Google Cloud

Vertex AI SDK for ABAP

A quick hands-on guide

Edition 1.0

Table of content

Iconography	3
Chapter 1: Introduction	4
Chapter 2: Pricing	6
Chapter 3: Development Flow	7
Chapter 4: Overview: HAZMAT Pro (HPro) - Empowering Warehouse Safety with Al	9
Chapter 5: Prepare GCP Project and SAP system	12
Chapter 6: Clone the HPro repository using ABAPGIT	13
Chapter 7: ABAP SDK Configuration	17
Chapter 8: Prepare Enterprise Data	25
Chapter 9: Importance of Data Ingestion Pipeline and Vector Index	29
Chapter 10: Intelligent Knowledge Chunking	31
Chapter 11: Transforming Knowledge into Searchable Vectors	34
Chapter 12: Create and Update Vector Index	36
Chapter 13: RAG Serving workflow Overview	
Chapter 14: Configure Vector Search in SAP	45
Chapter 15: Use Stremlit to to build the UI	51
Chapter 16: Under the Hood of HPro: Prompt Processing and Response Generation	55
Chapter 17: Conclusion	57
Glossary	58

Iconography

Please note the below symbol while reading the guide:

i	Read-Only : This section provides information for understanding. No action required.
PERFORM	Action: Perform the steps described in this section on your system.
-Q	Observation : Pay close attention to the details highlighted in this section.

Chapter 1: Introduction

This chapter introduces the Vertex AI SDK for ABAP Handbook, a guide on how to integrate Vertex AI into SAP ABAP environments, with a focus on creating a generative AI application using Retrieval Augmented Generation (RAG).

Welcome to the **Vertex AI SDK for ABAP Handbook!** This comprehensive guide is designed to empower SAP customers like you to seamlessly integrate the power of Vertex AI into your ABAP environment, regardless of your chosen orchestration flavor. Whether you're on-premises, in the cloud, or leveraging a hybrid approach, this handbook will provide you with the knowledge and tools to unlock the full potential of AI within your SAP landscape.

Crafting a Vertex AI Application: A Step-by-Step Guide

The goal is to equip you with the expertise to harness Vertex AI's capabilities for a wide range of SAP use cases. First focus will be on helping you build a RAG-capable generative AI application all using ABAP.

If you're familiar with RAG (Retrieval Augmented Generation), you can skip ahead to **Chapter 4** and start building the HAZMAT prototype.

RAG-Enabled Architecture: The Key Components

A typical RAG (Retrieval Augmented Generation) architecture consists of three interconnected subsystems. Let's break them down:

- **Data Ingestion Subsystem**: This component handles the gathering and preparation of your data, ensuring it's ready for use by the AI model.
- **Serving Subsystem**: This subsystem manages the deployment and serving of your Al model, allowing it to interact with users and process their requests.
- Quality Evaluation Subsystem: This vital component continuously monitors and assesses the performance of your AI model, helping you identify areas for improvement and maintain optimal results.

Dive Deeper: To gain a comprehensive understanding of these subsystems and their roles within a RAG architecture, you can explore this informative link: <u>Infrastructure for a RAG-capable generative AI</u> application using Vertex AI

Before we dive deep into creating an application, let's quickly understand the developer workflow for building RAG-enabled applications.

Chapter 2: Pricing

This chapter outlines the pricing details for utilizing Gemini API and Vertex AI, clarifying that while the Vertex AI SDK for ABAP is free, users will incur costs for using Google Cloud services like Gemini API (which offers both free and paid tiers with regional variations) and Vertex AI (which operates on a pay-as-you-go model).

The Vertex AI SDK for ABAP is offered at no cost. However, you are responsible for the charges that result from your use of Google Cloud services, such as Gemini API or Vertex AI API.

For <u>quick prototyping with Gemini</u>, you use the Gemini API and Google AI Studio. When you access the Gemini API through Google AI Studio, the Gemini API has both free and paid pricing tiers. However, the free tier of Gemini API is not available in all regions. For information about the regions where you can access the free and paid tiers of Gemini API, see <u>Available regions for Google AI Studio and Gemini API</u>. For information about other restrictions, see <u>Use restrictions</u>. For information about pricing and rate limits, see <u>Pricing models</u>.

Vertex AI pricing follows a pay-as-you-go model, which means that you're charged based on the resources you consume. For information about pricing, see <u>Vertex AI pricing</u>.

For information about how Gemini with Vertex AI is different from Gemini with Google AI Studio, see <u>Google AI versus Vertex AI differences</u>.

Chapter 3: Development Flow

This chapter explains how the Vertex AI SDK for ABAP simplifies the integration of Vertex AI into SAP applications, focusing on an opinionated development flow for building Data Ingestion Pipelines and RAG Serving Workflows using ABAP.

The Vertex AI SDK for ABAP is a powerful tool that simplifies integrating Google's Vertex AI with SAP environments using ABAP programming. It streamlines the development of AI-powered enterprise solutions by providing ABAP classes, methods, and AI-centric data types for easy interaction with Vertex AI features. This SDK enables developers to efficiently prepare inputs, interpret outputs, and configure parameters, accelerating the creation of AI-driven applications within the SAP ecosystem.

Using the Vertex AI SDK, developers can follow an opinionated development flow to create Data Ingestion Pipelines and RAG Serving Workflows by using ABAP as the key orchestrator, simplifying the integration of AI capabilities into SAP applications.

Key components of the flow:

- 1. Data Ingestion Pipeline:
 - Create Knowledge Chunks: Process enterprise data to generate knowledge chunks.
 - **Embedding Creation:** Convert knowledge chunks into numerical representations (embeddings).
 - **Store Embeddings:** Store embeddings in Google Cloud Storage (GCS) or BigQuery (BQ) or Send to PubSub(PS).
 - **Create & Update Vector Index:** Build and maintain a vector index for efficient similarity search.

2. RAG Serving Workflow:

- **Perform Vector Search:** Retrieve relevant information from the vector index based on user queries.
- **Function Calling as RAG:** Use external functions to augment the RAG's capabilities.
- **Engineered Prompt with RAG:** Craft effective prompts that incorporate retrieved information for accurate and contextually relevant responses.
- **Reliable Answer:** Generate a final answer based on the processed information.

Chapter 4: Overview: HAZMAT Pro (HPro) - Empowering Warehouse Safety with AI

This chapter introduces HPro, an AI-powered prototype for enhancing warehouse safety, and outlines how to build it using Vertex AI SDK for ABAP.

Disclaimer: This is a prototype application primarily designed to guide ABAP developers in building end-to-end applications using the Vertex AI SDK. Its functionality may be limited and not intended for production use.

In today's fast-paced warehouse environments, ensuring the safe handling and management of hazardous materials (HAZMAT) is paramount. HPro, an AI-powered solution, revolutionizes HAZMAT management by providing real-time, actionable insights to warehouse operators and supervisors.

Key Features and Benefits:

- **Natural Language Interface:** Interact with HPro using simple, everyday language to get instant answers about HAZMAT handling, storage, and emergency procedures.
- **Real-Time Information:** Access up-to-date safety data sheets (SDS) and regulatory information, ensuring compliance and accuracy.
- Al-Powered Pictogram Recognition: Instantly identify and understand hazard symbols using your device's camera.
- **Inventory Integration:** Seamlessly connect with your existing inventory management system for real-time stock visibility and material-specific instructions.
- **Emergency Response Guidance:** Receive clear, step-by-step instructions for handling HAZMAT incidents and emergencies.
- **Risk Assessment and Mitigation:** Proactively identify and mitigate potential risks using Al-powered analysis of SDS and operational data.
- **Training and Education:** Enhance HAZMAT knowledge through personalized learning paths, interactive quizzes, and simulations.

Vertex AI SDK: Your Development Toolkit

We'll leverage the powerful Vertex AI SDK to bring HPro to life. This toolkit provides a comprehensive suite of tools and APIs for building, deploying, and managing machine learning models on Google Cloud.

Architecture

The following diagram shows a reference architecture for the application:

Component	Subsystem	Details
1	SAP ERP	SAP ERP system such as S/4HANA, which uses Vertex AI SDK to develop Gemini-powered business applications.
2	HTTP Service (SICF)	A HTTP Service which will take the request for any frontend and use Vertex AI SDK for ABAP to integrate with Google Vertex AI. Note : Developers can explore alternative integration methods, such as using an OData service, but for simplicity this guide focuses on the ABAP service approach.
3	Gemini	Gemini Flash will be used to process the query and context.
4	Frontend	A lightweight Streamlit application will be deployed on Cloud run to interact with ABAP HTTP service. This will act as an UI for Warehouse workers. Note : Developers can explore alternative UI, such as a Fiori app using an OData service.

The following shows the overall flow across the components.

Next Steps: Let's Build!

Ready to embark on this exciting journey? In the following sections, we'll guide you through the step-by-step process of developing your HPro prototype using Vertex AI SDK. From setting up your development environment to deploying your model, you'll gain hands-on experience with the latest AI technologies.

Let's get started!

Chapter 5: Prepare GCP Project and SAP system

This chapter outlines the prerequisites for starting the HAZMAT project, including setting up a Google Cloud project and an SAP sandbox system.

Before you start, make sure you have the following:

- A Google Cloud project with billing enabled or <u>Sign up for a 90-Day Free Trial</u> of Google Cloud Platform.
- In the <u>Google Cloud Console</u>, on the project selector page, select or create a Google Cloud <u>project</u> (For example: abap-sdk-poc).
- Please make a note of the project id which is also available in <u>Google Cloud Console</u>, we will use it in future steps.

Owelcome	
You're working in	
Project number:	Project ID:

- A SAP sandbox system:
 - **Recommended:** If you don't have one, follow the "Install ABAP Platform Trial on Google <u>Cloud Platform and Install ABAP SDK</u>" codelab to set up a sandbox.
 - **Existing SAP System:** If you already have one, consult the <u>official documentation</u> on setting up the ABAP SDK.

Please note: The instructions in the guide assume you're using the ABAP Platform Trial (A4H) for development. If you're using a different SAP system, the overall process remains similar, though some specific steps or system configurations might vary.

Chapter 6: Clone the HPro repository using ABAPGIT

This chapter provides instructions on how to clone the HPro repository using ABAPGIT and verify the successful creation of the required package.

Before you begin, please ensure that ABAPGIT is installed and <u>SSL setup</u> is completed. **Note**: If you are using the ABAP Platform Trial (A4H), ABAPGIT will already be installed, but you would still require to complete the SSL setup.

Step1: Execute the ABAP program ZABAPGIT_STANDALONE using transaction SE38 to clone the <u>demo-hpro</u> repository.

Click on "New Online"

Enter the following values and click "Create Online Repo"

- Git Repository URL: https://github.com/google-cloud-abap/demo-hpro.git
- Package: ZGOOG_VERTEXAI_HAZMAT_DEMO
- Display Name: Demo: Vertex Al powered Hazmat application

Git Repository URL *	
https://github.com/google-cloud-abap/demo-hpro.git	
Package *	
ZGOOG_VERTEXAI_HAZMAT_DEMO	
Branch	
Autodetect default branch	
Folder Logic Prefix Full Mixed	
Display Name	
Demo: Vertex AI powered Hazmat application	
Labels (comma-separated, allowed chars: " a-zA-Z0-9")	
Ignore Subpackages	
Serialize Main Language Only	
Create Online Repo Create Package Ba	ck

Once the repo will be created, please click on "Pull"

Demo:	Vertex AI powered Hazmat application github.com/google-cloud			2 0	÷	6	ZGOOG	VERTEXA	🚖 🦻 ma
	Pull Stag	e Patch	Diff	Branch	Tag	Advanced	d View	Refresh	Repo Setting
Туре	Name				Chang	ed by	Trans	port	Stat
	non-code and meta files /.abapgit.xml								
AVAS	0242AC1100021EDF9CA073B41BE1C8C2 /src/0242ac1100021edf9ca073b41be1c8c2.avas.xml								diff 📧
SICF	HAZMAT_SERVICE D1304762B700E3869B36EB831 /src/hazmat_service d1304762b700e3869b36eb831.sicf.xml								diff 📧
CLAS	ZCL_HAZMAT_GCS_DATA_INGESTER /src/zcl_hazmat_gcs_data_ingester.clas.abap								diff
CLAS	ZCL_HAZMAT_SERVICE_HANDLER /src/zcl_hazmat_service_handler.clas.abap								diff 📧
CLAS	/src/zcl_hazmat_service_handler.clas.xml ZCL_HAZMAT_WORKFLOW_HANDLER /src/zcl_hazmat_workflow_handler.clas.abap								diff 🗵
FUGR	ZFG_HAZMAT_FUNCTIONS /src/zfg_hazmat_functions.fugr.lzfg_hazmat_functionstop.abap								diff 🗵
	/src/zfg_hazmat_functions.fugr.lzfg_hazmat_functionstop.xml /src/zfg_hazmat_functions.fugr.saplzfg_hazmat_functions.abap								diff 🛛
	/src/zfg_hazmat_functions.fugr.saplzfg_hazmat_functions.xml /src/zfg_hazmat_functions.fugr.xml								diff 🛛
DEVC	/src/ztg_hazmat_tunctions.tugr.zfm_hazmat_get_product_data.abap ZGOOG_VERTEXAL_HAZMAT_DEMO								diff 🗵

Click "Continue"

Change? Obj. Type Object Name			Package	State	Action	n Description
1	AVAS	0242AC1100021EDF9CA073B41BE1C8C2		_A		Add local object
1	CLAS	ZCL_HAZMAT_GCS_DATA_INGESTER		_A		Add local object
]	CLAS	ZCL_HAZMAT_SERVICE_HANDLER		_A		Add local object
]	CLAS	ZCL_HAZMAT_WORKFLOW_HANDLER		_A		Add local object
	DEVC	ZGOOG_VERTEXAI_HAZMAT_DEMO		_A		Add local object
	FUGR	ZFG_HAZMAT_FUNCTIONS		_A		Add local object
	INTF	ZIF_HAZMAT_CONSTANTS		_A		Add local object
	PROG	ZI_HAZMAT_APPLICATION_CLS		_A		Add local object
	PROG	ZI_HAZMAT_APPLICATION_SEL		_A		Add local object
	PROG	ZR_HAZMAT_APPLICATION		_A		Add local object
	PROG	ZR_HAZMAT_INGEST_DATA_GCS		_A		Add local object
	PROG	ZR_HAZMAT_LOAD_PRODUCT_DATA		_A		Add local object
	SICF	HAZMAT_SERVICE D1304762B700E3869B36EB831		_A		Add local object
]	TABL	ZHAZMAT_PRODUCTS		_A		Add local object

Create and select a Transport and activate the objects.

🔄 Prompt for workbend	ch request	×
Request	🗇 Workbench Request	
Short Description	Demo: Vertex AI powered Hazmat application	
	V Own Requests	×

Step2: Open transaction SE80 (Object Navigator) and check if the package ZGOOG_VERTEXAI_HAZMAT_DEMO has been created successfully.

Package 🔹	
ZGOOG_VERTEXAI_HAZMAT_DEMO	
🗢 , 🔿 , I 📚 🕿 I 🛗 I 🚼 🛧 I 🤮	
Object Name	Description
ZGOOG_VERTEXAI_HAZMAT_DEMO	Demo: Hazmat
 Dictionary Objects 	
Class Library	
Classes	
ZCL_HAZMAT_GCS_DATA_INGESTER	Hazmat: Ingest Data to target GCS Buckets
ZCL_HAZMAT_SERVICE_HANDLER	Hazmat: Handle SICF Node
ZCL_HAZMAT_WORKFLOW_HANDLER	Hazmat: Handle Workflow Responses
Interfaces	
🕆 🛅 Programs	
ZR_HAZMAT_APPLICATION	Hazmat: Main Application
ZR_HAZMAT_INGEST_DATA_GCS	Hazmat: Ingest data
ZR_HAZMAT_LOAD_PRODUCT_DATA	Hazmat: Program to load sample products
Function Groups	
🕨 🥅 Includes	

With the HAZMAT repository cloned and the ZGOOG_VERTEXAI_HAZMAT_DEMO package verified, the necessary components are in place to proceed with the next steps.

Chapter 7: ABAP SDK Configuration

This chapter provides step-by-step instructions on configuring the ABAP SDK for the HAZMAT project, including creating service accounts, assigning roles, configuring client keys, RFC destinations, service mapping, and Vertex AI SDK Model Generation Parameters.

Please proceed with the below steps once you have installed ABAP SDK and configured the trust certificates.

Step1: From the Cloud Console, click Activate Cloud Shell on the top right corner:

Step2: Create Service Account

Note: If you had followed the "Install ABAP Platform Trial on Google Cloud Platform and Install ABAP SDK" codelab to set up the SAP, then you do not need to perform this step as the service account would already exist.

Run the following command to create a service account. Please change the project name if it's different from abap-sdk-poc.

Step3: Assign the required IAM role to the service account

Follow the below steps to add the IAM role to the service account

Navigate to <u>IAM & Admin</u> in the Google Cloud Console and click on "Grant Access"

\equiv	Google Cloud	••	Search (/) for res
0	IAM & Admin		IAM
+2	IAM		ALLOW DENY RECOMMENDATIONS HISTORY
0	PAM		Permissions for project
6	Principal Access Boun		These permissions affect this project and all of its resources. Learn more 🛛
Θ	Identity & Organization		
٩	Policy Troubleshooter		VIEW BY PRINCIPALS VIEW BY ROLES
B	Policy Analyzer New		+ GRANT ACCESS
۲	Organization Policies		
연코	Service Accounts		Filter Enter property name or value

Assign the <u>Vertex AI User</u>, <u>Storage Object Admin</u> and <u>Service Account Token Creator</u> role to service account abap-sdk-dev.

Grant principals access to this resource principals can take. Optionally, add cond specific criteria is met. <u>Learn more abou</u>	and add roles to specify what actions the itions to grant access to principals only when a t IAM conditions 💈
Resource	
:•	
Add principals	
Principals are users, groups, domains, or in IAM 🖸	service accounts. Learn more about principals
New principals *	
abap-sdk-dev@	liam.gserviceaccount.com 🙁 🥐
Assian roles	
Roles are composed of sets of permission	ons and determine what the principal can do
with this resource. Learn more	
Role *	IAM condition (optional)
Vertex Al User 🔹	
Grants access to use all resource in	ADD IAM CONDITION
Vertex AI	
Role	IAM condition (optional)
Role Storage Object Admin	IAM condition (optional) ? + ADD IAM CONDITION
Vertex Al Role Storage Object Admin Grants full control over objects, including listing, creating, viewing, and	IAM condition (optional) ? + ADD IAM CONDITION
Vertex Al Role Storage Object Admin Grants full control over objects, including listing, creating, viewing, and deleting objects.	IAM condition (optional) ?
Vertex Al Role Storage Object Admin Grants full control over objects, including listing, creating, viewing, and deleting objects. Role Service Account Token Creator	IAM condition (optional) ?
Vertex Al Role Storage Object Admin Grants full control over objects, including listing, creating, viewing, and deleting objects. Role Service Account Token Creator	IAM condition (optional) ? + ADD IAM CONDITION IAM condition (optional) ? + ADD IAM CONDITION
Vertex Al Role Storage Object Admin Grants full control over objects, including listing, creating, viewing, and deleting objects. Role Service Account Token Creator Impersonate service accounts (create OAuth2 access tokens, sign blobs or	IAM condition (optional) + ADD IAM CONDITION IAM condition (optional) + ADD IAM CONDITION
Vertex Al Role Storage Object Admin Grants full control over objects, including listing, creating, viewing, and deleting objects. Role Service Account Token Creator Impersonate service accounts (create OAuth2 access tokens, sign blobs or JWTs, etc).	IAM condition (optional) + ADD IAM CONDITION IAM condition (optional) + ADD IAM CONDITION
Vertex Al Role Storage Object Admin Grants full control over objects, including listing, creating, viewing, and deleting objects. Role Service Account Token Creator Impersonate service accounts (create OAuth2 access tokens, sign blobs or JWTs, etc). + ADD ANOTHER ROLE	IAM condition (optional) + ADD IAM CONDITION IAM condition (optional) + ADD IAM CONDITION
Vertex Al Role Storage Object Admin Grants full control over objects, including listing, creating, viewing, and deleting objects. Role Service Account Token Creator Impersonate service accounts (create OAuth2 access tokens, sign blobs or JWTs, etc). + ADD ANOTHER ROLE	IAM condition (optional) + ADD IAM CONDITION IAM condition (optional) + ADD IAM CONDITION
Vertex Al Role Storage Object Admin Grants full control over objects, including listing, creating, viewing, and deleting objects. Role Service Account Token Creator Impersonate service accounts (create OAuth2 access tokens, sign blobs or JWTs, etc). + ADD ANOTHER ROLE	IAM condition (optional) + ADD IAM CONDITION IAM condition (optional) + ADD IAM CONDITION T

Step4: Configure client key

Log in to the SAP Trial A4H system with the user name DEVELOPER and password ABAPtr2022#00 and follow these steps to configure the client key:

- 1. In the SAP GUI, enter transaction code **SPRO**.
- 2. Click **SAP Reference IMG**.
- 3. Click ABAP SDK for Google Cloud > Basic Settings > Configure Client Key.
- 4. Click **New Entries**.
- 5. Enter values for the following fields:

Field

Values

Google Cloud Key Name	DEMO_AIPLATFORM
Google Cloud Service Account Name	abap-sdk-dev@abap-sdk-poc.iam.gserviceaccount.com
Google Cloud Scope	https://www.googleapis.com/auth/cloud-platform
Google Cloud Project Identifier	abap-sdk-poc
Authorization Class	/GOOG/CL_AUTH_GOOGLE.

* Leave the other fields blank

-	Google Cloud Client Key					
	Google Cloud Key Name	Google Cloud Service Account Name	Google Cloud Scope	Google Cloud Project Identifier	Authorization Class	C
	ABAP_SDK_DEMO	abap-sdk-codelabs@abap-sdk-poc.iam.gserviceacco	https://www.googleapis.com/auth/cloud-platform	abap-sdk-poc	/GOOG/CL_AUTH_GOOGLE	

Note: The authentication class will and configuration will change if your SAP system is not deployed on Google Cloud. Please refer to this <u>guide</u> for different authentication options.

Step5: Create RFC destination

Create RFC destination for IAM credential and Vertex AI API using the transaction code SM59. If needed, please refer <u>here</u> for detailed steps on creating an RFC destination.

RFC destination name	Target host (API endpoint)	Notes
ZGOOG_IAMCREDENTIALS	 Host: iamcredentials.googleapis.com Path: Prefix: /v1/ Port: 443 SSL: Active 	This RFC destination targets the IAM API.
ZGOOG_VERTEX_AI	 Host: us-central1-aiplatform.googleapis .com Port: 443 SSL: ACTIVE 	This RFC destination targets Vertex AI API us-central1 endpoint.

• Under the Technical Settings tab, enter the following details for the ZGOOG_IAMCREDENTIALS destination.

RFC Destination	ZGOOG_IAMCREDENTIALS	
Connection Type	G HTTP Connection to External Server	
Description		
Description 1	Service Name: iamcredentials:v1	
Description 2 Service Name: IAM Credentials		
Description 3		
Administration	Technical Settings Logon & Security Special Options	
Target System Se	ttings	
Host	iamcredentials.googleapis.com Port 443	
Path Prefix	/v1/	

• Under the **Technical Settings** tab, enter the following details for the ZGOOG_VERTEX_AI destination.

RFC Destination	C Destination ZGOOG_VERTEXAI_V1			
Connection Type G HTTP Connection to External Server				
Description				
Description 1 Service Name: aiplatform:v1				
Description 2	Service Name: Vertex AI API v1			
Description 3	Description 3			
Administration	Technical Settings Logon & Security Special Options			
Target System Settings				
Host	us-central1-aiplatform.googleapis.com Port 443			
Path Prefix				

• For the SSL Certificate field, make sure that the option DEFAULT SSL Client (Standard) is selected for both the RFC destinations.

SSL OInactive OActive SSL Certificate DFAULT SSL Client (Standard) Cert. List	
SSL Certificate DFAULT SSL Client (Standard) Cert. List	
Do not use certificate for logon	

Step6: Configure service mapping

To configure the service mapping table for IAM API, and Vertex AI API, perform the following steps:

- 1. In the SAP GUI, enter transaction code **SPRO**.
- 2. Click SAP Reference IMG.
- 3. Click ABAP SDK for Google Cloud > Basic Settings > Configure Service Mapping.
- 4. Click **New Entries** for IAM Credential and Vertex AI API and update the RFC destinations as shown below.

Field	Record 1 (IAM Credential)	Record 2 (Vertex AI)	
Google Cloud Key Name	DEMO_AIPLATFORM	DEMO_AIPLATFORM	
Google Service Name	iamcredentials:v1	aiplatform:v1	
RFC Destination	ZGOOG_IAMCREDENTIALS	ZGOOG_VERTEX_AI	

Step7: Configure Vertex AI SDK Model Generation Parameters

To configure the generation parameter for models related to Text embedding, Multimodal embeddings and Gemini-flash, perform the following

- 1. In the SAP GUI, enter transaction code **SPRO**.
- 2. Click **SAP Reference IMG**.
- 3. Click ABAP SDK for Google Cloud > Basic Settings > Vertex AI SDK: Configure Model Generation Parameters.
- 4. Click **New Entries** for model configurations and update the entries as shown below.

Field	Record 1 (Text Embeddings)	Record 2 (Multi Modal embeddings)	Record 3 (Gemini-Flash)	Record 4 (Gemini-Pro-Vision)
Model Key	Text-Embeddings	Multimodal-Embeddin g	Gemini-Flash	Gemini-Pro-Vision
Model ID	text-embedding-004	multimodalembeddin g@001	gemini-1.5-flash-001	gemini-1.0-pro-vision-0 01

Google Cloud Key Name	DEMO_AIPLATFORM	DEMO_AIPLATFORM	DEMO_AIPLATFORM	DEMO_AIPLATFORM
Google Cloud Region Location ID	us-central1	us-central1	us-central1	us-central1
Publisher ID for LLM	google	google	google	google

* Leave blank for remaining attributes

Step8: Create a SICF node for HPro service

To create a SICF node and configure the handler class, perform the following

- 1. In the SAP GUI, enter transaction code **SICF** and click **Execute(F8)**.
- 2. Goto **default_host > SAP > bc**. Select **bc** and click on the button 'Create Host/Service' and create service with name 'hazmat_service'

🔄 Create a Service Element		
Name of New Service Element	hazmat_service	
Type of New Service Node		
Standalone service	Ø	
OAlias to an existing service	Ē	
Administration Service		
Service is administration service	i	
		

3. Configure the Handler class as ZCL_HAZMAT_SERVICE_HANDLER

Create/Ch	ange a Service
6 % 🔚	
Path	/default_host/sap/bc/
Service Name	hazmat_service 🛞 Service (Active)
Lang.	English Cher Languages
Description	
Description 1	Hazmat Pro Service
Description 2	
Description 3	
Service Data	Logon Data Handler List Error Pages Administration
Handler List (i	n Order of Execution)
N., Handler 1 ZCL HAX 2	IMAT SERVICE HANDLER

Chapter 8: Prepare Enterprise Data

This chapter guides you through preparing the necessary enterprise data for the HAZMAT Pro prototype, including setting up unstructured data in Google Cloud Storage and loading sample product information into your SAP system.

Data Preparation: Unstructured Data for Simulation

For HAZMAT Pro we will be using the following unstructured data to simulate enterprise

- A <u>Safety Data Sheet</u> (SDS) is a document that provides detailed information about the hazards of a chemical and how to handle it safely.
- A <u>Hazard Pictogram</u> is a graphical symbol that provides a quick visual warning about the potential hazards of a chemical or substance.
- A <u>Warehouse Safety Guide</u>(WSG) is a document that outlines the procedures and best practices for maintaining a safe working environment in a warehouse.

Run the following command in the <u>Google Cloud Shell</u> to set up the data requirement.

From the Cloud Console, click Activate Cloud Shell on the top right corner:

Ensure that the command is executed with a unique id e.g.: A 2 digit unique number which will be used to name the bucket.

```
$ wget
https://raw.githubusercontent.com/google-cloud-abap/demo-hpro/refs/heads/main/hpro-
data/setup-scripts/setup-data-files.sh
$ chmod 755 setup-data-files.sh
$ ./setup-data-files.sh <project_id>
https://github.com/google-cloud-abap/demo-hpro.git <unique_id> us-central1
```

Example command with project id as abap-sdk-poc unique id as a01

```
./setup-data-files.sh abap-sdk-poc
https://github.com/google-cloud-abap/demo-hpro.git a01 us-central1
```

The script will perform these actions:

- Clone the GitHub repository: Creates a local copy of the specified repository on your machine.
- 2. Create a unique bucket: Generates a Google Cloud Storage bucket named

hazmat-data-files-<unique-id>, where you provide the <unique-id> when running the script.

3. **Upload data to the bucket:** Copies the contents of specific folders from the cloned repository into corresponding folders within the newly created bucket.

Here is a quick description of the bucket contents.

Folder name	What do they have?
hazmat-sds	Safety Data Sheets (SDS) for various hazardous materials (PDF format)
hazmat-wsg	Warehouse Safety Guide (PDF format)
hazmat-pictogram	Collection of Hazard Pictogram images
hazmat-pictogram-descriptions	Enterprise description for Pictograms
hazmat-prod	Sample material data in CSV format
hazmat-sds-chunks	Safety Data Sheets (SDS) knowledge chunks
hazmat-wsg-chunks	Warehouse Safety Guide knowledge chunks
hazmat-sds-embeddings	Pre-computed embeddings for SDS knowledge chunks
hazmat-wsg-embeddings	Pre-computed embeddings for the Warehouse Safety Guide
hazmat-pictogram-embeddings	Pre-computed embeddings for Hazard Pictograms

hazmat-prod-embeddings	Pre-computed embeddings for product data
hazmat-prompts	Pre-created prompts repository

Data Preparation: Adding Product Information to SAP

The SAP sandbox environment lacks the necessary hazardous material data for our purposes. To simulate integration with SAP and demonstrate real-time inventory retrieval using Gemini's functional calling feature, we'll load sample material data into the ZHAZMAT_PRODUCTS table, which is already present within the ZGOOG_VERTEXAI_HAZMAT_DEMO package.

Follow these steps:

Step1: Download Sample Data: Obtain the product.csv file from the designated GitHub folder <u>hazmat-prod</u> and save it to your desktop.

1	MATNR	WERKS	LGORT	ERFMG	ERFME	EXPDT	мактх	МАКТС	LGOBE
2	HZ-ACE	0001	0001	53	DR	10.09.2024	Acetone	ACETONE	Lager 0001
3	HZ-ATR	0001	0088	33	DR	18.08.2024	Atrazine	ATRAZINE	Lager 0088 (WM)
4	HZ-BEN	0001	0001	5	DR	25.09.2024	Benzene	BENZENE	Lager 0001
5	HZ-BUT	0001	0001	86	DR	21.09.2024	Butane	BUTANE	Lager 0001
6	HZ-CAD	0001	0088	50	DR	26.10.2024	Cadmium	CADMIUM	Lager 0088 (WM)
7	HZ-CES	0001	0088	44	DR	21.07.2024	Cesium	CESIUM	Lager 0088 (WM)
8	HZ-CHL	0001	0001	93	DR	31.07.2024	Chlorine	CHLORINE	Lager 0001

Step2: Load Data into SAP: Execute the ABAP program ZR_HAZMAT_LOAD_PRODUCT_DATA using transaction SE38. Select the downloaded product.csv file to initiate the data loading process.

Hazmat: Program to load	sample products into ZHAMAT_PRODUCTS table
•	
File Name	c:/products.csv
Save to Database?	

Step3: Verify Data Load: Access the ZHAZMAT_PRODUCTS table using transaction SE16. Confirm that the sample product records have been successfully loaded.

L)at	a Bro	wser	: Table ZH/	4 <i>ZMA</i>	T_	PRODUC	TS Select Entries	46	
66	9	🔁 🖪		2772	🗗 🚛		1 💷 🖽 •	a		
昆	Cl.	Char	PInt	Storage Location	Quantity	EUn	End date	Material Description	Material description	Storage location
	001	HZ-ACE	0001	0001	53	DR	10.09.2024	Acetone	ACETONE	Lager 0001
	001	HZ-ATR	0001	0088	33	DR	18.08.2024	Atrazine	ATRAZINE	Lager 0088 (WM)
	001	HZ-BEN	0001	0001	5	DR	25.09.2024	Benzene	BENZENE	Lager 0001
	001	HZ-BUT	0001	0001	86	DR	21.09.2024	Butane	BUTANE	Lager 0001
	001	HZ-CAD	0001	0088	50	DR	26.10.2024	Cadmium	CADMIUM	Lager 0088 (WM)
	001	HZ-CES	0001	0088	44	DR	21.07.2024	Cesium	CESIUM	Lager 0088 (WM)
	001	HZ-CHL	0001	0001	93	DR	31.07.2024	Chlorine	CHLORINE	Lager 0001
	001	HZ-CLG	0001	0001	48	DR	15.08.2024	Chlorine gas - very dangerous	CHLORINE GAS - VERY DANGEROUS	Lager 0001
	001	HZ-CMO	0001	0001	28	DR	01.09.2024	Carbon monoxide	CARBON MONOXIDE	Lager 0001
	001	HZ-DYN	0001	0004	57	DR	06.09.2024	Dynamite Gray	DYNAMITE GRAY	Explosives
	001	HZ-ETH	0001	0001	76	DR	26.08.2024	Ethanol	ETHANOL	Lager 0001
	001	HZ-GAS	0001	0001	67	DR	26.09.2024	Gasoline	GASOLINE	Lager 0001
	001	HZ-GLY	0001	0088	73	DR	05.10.2024	Glyphosate	GLYPHOSATE	Lager 0088 (WM)
	001	HZ-HAC	0001	0003	82	DR	24.07.2024	Hydrochloric acid	HYDROCHLORIC ACID	Corrosive Items

Chapter 9: Importance of Data Ingestion Pipeline and Vector Index

This chapter emphasizes the importance of data ingestion pipelines and knowledge chunks, even with large language models, highlighting their role in cost efficiency, relevance, customization, and data freshness.

Let's quickly talk about the Importance of Data Ingestion Pipelines & Knowledge Chunks, even with Large Context Models.

While powerful models like Gemini 1.5 Pro with their <u>long context window</u> offer the tempting allure of bypassing RAG based solutions entirely - providing a rapid path to harnessing LLM potential - establishing a dedicated **data ingestion pipeline** and structuring your data into **knowledge chunks** remains essential for several key reasons:

1. Cost Efficiency:

- Processing large volumes of data directly through a model like Gemini can be computationally expensive.
- A data ingestion pipeline preprocesses and optimizes your data, reducing the amount of information the model needs to handle, leading to significant cost savings.

2. Relevance and Performance:

- Enterprise (unstructured) data is often vast and contains a lot of irrelevant information for specific queries.
- A pipeline can filter, clean, and structure your data, ensuring only relevant knowledge chunks are presented to the model, improving response relevance and performance.

3. Customization and Control:

• A pipeline lets you tailor data processing to your specific use case, applying domain-specific transformations and enriching data with metadata.

• This granularity allows you to optimize the model's output for your specific requirements, which is impossible when feeding raw data directly into a large model.

4. Data Freshness and Updates:

- An ingestion pipeline enables you to keep your knowledge base up-to-date by incorporating new data and updates efficiently.
- This ensures that your AI system remains relevant and provides accurate responses based on the latest information.

What are Knowledge Chunks?

- Knowledge chunks are smaller, semantically meaningful units of information extracted from your enterprise data.
- These chunks can be paragraphs, sentences, or even phrases, depending on the nature of your data and use case.
- By dividing data into chunks, you enable the model to focus on relevant information and avoid processing the entire dataset for each query.
- Each chunk is then converted into a numerical representation called an **embedding** using advanced language models. These embeddings capture the semantic meaning of the text, allowing for efficient comparison and retrieval based on similarity.
- These embeddings are then organized into a **vector index**, a specialized data structure optimized for similarity search. This enables rapid retrieval of the most relevant knowledge chunks given a user query, significantly enhancing the performance and responsiveness of your AI system.

Best Practices for Data Ingestion Pipelines (Cheatsheet):

- 1. Clean & Prep Data: Remove noise, standardize formats, and fix errors.
- 2. Transform & Enrich: Extract key info, add metadata for context.
- 3. Chunk Strategically: Divide data into meaningful units (paragraphs, sentences).
- 4. Manage Metadata: Track source, date, etc., for better search & filtering.
- 5. Store & Index: Use suitable storage & indexing for quick retrieval.
- 6. Monitor & Maintain: Regularly check data quality & pipeline health.

Conclusion:

Investing in a Data Ingestion Pipeline and creating Knowledge Chunks provides significant benefits in terms of cost efficiency, relevance, customization, and maintainability, even when using powerful large language models. The Vertex AI SDK for ABAP further empowers developers to build ABAP-centric components that contribute to the enterprise data pipeline, efficiently handling both structured and unstructured SAP-specific data. By following best practices, you can create a robust pipeline that maximizes the value of your enterprise data and enables your AI systems to deliver accurate and insightful responses.

Chapter 10: Intelligent Knowledge Chunking

This chapter explains how to create knowledge chunks from enterprise documents using Gemini's capabilities and the Vertex AI SDK, simplifying the document chunking process for developers.

This diagram illustrates the flow of data in a Retrieval Augmented Generation (RAG) system. Information is ingested, chunked, embedded, and stored for retrieval to enhance LLM responses.

This chapter focuses on knowledge chunking techniques for enterprise documents used by the HPro application.

There are several ways to create knowledge chunks from enterprise documents like PDFs. For example, you can use Python libraries like **PyMuPDF**, Langchain, or Tiktoken to extract text and split it into manageable chunks. Alternatively, you can leverage **Google Cloud Document Al** to automatically process and analyze the documents, generating structured data and identifying key entities and concepts within the text.

Given that the Safety Data Sheets (SDSs) will comprise sixteen sections, and the formatting of these sections will vary across different manufacturers, this prototype leverages Gemini's capabilities to efficiently generate knowledge chunks for SDS's. You can refer to the ZCL_HAZMAT_GCS_DATA_INGESTER class and the SPLIT_WSG_IN_CHUNKS method, where we craft a specific prompt to instruct Gemini to split the SDS document into sections and return a well-structured JSON array.

This prompt includes:

- **Clear instructions:** Gemini is explicitly told to identify all section headings, match them to a predefined list, extract the content of each matched section, handle any unmatched sections, and present the extracted information in a structured format sorted by section ID.
- **Predefined section headings:** A list of possible section headings (with corresponding IDs) is provided to guide Gemini's extraction process.
- **Desired output format:** The prompt specifies that the results should be in JSON format, with a specific structure including the chemical name and an array of section details (ID, header, and content).

This approach demonstrates how we're using Gemini's powerful language understanding and generation capabilities to automate the knowledge chunking process within our prototype.

Furthermore, the SDK simplifies the process for developers by providing methods like SET_FILE_DATA, allowing them to directly point to files stored in cloud storage. The SDK then handles the transmission of the file to Gemini along with the splitting instructions.

...->set_file_data(iv_mime_type = 'application/pdf' iv_file_uri = iv_file_gcs_uri)

Https ABAP

This streamlined approach significantly reduces the complexity of integrating document chunking into applications.

Example code for splitting using Gemini:

```
. . .
lv instruction = 'You will receive a document containing sections with headings. ' &&
                 'These sections correspond to a' &&
                 ' predefined list of possible section headings (Section ID: Section Header):' &&
                 '"1": "Identification"' &&
                 '"2": "Hazard identification"' &&
                 "3": "Composition / information on ingredients" &&
                 '"4": "First-aid measures"' &&
                 '"5": "Fire-fighting measures"' &&
                 '"6": "Accidental release measures"' &&
                 '"7": "Handling and storage"' &&
                 '"8": "Exposure controls / personal protection"' &&
                 '"9": "Physical and chemical properties"' &&
                 "10": "Stability and reactivity"' &&
                 '"11": "Toxicological information"' &&
                 '"12": "Ecological information"' &&
                 "13": "Disposal considerations" & &
                 '"14": "Transport information"' &&
                 "15": "Regulatory information" & &
                 '"16": "Other information"' &&
```

```
'task is to:' &&
                 'all section headings within the document.' &&
                  'each identified heading to the predefined list.' \&\&
                 'the content within each matched section.' &&
                 'any sections not present in the predefined list.' &&
                  'a structured representation of the extracted information.' &&
                  'the result sorted by section id.'.
• • •
lv prompt = 'Analyze the following document and extract section-specific content:' &&
           'Output the results in JSON format with the following structure:' &&
           'JSON' & &
           '{' &&
           '"CHEMICAL NAME": "[Name of the chemical extracted from the document]",' &&
           "SECTION DETAILS": [' &&
            '{' &&
           "SECTION ID": "[ID of the section from the predefined list]", ' &&
           '"SECTION HEADER": "[Matched section header from the predefined list]",' &&
           '"SECTION CONTENT": "[Extracted content from the section, If the document ' &&
           ' has more than 8 pages, limit this section length to maximum of 75 tokens]"' &&
           '},' &&
           '// ... (Repeat for each extracted section)' \&\&
            11 &&
           '}' &&
           'no format or pretty print the json data'.
DATA(lv response) = CONV string( mo model->clear file data(
                             )->set_file_data( iv_mime_type = 'application/pdf'
                                               iv_file_uri = iv_file_gcs_uri
                             )->generate_content( lv_prompt
                            )->get text( ) ).
• • •
```

A similar approach can be used to create knowledge chunks for other Enterprise documents like the Warehouse Safety Guide. You can refer to the ZCL_HPRO_INGEST_DOCUMENTS class and the SPLIT_WSG_IN_CHUNKS method.

Chapter 11: Transforming Knowledge into Searchable Vectors

This chapter explains how to transform knowledge chunks into searchable numerical representations (embeddings) for both text and images using the Vertex AI SDK for ABAP, which simplifies the integration of Vertex AI and offers flexibility in storing the embeddings.

After breaking down your knowledge base into manageable chunks, the next step is to make this information easily searchable. This involves creating embeddings – numerical representations of each chunk – which will be used to build a searchable vector index in Chapter 12.

This prototype utilizes the text-embedding-004 model from Vertex AI to transform textual data into numerical vectors. This captures the essence of the information in a machine-readable format. However, for pictograms, we use the multimodalembedding@001 model to generate embeddings that capture visual information.

Leveraging the Vertex AI SDK for ABAP simplifies this process significantly. With just a few lines of code, you can generate embeddings for your knowledge chunks. The SDK also provides pre-built ABAP structures to create <u>JSON Lines</u> (JSONL) files, which are essential for fine-tuning Large Language Models (LLMs). These built-in features streamline the integration of Vertex AI within your ABAP environment.

For a practical example of embedding generation:

- Safety Data Sheets (SDS): Refer to the ZCL_HPRO_INGEST_DOCUMENTS class and the CREATE_SDS_EMBED_SEND_TO_GCS method.
- Warehouse Safety Guides: See the CREATE_WSG_EMBED_SEND_TO_GCS method within the same class.
- **SAP Product data:** Explore the CREATE_PROD_EMBED_SEND_T0_GCS method.
- **Pictograms:** The CREATE_PICT_EMBED_SEND_T0_GCS method provides a clear example of

how to generate image embeddings using the SDK's simplified approach.

Following is an example code for SDS:

```
LOOP AT mt_embedding_data ASSIGNING FIELD-SYMBOL(<ls_emdedding>).
     "Additional optional parameters
     ls_addln_params-task_type = /goog/cl_embeddings_model=>c_retrieval_document.
     ls_addln_params-title = |{ <ls_emdedding>-matnr }:{ <ls_emdedding>-section_id }:{
<ls_emdedding>-section_header }|.
     TRY
         DATA(lo_client) = NEW /goog/cl_embeddings_model( iv_key_name = mv_ai_key
                                                          iv_model_key = 'Text-Embeddings' ).
         CLEAR: ls_embedding_template.
         ls_embedding_template-id = <ls_emdedding>-guid.
         ls_embedding_template-content = <ls_emdedding>-revised_content.
         ls_embedding_template-source = 'SAP-DOC-ZCL_HPRO_INGEST_DOCUMENTS'.
         GET TIME STAMP FIELD ls_embedding_template-feature_timestamp.
         "Create embedding with template record
         lo_client->gen_text_embeddings_by_struct( is_input = ls_embedding_template
                                                  is_addln_params = ls_addln_params ).
         DATA(lv_msg) = |Product: { <ls_emdedding>-matnr }, LGORT: { <ls_emdedding>-lgort }, Section: {
<ls_emdedding>-section_id } sent to GCS!.
         MESSAGE lv_msg TYPE 'I'.
         DATA(lv_filename) = |{ <ls_emdedding>-guid }.json|.
         lo_client->send_struct_to_gcs( iv_bucket_name = mv_tgt_bucket_name iv_file_name = lv_filename ).
       CATCH /goog/cx_sdk INTO DATA(lo_exception).
         ev_err_text = lo_exception->get_text().
         lv_msg = |Product: { <ls_emdedding>-matnr }, LGORT: { <ls_emdedding>-lgort }, Section: {
<ls_emdedding>-section_id } failed:{ ev_err_text }|.
         MESSAGE lv_msg TYPE 'S' DISPLAY LIKE 'E'.
     ENDTRY.
   ENDLOOP.
. . .
```

Furthermore, the SDK simplifies the transfer of these embeddings to various destinations for downstream processing. Methods like SEND_STRUCT_T0_GCS, SEND_STRUCT_T0_BQ, and SEND_STRUCT_T0_PUBSUB enable you to seamlessly store the generated embeddings in your preferred target, such as Google Cloud Storage, BigQuery, or even send them to Pub/Sub for further integrations. This flexibility allows for a smooth and adaptable workflow within your existing data infrastructure.

Chapter 12: Create and Update Vector Index

This chapter guides you through creating and configuring four vector indexes to power semantic search within the HAZMAT application's RAG workflow.

Given that we have the embeddings available, we can progress to the subsequent phase of Vector Index creation. For a thorough understanding of the various configuration options available for index management, please refer to <u>this</u> guide.

For the HAZMAT application we will c	reate the following 4 indexes.

Index Name	Descriptions
hazmat-sds-vector	Index for SDS knowledge chunks
hazmat-wsg-vector	Index for Warehouse Safety Guide knowledge chunks
hazmat-pictogram-vector	Index for hazardous material pictograms
hazmat-prod-vector	Index for SAP materials data

Use the below instructions to create the index hazmat-sds-vector in the Google Cloud console:

Step1: Goto Google Cloud console and search for Vertex Search or click on this link.

Step2: Select region as 'us-central1' and click on 'Create new index' to create the following 5 indexes with the listed values.

Vecto	or Sea	arch			
INDEXE	S	INDEX E	NDPOINTS		
Regio us-ce	n — ntral1 (lowa)		- 0	+ CREATE NEW INDEX
Name	ID	Status	Dense count	Sparse count	Last update Deployed indexes

Create a new index
Cisplay name *
hazmat-sds-vector
How to refer to this index in the list view.
C Description
HPRO: Vector Index for SDS documents
Describe what this index is used for.
Region
us-central1 (Iowa) 🗸 🖓
GCS folder URI
≥gs:// /hazmat-sds-embeddings/ BROWSE
This is the GCS folder where your vector data is stored. Learn more about data formatting.
CAlgorithm type
Tree-AH algorithm
The algorithm type that Vector Search uses for efficient search.
Dimensions *
The number of dimensions of the input vectors
Approximate neighbors count *3
The default number of neighbors to find through approximate search before exact reordering is performed.
Cupdate method
Batch
Batch lets you insert and delete data points through a batch schedule. Streaming lets you update and query your index in nearly real-time.
Shard size
Small
Index data is split into equal parts, called, shards, to be processed. Learn more about the shard sizes available, and their prices. 🔀

Index attributes:

	Index 1	Index 2	Index 3	Index 4
Display Name	hazmat-sds-vector	hazmat-wsg-vector	hazmat-pictogram-vect or	hazmat-prod-vector
Description	HPRO: Vector Index for SDS documents	HPRO: Vector Index for Warehouse safety guide	HPRO: Vector Index for Pictograms	HPRO: Vector Index for Products
Region	us-central1	us-central1	us-central1	us-central1
GCS folder URI (Select folder)	hazmat-sds-embeddings	hazmat-wsg-embeddin gs	hazmat-pictogram-emb eddings	hazmat-prod-embeddin gs
Algorithm Type	Tree-AH algorithm	Tree-AH algorithm	Tree-AH algorithm	Tree-AH algorithm
Dimension	768	768	1408	768
Approximate neighbors count	3	3	3	3
Update method	Batch	Batch	Batch	Batch
Shard size	Small	Small	Small	Small

Refer to the below table for attribute values:

Step3: Create an Index Endpoint to deploy the index for serving.

An index endpoint in Google Vector is a server that accepts query requests for an index. Multiple indexes can be deployed to the same index endpoint.

Keep the region as 'us-central1' and click on 'Create new endpoint'. Enter the display name as 'hazmat-vector-index-endpoint' and access as 'Standard' and click Create.

INDEXES INDEX ENDPOINTS	
Region	
	CREATE NEW ENDPOINT
Name ID Status Deployed indexes	

Create a new index endpoint
Display name * hazmat-vector-index-endpoint
Location
Regionus-central1 (lowa) _ ?
Access
Determines how your endpoint can be accessed. By default, endpoints are available through a REST API. Endpoint access can't be changed after the endpoint is created. Learn more
Standard Makes the endpoint available through a REST API.
O Private Create a private connection to this endpoint using a VPC network and private services access. Learn more ☑
Private Service Connect (Preview) Create a private connection to this endpoint use Private Service Connect within a VPC network. Learn more
CREATE CANCEL

Step4: Deploy Indexes to the Endpoint

Select the index created earlier and deploy **all 4 indexes** to the same endpoint, with the following values:

- **Display name**: Keep same as Index name
- Machine type: e2-standard-2
- Enable autoscaling: True
- Minimum number of machine replicas: 1
- Maximum number of machine replicas: 1

Vector Search								
INDEXES INDEX E	NDPOINTS							
Region us-central1 (lowa)				- 0			+	CREATE NEW INDEX
Name	ID		Status	Dense count	Sparse count	Last updated	Deployed index	les
hazmat-pictogram-vector		96992	🕑 Ready	9	_	Sep 24, 2024, 8:59:37 PM	DEPLOY	i
hazmat-sds-vector		03744	< Ready	736	_	Sep 24, 2024, 6:54:21 PM	DI	I
hazmat-wsg-vector		99232	< Ready	13	-	Sep 24, 2024, 6:52:05 PM	DI Y	I
hazmat-prod-vector		07296	🕑 Ready	40	-	Sep 24, 2024, 6:09:44 PM	DI Y	I

	634. It cannot be changed later
EDIT	004. It cannot be changed later.
ndnoint *	
azmat-vector-index-endpoint	-
he index endpoint to deploy your	index to. Learn more 🖄
lachine type	
2-standard-2, 2 vCPUs, 8 GiB m	nemory -
he type of machine to deploy you	r index to. If not set will be selected
he type of machine to deploy you utomatically based on the index s Enable autoscaling Automatically resize the numbe workloads. The default number	r index to. If not set will be selected shard size. Learn more about pricing I r of nodes based on the demands of your of replicas is 2 if autoscaling is disabled.
he type of machine to deploy you utomatically based on the index s Enable autoscaling Automatically resize the numbe workloads. The default number Minimum number of machine 1 Defaults to 2. Minimum numb be always deployed on. If spec 1.	r index to. If not set will be selected shard size. Learn more about pricing [2] r of nodes based on the demands of your of replicas is 2 if autoscaling is disabled. replicas er of machine replicas the deployed index will cified, the value must be equal to or larger than
he type of machine to deploy you utomatically based on the index s Enable autoscaling Automatically resize the numbe workloads. The default number Minimum number of machine 1 Defaults to 2. Minimum numb be always deployed on. If spec 1. Maximum number of machine	r index to. If not set will be selected shard size. Learn more about pricing [2] r of nodes based on the demands of your of replicas is 2 if autoscaling is disabled. replicas er of machine replicas the deployed index will cified, the value must be equal to or larger than e replicas
he type of machine to deploy you utomatically based on the index s Enable autoscaling Automatically resize the numbe workloads. The default number	r index to. If not set will be selected shard size. Learn more about pricing [2] r of nodes based on the demands of your of replicas is 2 if autoscaling is disabled. replicas er of machine replicas the deployed index will cified, the value must be equal to or larger than e replicas

The deployment will take a few hours to complete. Once deployed each index will be associated with a unique deployment id, which we will use to configure in SAP using SDK in the later chapters.

Conclusion:

The HAZMAT application now has a fully operational vector search infrastructure. The next step is to integrate this with the RAG workflow, enabling the application to dynamically retrieve contextually relevant information from the knowledge base and generate more informed and accurate responses.

Chapter 13: RAG Serving workflow Overview

This chapter dives into the architecture and components of a Retrieval Augmented Generation (RAG) serving workflow, providing a comprehensive understanding of how to leverage this powerful approach for enhanced LLM interactions.

What is a RAG Serving Workflow?

The following diagram illustrates the key stages and elements involved:

Retrieval Augmented Generation (RAG) is a framework that enhances Large Language Models (LLMs) by providing them with relevant external knowledge. This is crucial because LLMs, while powerful, have limitations:

- Knowledge Cut-off: LLMs are trained on a fixed dataset and may not have access to the latest information.
- **Hallucination:** LLMs can sometimes generate incorrect or nonsensical outputs, especially when faced with ambiguous queries or unfamiliar topics.

RAG addresses these limitations by retrieving relevant context from external knowledge sources (like your vector database) and feeding it to the LLM along with the user query. This allows the LLM to generate more accurate, informed, and contextually relevant responses.

Components of a RAG Serving Workflow

- 1. Search:
 - This stage involves receiving a user query and initiating the search process.
 - It often includes pre-processing steps like cleaning and formatting the query for optimal retrieval.
 - In HPro, this could be a user asking a question about a hazardous material or searching for safety procedures.

2. Embedding Model:

- The query is converted into a numerical vector representation (embedding) using an embedding model.
- This embedding captures the semantic meaning of the query.
- HPro uses the text-embedding-004 model for text and multimodalembedding@001 for images (pictograms).

3. Vector Database:

- The embedding is used to search a vector database containing pre-computed embeddings of your knowledge base.
- The database utilizes similarity search to find the most relevant documents or information chunks related to the query.
- HPro uses a Vertex AI Vector Search index with four separate indexes for SDSs, Warehouse Safety Guides, pictograms, and product data.

4. Context Retrieval:

- The top-matching documents or chunks from the vector database are retrieved as context.
- This context provides the LLM with relevant background information to answer the query accurately.

5. Gen Al Model (e.g., Gemini):

- The user query and the retrieved context are combined and fed as input to the LLM.
- The LLM processes this information and generates a response.
- HPro uses <u>Gemini Flash</u> to process the query and context.
- 6. Reliable Answer:
 - The LLM generates a response that is more likely to be accurate, relevant, and comprehensive due to the added context.

Conclusion

This chapter provided a foundational understanding of RAG serving workflows and their components. You also learned about the benefits of using RAG and how Vertex AI provides the necessary tools and infrastructure to implement RAG effectively. In the subsequent chapters, we will delve deeper into the practical implementation of these concepts using the Vertex AI SDK for ABAP.

Chapter 14: Configure Vector Search in SAP

This chapter guides you through configuring SAP to connect to your Vector Search endpoint, enabling retrieval of relevant information from your indexed data.

To commence the initial phase of developing the RAG workflow, we shall configure the Vertex AI SDK for ABAP to utilize the Vector Search endpoint established in Chapter 12: Create and Update Vector Index. Please proceed with the below steps:

Step1: Get the parameters to configure Vector search in SAP

In this step we will gather the following parameter for configuring Vector search

- Endpoint ID
- Endpoint URL
- Deployment ID for all below four indexes:
 - hazmat-sds-vector
 - hazmat-wsg-vector
 - hazmat-pictogram-vector
 - hazmat-prod-vector

Get Endpoint ID and Endpoint URL:

Go to Vector Search in Google cloud console and click on the Index Endpoint. Copy the **endpoint id** which will be used for SDK configuration later and also **public domain name**, which will be used as a host url while configuring the RFC destination.

Vector Se	Vector Search				
INDEXES					
Region — us-central1	(Iowa)				
Name	ID	Status			
hazmat-vector	-index-endpoint	🔗 Ready			

			Endpoint info		
Region us-central1 (Iowa)			Display name	hazmat-vector-index-endpoint	
			ID	5949056	Endpoint ID
lame	ID	Status	Region	us-central1 (Iowa)	
azmat-vector-index-endp	oint	🛇 Ready	Status	Ready	
			Access type	Public	
			Public domain name	.us-central1-	.vdb.vertexai.goo
			Created	Sep 25, 2024, 12:24:23 AM	$\widehat{1}$
			Last updated	Sep 25, 2024, 12:24:24 AM	

Get Deployment ID for indexes:

Go to Vector Search in Google cloud console and click on the Deployed Indexes to get the deployment ID for all four indexes as shown below.

NDEXES INDEX ENDP		
Region		
us-central1 (Iowa)		CREATE NEW ENDPOINT
lame	ID	Status Deployed indexes
azmat-vector-index-endpoint		Ready Azmat-wsg-vector Azmat-prod-vector Azmat-pictogram-vector Azmat-sds-vector
	Index endpoint list ≯ ha	azmat-vector-index-endpoint > hazmat-wsg-vector
	Deployed index in Display name	nfo / UPDATE C REFRESH
	Deployed index in Display name	nfo VUPDATE CREFRESH hazmat-wsg-vector hazmat_wsg_vector236 Deployment ID
	Deployed index in Display name ID Status	nfo VUPDATE CREFRESH hazmat-wsg-vector hazmat_wsg_vector_236 Ready
	Deployed index in Display name ID Status Index	nfo VPDATE CREFRESH hazmat_wsg_vector236 Ready projects//locations/us-central1/indexes/
	Deployed index in Display name ID Status Index Index endpoint	nfo VUPDATE CREFRESH hazmat-wsg-vector hazmat_wsg_vector_236 Deployment ID Ready projects/ Vlocations/us-central1/indexes/ projects/ Vlocations/us-central1/indexEndpoints/
	Deployed index in Display name ID Status Index Index endpoint Public domain name	nfo VUPDATE CREFRESH hazmat-wsg-vector hazmat_wsg_vector_236 Deployment ID Ready projects/ Vlocations/us-central1/indexes/ projects/ Vlocations/us-central1/indexEndpoints/ us-central1- Vdb.vertexai.goog
	Deployed index in Display name ID Status Index Index endpoint Public domain name Min replica count	nfo VUPDATE CREFRESH hazmat-wsg-vector hazmat_wsg_vector_236 Deployment ID Ready projects/ Vlocations/us-central1/indexes/ projects/ Vlocations/us-central1/indexEndpoints/ us-central1- vdb.vertexai.goog 1
	Deployed index in Display name ID Status Index Index endpoint Public domain name Min replica count Max replica count	nfo VUPDATE CREFRESH hazmat-wsg-vector hazmat_wsg_vector_236 Deployment ID Ready projects/ Vlocations/us-central1/indexes/ projects/ Vlocations/us-central1/indexEndpoints/ us-central1- vdb.vertexai.goog 1 1 1
	Deployed index in Display name ID Status Index Index endpoint Public domain name Min replica count Max replica count Machine type	nfo VUPATE CREFRESH
	Deployed index in Display name ID Status Index Index endpoint Public domain name Min replica count Max replica count Machine type Created	nfo VUPATE CREFRESH
	Deployed index in Display name ID Status Index Index endpoint Public domain name Min replica count Max replica count Machine type Created Last synced	nfo ✓ UPDATE C REFRESH hazmat-wsg-vector hazmat_wsg_vector236 Deployment ID Ready projects/ //locations/us-central1/indexes/ projects/ //locations/us-central1/indexEndpoints/ us-central1- //db.vertexai.goog 1 1 e2-standard-2 Sep 25, 2024, 10:05:07 AM Sep 25, 2024, 5:25:28 PM Sep 25, 2024, 5:25:28 PM

Step2: Create a RFC destination.

- 1. In the SAP GUI, enter transaction code **SM59**.
- 2. Create new RFC destinations with the name ZGOOG_HAZMAT_ENDPOINT of type G- HTTP Connections to External Server.
- 3. Go to the **Technical Settings** tab and enter the following details:
 - a. Target Host: enter the Vector search endpoint host URL copied from Step1.
 - b. **Port**.: enter 443. This port number is used for secure communication.
- 4. Go to the Logon & Security tab and make sure that the SSL is set as Active and SSL Certificate field is set with the option DFAULT SSL Client (Standard).

RFC Destination ZGOOG_HAZMAT_ENDPOINT Connection Type G HTTP Connection to External Server Description Description 1 HAZMAT Vector Search Endpoint Description 2 Description 3 Administration Technical Settings Logon & Security Special Options	Johnection Test	
Connection Type G HTTP Connection to External Server Description Description 1 HAZMAT Vector Search Endpoint Description 2 Description 3 Administration Technical Settings Logon & Security Special Options Target System Settings	RFC Destination	ZGOOG_HAZMAT_ENDPOINT
Description Description 1 HAZMAT Vector Search Endpoint Description 2 Description 3 Administration Technical Settings Logon & Security Special Options Target System Settings	Connection Type	G HTTP Connection to External Server
Description 1 HAZMAT Vector Search Endpoint Description 2 Description 3 Administration Technical Settings Logon & Security Special Options Target System Settings	Description	
Description 2 Description 3 Administration Technical Settings Logon & Security Special Options Target System Settings	Description 1	HAZMAT Vector Search Endpoint
Description 3 Administration Technical Settings Logon & Security Special Options Target System Settings Control of the security Special Options Control of the security Special Options	Description 2	
Administration Technical Settings Logon & Security Special Options Target System Settings	Description 3	
	Administration	Technical Settings Logon & Security Special Options
Host .us-central1us-Vdb.vertexai Port	Target System Sett	ings

Step3: Create a service mapping entry for the search invoker.

Configure the service mapping table for invoking the Vector Search Index endpoint using the ABAP SDK for Google Cloud.

- In SAP GUI, execute the transaction code /GOOG/SDK_IMG.
- Alternatively, execute the transaction code SPRO, and then click **SAP Reference IMG**.
- Click ABAP SDK for Google Cloud > Basic Settings > Configure Service Map.
- Click **New Entries** and create with the following values.

Field	Values
Google Cloud Key Name	DEMO_AIPLATFORM
Google Service Name	apiinvoker:v1
RFC Destination	ZGOOG_HAZMAT_ENDPOINT

After the successful completion of this step, the service map configuration table will contain the following three entries:

1	Display View "Map Google Service and the RFC": Overview					
66						
-	Map Google Service and the F	RFC destination				
	Google Cloud Key Name	Google Service Name	RFC Destination			
	DEMO_AIPLATFORM	aiplatform:v1	ZGOOG_VERTEXAI_V1			
	DEMO_AIPLATFORM	apiinvoker:v1	ZGOOG_HAZMAT_ENDPOINT			
	DEMO_AIPLATFORM	iamcredentials:v1	ZGOOG_IAMCREDENTIALS			
	1					

Step4: Configure Vector Search parameters.

Configure the Vector search parameters for performing the Vector Search using the ABAP SDK for Google Cloud.

- In SAP GUI, go to SPRO, and then click **SAP Reference IMG**.
- Click ABAP SDK for Google Cloud > Basic Settings > Vertex AI SDK: Configure Vector Search Parameters.
- Click **New Entries** and create four entries with the following values.

	Index 1	Index 2	Index 3	Index 4
Search Key	HPRO_SDS	HPRO_WSG	HPRO_PICTOGRAM	HPRO_PROD
Google Cloud Key Name	DEMO_AIPLATFOR M	DEMO_AIPLATFOR M	DEMO_AIPLATFOR M	DEMO_AIPLATFOR M
Google Cloud Region Location ID	us-central1	us-central1	us-central1	us-central1
Deployment ID of Vector Index	hazmat_sds_vector _ xxxxx (Details From step1)	hazmat_wsg_vecto r_ xxxxx (Details From step1)	hazmat_pictogram _vector_ xxxxx (Details From step1)	hazmat_prod_vecto r_ xxxxx (Details From step1)
Vector Index Endpoint ID (Same for all records)	xxxxx (Endpoint ID From step1)	xxxxx (Endpoint ID From step1)	xxxxx (Endpoint ID From step1)	xxxxx (Endpoint ID From step1)

Once completed the table entries should look like this

	Change View "Vertex AI SDK: Vector Search Configurations": Overview					
6	🦻 New Entries 🗈 🖶 🕫 🕃 🕼					
	Vertex AI SDK: Vector Search	Configurations				
	Search Key	Google Cloud Key Name	Google Cloud Region Location ID	Deployment ID of Vector Index	Vector Index Endpoint ID	
	HPRO_PICTOGRAM	DEMO_AIPLATFORM	us-central1	hazmat_pictogram_vector_	49056	
	HPRO_PROD	DEMO_AIPLATFORM	us-central1	hazmat_prod_vector_	49056	
	HPRO_SDS	DEMO_AIPLATFORM	us-central1	hazmat_sds_vector_	49056	
	HPRO_WSG	DEMO_AIPLATFORM	us-central1	hazmat_wsg_vector	49056	

Step5: Validate configuration by running the demo program.

Follow the below steps to validate the Vector search configuration

- In SAP GUI, go to SPRO, and then click **SAP Reference IMG**.
- Click ABAP SDK for Google Cloud > Demos > Vertex Al SDK: Demo: Manage Vector Index and Invoke Vector Search.
- Select Search Nearest Neighbors and enter the following values:
 - Search Key: HPRO_PROD
 - Datapoint ID: HZ-ACE
 - No. of NearestNeighbors return: 1

Demo Program: Manage Vector Index and Invoke Vector Search			
(l) 1			
Actions			
OCreate an Index			
OCreate an Index Endpoint			
Opeploy Index to Index Endpoint			
○Patch a Batch Index			
 Search Nearest Datapoints 			
○ Search Nearest Neighbors			
OUpsert Data to a Stream Index			
ORemove Data from Stream Index			
OLong Running Operation Status			
Selection Screen Parameters			
Search Key	HPRO_PROD		
Datapoint ID	HZ-ACE		
No. of NearestNeighbors return	1		
Return Full Datapoints			

Successful Response:

Coutput: Nearest Datapoints against ID:HZ-ACE Searched Nearest Neighbors IT_SEARCH_RESPONSE SL_NO DATAPOINT_ID DISTANCE FEATURE_VECTOR 1 HZ-ACE

Conclusion

By completing the steps in this chapter, you have successfully configured your SAP system to leverage the power of Vertex AI's Vector Search. This connection enables your ABAP applications to efficiently retrieve contextually relevant information from your indexed datasets, laying the groundwork for developing robust and intelligent applications, such as the HPro solution for HAZMAT handling. You're now well-equipped to move forward and implement the remaining components of your RAG workflow.

Chapter 15: Use Stremlit to to build the UI

In this chapter we will deploy a Streamlit frontend app to Cloud Run and connect it to your ABAP backend HAZMAT service.

This section outlines the steps to deploy a Streamlit application to Cloud Run, which will interact with your SAP system using an ABAP service created within SICF (as described in Chapter 7). Your Streamlit application will communicate directly with this service.

(Note: Developers can explore alternative integration methods, such as using an OData service and a Fiori app, but for simplicity this guide focuses on the ABAP service approach).

In chapter 8, we have already cloned the Git repository, to your cloud shell which also has the frontend application.

To deploy your Streamlit application to Cloud Run, follow these steps:

Step 1: Configure Your Application

Before deploying, you'll need to configure your Streamlit application to connect to your SAP system:

Open the config.toml file:

cd demo-hpro/hpro-app/config/
vim config.toml

Modify the base_url in the config to include the External IP address of the SAP system.

Update the base URL: Replace the placeholder base URL with the external IP address of your SAP

system. You can find this external IP address in your Google Cloud console where your SAP system is

hosted.

```
[api]
base_url = "http://xx.xxx.xxx" # Modify this to SAP system External IP
Address
port = 50000 # Modify this to SAP system port if you are not using ABAP Trail
username = "DEVELOPER" # Replace with your SAP username
password = "ABAPtr2022#00" # Replace with your SAP password
```

```
get_prompt_api = "/sap/bc/hazmat_service/getPromptRepo"
get_product_api = "/sap/bc/hazmat_service/getProducts"
post_prompt_api = "/sap/bc/hazmat_service/processPrompt"
```

Note: This prototype uses a simplified approach for storing login details. **Do not use this method** in production environments. Secure credential management is crucial for production systems.

External IP address can be referred from the Google cloud console.

VM instanc	VM instances				
∓ Filter ab	ap-trial-docker-2022 😮 Enter p	property name or valu	le		
Status	Name 🛧	Zone	Machine type	Internal IP	External IP
	abap-trial-docker-2022	us-central1-a	n2-highmem-4	(<u>nic0</u>)	(<u>nic0</u>)

Step2: Deploy to cloud run

Navigate to the project directory demo-hazmat-frontend and execute the below deployment commands:

```
cd ..
export PROJECT_ID="abap-sdk-poc" # Your Project ID
export REGION="us-central1"
gcloud run deploy demo-hazmat-frontend --source . --region="$REGION"
--project="$PROJECT_ID" --allow-unauthenticated
```

Once the deployment is successful, you'll see a confirmation message in your terminal, including the service URL of your deployed application.

Step3: Test your application

Access the application: Click on the service URL from the deployment output message to open your Streamlit application in your web browser or open the app by navigating to cloud run in the Google Cloud Console.

	Cloud Run 🗧 Serv	ice details 🧪	EDIT & DEPLOY NEW REVISION	O SET UP CONTINUOUS DEPLOYMEN	NT	C TEST
S	demo-hazmat-frontend	Region: us-central1	URL: https://demo-hazmat-frontend	.us-central1.run.app 🗗	0	Service min instances: 0 🧳

Run a test scenario:

- Select "Real-Time Information (Safety Data Sheet)" as the scenario.
- Select "What is the flash point of <Product>" as the prompt.
- Enter "Acetone" as the product.
- Click on "Get Answer from Gemini."

HAZMAT Pro (Hpro)
Select Business Scenario:
Real-Time Information (Safety Data Sheet)
You selected: Real-Time Information (Safety Data Sheet)
Select a prompt:
What is the flash point of <product>?</product>
O How should I dispose of this empty container of <product>?</product>
Are there any specific ventilation requirements for working with this <product>?</product>
○ What are the long-term health effects of exposure to this pesticide <product>?</product>
• What is the manufacturer's recommended spill cleanup procedure for <product>?</product>
You selected: What is the flash point of <product>?</product>
Select a Product:
Acetone
Your query
What is the flash point of Acetone?
Get Answer from Gemini

Verify the response: You should receive a response displaying the flash point of Acetone, retrieved from your SAP system.

Gemini Response:
The flash point of Acetone is -20 °C / -4 °F. This information is clearly stated in the provided text under the "Flash Point" section.
It's important to note that this is the closed cup flash point, meaning it was determined using a standardized test method where the sample is contained in a closed vessel.
The flash point is the lowest temperature at which a liquid can produce enough flammable vapor to ignite in the presence of an ignition source. Acetone's low flash point indicates that it is highly flammable and requires careful handling and storage to prevent fire hazards.

Explore and Extend

Feel free to explore the application by selecting other business scenarios and prompts. Many of the processing workflows are intentionally left unimplemented, providing you with the opportunity to:

- **Code your own prompt processing workflows**: Implement the logic to handle different prompts and scenarios, integrating with your SAP system as needed.
- **Customize and enhance**: Add new features, improve the user interface, and tailor the application to your specific requirements.

Chapter 16: Under the Hood of HPro: Prompt Processing and Response Generation

This chapter explores the design of the HPro application, focusing on its prompt processing workflow. Building on the RAG concepts from Chapter 13, we'll detail how HPro handles user prompts and generates insightful responses.

Our application was designed to address the following key scenarios within the business:

Scenario	Functionality	Enabled in HPro?
Real-Time Information (Safety Data Sheet)	Gemini leverages RAG to access up-to-date information from SDS documents provided by the manufacturer(example), ensuring accuracy and relevance.	Yes
Al-Powered Pictogram Recognition	Users can photograph hazard pictograms for instant identification and detailed information.	Yes
Inventory Integration	Seamlessly links to SAP inventory data for real-time stock visibility and material-specific instructions.	Yes
Emergency Response Guidance	Provides clear, step-by-step instructions for first aid and exposure control in critical situations.	Partially
Risk Assessment and Mitigation	Scenario-based guidance and proactive risk identification using LLM analysis of SDS and SAP EHS data.	No
Training and Education	Personalized learning paths, interactive quizzes, and simulations for enhanced HAZMAT knowledge.	No
Incident Reporting and Analysis	Guided incident reporting and LLM-powered root cause analysis.	No
Waste Management Optimization	Waste stream classification assistance and resource recovery recommendations.	No

Exploring the Potential of AI

To demonstrate the power of AI in real-time decision-making, we created a set of predefined prompts that simulated user queries. This allowed us to showcase how AI could be integrated into various aspects of the application, beyond traditional chatbot interactions.

Developing a Prompt Processing Framework

To effectively handle these diverse scenarios, we developed a flexible prompt processing workflow. As an example the following three workflows are implemented in the current version of prototype.

By combining AI-powered capabilities with a robust prompt processing framework, we aim to streamline decision-making, and enhance overall operational efficiency.

Chapter 17: Conclusion

Summary of Key Takeaways

- **Retrieval Augmented Generation (RAG)** is a powerful technique for enhancing large language models (LLMs) by providing them with relevant external knowledge.
- The Vertex AI SDK for ABAP makes it easy to integrate Vertex AI services, such as Gemini and Vector Search, into your SAP applications.
- By using **RAG** and the **Vertex AI SDK** for ABAP, you can develop applications that can answer user questions accurately, reliably, and with context.

Potential Future Directions

- As LLMs continue to evolve, we can expect to see even more innovative applications of RAG in the future.
- The Vertex AI SDK for ABAP is a valuable tool for developers who want to build AI-powered applications on SAP.
- By staying up-to-date on the latest advancements in Al and SAP, you can ensure that your applications are always at the forefront of innovation.

Call to Action

- Explore the resources in this book to spark your own innovative ideas.
- **Experiment with the Vertex AI SDK for ABAP** and unlock new possibilities in enterprise application development.
- **Pioneer new solutions** with RAG and transform the way enterprise applications are built and used.
- Drive innovation within your organization by leveraging the power of Vertex AI and Gemini.

Glossary

ABAPGIT: is a Git client for ABAP that allows you to manage ABAP source code in Git repositories.

BigQuery: is a fully managed, serverless data warehouse that enables scalable analysis over petabytes of data.

Cloud Run: is a fully managed serverless platform that automatically scales your stateless containers.

Cloud Shell: is a web-based, interactive shell environment that you can use to manage your Google Cloud resources.

Document AI: is a Google Cloud service that uses machine learning to extract information from documents.

Embedding: is a numerical representation of a piece of data, such as text or an image, that can be used for similarity search.

Gemini: is a family of large language models (LLMs) developed by Google.

Google Cloud Storage (GCS): is an object storage service for storing any kind of data.

HAZMAT (Hazardous Materials): are substances that can pose a risk to health, safety, or the environment.

HPro (HAZMAT Pro): is an AI-powered prototype application for enhancing warehouse safety.

JSONL (JSON Lines): is a newline-delimited JSON format for storing structured data.

Knowledge Chunk: is a small, semantically meaningful unit of information extracted from enterprise data.

Large Language Model (LLM): is a type of artificial intelligence (AI) that can understand and generate text in response to a wide range of prompts and questions.

Pub/Sub: is a real-time messaging service that allows you to send and receive messages between independent applications.

PyMuPDF: is a Python library for working with PDF files.

RAG (Retrieval Augmented Generation) is a technique for enhancing LLMs by providing them with relevant external knowledge.

Safety Data Sheet (SDS): is a document that provides detailed information about the hazards of a chemical and how to handle it safely.

SAP EHS (Environment, Health, and Safety): is a software solution that helps organizations manage environmental, health, and safety regulations.

SICF (Service Implementation Cockpit Framework): is a tool for configuring and managing ICF services in SAP.

Streamlit: is an open-source Python library that makes it easy to create and share custom web apps for machine learning and data science.

Tiktoken: is a tool for counting tokens in text, which is used to measure the input and output of LLMs.

Vector Database: is a type of database that is optimized for storing and searching vector embeddings.

Vector Index: is a data structure that is used to organize vector embeddings for efficient similarity search.

Vertex AI: is a Google Cloud service that provides a unified platform for building and deploying machine learning models.