVnGd4GvFQSSwiusEXysOIoFVXCf4WnEQ\nCaziOsHXitMRB5FAEtcJvlYcRAKruE7wteIgEljFdYJP4bxPkuPzvDiIBFYJQqTb5aaH23NA\nTrPiIBJYJRyRTsnpkmVvp+Q8Jw4igVXCEWmXXPLpS7KfEweRwCrhiFT+nGj4kZ+IBE4IR6SH\nUqTdnDiIBFYJRKTj4/k5ebpOXk7Dow2IBE4IRKSkvOVCkuwuc+IgElglCJGy19fz+XgshhxO\ngx4hErghDJGWx0EksIrrBBcpu0nPOogEVglMpOGx74E4iARWQSQAAYIQKUlMjt4G4yASWCUI\nkV52iAR+E4RI2eWYHN6KYji0Ay8JQ6Qse0qKCxuWiDQyA2ABoYiUvR2S4wWRwFOCESnLHpPd\nMyKBnwQkUva6HxlpGIiDSGCVkETKf0qBSOAlYYk0Pw4igVVcJ/hacRAJrOI6wdeKg0hgFdcJ\nvlYcRAKruE7wteIgEljFdYKvFQeRwCquE3ytOIgEVnGd4GvFQSSwiusEXysOIoFVXCf4WnEQ\nCaziOsHXioNIYBXXCb5WHEQCq7hO8LXiIBJYxXWCrxUHkcAqrhN8rTiIBFZxneBrxUEksIrr\nBF8rTseb8R/bApjjOsHXiqOKNHqDPIApuE7wteIgEljFdYKvFQeRwCquE3ytOJwjgVVcJ/ha\ncRikA6u4TvC14iASWMV1gq8VB5HAKq4TfK04eARWcZ3gocYBaBFbgiMSOCG2BEckcEJsCY5I\n4ITYEhyRwAmxJTgigRNiS3BEAifEluCIBE6ILcERCZwQW4IjEjghtgRHJHBCbAmOSOCE2BIc\nkcAJsSU4IoETYktwRAInxJbgiAROiC3BEQmcEFuCIxI4IbYERyRwQmwJjkjghNgSHJHACbEl\neALghLUSfKU4k3FQMRdtsX7M6BvWTUojktOQiBR6NLdRDYi+v13FjL5hEalF9P3tKmb0DYtI\nLaLvb1cxo29YRGoRfX+7ihl9wyJSi+j721XM6BsWkVpE39+uYkbfsIjUIvr+dhUz+oZFpBbR\n97ermNE3LCK1iL6/XcWMvmERqUX0/e0qZvQNi0gAwYJIAAIgEoAAiAQgACIBCIBIAAIgEoAA\niAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQggC8i7Y7nt2Li7XzcrR5dudW6zTuv\nX077JDmc7QVQSZLncmK9oGvGc5s6Jb6IlCTJQzHxsN4DBJrRh95KctndnpGwu1gLoXCNVU6s\nFXLdeG5Tp6qFs8htkmR/6+/dPmqRHpLD9c/n2yE5WQuhcM2ux/vEWiHLwGvFcZk6VS2cRW6T\nJKfk9fr6en2NWaQkKXZFl/U+5DXPkrfbxFohy8BrxXGZOlUtnEVucz2ST/ITh3PydGuN5+P1\nmOSUp9y+WKF8tRS9/K/436pIzXfnfbI732efio9rI+JrcqxDX0Puz3Vz7hNrx5jtfszfvx2T\n3aOFOD2pU/zZ2t8+vHX8EelSfOJj8la0xuPtVOKUz3nJV3hK5LugET1bSaRT8vBWvTkWn/FQ\nRH0sJ6W5fpiHogmLT3UoQx6K3dSblZBV4GY/5idrSXWcKRqnL3Wui47JSgfR/oh0/eOYv+7K\nrH7K5blOPt9OJR+St+ESFkZfSaQ8k/en4k/D9ZMdLtnlkI+qXZPsNXvd5R9amuuHue1+8k/1\nVMW5/WF6LIf0LKD043Xy+nHP8gcW/alzC7kOHol0uv7dfLla00jjYvJ29GHzyG5NkbLnfHBp\nl+fvsfhgxZ/T2xj1s43DkPzDnPNjn3zieI9zuDfo3uInVfsxqfeL0nH6UucWchU8Ein/G/l4\n/Wtyb42358dDMXnO/3a+2DyyW1WkKy+Pu7yHG88Lvke0Ebj6Y6TEyXfxbzaPe9R+rNtXPE5f\n6qw4+OCRSPnxen7kfvv0h+qZ1Jf8i5BHm0d2a4uUjzDtVxWp/HPdiJP/aTrZ/Iut9qNFkfpS\nZ5siZbukcKb49A/J/vx8O3m8dvdztrd1ZHesGnwNkaqSlTC2Rbp+zFdV2N0+/2eFulEb/WhR\npL7U2ahID8kpH1iom+Au0mtyeLV2ZFd8sVOHfLEr0jG5XRxUdPuxPtO/Hczfx1VkuX2Yt2Tf\nPEfKz8VOydlWqyqNal+kntTZqEhPSTHgUp0mvh7uDbFPdtaO7I7X04THIrH21yS/HOyKdPX0\nfM2xl0MuVDGEdj0FPNajdhbG0O4f5jFpj9oVuWbrS6S6URv9aFOkntTZqEh5z77dP/3pfvpQ\nHMM/J/bG7F6qMOd84mj5HKn8XMXXN7eD+V3xmYtpG98dlh9mV0wc6ujXvxy2vkSqG7XRjzZF\n6kmdjYp07etdOZlfgXh4uY8HXyx8jVfxvE/2t1Pux137lNwKrw/XjD7cvy86X4+3ii9orxGP\nxRUH8pQf5vk2cd5VcZ7sfYlUN2rdjzZF6kmdDYo0yHNidczOA1bscbBCEB14SFb8/Y4TECl0\nAuhAS9egeQUihU4AHbhb6fpdlyBS6NCBAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBI\nAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgEoAAiAQg\nACIBCIBIAAIgEoAAiAQgACIBCIBIAAIgkmfcHtu4P3We7mrt6XogASJ5xv0BqMWTZZvs6Smv\noXs84/akpLeD+nA1nqDkN3SPZ5TC7JUnJSOS39A9nlE/hPwh//94Pcg7Zfcjvnz+eZ/sYn+i\nboggkmeUIl2SfZY93s6XTrVIx2Ii+mfqhgcieUZ1CJdPJMlTlj0Vs27zn5PDJbscEobwfAOR\nPKMlUmPq9vaY5MPilw08njo0EMkzFJHenh8PDZHKwXG6zTfoEc8oHXkrToQOlTaI5Df0iGeU\njjzlQwwPyf78/NYSyWHVYAA6xjPq75Fe7m/eWudIDDP4CSJ5RuvKhuRq02t5jpRfM/SU7F6z\n7Mxgg3cgkme0rrU73d+85HuoZJeVJ03qhXjgHETyjJs5h8fbu4fr5MtzvgN62Rci5Vc2JA94\n5B2IBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEI\ngEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgACI\nBCAAIgEIgEgAAiASgACIBCAAIgEIgEgAAiASgAD/B7smQECjpwyfAAAAAElFTkSuQmCC",
      "text/plain": [
       "plot without title"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Plot with rainfall indicated\n",
    "x <- weather$Date\n",
    "y <- bento_daily_trim$Ave\n",
    "z <- weather$TemperatureAvgC\n",
    "par(mar = c(5, 4, 4, 4) + 0.3)  # Leave space for z axis\n",
    "plot(x, y, type = \"l\",\n",
    "  xlab = \"Date\",\n",
    "  ylab = \"\",\n",
    "  col = \"red\", lwd = 2)\n",
    "\n",
    "# get rain magnitude (inches)\n",
    "rain_mag <- weather[match(potential_dates, weather[, \"Date\"]), \"PrecipitationSumIn\"]\n",
    "\n",
    "# vary point size by rain magnitude (larger = greater than 0.5 inches of rain)\n",
    "cex.val <- 1 + (rain_mag >= 0.1) - (rain_mag < 0.1)*0.5\n",
    "\n",
    "# add points on plot to show rain events\n",
    "points(potential_dates, bento_daily_trim[match(potential_dates, bento_daily_trim[, 1]), \"Ave\"],\n",
    "  pch = 19, col = \"black\", cex = cex.val)\n",
    "\n",
    "# create the rest of the plot\n",
    "mtext(expression(paste(\"Average hot spring temp. [\",degree,\"C]\")), side=2, line=3, col = \"red\")\n",
    "par(new = TRUE)\n",
    "# plot(x, z, type = \"l\", axes = FALSE, bty = \"n\", xlab = \"\", ylab = \"\",\n",
    "#   col = \"blue\", lwd = 2)\n",
    "# axis(side = 4, at = pretty(range(z)))\n",
    "# mtext(expression(paste(\"Average air temp. [\",degree,\"C]\")), side=4, line=3, col = \"blue\")\n",
    "\n",
    "legend(\"topright\", legend=c(\"Rainfall >= 0.1 inches\", \"Rainfall < 0.1 inches\"), pch = c(19, 19), pt.cex = c(2, 0.5) )\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "From these results, it is clear that precipitation is not responsible for all local minima in average daily hot spring temperature as there are many temperature dips, especially during the summer months, without concurrent rainfall. That said, larger rainfall events may cause major temperature dips, such as the one observed at the end of November and early December that occur around the same time as a ~10 $^{\\circ}$C temperature decrease."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Comparison of climate and hot spring data warrant further study."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "R",
   "language": "R",
   "name": "ir"
  },
  "language_info": {
   "codemirror_mode": "r",
   "file_extension": ".r",
   "mimetype": "text/x-r-source",
   "name": "R",
   "pygments_lexer": "r",
   "version": "3.3.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}