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ABSTRACT   
  

The  Federated  Learning  of  Cohorts  (FLoC)  API  is  a  privacy  preserving  mechanism  proposed               
within  the  Chrome  Privacy  Sandbox,  for  enabling  interest  based  advertising.  The  API  is  based                
on  the  notion  of  cohorts  -  groups  of  users  with  similar  interests.  In  this  paper  we  evaluate                   
different  methods  for  generating  cohorts,  showing  clear  trade-offs  between  privacy  and  utility.              
Using  proprietary  conversion  data,  we  demonstrate  that  generating  cohorts  based  on  common              
interests  can  significantly  improve  quality  over  random  user  groupings.  In  fact,  we  achieve  a                
350%  improvement  in  recall  and  70%  improvement  in  precision  at  very  high  anonymity  levels                
compared   to   random   user   grouping.     

Introduction   
On  January  14,  2020  Chrome  published  an  intention  to  implement  a   Federated  Learning  of                
Cohorts  (FLoC)  API .  The  goal  of  the  FLoC  API  is  to  preserve  interest  based  advertising,  but  to                   
do  so  in  a  privacy-preserving  manner.  More  precisely,  the  FLoC  API  relies  on  a  cohort                 
assignment  algorithm.  That  is,  a  function  that  allocates  a  cohort  id  to  a  user  based  on  their                   
browsing  history.  To  ensure  privacy,  Chrome  requires  this  cohort  id  to  be  shared  by  at  least  k                   
distinct   users.     
  

The  goal  of  this  paper  is  to  share  some  initial  results  about  the  efficacy  of  certain  algorithms  that                    
would  abide  with  the  FLoC  principles  and  begin  a  discussion  about  different  ways  for                
implementing  and  evaluating  cohort  assignment  algorithms.  We  believe  in  the  long  run  ad  tech                
providers  could  use  cohort  ids  (potentially  paired  with   TURTLEDOVE )  as  a  feature  in  their  ads                 
personalization   algorithms.     
  

We   use   the   following   higher   level   principles   largely   laid   out   for   FLOC   within   the   Privacy   Sandbox  
to   design   some   experimental   cohort   assignment   algorithms   
  

1. The   cohort   id   should   prevent   individual   cross-site   tracking.   
2. A   cohort   should   consist   of   users   with   similar   browsing   behavior.   
3. Cohort   assignments   should   be   unsupervised   algorithms,   since   each   provider   has   their   

own   optimization   function.     

1  Primary   contacts:   Deepak   Ravichandran   &   Sergei   Vassilvitskii   
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4. A   cohort   assignment   algorithm   should   limit   the   use   of   “magic   numbers”.   That   is,   its   
parameter   choice   should   be   clearly   and   easily   explained.   

5. Computing   an   individual’s   cohort   should   be   simple.   This   allows   for   it    to   be   implemented   
in   a   browser   with   low   system   requirements.   

  
The  particular  algorithm   design  tested  here  proposes  hashing  the  browsing  history  of  a  user  into                 
a  -dimensional  binary  vector  using  the   SimHash  algorithm  and  defines  a  cohort  to  be  all  users   p                
sharing  the  same  hash.  In  addition  to  simulating  the  proposed  FLoC  design  we  evaluate  other                 
plausible   clustering   algorithms   and   compare   them   based   on   the   following   three   dimensions:     
  

● Privacy :   What   fraction   of   users   are   in   large   cohorts?   
● Utility .   What   is   the   similarity   of   users   in   the   same   cohort?   
● Centralization .   Does   information   need   to   be   sent   to   a   centralized   server   to   calculate   a   

cohort   id?   

Privacy   vs   Utility   
At  a  very  high  level,  a  cohort  assignment  algorithm  presents  us  with  a  privacy-utility  trade-off:                 
the  more  users  share  a  cohort  id,  the  harder  it  is  to  use  this  signal  to  derive  individual  user’s                     
behavior  from  across  the  web.  On  the  other  hand,  a  large  cohort  is  more  likely  to  have  a  diverse                     
set  of  users,  thus  making  it  harder  to  use  this  information  for  fine-grained  ads  personalization                 
purposes.  An  ideal  cohort  assignment  is  one  that  generates  cohorts  by  grouping  together  a                
large   number   of   users   interested   in   similar   things   (see   Figure   1).   

Measuring   Privacy   
One  privacy  requirement  for  the  FLoC  API  laid  out  in  the  Privacy  Sandbox  is  that  each  cohort  is                    
k-anonymous.  We  say  a  cohort  id  is  k-anonymous  if  it  is  shared  by  at  least  k  users.  The  higher                     
the  value  of  k,  the  more  privacy  protection  we  provide  to  a  user.  K-anonymity  allows  a  user  to                    
“hide   in   the   crowd”,   making   derivation   of   individual   behavior   across   the   web   harder.     
  

We  want  to  emphasize  that,  even  though  differential  privacy  is  now  the  de  facto  privacy  notion  in                   
industry  and  academia,  we  decided  against  using  it  as  our  privacy  measure  for  building                
audiences.  This  choice  was  made  since  we  believe  it  fails  to  quantify  the  hardness  of  tracking                  
users  across  the  web.  In  fact,  a  cohort  id  can  be  differentially  private  and  still  be  used  as  a                     
fingerprint.  Indeed,  an  algorithm  that  assigns  a  unique,  random  (but  fixed  across  websites)               
cohort  id  to  each  user  will  satisfy  the  definition  of  differential  privacy;  since  the  random  id  does                   
not  reveal  any  user  information.  Nevertheless,  it  is  clear  that  this  unique,  random  id  can  be  used                   
as  a  stable  fingerprint  with  which  to  track  users  across  the  web.  On  the  other  hand,  a                   
k-anonymous   cohort   id   cannot,   by   definition 2 ,   be   used   as   a   fingerprint.     

  

2  if   used   in   totality   (ie   not   paired   with   other   signals)   

https://github.com/jkarlin/floc
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Figure  1 .  An  example  of  how  two  different  cohort  assignments  with  the  same               
anonymity  properties  can  yield  different  utility  results.  Here  we  show  six  users  split               
into  cohorts  in  two  different  ways.  Assignment  A  creates  a  cohort  of  xyz.com               
visitors  and  another  of  abc.com  visitors.  Assignment  B  generates  a  cohort  of  car               
enthusiasts  and  one  of  bike  enthusiasts.  Even  though  both  achieve  k-anonymity             
for   k=3.   Assignment   B   is   more   likely   to   be   effective   for   interest   based   advertising.     

Algorithm   descriptions   
We  now  introduce  the  algorithms  we  will  be  using  to  calculate  cohort  ids.  The  computation  of                  
cohort  ids  is  fundamentally  a  clustering  operation:  grouping  similar  users  together.  The  input  to                
the  clustering  algorithm  is  a  set  of  vectors,  one  vector  per  user,  in  a  -dimensional  space.  We                d    
will   later   discuss   how   to   generate   these   vectors   based   on   browsing   history.     

SimHash   
SimHash  is  an  instantiation  of  the  popular   locality  sensitive  hashing  (LSH)  family  of  algorithms.                
Initially  developed  with  the  goal  of  identifying  near  duplicate  documents  quickly,  SimHash  takes               

https://en.wikipedia.org/wiki/Locality-sensitive_hashing#Random_projection
https://en.wikipedia.org/wiki/Locality-sensitive_hashing


  

as  input  a  -dimensional  vector   and  outputs  a  -bit  vector   which  we  refer  to  as  the     d   x     p   (x)Hp        
hash   of   .  x  
  

The   -th   coordinate   of   the   hash   vector   is   obtained   by   the   following   rule:  i  
              ,  (x)   if  w  Hp i = 0 i · x ≤ 0 (x)   if  w  Hp i = 1 i · x > 0  

  
where   are  random  unit-norm  vectors.  A  cohort  corresponds  to  all  users  whose   , ww1  . . . ,  p             
input   vectors   share   the   same   hash.   Figure   2   shows   an   example   of   the   SimHash   function   .  H3  
  

SimHash  has  the  property  that  similar  vectors  are  more  likely  to  be  hashed  to  the  same  cohort                   
id  than  dissimilar  vectors.  More  precisely,  if   and   are  two  vectors,  then  the  probability  of         x1   x2         
mapping   and     to   the   same   cohort   id    is   given   by:  x1 x2  
  

,  rob(H (x ) H (x )) (1 )P p 1 =  p 2 =  − π
θ(x , x )1 2 p  

  
where   corresponds  to  the  angle  between  vectors  and  .  That  is,  input  vectors  with   (x , x )θ 1  2        x1  x2       
small  angles  between  them  are  exponentially  more  likely  to  share  the  same  hash  than  input                 
vectors  with  a  large  angle  between  them.  Alternatively,  vectors  with  high  cosine  similarity 3  are                
more   likely   to   be   in   the   same   cohort.     
  

The  main  advantage  of  using  SimHash  is  that  the  computation  of  the  cohort  id  for  one  user  does                    
not  depend  on  the  information  of  others.  Given  a  vector ,  the  cohort  id  can  be  calculated  in  the           x          
client  without  knowledge  of  any  other  user’s  information.  The  properties  of  SimHash  ensure  that                
the  cohort  id  calculated  in  this  manner  is  shared  with  users  that  have  similar  input  vectors.  In                   
particular,  there  is  no  need  for  any  centralized  data  collection  to  compute  cohort  ids.  In  spite  of                   
this,  the  properties  of  the  SimHash  algorithm  will  ensure  that  cohorts  generated  in  this  way  will                  
consist  of  similar  users.  This  is  a  remarkable  feature  of  the  SimHash  algorithm  as  it  allows  for                   
clustering   to   happen   without   a   central   server   ever   storing   a   user’s   browsing   history.   
  

The  main  downside  of  SimHash  is  that  a  minimum  cluster  size  cannot  be  enforced.                
Nonetheless,  this  problem  can  be  solved  by  having  an   anonymity  server  that  tracks  the  size  of                  
each  cohort.  This  server  could  block  the  API  from  returning  a  cohort  id  if  the  cohort  is  not                    
k-anonymous.  Since  the  server  only  gets  to  access  a  small  bit  length  hash  of  a  user’s  browsing                   
history,   the   amount   of   information   revealed   to   the   server   is   minimal.     

3  The   cosine   similarity   S   between   two   vectors   is   defined   as   their   normalized   dot   product.   One   can   recover   
the   angle   between   two   vectors   by   taking   the   arc   cosine   of   S.     



  

  
Fig   2 .   Example   of   a   3-bit   SimHash   calculation.     

  

SortingLSH   
The  choice  of  the  number  of  bits   defining  the  SimHash  algorithm  is  crucial.  If  it  is  too  low,         p             
cohorts  will  be  large,  making  it  more  likely  for  dissimilar  users  to  be  part  of  the  same  cohort.  On                     
the  other  hand  a  large  value  of   can  result  in  cohort  ids  that  are  shared  by  only  a  small  number         p               
of  users,  violating  the  k-anonymity  requirement.  Moreover,  for  some  datasets,  we  have              
observed  that  the  cohorts  generated  by  SimHash  have  very  heterogeneous  sizes:  a  few  very                
large  cohorts  and  a  large  number  of  small  cohorts.  In  this  scenario,  “splitting”  the  big  cohorts  by                   
increasing  the  number  of  bits  for  SimHash  is  impossible  as  it  would  break  the  k-anonymity  of                  
smaller   cohorts   (see   Figure   3).     
  

  

  
Figure  3.   Example  where  we  want  to  enforce  k-anonymity  for  k=4.  On  the  left,                
using  1  bit  of  SimHash  generates  k-anonymous  cohorts,  but  cohort  (1)  is  very  big                
and  not  homogenous.  On  the  right,  cohort  (1)  is  “split”  into  cohort  (1,0)  and                



  

cohort  (1,1)  by  using  a  2-bit  SimHash.  This,  however,  results  in  cohorts  (0,0)  and                
(0,1)   violating   the   k-anonymity   restriction.   

  
SortingLSH  is  a  method  that  solves  this  issue  and  ensures  k-anonymity  while  improving  the                
quality  of  SimHash  at  the  same  time.  This  is  achieved  by  homogenizing  the  size  of  cohorts.                  
SortingLSH  is  a  minimally  centralized  method  that  acts  by  post-processing  SimHash  clusters  to               
ensure   k-anonymity.     
  

Let   denote  the  -bit  hashes  generated  by  SimHash  on  all  users.   ), )h (x1 = Hp 1
. . . , h H (x n =  p n    p         

Instead  of  assigning  generating  cohorts  by  grouping  together  users  with  the  same  hash,               
SortingLSH   generates   cohorts   as   follows:   
  

1. Sort    in   lexicographical   order   to   obtain   a   sorted   list   of   hashes     , hh1 . . . ,  n h(1) ≤ . . .  ≤ h(n)   
2. Assign   the   sorted   hashes   to   cohorts   by   generating   contiguous   groups   of   at   least   k   

hashes.     
  

The   ordering   step   ensures   that   contiguous   hashes   in   this   order   correspond   to   similar   users.   The   
second   step   ensures   that   cohorts   always   have   at   least   k-users.   

  
Fig  4 .  Exemplification  of  SortingLSH  enforcing  k-anonymity  with  k=3.  The  first             
cohort  consists  of  the  first  three  sorted  hashes,  the  second  the  4th  to  the  7th  and                  
the  third  cohort  is  made  up  of  the  8th  to  the  10th  hash.  All  cohorts  have  at  least  3                     
users.   

  
The  implementation  of  SortingLSH  does  require  a  central  server  to  sort  all  user  hashes  and                 
calculate  k-anonymous  cohorts.  However,  this  information  is  also  needed  by  a  server  that               
enforces  k-anonymity  on  cohorts  generated  using  SimHash.  Therefore,  the  level  of             
centralization   is   no   worse   than   that   of   SimHash   using   an   anonymity   server.   

Affinity   hierarchical   clustering   with   centroids   
To  better  understand  the  privacy-utility  trade-off  we  also  consider  centralized  clustering             
methods.  While  a  naïve  implementation  of  these  algorithms  require  raw  data  to  be  sent  to  a                  
central  server,  they  can  potentially  be  implemented  in  the  future  using  Federated  Learning               
technologies.  In  this  section  we  discuss  a  variant  of  the  centralized  clustering  method   Affinity                
hierarchical   clustering    which   is   based   on   computing   a   user-to-user   similarity   graph.     
  

https://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale
https://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale


  

Affinity  hierarchical  clustering  leverages  the  structure  of  a  user  similarity  graph  (i.e.,  a  graph                
where  similar  users  are  connected  by  edges)  to  inform  the  creation  of  clusters.  The  first  step  of                   
the  method  is  to  compute  a  graph  where  users  are  nodes  and  edges  connect  two  users  if  their                    
vectors  are  similar.  Then,  the  algorithm  performs  a  hierarchical  clustering  in  a  bottom-up               
fashion,  creating  larger  clusters  by  merging  smaller  clusters  connected  by  highly  similar  pairs  of                
users.  In  this  variant  of  affinity  hierarchical  clustering,  we  also  control  explicitly  for  minimum  size                 
of  clusters.  Finally,  users  are  assigned  to  clusters  by  nearest  neighbor  search.  We  discuss  these                 
steps   in   more   detail.   
  

Graph   construction     
We  first  create  a  user-to-user  similarity  weighted  graph  (i.e.  users  are  nodes,  and  edges  encode                 
similarity).  More  precisely  we  create  a  nearest  neighbor  graph  built  over  the  input  vectors                
associated  with  the  users,  using  cosine  similarity-weighted  edges.  This  is  achieved  by  using               
efficient   locality   sensitive   hashing   techniques   to   identify   pairs   of   users   with   high   similarity.     
  

Graph   clustering   
The  algorithm  proceeds  by  clustering  the  users  using   hierarchical  agglomerative  clustering .  First              
each  node  (i.e.  a  user)  in  this  graph  is  assigned  to  a  distinct  cluster.  Then,  pairs  of  clusters  are                     
merged  until  each  cluster  reaches  a  specified  minimum  cluster  size.  Then,  for  each  such  cluster                 
we  obtain  a  centroid  representing  the  cluster  by  averaging  the  users  profiles  in  the  cluster  which                  
is   associated   to   a   unique   cohort   id.     
  

User   to   cluster   assignment     
The   final   step   of   the   method   is   to   ass ociate  each  user  with  a  cluster.  This  is  simply  done  by             
assigning   each   user   to   the   cohort   corresponding   to   the   nearest   centroid.   
  

Unlike  SimHash  or  SortingLSH,  affinity  clustering  uses  the  information  of  users  to  actively               
search  for  similar  users.  Therefore  we  should  expect  to  get  a  much  better  privacy-utility  trade-off                 
from  this  algorithm.  Nevertheless,  notice  that  to  execute  the  first  steps  of  the  algorithm,  a  server                  
needs  access  to  the  raw  browsing  history  of  users.  As  mentioned  above,  this  concern  could  be                  
assuaged  by  eventually  using  federated  learning  technology.  For  now,  we  present  the  results  of                
this   algorithm   as   a   baseline   to   show   a   close   to   optimal   utility-privacy   trade-off   curve.   

Public   data   sets   
The  algorithms  proposed  should  create  relevant  user  cohorts  when  applied  to  any  dataset               
representing  users  and  their  interests.  Therefore,  it  is  reasonable  to  start  our  evaluation  by               
measuring   each   algorithm’s   performance   on   publicly   available   datasets.     
  

Million   Song   Dataset   
The    million   song   dataset    (MSD)   is   a   collection   of   1   million   songs   tagged   by   categories   and   user   
ids.   The   dataset   consists   of   the   listening   history   of   650   thousand   users.   Each   (user,   song)   pair   is   
tagged   by   the   number   of   times   it   was   listened   to   as   well   as   the   categories   the   song   belongs   to.   
These   categories   have   weights   representing   how   well   the   category   describes   each   song.   

https://en.wikipedia.org/wiki/Hierarchical_clustering
http://millionsongdataset.com/tasteprofile/


  

Examples   of   these   tags   are   “Pop”   or   “60’s”.   The   dataset   also   includes   some   subjective   tags   
such   as   “good”   or   “awesome”.   The   original   dataset   consists   of   more   than   200   thousand   
categories.   However,   most   of   these   categories   appear   only   a   few   times   in   the   whole   dataset.   
For   this   reason   we   restricted   the   set   of   categories   to   those   who   appear   in   at   least   1%   of   the   
songs.   Table   2   describes   the   relevant   statistics   about   the   dataset.   

    
MovieLens   25M   
A  standard  dataset  for  evaluating  recommendation  systems,  the  MovieLens  25M  dataset             
consists  of  ratings  of  25M  movies  keyed  by  user  id.  Each  movie  in  this  dataset  is  associated                   
with  one  or  more  categories  chosen  from  a  dictionary  of  20  movie  genres.  These  genres  include                  
categories   like   comedy   and   thriller   as   well   as   a   “no   genres   listed”   category.   
  

  MSD   MovieLens   25M   

Number   of   users   648,986   162,541   

Number   of   distinct   
categories   

100    20   

Average   entries   per   user   2.5    153   

Median   entries   per   user   2   70   

Average   number   of   
category   labels   per   
song/movie   

5.01   1.79   

  
Table   1.    Description   of   the   public   datasets   

Feature   extraction   
In   order   to   map   users   into   a   vector   space,   we   consider   a   two   stage   process:   

● Song/movie  feature  extraction:  For  the  MSD  dataset  we  encode  each  (song,  user)  pair               
as  a  feature  vector   where  the  value  of  element   is  the  weight  of  category   for  this      v       vi       i    
song,  multiplied  by  the  number  of  times  this  song  was  listened  to  by  the  user.  The                  
extraction  of  movie  features  is  similar,  except  we  multiply  the  category  weight  by  the                
rating   the   user   gave   this   movie   instead   of   the   number   of   times   the   song   was   listened   to.     

● Feature  vector  aggregation:  To  aggregate  all  feature  vectors  associated  with  a  user  we               
simply   take   the   average   of   the   vectors.     

● Centering.   Finally,   we   center   all   feature   vectors   to   ensure   the   dataset   has   mean   zero.     
  



  

  
Fig   3 .   Description   of   the   feature   generation   process   for   the   MSD   dataset   

  
Evaluation   
We  are  interested  in  measuring  the  utility  of  cohorts  for  varying  levels  of  anonymity.  To  measure                  
the  quality  of  a  cluster  we  use  the  average  cosine  similarity  (or  normalized  dot  product)  between                  
all  users  in  the  cluster  and  the  centroid  of  the  cluster.  This  metric  is  always  between  -1  and  1.                     
The  cosine  similarity  of  two  vectors  is  -1  if  they  are  diametrically  opposed,  0  if  they  are                   
orthogonal  and  1  if  they  are  identical.  To  measure  privacy  we  look  at  the  2%  quantile  of  the                    
cohort  size  distribution  weighted  by  the  number  of  users  in  the  cohort.  This  metric  corresponds                 
to  the  level  of  k-anonymity  protection  provided  to  98%  of  users.  Ideally,  we  want  a  clustering                  
algorithm  that  generates  large  cohorts  with  cosine  similarity  close  to  1.  As  a  baseline  we                 
compare  to  a  clustering  algorithm  that  randomly  assigns  users  to  cohorts.  The  results  of  this                 
experiment   can   be   found   in   the   figure   below.     
  

The   plots   show   that   a   fully   centralized   clustering   approach,   non-surprisingly,   outperforms   the   
other   two   methods   and   can   achieve   very   high   intra-cluster   similarity.   Nevertheless,   it   is   
promising   to   see   that   a   fully   decentralized   approach   can   generate   cohorts   achieving   
approximately   85%    of   the   quality   of   a   fully   centralized   algorithm.   
  



  

  

Fig   4a .   Results   for   the   MSD   dataset   Fig   4b .   Results   for   the   MovieLens   dataset   
  

Visualization   
  

The  previous  plots  provide  us  with  a  quantitative  way  of  comparing  cohorts,  in  this  section  we                  
attempt  to  visualize  the  cohorts  obtained  by  the  different  algorithms  to  understand  the  semantic                
meaning,  if  any,  of  these  cohorts.  In  practice,  this  would  correspond  to  building  interest  profiles                 
based   on   cohort   ids   instead   of   third   party   cookies.   
  

To  visualize  cohorts  we  look  at  the  average  of  all  users  in  a  cluster,  or  its  centroid,  and  generate                     
a  word  cloud  of  the  categories  in  this  cluster,  where  the  font  size  corresponds  to  the  weight  of                    
the   category   in   the   centroid   vector.     
  

MSD   
  

We  begin  by  displaying  the  cohorts  generated  by  randomly  grouping  together  users.  It  is                
immediately  obvious  that  this  random  clustering  is  useless  for  classifying  users  since  there  are                
multiple   highly   weighted   and   unrelated   music   categories.     

  



  

   
  
  

Fig   5.    Word   clouds   for   random   cohorts   
  

  
 

  
  

Fig   6.    Word   clouds   for   SimHash   cohorts   using   8   bits   
  

When   using   SimHash,   we   can   see   that   some   cohorts   are   very   well   defined,   such   as   the   “metal”   
cohort.   This   is   achieved   even   though   the   cohort   size   is   larger   than   the   cohorts   generated   
randomly.   The   first   and   third   cohorts   do   not   represent   a   single   music   style   but   rather   two   
somewhat   related   styles.   The   first   one   seems   to   represent   reggae   and   latin   music   while   one   
could   infer   the    third   cohort   contains   mostly   users   who   listen   to   house   and   dance   music.   

  



  

 

  
  

Fig   7 .   Word   clouds   for   affinity   clustering     
  

Finally  we  show  the  cohorts  generated  by  using  affinity  clustering.  Here  the  cohorts  are  smaller                 
than  the  ones  generated  by  SimHash  and  also  better  defined.  Unlike  SimHash  cohorts  who  had                 
two  leading  genres,  the  first  and  third  cohorts  generated  by  affinity  clustering  seem  to  have  a                  
single  genre.  The  second  cohort  seems  to  have  multiple  categories  associated  with  it,  yet  closer                 
inspection  seems  to  suggest  that  this  cohort  consists  of  users  who  listen  to  artists  who  play  soft,                   
mellow   rock   ballads.   

  
MovieLens   
We   now   turn   our   attention   to   the   MovieLens   dataset.   As   before,   we   begin   by   showing   cohorts   
formed   by   randomly   grouping   users   together.   It   is   clear   that   such   cohorts   provide   us   with   no   
semantic   meaning:   all   cohorts   look   roughly   the   same   and   no   particular   genre   dominates.   We   
can   compare   these   with   the   cohorts   generated   using   SimHash   

  

   
  

Fig   8.    Word   clouds   for   random   cohorts   
  

  
  

  



  

   
  

Fig   9 .   Word   clouds   for   SimHash   with   8   bits   
  

The  first  thing  to  notice  is  that  unlike  the  random  cohorts,  these  cohorts  have  few  leading                  
genres.  Moreover,  they  seem  to  complement  each  other.  For  instance,  the  first  cohort  main                
topics  are  fantasy,  animation,  children  and  adventure.  All  these  genres  clearly  relate  to  children                
movies   such   as   “Toy   Story”.   
  

  

   
  

Fig   10 .   Word   clouds   for   affinity   hierarchical   clustering   
  

Finally,  we  show  the  cohorts  generated  by  using  affinity  clustering.  While  they  seem  to  be                 
slightly   better   defined   than   SimHash,   the   differences   are   not   as   stark   as   in   the   MSD   dataset.     
  

The  results  shown  in  this  section  demonstrate  the  viability  of  having  a  fully  decentralized                
clustering  algorithm  based  on  a  very  simple  algorithmic  technique.  However  they  also  show,               
rather   unsurprisingly,   centralized   clustering   algorithms   do   outperform   SimHash.   



  

Google   Display   Ads   Dataset   
Having   established   the   viability   of   clustering   algorithms   on   public   data   we   turn   to   evaluating   their   
viability   for   ads   personalization.   For   this   purpose   we   conducted   extensive   evaluations   on   a   
proprietary   dataset.     
  

Dataset   description   
The  dataset  consists  of  a  de-identified  collection  of  URLs  from  publishers  in  the  Google  Display                 
Network  collected  across  7  days.  We  emphasize  that  there  is  not  a  one-to-one  correspondence                
between  user  and  pseudonymous  ids  as  a  user  can  be  associated  with  multiple  ids.  For                 
instance,   one   per   device   used.   

Feature   extraction   
Unlike  the  public  datasets  we  previously  evaluated,  features  can  be  extracted  in  multiple  ways                
from   this   URL-based   dataset.   Here   we   discuss   only   a   few   possibilities.     

  
Domain   One-hot   encoding   
Under  this  feature  extractor,  each  URL  visit  is  encoded  by  its  domain  only.  The  feature  vector                  
representing  a  user  is  simply  a  one-hot  encoding  of  all  the  domains  they  visited.  That  is,  it  is  a                     
sparse  vector  where  all  domains  visited  by  a  user  get  assigned  a  1,  regardless  of  the  number  of                    
times   the   domain   was   visited.     
  

Domain   TF-IDF   encoding   
Here  again  we  encode  each  URL  visit  by  its  domain.  However,  instead  of  weighting  all  websites                  
in  the  same  way  we  use  TF-IDF  scoring.  That  is,  if  a  user  visits  a  domain  frequently  it  gets  a                      
higher  score  but  if  the  domain  is  very  popular  -  multiple  users  visit  the  same  domain  -  it  is                     
assigned  a  lower  weight.  The  feature  vector  representing  a  user  is  simply  the  sparse  vector  of                  
scores   associated   with   each   domain   visited   by   the   user.     
  

Topic   categories     
A  better  way  of  generating  feature  vectors  is  by  categorizing  the  websites  into  topics.  For                 
instance  expedia.com  is  a  travel  website.  Categorization  is  done  using  a  tool  similar  to  the  topic                  
categorization  API  of  Google  Cloud 4 .  This  categorization  corresponds  to  a  hierarchy  of  3  levels,                
where   each   level   describes   a   more   specific   category.   Here   is   one   example   of   a   hierarchy:   
  

/Arts   &   Entertainment   
/Arts   &   Entertainment/Performing   Arts   
/Arts   &   Entertainment/Performing   Arts/Acting   &   Theater   
  

The  categorization  API  assigns  a  website  to  at  most  5  categories  and  provides  weight  for  each                  
category  proportional  to  how  well  the  category  describes  the  website.  The  feature  vector               

4Google   cloud   URL   categorization:   https://cloud.google.com/natural-language/docs/categories   



  

representing  a  user  is  a  sparse  vector  where  each  entry  in  the  vector  corresponds  to  the  average                   
weight   of   a   topic   category   across   all   URLs   visited   by   a   user.   

  
Clustering   Technique   
We   use   the   SimHash   algorithm   using   the   three   different   features   described   above:     

1. domain   one-hot   encoding   
2. domain   tf-idf   encoding   
3. topic   categories   (we   stop   at   vertical   depth   3).   

  
Evaluation   
We   measure   the   viability   of   using   cohorts   as   a   targeting   tool   as   follows:   

1. Building  interest  profiles.   For  each  cohort  we  categorize  all  websites  that  would  be               
tagged  by  the  same  cohort  id  and  aggregate  all  topic  category  weights.  We  then  define                 
the   cohort   interest   profile   as   the   top   10   categories.   

2. Building  conversion  profiles.   We  use  7  days  worth  of  conversion  data  to  generate  a                
conversion  profile  for  each  user.  This  conversion  profile  consists  of  the  set  of  website                
topics   where   the   user   converted   over   a   period   of   7   days.   

3. Evaluating  predictive  power.  We  use  the  user  interest  profile  to  predict  whether  a  user               
will  convert  on  that  topic  (from  raw  conversion  data).  The  prediction  is  correct  if  a                 
conversion  actually  happened  in  the  next  7  days.  We  measure  precision  and  recall  for                
these   predictions.   

  
To  measure  performance,  we  drop  all  profiles  that  do  not  meet  a  k-anonymity  threshold  and                 
replace   them   with   a   cluster   profile   that   corresponds   to   the   most   popular   verticals:   
  

● /Apparel   &   Accessories/Women's   Apparel   
● /Employment   
● /Financial   Services/Investment   Services   
● /Autos   &   Vehicles/Motor   Vehicles/Motor   Vehicles   (Used)   
● /Dating   Services   
● /Telecom/Mobile   Phone   Service   Providers   
● /Real   Estate/Residential   Properties/Residential   Properties   (For   Sale)   
● /Real   Estate/Residential   Properties   
● /Consumer   Electronics/Mobile   Phones   
● /Autos   &   Vehicles/Motor   Vehicles   

  
To  compute  a  baseline,  for  each  desired  anonymity  level  we  generate  cohorts  by  randomly                
clustering  users  together  in  order  to  clear  the  anonymity  threshold.The  plot  below  shows  relative                
precision/recall   compared   to   the   random   baseline.   



  

  

Fig  11a .  Relative  precision  of  different        
features  on  Simhash  Clustering  compared  to        
a   random   baseline.     

Fig  11b .  Relative  recall  of  different  features         
using  Simhash  Clustering  compared  to  a        
random   baseline.   

  
  

What  we  can  see  from  these  plots  is  that  even  at  very  high  anonymity  levels,  grouping  users                   
together  into  cohorts  with  similar  interests  yields  up  to  3.5  times  better  recall  (for  k=5,000  using                  
Vertical  depth  3  classifier)  than  randomly  clustering  users  together.  We  also  see  that  using  topic                 
categories  as  a  feature  yields  the  best  performance.  Something  that  might  be  counterintuitive  is                
to  see  precision  increasing  as  the  anonymity  level  increases.  This  is  expected  since  increasing                
anonymity  constraints  leads  to  replacing  more  cohort  profiles  by  the  default  profile.  This  implies                
that  there  is  a  smaller  number  of  topics  to  predict  or  fewer  ways  in  which  to  be  “wrong”.  While                     
we  did  not  report  the  results  of  other  clustering  techniques  (SortingLSH  and  Affinity  Clustering)                
on  this  dataset,  we  found  the  quality  ranking  of  these  algorithms  to  be  similar  to  the  MovieLens                   
and   Million   Song   Dataset.     
  

To  conclude  the  analysis  of  the  performance  of  this  algorithm  on  our  proprietary  data,  we                 
present  some  qualitative  results  for  the  topic  categories  feature  generation.  Below  we  present               
word  clouds  representing  the  average  profile  associated  with  a  cohort.  These  clouds  show  there                
is  a  tangible  semantic  representation  to  the  cohorts  we  generated,  even  though  the  number  of                 
users  in  each  cohort  is  large.  Indeed,  we  can  easily  infer  that  the  first  cohort  is  composed  of                    
users  who  are  most  interested  in  entertainment  genres.  The  second  one  is  a  cohort  of  users                  
who  commonly  browse  apparel  websites  and  the  last  cohort  seems  to  be  related  to  games  and                  
trivia.  In  practice,  the  true  value  of  cohort  assignment  is  amplified  when  it  is  crossed  with  the                   
context   of   the   current   page.   



  

   
    

Conclusion   
  

In  this  paper,  we  proposed  a  series  of  cohort  id  assignment  algorithms  that  use  multiple                 
clustering  techniques  (distributed  and  centralized)  and  evaluated  on  different  datasets  (freely             
available  and  proprietary)  using  various  ways  of  choosing  and  computing  features.  We  also               
proposed  a  technique  for  evaluating  utility  against  various  k-anonymity  measures.  For  the  task               
of  predicting  conversions,  FLoCs  was  shown  as  a  very  informative  signal,  and  we  can  achieve                 
significant  improvements  in  recall  and  precision  over  randomly  assigning  users  to  cohorts  even               
at   high   anonymity   levels.   
  

Based  on  our  results,  we  believe  that  the  SimHash  technique  on  topics  could  be  a  good  starting                   
point  for  experimenting  within  the  browser.  We  also  encourage  other  ad-tech  providers  to               
evaluate  some  of  our  proposed  algorithms  on  their  proprietary  datasets.  We  look  forward  to                
hearing   new   ideas   from   the   broader   community   on   how   this   system   can   be   further   improved.   


