/* -*- c++ -*- */ /* * Copyright 2013, 2018 Free Software Foundation, Inc. * * This file is part of GNU Radio * * SPDX-License-Identifier: GPL-3.0-or-later * */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "ofdm_cyclic_prefixer_impl.h" #include namespace gr { namespace digital { // Do not break backwards compatibility and overload the make function. ofdm_cyclic_prefixer::sptr ofdm_cyclic_prefixer::make(size_t input_size, size_t output_size, int rolloff_len, const std::string& len_tag_key) { int fft_len = input_size; std::vector cp_lengths( 1, static_cast(output_size - input_size)); // Cast to silence compiler :( return gnuradio::make_block_sptr( fft_len, cp_lengths, rolloff_len, len_tag_key); } ofdm_cyclic_prefixer::sptr ofdm_cyclic_prefixer::make(int fft_len, const std::vector& cp_lengths, int rolloff_len, const std::string& len_tag_key) { return gnuradio::make_block_sptr( fft_len, cp_lengths, rolloff_len, len_tag_key); } ofdm_cyclic_prefixer_impl::ofdm_cyclic_prefixer_impl(int fft_len, const std::vector& cp_lengths, int rolloff_len, const std::string& len_tag_key) : gr::tagged_stream_block("ofdm_cyclic_prefixer", gr::io_signature::make(1, 1, fft_len * sizeof(gr_complex)), gr::io_signature::make(1, 1, sizeof(gr_complex)), len_tag_key), d_fft_len(fft_len), d_state(0), d_cp_max(0), d_cp_min(std::numeric_limits::max()), d_rolloff_len(rolloff_len), d_cp_lengths(cp_lengths), d_up_flank((rolloff_len ? rolloff_len - 1 : 0), 0), d_down_flank((rolloff_len ? rolloff_len - 1 : 0), 0), d_delay_line(0, 0), d_len_tag_key(len_tag_key) { // Sanity if (d_cp_lengths.empty()) { throw std::invalid_argument(this->alias() + std::string(": CP lengths vector can not be empty.")); } for (size_t i = 0; i < d_cp_lengths.size(); i++) { if (d_cp_lengths[i] != 0) { break; } if (i == d_cp_lengths.size() - 1) { throw std::invalid_argument( this->alias() + std::string(": Please provide at least one CP which is != 0.")); } } for (const int cp_length : d_cp_lengths) { d_cp_max = std::max(d_cp_max, cp_length); d_cp_min = std::min(d_cp_min, cp_length); } if (d_cp_min < 0) { throw std::invalid_argument(this->alias() + std::string(": The minimum CP allowed is 0.")); } // Give the buffer allocator and scheduler a hint about the ratio between input and // output. set_relative_rate(d_cp_max + d_fft_len); // Flank of length 1 would just be rectangular. if (d_rolloff_len == 1) { d_rolloff_len = 0; GR_LOG_WARN(d_logger, "Set rolloff to 0, because 1 would result in a boxcar function."); } if (d_rolloff_len) { d_delay_line.resize(d_rolloff_len - 1, 0); // More sanity if (d_rolloff_len > d_cp_min) { throw std::invalid_argument( this->alias() + std::string(": Rolloff length must be smaller than any " "of the cyclic prefix lengths.")); } /* The actual flanks are one sample shorter than d_rolloff_len, because the first sample of the up- and down flank is always zero and one, respectively.*/ for (int i = 1; i < d_rolloff_len; i++) { d_up_flank[i - 1] = 0.5 * (1 + cos(M_PI * i / rolloff_len - M_PI)); d_down_flank[i - 1] = 0.5 * (1 + cos(M_PI * (rolloff_len - i) / rolloff_len - M_PI)); } } if (d_len_tag_key.empty()) { // noutput_items is set to be a multiple of the largest possible output size. // It is always OK to return less (in case of the shorter CP). set_output_multiple(d_fft_len + d_cp_max); } else { // Avoid automatic tag propagation and propagate them manually. set_tag_propagation_policy(TPP_DONT); } } ofdm_cyclic_prefixer_impl::~ofdm_cyclic_prefixer_impl() {} int ofdm_cyclic_prefixer_impl::calculate_output_stream_length( const gr_vector_int& ninput_items) { int noutput_items = ninput_items[0] * (d_cp_max + d_fft_len) + (d_len_tag_key.empty() ? 0 : d_delay_line.size()); return noutput_items; } // Operates in two ways: // - When there's a length tag name specified, operates in packet mode. // Here, an entire OFDM frame is processed at once. The final OFDM symbol // is postfixed with the delay line of the pulse shape. // We manually propagate tags. // - Otherwise, we're in freewheeling mode. Process as many OFDM symbols as // are space for in the output buffer. The delay line is never flushed. // Tags are propagated by the scheduler. int ofdm_cyclic_prefixer_impl::work(int noutput_items, gr_vector_int& ninput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items) { gr_complex* in = (gr_complex*)input_items[0]; gr_complex* out = (gr_complex*)output_items[0]; int symbols_to_read = 0; // 1) Figure out if we're in freewheeling or packet mode. if (!d_len_tag_key.empty()) { symbols_to_read = ninput_items[0]; } else { symbols_to_read = std::min(noutput_items / (int)(d_fft_len + d_cp_max), ninput_items[0]); } noutput_items = 0; // 2) Do the cyclic prefixing and, optionally, the pulse shaping. for (int sym_idx = 0; sym_idx < symbols_to_read; sym_idx++) { memcpy(static_cast(out + d_cp_lengths[d_state]), static_cast(in), d_fft_len * sizeof(gr_complex)); memcpy(static_cast(out), static_cast(in + d_fft_len - d_cp_lengths[d_state]), d_cp_lengths[d_state] * sizeof(gr_complex)); if (d_rolloff_len) { for (int i = 0; i < d_rolloff_len - 1; i++) { out[i] = out[i] * d_up_flank[i] + d_delay_line[i]; /* This is basically a cyclic suffix, but completely shifted into the next symbol. The data rate does not change. */ d_delay_line[i] = in[i] * d_down_flank[i]; } } in += d_fft_len; out += d_fft_len + d_cp_lengths[d_state]; // Raise the number of noutput_items depending on how long the current output was. noutput_items += d_fft_len + d_cp_lengths[d_state]; // Propagate tags. unsigned last_state = d_state > 0 ? d_state - 1 : d_cp_lengths.size() - 1; std::vector tags; get_tags_in_range( tags, 0, nitems_read(0) + sym_idx, nitems_read(0) + sym_idx + 1); for (unsigned i = 0; i < tags.size(); i++) { tags[i].offset = ((tags[i].offset - nitems_read(0)) * (d_fft_len + d_cp_lengths[last_state])) + nitems_written(0); add_item_tag(0, tags[i].offset, tags[i].key, tags[i].value); } // Finally switch to next state. ++d_state; d_state %= d_cp_lengths.size(); } /* 3) If we're in packet mode: - flush the delay line, if applicable */ if (!d_len_tag_key.empty()) { if (d_rolloff_len) { std::memcpy(static_cast(out), static_cast(d_delay_line.data()), sizeof(gr_complex) * d_delay_line.size()); d_delay_line.assign(d_delay_line.size(), 0); // Make last symbol a bit longer. noutput_items += d_delay_line.size(); } } else { consume_each(symbols_to_read); } return noutput_items; } } /* namespace digital */ } /* namespace gr */