
Vertex AI SDK for
ABAP
A quick hands-on guide

Edition 1.0

For more information visit cloud.google.com

Table of content

Iconography..3
Chapter 1: Introduction..4
Chapter 2: Pricing.. 6
Chapter 3: Development Flow.. 7
Chapter 4: Overview: HAZMAT Pro (HPro) - Empowering Warehouse Safety with AI............................9
Chapter 5: Prepare GCP Project and SAP system... 12
Chapter 6: Clone the HPro repository using ABAPGIT.. 13
Chapter 7: ABAP SDK Configuration.. 17
Chapter 8: Prepare Enterprise Data.. 25
Chapter 9: Importance of Data Ingestion Pipeline and Vector Index... 29
Chapter 10: Intelligent Knowledge Chunking.. 31
Chapter 11: Transforming Knowledge into Searchable Vectors... 34
Chapter 12: Create and Update Vector Index...36
Chapter 13: RAG Serving workflow Overview...42
Chapter 14: Configure Vector Search in SAP... 45
Chapter 15: Use Stremlit to to build the UI.. 51
Chapter 16: Under the Hood of HPro: Prompt Processing and Response Generation.........................55
Chapter 17: Conclusion..57
Glossary.. 58

For more information visit cloud.google.com

Iconography
Please note the below symbol while reading the guide:

Read-Only: This section provides information for understanding. No action required.

Action: Perform the steps described in this section on your system.

Observation: Pay close attention to the details highlighted in this section.

For more information visit cloud.google.com

Chapter 1: Introduction

This chapter introduces the Vertex AI SDK for ABAP Handbook, a guide on how to
integrate Vertex AI into SAP ABAP environments, with a focus on creating a generative AI
application using Retrieval Augmented Generation (RAG).

Welcome to the Vertex AI SDK for ABAP Handbook! This comprehensive guide is designed to
empower SAP customers like you to seamlessly integrate the power of Vertex AI into your ABAP
environment, regardless of your chosen orchestration flavor. Whether you're on-premises, in the cloud,
or leveraging a hybrid approach, this handbook will provide you with the knowledge and tools to unlock
the full potential of AI within your SAP landscape.

Crafting a Vertex AI Application: A Step-by-Step Guide

The goal is to equip you with the expertise to harness Vertex AI's capabilities for a wide range of SAP use
cases. First focus will be on helping you build a RAG-capable generative AI application all using ABAP.

If you're familiar with RAG (Retrieval Augmented Generation), you can skip ahead to Chapter 4 and start
building the HAZMAT prototype.

RAG-Enabled Architecture: The Key Components

A typical RAG (Retrieval Augmented Generation) architecture consists of three interconnected
subsystems. Let's break them down:

● Data Ingestion Subsystem: This component handles the gathering and preparation of your
data, ensuring it's ready for use by the AI model.

● Serving Subsystem: This subsystem manages the deployment and serving of your AI model,
allowing it to interact with users and process their requests.

● Quality Evaluation Subsystem: This vital component continuously monitors and assesses the
performance of your AI model, helping you identify areas for improvement and maintain optimal
results.

For more information visit cloud.google.com

Dive Deeper: To gain a comprehensive understanding of these subsystems and their roles within a RAG
architecture, you can explore this informative link: Infrastructure for a RAG-capable generative AI
application using Vertex AI

Before we dive deep into creating an application, let's quickly understand the developer workflow for
building RAG-enabled applications.

For more information visit cloud.google.com

https://cloud.google.com/architecture/rag-capable-gen-ai-app-using-vertex-ai
https://cloud.google.com/architecture/rag-capable-gen-ai-app-using-vertex-ai

Chapter 2: Pricing
This chapter outlines the pricing details for utilizing Gemini API and Vertex AI, clarifying
that while the Vertex AI SDK for ABAP is free, users will incur costs for using Google
Cloud services like Gemini API (which offers both free and paid tiers with regional
variations) and Vertex AI (which operates on a pay-as-you-go model).

The Vertex AI SDK for ABAP is offered at no cost. However, you are responsible for the charges that
result from your use of Google Cloud services, such as Gemini API or Vertex AI API.

For quick prototyping with Gemini, you use the Gemini API and Google AI Studio. When you access the
Gemini API through Google AI Studio, the Gemini API has both free and paid pricing tiers. However, the
free tier of Gemini API is not available in all regions. For information about the regions where you can
access the free and paid tiers of Gemini API, see Available regions for Google AI Studio and Gemini API.
For information about other restrictions, see Use restrictions. For information about pricing and rate
limits, see Pricing models.

Vertex AI pricing follows a pay-as-you-go model, which means that you're charged based on the
resources you consume. For information about pricing, see Vertex AI pricing.

For information about how Gemini with Vertex AI is different from Gemini with Google AI Studio, see
Google AI versus Vertex AI differences.

For more information visit cloud.google.com

https://cloud.google.com/solutions/sap/docs/abap-sdk/vertex-ai-sdk/latest/quick-prototyping-with-gemini
https://ai.google.dev/gemini-api/docs/available-regions
https://ai.google.dev/gemini-api/terms#use-restrictions
https://ai.google.dev/pricing
https://cloud.google.com/vertex-ai/generative-ai/pricing
https://cloud.google.com/vertex-ai/generative-ai/docs/migrate/migrate-google-ai#google-ai

Chapter 3: Development Flow
This chapter explains how the Vertex AI SDK for ABAP simplifies the integration of Vertex
AI into SAP applications, focusing on an opinionated development flow for building Data
Ingestion Pipelines and RAG Serving Workflows using ABAP.

The Vertex AI SDK for ABAP is a powerful tool that simplifies integrating Google's Vertex AI with SAP
environments using ABAP programming. It streamlines the development of AI-powered enterprise
solutions by providing ABAP classes, methods, and AI-centric data types for easy interaction with Vertex
AI features. This SDK enables developers to efficiently prepare inputs, interpret outputs, and configure
parameters, accelerating the creation of AI-driven applications within the SAP ecosystem.

Using the Vertex AI SDK, developers can follow an opinionated development flow to create Data
Ingestion Pipelines and RAG Serving Workflows by using ABAP as the key orchestrator, simplifying the
integration of AI capabilities into SAP applications.

Key components of the flow:

For more information visit cloud.google.com

1. Data Ingestion Pipeline:
○ Create Knowledge Chunks: Process enterprise data to generate knowledge chunks.
○ Embedding Creation: Convert knowledge chunks into numerical representations

(embeddings).
○ Store Embeddings: Store embeddings in Google Cloud Storage (GCS) or BigQuery

(BQ) or Send to PubSub(PS).
○ Create & Update Vector Index: Build and maintain a vector index for efficient similarity

search.
2. RAG Serving Workflow:

○ Perform Vector Search: Retrieve relevant information from the vector index based on
user queries.

○ Function Calling as RAG: Use external functions to augment the RAG's capabilities.
○ Engineered Prompt with RAG: Craft effective prompts that incorporate retrieved

information for accurate and contextually relevant responses.
○ Reliable Answer: Generate a final answer based on the processed information.

For more information visit cloud.google.com

Chapter 4: Overview: HAZMAT
Pro (HPro) - Empowering
Warehouse Safety with AI

This chapter introduces HPro, an AI-powered prototype for enhancing warehouse
safety, and outlines how to build it using Vertex AI SDK for ABAP.

Disclaimer: This is a prototype application primarily designed to guide ABAP developers in building
end-to-end applications using the Vertex AI SDK. Its functionality may be limited and not intended for
production use.

In today's fast-paced warehouse environments, ensuring the safe handling and management of
hazardous materials (HAZMAT) is paramount. HPro, an AI-powered solution, revolutionizes HAZMAT
management by providing real-time, actionable insights to warehouse operators and supervisors.

Key Features and Benefits:

● Natural Language Interface: Interact with HPro using simple, everyday language to get instant
answers about HAZMAT handling, storage, and emergency procedures.

● Real-Time Information: Access up-to-date safety data sheets (SDS) and regulatory
information, ensuring compliance and accuracy.

● AI-Powered Pictogram Recognition: Instantly identify and understand hazard symbols using
your device's camera.

● Inventory Integration: Seamlessly connect with your existing inventory management system
for real-time stock visibility and material-specific instructions.

● Emergency Response Guidance: Receive clear, step-by-step instructions for handling
HAZMAT incidents and emergencies.

● Risk Assessment and Mitigation: Proactively identify and mitigate potential risks using
AI-powered analysis of SDS and operational data.

● Training and Education: Enhance HAZMAT knowledge through personalized learning paths,
interactive quizzes, and simulations.

Vertex AI SDK: Your Development Toolkit

For more information visit cloud.google.com

We'll leverage the powerful Vertex AI SDK to bring HPro to life. This toolkit provides a comprehensive
suite of tools and APIs for building, deploying, and managing machine learning models on Google Cloud.

Architecture

The following diagram shows a reference architecture for the application:

Component Subsystem Details

1 SAP ERP SAP ERP system such as S/4HANA, which uses Vertex
AI SDK to develop Gemini-powered business
applications.

2 HTTP Service
(SICF)

A HTTP Service which will take the request for any
frontend and use Vertex AI SDK for ABAP to integrate
with Google Vertex AI.
Note: Developers can explore alternative integration
methods, such as using an OData service, but for
simplicity this guide focuses on the ABAP service
approach.

3 Gemini Gemini Flash will be used to process the query and
context.

4 Frontend A lightweight Streamlit application will be deployed on
Cloud run to interact with ABAP HTTP service. This will
act as an UI for Warehouse workers.
Note: Developers can explore alternative UI, such as a
Fiori app using an OData service.

For more information visit cloud.google.com

The following shows the overall flow across the components.

Next Steps: Let's Build!

Ready to embark on this exciting journey? In the following sections, we'll guide you through the
step-by-step process of developing your HPro prototype using Vertex AI SDK. From setting up your
development environment to deploying your model, you'll gain hands-on experience with the latest AI
technologies.

Let's get started!

For more information visit cloud.google.com

Chapter 5: Prepare GCP Project
and SAP system

This chapter outlines the prerequisites for starting the HAZMAT project, including setting
up a Google Cloud project and an SAP sandbox system.

Before you start, make sure you have the following:
● A Google Cloud project with billing enabled or Sign up for a 90-Day Free Trial of Google

Cloud Platform.
● In the Google Cloud Console, on the project selector page, select or create a Google Cloud

project (For example: abap-sdk-poc).
● Please make a note of the project id which is also available in Google Cloud Console, we will use

it in future steps.

● A SAP sandbox system:
○ Recommended: If you don't have one, follow the "Install ABAP Platform Trial on Google

Cloud Platform and Install ABAP SDK" codelab to set up a sandbox.
○ Existing SAP System: If you already have one, consult the official documentation on

setting up the ABAP SDK.

Please note: The instructions in the guide assume you're using the ABAP Platform Trial (A4H) for
development. If you're using a different SAP system, the overall process remains similar, though some
specific steps or system configurations might vary.

For more information visit cloud.google.com

https://cloud.google.com/free
https://console.cloud.google.com/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://console.cloud.google.com/
https://medium.com/google-cloud/install-abap-platform-trial-2022-on-google-cloud-platform-and-install-vertex-ai-sdk-for-abap-d0e4e436505b
https://medium.com/google-cloud/install-abap-platform-trial-2022-on-google-cloud-platform-and-install-vertex-ai-sdk-for-abap-d0e4e436505b
https://cloud.google.com/solutions/sap/docs/abap-sdk/on-premises-or-any-cloud/latest/install-config

Chapter 6: Clone the HPro
repository using ABAPGIT

This chapter provides instructions on how to clone the HPro repository using ABAPGIT
and verify the successful creation of the required package.

Before you begin, please ensure that ABAPGIT is installed and SSL setup is completed.
Note: If you are using the ABAP Platform Trial (A4H), ABAPGIT will already be installed, but you would still
require to complete the SSL setup.

Step1: Execute the ABAP program ZABAPGIT_STANDALONE using transaction SE38 to clone the
demo-hpro repository.

Click on “New Online”

Enter the following values and click “Create Online Repo”

● Git Repository URL: https://github.com/google-cloud-abap/demo-hpro.git
● Package: ZGOOG_VERTEXAI_HAZMAT_DEMO
● Display Name: Demo: Vertex AI powered Hazmat application

For more information visit cloud.google.com

https://docs.abapgit.org/user-guide/setup/ssl-setup.html#sap-trust-manager
https://github.com/google-cloud-abap/demo-hpro
https://github.com/google-cloud-abap/demo-hpro.git

Once the repo will be created, please click on “Pull”

Click “Continue”

For more information visit cloud.google.com

Create and select a Transport and activate the objects.

For more information visit cloud.google.com

Step2: Open transaction SE80 (Object Navigator) and check if the package
ZGOOG_VERTEXAI_HAZMAT_DEMO has been created successfully.

With the HAZMAT repository cloned and the ZGOOG_VERTEXAI_HAZMAT_DEMO package verified, the
necessary components are in place to proceed with the next steps.

For more information visit cloud.google.com

Chapter 7: ABAP SDK
Configuration

This chapter provides step-by-step instructions on configuring the ABAP SDK for the
HAZMAT project, including creating service accounts, assigning roles, configuring client
keys, RFC destinations, service mapping, and Vertex AI SDK Model Generation
Parameters.

Please proceed with the below steps once you have installed ABAP SDK and configured the trust
certificates.

Step1: From the Cloud Console, click Activate Cloud Shell on the top right corner:

Step2: Create Service Account
Note: If you had followed the "Install ABAP Platform Trial on Google Cloud Platform and Install ABAP
SDK" codelab to set up the SAP, then you do not need to perform this step as the service account would
already exist.

Run the following command to create a service account. Please change the project name if it's different
from abap-sdk-poc.

gcloud config set project abap-sdk-poc

gcloud iam service-accounts create abap-sdk-dev \

 --description="ABAP SDK Dev Account" \

 --display-name="ABAP SDK Dev Account"

Step3: Assign the required IAM role to the service account
Follow the below steps to add the IAM role to the service account

● Navigate to IAM & Admin in the Google Cloud Console and click on “Grant Access”

For more information visit cloud.google.com

https://medium.com/google-cloud/install-abap-platform-trial-2022-on-google-cloud-platform-and-install-vertex-ai-sdk-for-abap-d0e4e436505b
https://medium.com/google-cloud/install-abap-platform-trial-2022-on-google-cloud-platform-and-install-vertex-ai-sdk-for-abap-d0e4e436505b
https://console.cloud.google.com/iam-admin/iam

Assign the Vertex AI User, Storage Object Admin and Service Account Token Creator role to service
account abap-sdk-dev.

For more information visit cloud.google.com

https://cloud.google.com/vertex-ai/docs/general/access-control#aiplatform.user
https://cloud.google.com/storage/docs/access-control/iam-roles
https://cloud.google.com/iam/docs/service-account-permissions#token-creator-role

Step4: Configure client key

Log in to the SAP Trial A4H system with the user name DEVELOPER and password ABAPtr2022#00 and
follow these steps to configure the client key:

1. In the SAP GUI, enter transaction code SPRO.
2. Click SAP Reference IMG.
3. Click ABAP SDK for Google Cloud > Basic Settings > Configure Client Key.
4. Click New Entries.
5. Enter values for the following fields:

Field Values

For more information visit cloud.google.com

Google Cloud Key Name DEMO_AIPLATFORM

Google Cloud Service Account Name abap-sdk-dev@abap-sdk-poc.iam.gserviceaccount.com

Google Cloud Scope https://www.googleapis.com/auth/cloud-platform

Google Cloud Project Identifier abap-sdk-poc

Authorization Class /GOOG/CL_AUTH_GOOGLE.

* Leave the other fields blank

Note: The authentication class will and configuration will change if your SAP system is not deployed on
Google Cloud. Please refer to this guide for different authentication options.

Step5: Create RFC destination

Create RFC destination for IAM credential and Vertex AI API using the transaction code SM59. If needed,
please refer here for detailed steps on creating an RFC destination.

RFC destination name Target host (API endpoint) Notes

ZGOOG_IAMCREDENTIALS ● Host:
iamcredentials.googleapis.com

● Path: Prefix: /v1/
● Port: 443
● SSL: Active

This RFC destination
targets the IAM API.

ZGOOG_VERTEX_AI ● Host:
us-central1-aiplatform.googleapis
.com

● Port: 443
● SSL: ACTIVE

This RFC destination
targets Vertex AI API
us-central1 endpoint.

For more information visit cloud.google.com

https://cloud.google.com/solutions/sap/docs/abap-sdk/on-premises-or-any-cloud/latest/authentication
https://cloud.google.com/solutions/sap/docs/abap-sdk/latest/install-config#create_rfc_destinations

● Under the Technical Settings tab, enter the following details for the ZGOOG_IAMCREDENTIALS
destination.

● Under the Technical Settings tab, enter the following details for the ZGOOG_VERTEX_AI
destination.

● For the SSL Certificate field, make sure that the option DEFAULT SSL Client (Standard) is
selected for both the RFC destinations.

For more information visit cloud.google.com

Step6: Configure service mapping
To configure the service mapping table for IAM API, and Vertex AI API, perform the following steps:

1. In the SAP GUI, enter transaction code SPRO.
2. Click SAP Reference IMG.
3. Click ABAP SDK for Google Cloud > Basic Settings > Configure Service Mapping.
4. Click New Entries for IAM Credential and Vertex AI API and update the RFC destinations as

shown below.

Field Record 1 (IAM Credential) Record 2 (Vertex AI)

Google Cloud Key Name DEMO_AIPLATFORM DEMO_AIPLATFORM

Google Service Name iamcredentials:v1 aiplatform:v1

RFC Destination ZGOOG_IAMCREDENTIALS ZGOOG_VERTEX_AI

Step7: Configure Vertex AI SDK Model Generation Parameters
To configure the generation parameter for models related to Text embedding, Multimodal
embeddings and Gemini-flash, perform the following

1. In the SAP GUI, enter transaction code SPRO.
2. Click SAP Reference IMG.
3. Click ABAP SDK for Google Cloud > Basic Settings > Vertex AI SDK: Configure Model

Generation Parameters.
4. Click New Entries for model configurations and update the entries as shown below.

Field Record 1 (Text
Embeddings)

Record 2 (Multi
Modal
embeddings)

Record 3
(Gemini-Flash)

Record 4
(Gemini-Pro-Vision)

Model Key Text-Embeddings Multimodal-Embeddin
g

Gemini-Flash Gemini-Pro-Vision

Model ID text-embedding-004 multimodalembeddin
g@001

gemini-1.5-flash-001 gemini-1.0-pro-vision-0
01

For more information visit cloud.google.com

Google Cloud
Key Name

DEMO_AIPLATFORM DEMO_AIPLATFORM DEMO_AIPLATFORM DEMO_AIPLATFORM

Google Cloud
Region
Location ID

us-central1 us-central1 us-central1 us-central1

Publisher ID
for LLM

google google google google

* Leave blank for remaining attributes

Step8: Create a SICF node for HPro service
To create a SICF node and configure the handler class, perform the following

1. In the SAP GUI, enter transaction code SICF and click Execute(F8).
2. Goto default_host > SAP > bc. Select bc and click on the button ‘Create Host/Service’ and

create service with name ‘hazmat_service’

3. Configure the Handler class as ZCL_HAZMAT_SERVICE_HANDLER

For more information visit cloud.google.com

For more information visit cloud.google.com

Chapter 8: Prepare Enterprise
Data

This chapter guides you through preparing the necessary enterprise data for the
HAZMAT Pro prototype, including setting up unstructured data in Google Cloud Storage
and loading sample product information into your SAP system.

Data Preparation: Unstructured Data for Simulation

For HAZMAT Pro we will be using the following unstructured data to simulate enterprise

● A Safety Data Sheet (SDS) is a document that provides detailed information about the hazards
of a chemical and how to handle it safely.

● A Hazard Pictogram is a graphical symbol that provides a quick visual warning about the
potential hazards of a chemical or substance.

● A Warehouse Safety Guide(WSG) is a document that outlines the procedures and best practices
for maintaining a safe working environment in a warehouse.

Run the following command in the Google Cloud Shell to set up the data requirement.

From the Cloud Console, click Activate Cloud Shell on the top right corner:

Ensure that the command is executed with a unique id e.g.: A 2 digit unique number which will be
used to name the bucket.

$ wget

https://raw.githubusercontent.com/google-cloud-abap/demo-hpro/refs/heads/main/hpro-

data/setup-scripts/setup-data-files.sh

$ chmod 755 setup-data-files.sh

$./setup-data-files.sh <project_id>

https://github.com/google-cloud-abap/demo-hpro.git <unique_id> us-central1

For more information visit cloud.google.com

https://en.wikipedia.org/wiki/Safety_data_sheet
https://en.wikipedia.org/wiki/GHS_hazard_pictograms
https://safetyculture.com/topics/warehouse-safety/10-warehouse-safety-rules/
https://cloud.google.com/shell/docs

Example command with project id as abap-sdk-poc unique id as a01

./setup-data-files.sh abap-sdk-poc

https://github.com/google-cloud-abap/demo-hpro.git a01 us-central1

The script will perform these actions:

1. Clone the GitHub repository: Creates a local copy of the specified repository on your

machine.

2. Create a unique bucket: Generates a Google Cloud Storage bucket named

hazmat-data-files-<unique-id>, where you provide the <unique-id> when running the

script.

3. Upload data to the bucket: Copies the contents of specific folders from the cloned repository

into corresponding folders within the newly created bucket.

Here is a quick description of the bucket contents.

Folder name What do they have?

hazmat-sds Safety Data Sheets (SDS) for various hazardous materials
(PDF format)

hazmat-wsg Warehouse Safety Guide (PDF format)

hazmat-pictogram Collection of Hazard Pictogram images

hazmat-pictogram-descriptions Enterprise description for Pictograms

hazmat-prod Sample material data in CSV format

hazmat-sds-chunks Safety Data Sheets (SDS) knowledge chunks

hazmat-wsg-chunks Warehouse Safety Guide knowledge chunks

hazmat-sds-embeddings Pre-computed embeddings for SDS knowledge chunks

hazmat-wsg-embeddings Pre-computed embeddings for the Warehouse Safety Guide

hazmat-pictogram-embeddings Pre-computed embeddings for Hazard Pictograms

For more information visit cloud.google.com

hazmat-prod-embeddings Pre-computed embeddings for product data

hazmat-prompts Pre-created prompts repository

Data Preparation: Adding Product Information to SAP

The SAP sandbox environment lacks the necessary hazardous material data for our purposes. To
simulate integration with SAP and demonstrate real-time inventory retrieval using Gemini's functional
calling feature, we'll load sample material data into the ZHAZMAT_PRODUCTS table, which is already
present within the ZGOOG_VERTEXAI_HAZMAT_DEMO package.

Follow these steps:

Step1: Download Sample Data: Obtain the product.csv file from the designated GitHub folder
hazmat-prod and save it to your desktop.

Step2: Load Data into SAP: Execute the ABAP program ZR_HAZMAT_LOAD_PRODUCT_DATA using
transaction SE38. Select the downloaded product.csv file to initiate the data loading process.

For more information visit cloud.google.com

https://github.com/google-cloud-abap/demo-hpro/tree/main/hpro-data/data-files/hazmat-prod

Step3: Verify Data Load: Access the ZHAZMAT_PRODUCTS table using transaction SE16. Confirm that the
sample product records have been successfully loaded.

For more information visit cloud.google.com

Chapter 9: Importance of Data
Ingestion Pipeline and Vector
Index

This chapter emphasizes the importance of data ingestion pipelines and knowledge
chunks, even with large language models, highlighting their role in cost efficiency,
relevance, customization, and data freshness.

Let’s quickly talk about the Importance of Data Ingestion Pipelines & Knowledge Chunks, even with
Large Context Models.

While powerful models like Gemini 1.5 Pro with their long context window offer the tempting allure of
bypassing RAG based solutions entirely - providing a rapid path to harnessing LLM potential -
establishing a dedicated data ingestion pipeline and structuring your data into knowledge chunks
remains essential for several key reasons:

1. Cost Efficiency:

● Processing large volumes of data directly through a model like Gemini can be computationally
expensive.

● A data ingestion pipeline preprocesses and optimizes your data, reducing the amount of
information the model needs to handle, leading to significant cost savings.

2. Relevance and Performance:

● Enterprise (unstructured) data is often vast and contains a lot of irrelevant information for
specific queries.

● A pipeline can filter, clean, and structure your data, ensuring only relevant knowledge chunks are
presented to the model, improving response relevance and performance.

3. Customization and Control:

● A pipeline lets you tailor data processing to your specific use case, applying domain-specific
transformations and enriching data with metadata.

For more information visit cloud.google.com

https://cloud.google.com/vertex-ai/generative-ai/docs/long-context

● This granularity allows you to optimize the model's output for your specific requirements, which
is impossible when feeding raw data directly into a large model.

4. Data Freshness and Updates:

● An ingestion pipeline enables you to keep your knowledge base up-to-date by incorporating
new data and updates efficiently.

● This ensures that your AI system remains relevant and provides accurate responses based on
the latest information.

What are Knowledge Chunks?

● Knowledge chunks are smaller, semantically meaningful units of information extracted from your
enterprise data.

● These chunks can be paragraphs, sentences, or even phrases, depending on the nature of your
data and use case.

● By dividing data into chunks, you enable the model to focus on relevant information and avoid
processing the entire dataset for each query.

● Each chunk is then converted into a numerical representation called an embedding using
advanced language models. These embeddings capture the semantic meaning of the text,
allowing for efficient comparison and retrieval based on similarity.

● These embeddings are then organized into a vector index, a specialized data structure
optimized for similarity search. This enables rapid retrieval of the most relevant knowledge
chunks given a user query, significantly enhancing the performance and responsiveness of your
AI system.

Best Practices for Data Ingestion Pipelines (Cheatsheet):

1. Clean & Prep Data: Remove noise, standardize formats, and fix errors.
2. Transform & Enrich: Extract key info, add metadata for context.
3. Chunk Strategically: Divide data into meaningful units (paragraphs, sentences).
4. Manage Metadata: Track source, date, etc., for better search & filtering.
5. Store & Index: Use suitable storage & indexing for quick retrieval.
6. Monitor & Maintain: Regularly check data quality & pipeline health.

Conclusion:

Investing in a Data Ingestion Pipeline and creating Knowledge Chunks provides significant benefits in
terms of cost efficiency, relevance, customization, and maintainability, even when using powerful large
language models. The Vertex AI SDK for ABAP further empowers developers to build ABAP-centric
components that contribute to the enterprise data pipeline, efficiently handling both structured and
unstructured SAP-specific data. By following best practices, you can create a robust pipeline that
maximizes the value of your enterprise data and enables your AI systems to deliver accurate and
insightful responses.

For more information visit cloud.google.com

Chapter 10: Intelligent
Knowledge Chunking

This chapter explains how to create knowledge chunks from enterprise documents
using Gemini's capabilities and the Vertex AI SDK, simplifying the document chunking
process for developers.

This diagram illustrates the flow of data in a Retrieval Augmented Generation (RAG) system. Information
is ingested, chunked, embedded, and stored for retrieval to enhance LLM responses.

This chapter focuses on knowledge chunking techniques for enterprise documents used by the HPro
application.

There are several ways to create knowledge chunks from enterprise documents like PDFs. For example,
you can use Python libraries like PyMuPDF, Langchain, or Tiktoken to extract text and split it into
manageable chunks. Alternatively, you can leverage Google Cloud Document AI to automatically
process and analyze the documents, generating structured data and identifying key entities and
concepts within the text.

Given that the Safety Data Sheets (SDSs) will comprise sixteen sections, and the formatting of these
sections will vary across different manufacturers, this prototype leverages Gemini's capabilities to
efficiently generate knowledge chunks for SDS’s. You can refer to the
ZCL_HAZMAT_GCS_DATA_INGESTER class and the SPLIT_WSG_IN_CHUNKS method, where we craft a
specific prompt to instruct Gemini to split the SDS document into sections and return a well-structured
JSON array.

For more information visit cloud.google.com

This prompt includes:

● Clear instructions: Gemini is explicitly told to identify all section headings, match them to a
predefined list, extract the content of each matched section, handle any unmatched sections,
and present the extracted information in a structured format sorted by section ID.

● Predefined section headings: A list of possible section headings (with corresponding IDs) is
provided to guide Gemini's extraction process.

● Desired output format: The prompt specifies that the results should be in JSON format, with a
specific structure including the chemical name and an array of section details (ID, header, and
content).

This approach demonstrates how we're using Gemini's powerful language understanding and
generation capabilities to automate the knowledge chunking process within our prototype.

Furthermore, the SDK simplifies the process for developers by providing methods like SET_FILE_DATA,
allowing them to directly point to files stored in cloud storage. The SDK then handles the transmission of
the file to Gemini along with the splitting instructions.

…->set_file_data(iv_mime_type = 'application/pdf' iv_file_uri = iv_file_gcs_uri)

Https ABAP

This streamlined approach significantly reduces the complexity of integrating document chunking into
applications.

Example code for splitting using Gemini:

. . .
lv_instruction = 'You will receive a document containing sections with headings. ' &&​
 'These sections correspond to a' &&​
 ' predefined list of possible section headings (Section ID: Section Header):' &&​
 '"1": "Identification"' &&​
 '"2": "Hazard identification"' &&​
 '"3": "Composition / information on ingredients"' &&​
 '"4": "First-aid measures"' &&​
 '"5": "Fire-fighting measures"' &&​
 '"6": "Accidental release measures"' &&​
 '"7": "Handling and storage"' &&​
 '"8": "Exposure controls / personal protection"' &&​
 '"9": "Physical and chemical properties"' &&​
 '"10": "Stability and reactivity"' &&​
 '"11": "Toxicological information"' &&​
 '"12": "Ecological information"' &&​
 '"13": "Disposal considerations"' &&​
 '"14": "Transport information"' &&​
 '"15": "Regulatory information"' &&​
 '"16": "Other information"' &&​

For more information visit cloud.google.com

 'task is to:' &&​
 'all section headings within the document.' &&​
 'each identified heading to the predefined list.' &&​
 'the content within each matched section.' &&​
 'any sections not present in the predefined list.' &&​
 'a structured representation of the extracted information.' &&​
 'the result sorted by section id.'.​

. . .​

lv_prompt = 'Analyze the following document and extract section-specific content:' &&​
 'Output the results in JSON format with the following structure:' &&​
 'JSON' &&​
 '{' &&​
 '"CHEMICAL_NAME": "[Name of the chemical extracted from the document]",' &&​
 '"SECTION_DETAILS": [' &&​
 '{' &&​
 '"SECTION_ID": "[ID of the section from the predefined list]",' &&​
 '"SECTION_HEADER": "[Matched section header from the predefined list]",' &&​
 '"SECTION_CONTENT": "[Extracted content from the section, If the document ' &&​
 ' has more than 8 pages, limit this section length to maximum of 75 tokens]"' &&​
 '},' &&​
 '// ... (Repeat for each extracted section)' &&​
 ']' &&​
 '}' &&​
 'no format or pretty print the json data'.​

DATA(lv_response) = CONV string(mo_model->clear_file_data(​
)->set_file_data(iv_mime_type = 'application/pdf'​
 iv_file_uri = iv_file_gcs_uri​
)->generate_content(lv_prompt​
)->get_text()).

. . .

A similar approach can be used to create knowledge chunks for other Enterprise documents like the
Warehouse Safety Guide. You can refer to the ZCL_HPRO_INGEST_DOCUMENTS class and the
SPLIT_WSG_IN_CHUNKS method.

For more information visit cloud.google.com

Chapter 11: Transforming
Knowledge into Searchable
Vectors

This chapter explains how to transform knowledge chunks into searchable numerical
representations (embeddings) for both text and images using the Vertex AI SDK for
ABAP, which simplifies the integration of Vertex AI and offers flexibility in storing the
embeddings.

After breaking down your knowledge base into manageable chunks, the next step is to make this
information easily searchable. This involves creating embeddings – numerical representations of each
chunk – which will be used to build a searchable vector index in Chapter 12.

This prototype utilizes the text-embedding-004 model from Vertex AI to transform textual data into
numerical vectors. This captures the essence of the information in a machine-readable format. However,
for pictograms, we use the multimodalembedding@001 model to generate embeddings that capture
visual information.

Leveraging the Vertex AI SDK for ABAP simplifies this process significantly. With just a few lines of code,
you can generate embeddings for your knowledge chunks. The SDK also provides pre-built ABAP
structures to create JSON Lines (JSONL) files, which are essential for fine-tuning Large Language
Models (LLMs). These built-in features streamline the integration of Vertex AI within your ABAP
environment.

For a practical example of embedding generation:

● Safety Data Sheets (SDS): Refer to the ZCL_HPRO_INGEST_DOCUMENTS class and the
CREATE_SDS_EMBED_SEND_TO_GCS method.

● Warehouse Safety Guides: See the CREATE_WSG_EMBED_SEND_TO_GCS method within the
same class.

● SAP Product data: Explore the CREATE_PROD_EMBED_SEND_TO_GCS method.
● Pictograms: The CREATE_PICT_EMBED_SEND_TO_GCS method provides a clear example of

For more information visit cloud.google.com

https://jsonlines.org/examples/

how to generate image embeddings using the SDK's simplified approach.

Following is an example code for SDS:

. . .
 LOOP AT mt_embedding_data ASSIGNING FIELD-SYMBOL(<ls_emdedding>).
 "Additional optional parameters

 ls_addln_params-task_type = /goog/cl_embeddings_model=>c_retrieval_document.

 ls_addln_params-title = |{ <ls_emdedding>-matnr }:{ <ls_emdedding>-section_id }:{

<ls_emdedding>-section_header }|.

 TRY.

 DATA(lo_client) = NEW /goog/cl_embeddings_model(iv_key_name = mv_ai_key
 iv_model_key = 'Text-Embeddings').

 CLEAR: ls_embedding_template.

 ls_embedding_template-id = <ls_emdedding>-guid.

 ls_embedding_template-content = <ls_emdedding>-revised_content.

 ls_embedding_template-source = 'SAP-DOC-ZCL_HPRO_INGEST_DOCUMENTS'.

 GET TIME STAMP FIELD ls_embedding_template-feature_timestamp.

 "Create embedding with template record

 lo_client->gen_text_embeddings_by_struct(is_input = ls_embedding_template
 is_addln_params = ls_addln_params).

 DATA(lv_msg) = |Product: { <ls_emdedding>-matnr }, LGORT: { <ls_emdedding>-lgort }, Section: {

<ls_emdedding>-section_id } sent to GCS!|.

 MESSAGE lv_msg TYPE 'I'.

 DATA(lv_filename) = |{ <ls_emdedding>-guid }.json|.

 lo_client->send_struct_to_gcs(iv_bucket_name = mv_tgt_bucket_name iv_file_name = lv_filename).

 CATCH /goog/cx_sdk INTO DATA(lo_exception).
 ev_err_text = lo_exception->get_text().
 lv_msg = |Product: { <ls_emdedding>-matnr }, LGORT: { <ls_emdedding>-lgort }, Section: {

<ls_emdedding>-section_id } failed:{ ev_err_text }|.

 MESSAGE lv_msg TYPE 'S' DISPLAY LIKE 'E'.

 ENDTRY.

 ENDLOOP.

. . .

Furthermore, the SDK simplifies the transfer of these embeddings to various destinations for
downstream processing. Methods like SEND_STRUCT_TO_GCS, SEND_STRUCT_TO_BQ, and
SEND_STRUCT_TO_PUBSUB enable you to seamlessly store the generated embeddings in your
preferred target, such as Google Cloud Storage, BigQuery, or even send them to Pub/Sub for further
integrations. This flexibility allows for a smooth and adaptable workflow within your existing data
infrastructure.

For more information visit cloud.google.com

Chapter 12: Create and Update
Vector Index

This chapter guides you through creating and configuring four vector indexes to power
semantic search within the HAZMAT application's RAG workflow.

Given that we have the embeddings available, we can progress to the subsequent phase of Vector Index
creation. For a thorough understanding of the various configuration options available for index
management, please refer to this guide.

For the HAZMAT application we will create the following 4 indexes.

Index Name Descriptions

hazmat-sds-vector Index for SDS knowledge chunks

hazmat-wsg-vector Index for Warehouse Safety Guide knowledge chunks

hazmat-pictogram-vector Index for hazardous material pictograms

hazmat-prod-vector Index for SAP materials data

Use the below instructions to create the index hazmat-sds-vector in the Google Cloud console:

Step1: Goto Google Cloud console and search for Vertex Search or click on this link.

Step2: Select region as ‘us-central1’ and click on ‘Create new index’ to create the following 5 indexes
with the listed values.

For more information visit cloud.google.com

https://cloud.google.com/vertex-ai/docs/vector-search/create-manage-index
https://console.cloud.google.com/vertex-ai/matching-engine/indexes?project=gcpsaptesting

For more information visit cloud.google.com

Index attributes:

Refer to the below table for attribute values:

Index 1 Index 2 Index 3 Index 4

Display Name hazmat-sds-vector hazmat-wsg-vector hazmat-pictogram-vect
or

hazmat-prod-vector

Description HPRO: Vector Index for
SDS documents

HPRO: Vector Index for
Warehouse safety
guide

HPRO: Vector Index for
Pictograms

HPRO: Vector Index for
Products

Region us-central1 us-central1 us-central1 us-central1

GCS folder URI
(Select folder)

hazmat-sds-embeddings hazmat-wsg-embeddin
gs

hazmat-pictogram-emb
eddings

hazmat-prod-embeddin
gs

Algorithm Type Tree-AH algorithm Tree-AH algorithm Tree-AH algorithm Tree-AH algorithm

Dimension 768 768 1408 768

Approximate
neighbors count

3 3 3 3

Update method Batch Batch Batch Batch

Shard size Small Small Small Small

Step3: Create an Index Endpoint to deploy the index for serving.
An index endpoint in Google Vector is a server that accepts query requests for an index. Multiple
indexes can be deployed to the same index endpoint.

Keep the region as ‘us-central1’ and click on ‘Create new endpoint’. Enter the display name as
‘hazmat-vector-index-endpoint’ and access as ‘Standard’ and click Create.

For more information visit cloud.google.com

Step4: Deploy Indexes to the Endpoint
Select the index created earlier and deploy all 4 indexes to the same endpoint, with the following
values:

● Display name: Keep same as Index name
● Machine type: e2-standard-2
● Enable autoscaling: True
● Minimum number of machine replicas: 1
● Maximum number of machine replicas: 1

For more information visit cloud.google.com

The deployment will take a few hours to complete. Once deployed each index will be associated with a
unique deployment id, which we will use to configure in SAP using SDK in the later chapters.

For more information visit cloud.google.com

Conclusion:
The HAZMAT application now has a fully operational vector search infrastructure. The next step is to
integrate this with the RAG workflow, enabling the application to dynamically retrieve contextually
relevant information from the knowledge base and generate more informed and accurate responses.

For more information visit cloud.google.com

Chapter 13: RAG Serving
workflow Overview

This chapter dives into the architecture and components of a Retrieval Augmented
Generation (RAG) serving workflow, providing a comprehensive understanding of how
to leverage this powerful approach for enhanced LLM interactions.

What is a RAG Serving Workflow?

The following diagram illustrates the key stages and elements involved:

For more information visit cloud.google.com

Retrieval Augmented Generation (RAG) is a framework that enhances Large Language Models (LLMs) by
providing them with relevant external knowledge. This is crucial because LLMs, while powerful, have
limitations:

● Knowledge Cut-off: LLMs are trained on a fixed dataset and may not have access to the latest
information.

● Hallucination: LLMs can sometimes generate incorrect or nonsensical outputs, especially when
faced with ambiguous queries or unfamiliar topics.

RAG addresses these limitations by retrieving relevant context from external knowledge sources (like
your vector database) and feeding it to the LLM along with the user query. This allows the LLM to
generate more accurate, informed, and contextually relevant responses.

Components of a RAG Serving Workflow

1. Search:
○ This stage involves receiving a user query and initiating the search process.
○ It often includes pre-processing steps like cleaning and formatting the query for optimal

retrieval.
○ In HPro, this could be a user asking a question about a hazardous material or searching

for safety procedures.
2. Embedding Model:

○ The query is converted into a numerical vector representation (embedding) using an
embedding model.

○ This embedding captures the semantic meaning of the query.
○ HPro uses the text-embedding-004 model for text and multimodalembedding@001 for

images (pictograms).
3. Vector Database:

○ The embedding is used to search a vector database containing pre-computed
embeddings of your knowledge base.

○ The database utilizes similarity search to find the most relevant documents or
information chunks related to the query.

○ HPro uses a Vertex AI Vector Search index with four separate indexes for SDSs,
Warehouse Safety Guides, pictograms, and product data.

4. Context Retrieval:
○ The top-matching documents or chunks from the vector database are retrieved as

context.
○ This context provides the LLM with relevant background information to answer the

query accurately.
5. Gen AI Model (e.g., Gemini):

○ The user query and the retrieved context are combined and fed as input to the LLM.
○ The LLM processes this information and generates a response.
○ HPro uses Gemini Flash to process the query and context.

6. Reliable Answer:
○ The LLM generates a response that is more likely to be accurate, relevant, and

comprehensive due to the added context.

For more information visit cloud.google.com

https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemini-1.5-flash-001

Conclusion

This chapter provided a foundational understanding of RAG serving workflows and their components.
You also learned about the benefits of using RAG and how Vertex AI provides the necessary tools and
infrastructure to implement RAG effectively. In the subsequent chapters, we will delve deeper into the
practical implementation of these concepts using the Vertex AI SDK for ABAP.

For more information visit cloud.google.com

Chapter 14: Configure Vector
Search in SAP

This chapter guides you through configuring SAP to connect to your Vector Search
endpoint, enabling retrieval of relevant information from your indexed data.

To commence the initial phase of developing the RAG workflow, we shall configure the Vertex AI SDK for
ABAP to utilize the Vector Search endpoint established in Chapter 12: Create and Update Vector Index.
Please proceed with the below steps:

Step1: Get the parameters to configure Vector search in SAP

In this step we will gather the following parameter for configuring Vector search
● Endpoint ID
● Endpoint URL
● Deployment ID for all below four indexes:

○ hazmat-sds-vector
○ hazmat-wsg-vector
○ hazmat-pictogram-vector
○ hazmat-prod-vector

Get Endpoint ID and Endpoint URL:
Go to Vector Search in Google cloud console and click on the Index Endpoint. Copy the endpoint id
which will be used for SDK configuration later and also public domain name, which will be used as a
host url while configuring the RFC destination.

For more information visit cloud.google.com

Get Deployment ID for indexes:
Go to Vector Search in Google cloud console and click on the Deployed Indexes to get the deployment
ID for all four indexes as shown below.

For more information visit cloud.google.com

Step2: Create a RFC destination.

1. In the SAP GUI, enter transaction code SM59.
2. Create new RFC destinations with the name ZGOOG_HAZMAT_ENDPOINT of type G- HTTP

Connections to External Server.
3. Go to the Technical Settings tab and enter the following details:

a. Target Host: enter the Vector search endpoint host URL copied from Step1.
b. Port.: enter 443. This port number is used for secure communication.

4. Go to the Logon & Security tab and make sure that the SSL is set as Active and SSL
Certificate field is set with the option DFAULT SSL Client (Standard).

Step3: Create a service mapping entry for the search invoker.

Configure the service mapping table for invoking the Vector Search Index endpoint using the ABAP SDK
for Google Cloud.

● In SAP GUI, execute the transaction code /GOOG/SDK_IMG.
● Alternatively, execute the transaction code SPRO, and then click SAP Reference IMG.
● Click ABAP SDK for Google Cloud > Basic Settings > Configure Service Map.
● Click New Entries and create with the following values.

For more information visit cloud.google.com

Field Values

Google Cloud Key Name DEMO_AIPLATFORM

Google Service Name apiinvoker:v1

RFC Destination ZGOOG_HAZMAT_ENDPOINT

After the successful completion of this step, the service map configuration table will contain the
following three entries:

Step4: Configure Vector Search parameters.

Configure the Vector search parameters for performing the Vector Search using the ABAP SDK for
Google Cloud.

● In SAP GUI, go to SPRO, and then click SAP Reference IMG.
● Click ABAP SDK for Google Cloud > Basic Settings > Vertex AI SDK: Configure Vector Search

Parameters.
● Click New Entries and create four entries with the following values.

For more information visit cloud.google.com

Index 1 Index 2 Index 3 Index 4

Search Key HPRO_SDS HPRO_WSG HPRO_PICTOGRAM HPRO_PROD

Google Cloud
Key Name

DEMO_AIPLATFOR
M

DEMO_AIPLATFOR
M

DEMO_AIPLATFOR
M

DEMO_AIPLATFOR
M

Google Cloud
Region
Location ID

us-central1 us-central1 us-central1 us-central1

Deployment
ID of Vector
Index

hazmat_sds_vector
_xxxxx

(Details From step1)

hazmat_wsg_vecto
r_xxxxx

(Details From step1)

hazmat_pictogram
_vector_xxxxx

(Details From step1)

hazmat_prod_vecto
r_xxxxx

(Details From step1)

Vector Index
Endpoint ID
(Same for all
records)

xxxxx

(Endpoint ID From
step1)

xxxxx

(Endpoint ID From
step1)

xxxxx

(Endpoint ID From
step1)

xxxxx

(Endpoint ID From
step1)

Once completed the table entries should look like this

Step5: Validate configuration by running the demo program.
Follow the below steps to validate the Vector search configuration

● In SAP GUI, go to SPRO, and then click SAP Reference IMG.
● Click ABAP SDK for Google Cloud > Demos > Vertex AI SDK: Demo: Manage Vector Index

and Invoke Vector Search.
● Select Search Nearest Neighbors and enter the following values:

○ Search Key: HPRO_PROD
○ Datapoint ID: HZ-ACE
○ No. of NearestNeighbors return: 1

For more information visit cloud.google.com

Successful Response:

Conclusion
By completing the steps in this chapter, you have successfully configured your SAP system to leverage
the power of Vertex AI's Vector Search. This connection enables your ABAP applications to efficiently
retrieve contextually relevant information from your indexed datasets, laying the groundwork for
developing robust and intelligent applications, such as the HPro solution for HAZMAT handling. You're
now well-equipped to move forward and implement the remaining components of your RAG workflow.

For more information visit cloud.google.com

Chapter 15: Use Stremlit to to
build the UI

In this chapter we will deploy a Streamlit frontend app to Cloud Run and connect it to
your ABAP backend HAZMAT service.

This section outlines the steps to deploy a Streamlit application to Cloud Run, which will interact with
your SAP system using an ABAP service created within SICF (as described in Chapter 7). Your Streamlit
application will communicate directly with this service.

(Note: Developers can explore alternative integration methods, such as using an OData service and a
Fiori app, but for simplicity this guide focuses on the ABAP service approach).

In chapter 8, we have already cloned the Git repository, to your cloud shell which also has the frontend
application.

To deploy your Streamlit application to Cloud Run, follow these steps:

Step 1: Configure Your Application

Before deploying, you'll need to configure your Streamlit application to connect to your SAP system:

Open the config.toml file:

cd demo-hpro/hpro-app/config/

vim config.toml

Modify the base_url in the config to include the External IP address of the SAP system.

Update the base URL: Replace the placeholder base URL with the external IP address of your SAP

system. You can find this external IP address in your Google Cloud console where your SAP system is

hosted.

[api]

base_url = "http://xx.xxx.xxx.xxx" # Modify this to SAP system External IP

Address

port = 50000 # Modify this to SAP system port if you are not using ABAP Trail

username = "DEVELOPER" # Replace with your SAP username

password = "ABAPtr2022#00" # Replace with your SAP password

For more information visit cloud.google.com

get_prompt_api = "/sap/bc/hazmat_service/getPromptRepo"

get_product_api = "/sap/bc/hazmat_service/getProducts"

post_prompt_api = "/sap/bc/hazmat_service/processPrompt"

Note: This prototype uses a simplified approach for storing login details. Do not use this method in
production environments. Secure credential management is crucial for production systems.

External IP address can be referred from the Google cloud console.

Step2: Deploy to cloud run

Navigate to the project directory demo-hazmat-frontend and execute the below deployment
commands:

cd ..

export PROJECT_ID="abap-sdk-poc" # Your Project ID

export REGION="us-central1"

gcloud run deploy demo-hazmat-frontend --source . --region="$REGION"

--project="$PROJECT_ID" --allow-unauthenticated

Once the deployment is successful, you'll see a confirmation message in your terminal, including the
service URL of your deployed application.

For more information visit cloud.google.com

Step3: Test your application

Access the application: Click on the service URL from the deployment output message to open your
Streamlit application in your web browser or open the app by navigating to cloud run in the Google
Cloud Console.

Run a test scenario:

● Select "Real-Time Information (Safety Data Sheet)" as the scenario.
● Select "What is the flash point of <Product>" as the prompt.
● Enter "Acetone" as the product.
● Click on "Get Answer from Gemini."

For more information visit cloud.google.com

Verify the response: You should receive a response displaying the flash point of Acetone, retrieved
from your SAP system.

Explore and Extend

Feel free to explore the application by selecting other business scenarios and prompts. Many of the
processing workflows are intentionally left unimplemented, providing you with the opportunity to:

● Code your own prompt processing workflows: Implement the logic to handle different
prompts and scenarios, integrating with your SAP system as needed.

● Customize and enhance: Add new features, improve the user interface, and tailor the
application to your specific requirements.

For more information visit cloud.google.com

Chapter 16: Under the Hood of
HPro: Prompt Processing and
Response Generation

This chapter explores the design of the HPro application, focusing on its prompt
processing workflow. Building on the RAG concepts from Chapter 13, we'll detail how
HPro handles user prompts and generates insightful responses.

Our application was designed to address the following key scenarios within the business:

Scenario Functionality
Enabled
in HPro?

Real-Time Information
(Safety Data Sheet)

Gemini leverages RAG to access up-to-date information from
SDS documents provided by the manufacturer(example),
ensuring accuracy and relevance. Yes

AI-Powered Pictogram
Recognition

Users can photograph hazard pictograms for instant identification
and detailed information. Yes

Inventory Integration
Seamlessly links to SAP inventory data for real-time stock visibility
and material-specific instructions. Yes

Emergency Response
Guidance

Provides clear, step-by-step instructions for first aid and exposure
control in critical situations. Partially

Risk Assessment and
Mitigation

Scenario-based guidance and proactive risk identification using
LLM analysis of SDS and SAP EHS data. No

Training and Education
Personalized learning paths, interactive quizzes, and simulations
for enhanced HAZMAT knowledge. No

Incident Reporting and
Analysis Guided incident reporting and LLM-powered root cause analysis. No

Waste Management
Optimization

Waste stream classification assistance and resource recovery
recommendations. No

Exploring the Potential of AI

To demonstrate the power of AI in real-time decision-making, we created a set of predefined prompts
that simulated user queries. This allowed us to showcase how AI could be integrated into various
aspects of the application, beyond traditional chatbot interactions.

For more information visit cloud.google.com

Developing a Prompt Processing Framework

To effectively handle these diverse scenarios, we developed a flexible prompt processing workflow. As
an example the following three workflows are implemented in the current version of prototype.

Real-Time Information (Safety

Data Sheet)

AI-Powered Pictogram

Recognition

Inventory Integration

By combining AI-powered capabilities with a robust prompt processing framework, we aim to
streamline decision-making, and enhance overall operational efficiency.

For more information visit cloud.google.com

Chapter 17: Conclusion
Summary of Key Takeaways

● Retrieval Augmented Generation (RAG) is a powerful technique for enhancing large language
models (LLMs) by providing them with relevant external knowledge.

● The Vertex AI SDK for ABAP makes it easy to integrate Vertex AI services, such as Gemini and
Vector Search, into your SAP applications.

● By using RAG and the Vertex AI SDK for ABAP, you can develop applications that can answer
user questions accurately, reliably, and with context.

Potential Future Directions
● As LLMs continue to evolve, we can expect to see even more innovative applications of RAG in

the future.
● The Vertex AI SDK for ABAP is a valuable tool for developers who want to build AI-powered

applications on SAP.
● By staying up-to-date on the latest advancements in AI and SAP, you can ensure that your

applications are always at the forefront of innovation.

Call to Action
● Explore the resources in this book to spark your own innovative ideas.
● Experiment with the Vertex AI SDK for ABAP and unlock new possibilities in enterprise

application development.
● Pioneer new solutions with RAG and transform the way enterprise applications are built and

used.
● Drive innovation within your organization by leveraging the power of Vertex AI and Gemini.

For more information visit cloud.google.com

Glossary
ABAPGIT: is a Git client for ABAP that allows you to manage ABAP source code in Git repositories.

BigQuery: is a fully managed, serverless data warehouse that enables scalable analysis over petabytes
of data.

Cloud Run: is a fully managed serverless platform that automatically scales your stateless containers.

Cloud Shell: is a web-based, interactive shell environment that you can use to manage your Google
Cloud resources.

Document AI: is a Google Cloud service that uses machine learning to extract information from
documents.

Embedding: is a numerical representation of a piece of data, such as text or an image, that can be used
for similarity search.

Gemini: is a family of large language models (LLMs) developed by Google.

Google Cloud Storage (GCS): is an object storage service for storing any kind of data.

HAZMAT (Hazardous Materials): are substances that can pose a risk to health, safety, or the
environment.

HPro (HAZMAT Pro): is an AI-powered prototype application for enhancing warehouse safety.

JSONL (JSON Lines): is a newline-delimited JSON format for storing structured data.

Knowledge Chunk: is a small, semantically meaningful unit of information extracted from enterprise
data.

Large Language Model (LLM): is a type of artificial intelligence (AI) that can understand and generate
text in response to a wide range of prompts and questions.

Pub/Sub: is a real-time messaging service that allows you to send and receive messages between
independent applications.

PyMuPDF: is a Python library for working with PDF files.

RAG (Retrieval Augmented Generation) is a technique for enhancing LLMs by providing them with
relevant external knowledge.

For more information visit cloud.google.com

Safety Data Sheet (SDS): is a document that provides detailed information about the hazards of a
chemical and how to handle it safely.

SAP EHS (Environment, Health, and Safety): is a software solution that helps organizations manage
environmental, health, and safety regulations.

SICF (Service Implementation Cockpit Framework): is a tool for configuring and managing ICF services
in SAP.

Streamlit: is an open-source Python library that makes it easy to create and share custom web apps for
machine learning and data science.

Tiktoken: is a tool for counting tokens in text, which is used to measure the input and output of LLMs.

Vector Database: is a type of database that is optimized for storing and searching vector embeddings.

Vector Index: is a data structure that is used to organize vector embeddings for efficient similarity
search.

Vertex AI: is a Google Cloud service that provides a unified platform for building and deploying
machine learning models.

For more information visit cloud.google.com

	Table of content
	Iconography
	Chapter 1: Introduction
	Chapter 2: Pricing
	Chapter 3: Development Flow
	Chapter 4: Overview: HAZMAT Pro (HPro) - Empowering Warehouse Safety with AI
	Chapter 5: Prepare GCP Project and SAP system
	Chapter 6: Clone the HPro repository using ABAPGIT
	Chapter 7: ABAP SDK Configuration
	Chapter 8: Prepare Enterprise Data
	Chapter 9: Importance of Data Ingestion Pipeline and Vector Index
	Chapter 10: Intelligent Knowledge Chunking
	Chapter 11: Transforming Knowledge into Searchable Vectors
	Chapter 12: Create and Update Vector Index
	Chapter 13: RAG Serving workflow Overview
	Chapter 14: Configure Vector Search in SAP
	Chapter 15: Use Stremlit to to build the UI
	Chapter 16: Under the Hood of HPro: Prompt Processing and Response Generation
	Chapter 17: Conclusion
	Glossary

