{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import torch\n", "from torch import nn, optim\n", "from matplotlib import pyplot as plt\n", "from res.plot_lib import set_default" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Set style (needs to be in a new cell)\n", "set_default(figsize=(16, 8))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Training set\n", "m = 20 # nb of training pairs\n", "x = (torch.rand(m) - 0.5) * 12 # inputs, sampled from -5 to +5\n", "y = x * torch.sin(x) # targets" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# View training points\n", "plt.plot(x.numpy(), y.numpy(), 'o')\n", "plt.axis('equal')\n", "plt.ylim([-10, 5])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Define network architecture (try different non-linearities)\n", "\n", "non_linear = nn.Tanh\n", "non_linear = nn.ReLU\n", "\n", "net = nn.Sequential(\n", " nn.Dropout(p=0.05),\n", " nn.Linear(1, 20),\n", " non_linear(),\n", " nn.Dropout(p=0.05),\n", " nn.Linear(20, 20),\n", " non_linear(),\n", " nn.Linear(20, 1)\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Training objective and optimiser\n", "criterion = nn.MSELoss()\n", "optimiser = optim.SGD(net.parameters(), lr=0.01, weight_decay=0.00001)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Training loop\n", "for epoch in range(1000):\n", " y_hat = net(x.view(-1, 1))\n", " loss = criterion(y_hat, y.view(-1, 1))\n", " optimiser.zero_grad()\n", " loss.backward()\n", " optimiser.step()\n", "# print(loss.item())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Define a denser input range\n", "xx = torch.linspace(-15, 15, 1000)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Evaluate net over denser input (try both eval() and train() modes)\n", "\n", "net.eval()\n", "# net.train()\n", "\n", "with torch.no_grad():\n", " plt.plot(xx.numpy(), net(xx.view(-1, 1)).squeeze().numpy(), 'C1')\n", "plt.plot(x.numpy(), y.numpy(), 'oC0')\n", "plt.axis('equal')\n", "plt.ylim([-10, 5])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Multiple (100) runs for denser input\n", "net.train()\n", "y_hat = list()\n", "with torch.no_grad():\n", " for t in range(100):\n", " y_hat.append(net(xx.view(-1, 1)).squeeze())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Evaluate mean and std over denser input\n", "y_hat = torch.stack(y_hat)\n", "mean = y_hat.mean(0)\n", "std = y_hat.std(0)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Visualise mean and mean ± std -> confidence range\n", "plt.plot(xx.numpy(), mean.numpy(), 'C1')\n", "plt.fill_between(xx.numpy(), (mean + std).numpy(), (mean - std).numpy(), color='C2')\n", "plt.plot(x.numpy(), y.numpy(), 'oC0')\n", "plt.axis('equal')\n", "plt.ylim([-10, 5])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [conda env:dl-minicourse] *", "language": "python", "name": "conda-env-dl-minicourse-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 4 }