
Privacy Loss Distributions

Differential Privacy Team
Google

January 18, 2024

This document is a supplementary material for the implementation of the algorithms for
building and manipulating privacy loss distributions in the privacy accounting library.

1 Notation and Preliminaries

For two distributions D and D′, we use D⊗D′ to denote the product distribution of D and
D′. Furthermore, we denote by D + D′ the distribution of X + X ′ where X and X ′ are
independently sampled from D and D′ respectively; D − D′ is defined similarly. For a real
number k ∈ R, we denote by k +D the distribution of k +X when X ∼ D.

Discrete Distributions. For a discrete distribution D, when there is no ambiguity, we
abbreviate PrX∼D[X = x] asD(x). For two discrete distributions µ and µ′, we use Deε(µ||µ′)
to denote their ε-hockey stick divergence, i.e.,

Deε(µ||µ′) :=
∑

y∈supp(µ)

[µ(y)− eε · µ′(y)]+,

where [x]+ denotes max{x, 0}.

Continuous Distributions. For a continuous distribution D, we use fD(·) to denote its
probability density function. For two continuous distributions µ and µ′, their ε-hockey stick
divergence is defined as

Deε(µ||µ′) :=

∫
[fµ(y)− eε · fµ′(y)]+dy.

Differential Privacy. For a mechanism M and an input dataset x, we use M(x) to de-
note the distribution of the output. The standard definition of differential privacy [DMNS06,
DKM+06] may be rephrased as follows.

Observation 1. A mechanism M is (ε, δ)-differentially private (or (ε, δ)-DP for short) if
and only if, for any neighboring input datasets x,x′, it holds that Deε(M(x)||M(x′)) ≤ δ.

1

https://github.com/google/differential-privacy/tree/main/python/dp_accounting

2 Privacy Loss Distribution

A notion that will be useful to us is the so-called Privacy Loss Distribution (PLD) defined
in [DR16]. Here we will mostly follow the notations from [MM18, SMM19, KJH19, KJPH20],
from which most of the results we use follow.

Definition 1. For two discrete distributions µup and µlo, their privacy loss at o ∈ supp(µup)
is defined as

Lµup/µlo(o) := ln

(
µup(o)

µlo(o)

)
.

The privacy loss distribution (PLD) of µup and µlo, denoted by PLDµup/µlo , is a distri-
bution on R ∪ {∞} where y ∼ PLDµup/µlo is generated as follows: sample o ∼ µup and let
y = Lµup/µlo(o).

For two continuous distributions µup and µlo, their privacy loss at o is defined as

Lµup/µlo(o) := ln

(
fµup(o)

fµlo(o)

)
.

The PLD of µup and µlo, denoted by PLDµup/µlo , is again a distribution on R ∪ {∞}
where y ∼ PLDµup/µlo is generated by picking o ∼ µup and then letting y = PLDµup/µlo(o).

For a mechanismM and two input vectors x and x′, the privacy loss distribution (PLD)
between x and x′ is defined as PLDM(x)/M(x′).

The main observation that makes PLD useful is that it allows one to calculate the ε-
hockey stick divergence between the two distributions, or equivalently to check whether a
mechanism is (ε, δ)-DP.

Observation 2 ([SMM19, KJH19]). For any two distributions µup and µlo where both are
discrete or both are continuous, it holds that

Deε(µup||µlo) = Ey∼PLDµup/µlo
[1− eε−y]+.

Due to Observation 1, a mechanism M is (ε, δ)-DP if and only if the following holds for all
neighboring input datasets x and x′:

δ ≥ Ey∼PLDM(x)/M(x′) [1− e
ε−y]+.

For convenience, we may write Deε(PLDµup/µlo) instead of Deε(µup||µlo).
Another observation is that PLD is very compatible with composition of mechanisms.

When the composition is non-adaptive, i.e., when mechanisms M1 and M2 are run in-
dependently, the output distribution on input vector x is simply the product distribution
M1(x)⊗M2(x). The observation here is that the PLD of the product distribution is simply
the convolution of the two PLDs. We state that formally and also recall the definition of
convolution below.

Definition 2. Let µ and µ′ be any distributions on real numbers. Their convolution, denoted
by µ ∗ µ′, is a distribution on real numbers where a sample t ∼ µ ∗ µ′ is drawn by first
independently sampling a ∼ µ, a′ ∼ µ′ and then letting t = a+ a′.

2

Observation 3 ([SMM19]). Let µup, µ
′
up, µlo and µ′lo be any distributions such that all of

them are discrete or all are continuous. Then, we have

PLD(µup⊗µ′up)/(µlo⊗µ′lo) = PLDµup/µlo ∗ PLDµ′up/µ
′
lo
.

For any mechanismM, it is helpful to consider the notion of a worst-case PLD, defined
as follows.

Definition 3 (Defnition 7 in [ZDW21]). PLDµup/µlo is said to be a dominating PLD for a
mechanism M (under neighboring relation ') if for all ε ∈ R, it holds that,

sup
D'D′

Deε(M(D)||M(D′)) ≤ Deε(µup||µlo)

A dominating PLDµup/µlo is said to be a worst case PLD if there exists adjacent D ' D′

such that PLDµup/µlo = PLDM(D)/M(D′).

A worst-case PLD for a mechanism gives rise to a tight characterization of its privacy loss.

2.1 Composition via Privacy Loss Buckets

Observations 2 and 3 provide a way to compute the privacy parameters for compositions of
multiple mechanisms: first we calculate the PLD of each mechanism, find their convolutions,
and finally compute the ε-hockey stick divergence of their convolution. An issue here is that
the trivial implementation of this algorithm is not efficient; for instance, PLD itself can be a
continuous distribution which cannot be represented finitely. Another consideration is that
the convolution of multiple PLDs may blow up the support size. (That is, if we compose
k mechanisms each with PLD support size n, then the resulting PLD may have support as
large as nk.)

This brings us to an algorithm of Meiser and Mohammadi [MM18] called Privacy Buck-
ets. This simple algorithm allows us to “approximate” PLDs in such a way that the con-
volution is efficient, and still gives good numerical approximation for privacy parameters.
As its name suggest, privacy buckets rounds the value of the PLD into buckets, which are
integer multiples of a chosen positive real number (called value discretization interval

in our implementation). The point here is that, once the values are integer multiples of
such a number, we may use (inverse) Fast Fourier Transform (FFT) to quickly compute
the convolution. (The idea of using FFT has been suggested by [KJH19, KJPH20].) We
basically implement this; there are several subtleties in the implementation, which are listed
below:

• We separately account for the “infinity mass”, i.e., the probability of o ∼ µup such
that µlo(o) = 0.

• Our code allows one to compute both the “pessimistic” (i.e., safe) and “optimistic”
estimates of the hockey stick divergence between µup and µlo. In the former case, the
PLD values are rounded up. In the latter case, the PLD values are rounded down.
The pessimistic estimate results in a larger δ value than the true value, whereas the
optimistic estimate results in a smaller δ than the true value.

• To make the implementation efficient, we also make sure that the array is not too
long. This is done by truncating any outcome o (resp. a set S of outcomes) such that
µup(o) (resp. µup(S)) is smaller than a certain threshold. For the pessimistic case, this
mass is accounted in infinity mass. For the optimistic case, this mass is completely
thrown away.

3

2.2 Tighter discrete approximation via Connect-the-Dots

A different algorithm by Doroshenko et al. [DGK+22] called Connect the Dots gives tighter
discrete approximations of PLDs, building on Definition 3. The library currently supports
the pessimistic connect-the-dots approximation method given in the above paper.

We describe the final construction of the pessimistic estimate of the PLD below, deferring
the ideas and proofs behind the algorithm to the paper.

Suppose we want a discrete approximation of a given PLD = PLDµup/µlo that is sup-
ported on a given set of epsilon values {ε1, ε2, . . . , εn}, in addition to +∞. Let ε0 = −∞ for
ease of notation and let δi = Deεi (µup||µlo) (note: δ0 = 1). The connect-the-dots pessimistic

approximation PLD↑ of PLD is given as follows.

Pr[PLD↑ = εi] =
δi − δi−1

1− eεi−1−εi
− δi+1 − δi
eεi+1−εi − 1

for 1 ≤ i ≤ n− 1

Pr[PLD↑ = εn] =
δn − δn−1

1− eεn−1−εn

Pr[PLD↑ = +∞] = δn

Note that for any PLD = PLDµup/µlo , all the probability masses computed above are
guaranteed to be non-negative and sum to 1 because the function h : R≥0 → [0, 1] defined
as h(eε) = Deε(µup||µlo) is non-increasing, convex and satisfies h(0) = 1 and h(eε) ≥
max{0, 1− eε}. Refer to [DGK+22] for more details.

3 PLDs of Specific Mechanisms

In this section, we calculate the privacy loss distributions for several well-known mecha-
nisms. Throughout this section, we only consider a scalar-valued function f . Recall that
its sensitivity is defined as ∆(f) := maxx,x′ |f(x)− f(x′)| where the maximum is over two
neighboring datasets x and x′.

3.1 Laplace Mechanism

The Laplace mechanism [DMNS06] simply outputs f(x) + Lap(0, b) where Lap(µ, b) is the
Laplace random variable with mean µ and scale parameter b; its probability density function
at point x is equal to 1

2b · e
−|x−µ|/b.

In this case, the worst-case PLD of the mechanism is the same as the PLD between
Lap(0, b) and Lap(∆(f), b). Let ∆̃ := ∆(f)/b. The aforementioned PLD is the same as the
PLD between Lap(0, 1) and Lap(∆̃, 1). That is, the privacy loss variable is generated by
first picking x ∼ Lap(0, 1) and letting the privacy loss be

ln

(
1
2 · e

−|x|

1
2 · e−|x−∆̃|

)
= |x− ∆̃| − |x| =

∆̃ if x ≤ 0,

−∆̃ if x ≥ ∆̃,

∆̃− 2x if 0 < x < ∆̃.

4

3.2 Gaussian Mechanism

The Gaussian mechanism (see [BW18] and the references therein) simply outputs f(x) +
N (0, σ2) where N (µ, σ2) is the Gaussian random variable with mean µ and standard devi-

ation σ; its probability density function at point x is equal to 1
σ
√

2π
· e−

(x−µ)2

2σ2 .

Here, the worst-case PLD of the mechanism is the same as the PLD between N (0, σ2)
and N (∆(f), σ2). Let ∆̃ := ∆(f)/σ. The aforementioned PLD is the same as the PLD
between N (0, 1) and N (∆̃, 1). That is, the privacy loss variable is generated by first picking
x ∼ N (0, 1) and letting the privacy loss be

ln

 1
σ
√

2π
· e−x2/2

1
σ
√

2π
· e−(x−∆̃)2/2

 =
∆̃

2
·
(

∆̃− 2x
)
.

3.2.1 Calculating ε-hockey stick divergence of Gaussian Mechanism

The ε-hockey stick divergence between N (0, σ2) and N (∆(f), σ2) is equal to the ε-hockey
stick divergence between N (0, 1) and N (∆̃, 1). Let φ and Φ denote the PDF and CDF of
the standard normal distribution respectively. We can write

Deε(N (0, 1)‖N (∆̃, 1)) =

∫ ∞
−∞

[φ(x)− eε · φ(x− ∆̃)]+dx.

Now, as stated above, φ(x)

φ(x−∆̃)
= e

∆̃
2 ·(∆̃−2x), which is greater than eε if and only if x <

xupper := 0.5∆̃− ε/∆̃. As a result, we have

Deε(N (0, 1)‖N (∆̃, 1)) =

∫ xupper

−∞

(
φ(x)− eε · φ(x− ∆̃)

)
dx.

= Φ(xupper)− eε · Φ(xupper − ∆̃). (1)

3.3 Mixture of Gaussians Mechanism

The Mixture of Gaussians Mechanism [CCGST23] captures a Gaussian mechanism where
f(x) and its sensitivity are random. For example, f could be a counting query on a ran-
dom subset of the data, and if two adjacent databases can differ in up to k examples, the
sensitivity would be a random variable with support {0, 1, . . . , k}.

Fixing σ = 1 by rescaling, if the sensitivity is ci with probability pi, then under the
addition adjacency (resp. the remove adjacency) we wish to calculate the PLD between
N (0, 1) and

∑
i pi · N (ci, 1) (resp. vice-versa). For the addition adjacency, the privacy loss

variable is generated by sampling x ∼ N(0, 1) and letting the privacy loss be

ln

 1√
2π
· e−x2/2∑

i pi
1√
2π
· e−(x−ci)2/2

 = − ln

(∑
i

pi · e−c
2
i /2+cix

)
.

For the remove adjacency, the privacy loss variable is generated by sampling i with
probability pi, sampling x ∼ N(ci, 1) and letting the privacy loss be

ln

∑i pi
1√
2π
· e−(x−ci)2/2

1√
2π
· e−x2/2

 = ln

(∑
i

pi · e−c
2
i /2+cix

)
.

5

3.4 Discrete Laplace Mechanism

The Discrete Laplace Mechanism (also known as the Symmetric Geometric Mechanism;
e.g., see [GRS12]) outputs f(x) + DLap(0, a) where DLap(µ, a) is the Discrete Laplace
distribution with mean µ and inverse-scale parameter a; its probability mass function at
x ∈ Z is ea−1

ea+1 · e
−a|x−µ|. (For simplicity, we assume that the image of f is a subset of the

integers.)
In this case, the worst-case PLD of the mechanism is the same as the PLD between

DLap(0, a) and DLap(∆(f), a). That is, the privacy loss variable is generated by first
picking x ∼ DLap(0, a) and letting the privacy loss be

ln

(
ea−1
ea+1 · e

−a|x|

ea−1
ea+1 · e−a|x−∆(f)|

)
= a(|x−∆(f)| − |x|) =

a ·∆(f) if x ≤ 0,

−a ·∆(f) if x ≥ ∆(f),

a(∆(f)− 2x) if 0 < x < ∆(f).

3.5 (Truncated) Discrete Gaussian Mechanism

The Discrete Gaussian Mechanism [CKS20] adds a noise supported on the integers such that

the probability mass function at x is proportional to e
−x2

2σ2 , where σ is the parameter of the
distribution (unlike the continuous case, σ here is not equal to the standard deviation). Due
to technical reasons, we truncate the noise so that it is supported in {−τ, . . . , τ}. That is,
the mechanism outputs f(x)+N τ

Z (0, σ2), whereN τ
Z (µ, σ2) has probability mass proportional

to e
−(x−µ)2

2σ2 for integer x ∈ {µ− τ, . . . , µ+ τ} (defined only for µ, τ ∈ Z and τ > 0).
The worst-case PLD of this mechanism is the same as PLD between N τ

Z (0, σ2) and
N τ

Z (∆(f), σ2). That is, the privacy loss variable is generated by first picking x ∼ N τ
Z (0, σ2)

and letting the privacy loss beln

(
e
−x2

2σ2

e
−(x−∆)2

2σ2

)
= ∆

2σ2 · (∆− 2x) if − τ + ∆(f) ≤ x ≤ τ,

∞ if − τ ≤ x < −τ + ∆(f)

To deal with the possible probability mass difference due to truncation, we use the
following tail bound [CKS20, Proposition 25]:

Proposition 1. For any τ ∈ N and any σ > 0,

Pr
X∼NZ(0,σ2)

[|X| ≥ τ + 1] ≤ Pr
X∼N (0,σ2)

[|X| ≥ τ].

3.6 k-Randomized Response

In the k-Randomized Response [War65], the input is one of k values. The protocol outputs
the input with probability 1− p. With the remaining probability p, the protocol outputs a
uniformly random element from the k possible values (including the input itself).

Let Rk denote the randomized response. In this case, the PLD of the mechanism is
equal to the PLD between Rk(x) and Rk(x′) where x and x′ are two distinct inputs. That

6

is, the privacy loss variable is generated by first picking o ∼ Rk(x) and letting it be

ln

(
Pr[Rk(x) = o]

Pr[Rk(x′) = o]

)
=

ln
(
k(1−p)+p

p

)
if o = x,

ln
(

p
k(1−p)+p

)
if o = x′,

0 if o /∈ {x, x′}.

In other words, the privacy loss variable is equal to
ln
(
k(1−p)+p

p

)
with probability 1− p+ p

k ,

ln
(

p
k(1−p)+p

)
with probability p

k ,

0 with probability p(k−2)
k .

3.7 Pessimistic PLD for (ε, δ)-DP Algorithms

In some scenarios, we may not know the specific algorithm being applied or it may be hard
to write down the PLD exactly, but we do know that the algorithm is (ε, δ)-DP. In this case,
it is possible to define a dominating PLD, which is a pessimistic estimate of the true PLD.
Specifically, [KOV15] proves the following:1

Theorem 1. For any (ε, δ)-DP mechanism M and neighboring input datasets x,x′, Let
M∗ be the following mechanism:

Pr[M∗(x) = 0] = δ, Pr[M∗(x) = 0] = 0,

Pr[M∗(x) = 1] = (1− δ) · eε

1 + eε
, Pr[M∗(x) = 1] = (1− δ) · 1

1 + eε
,

Pr[M∗(x) = 2] = (1− δ) · 1

1 + eε
, Pr[M∗(x) = 2] = (1− δ) · eε

1 + eε
,

Pr[M∗(x) = 3] = 0, Pr[M∗(x) = 3] = δ.

Then, there exists a transformation T such that T (M∗(x)) and T (M∗(x′)) are identically
distributed as M(x) and M(x′) respectively.

By post-processing property of differential privacy, the above theorem means that M is
more private than M∗. As such, we may use the PLD of M∗ as a pessimistic estimate of
the PLD of M. The privacy loss of M∗ is equal to

∞ with probability δ,

ε with probability (1− δ) · eε

1+eε ,

−ε with probability (1− δ) · 1
1+eε .

4 Mechanisms with sub-sampling

For any mechanism M, the Poisson sub-sampled version of the mechanism with sampling
probability q operates by including each data point in a sub-sampled dataset independently
with probability q and then returning the output of the mechanism on this sub-sampled

1See also [MV18] for an alternative proof.

7

dataset. This improves the privacy parameters of the mechanism; known as “amplification
by sub-sampling” (see e.g. [BBG18]). In this case, there may not exist a single worst-
case PLD. Instead we extend Definition 3, considering worst-case PLD for the addition and
removal adjacencies separately.

PLDµ/ν is said to be a dominating PLD of a mechanismM with respect to the addition
adjacency if Deε(M(D)||M(D′)) ≤ Deε(µ||ν) for all ε ∈ R, and all D, D′ where D′ contains
one more data point than D. A dominating PLDµ/ν is said to be a worst-case PLD with
respect to the addition adjacency if there exists a D,D′ such that D′ contains one more data
point than D and PLDµ/ν = PLDM(D)/M(D′). The notion of dominating and worst-case
are defined similarly with respect to the remove adjacency where were consider D,D′ such
that D′ contains one less data point than D.

Suppose PLDµ/ν is a worst-case (or even a dominating) PLD for a mechanism M with
respect to the addition adjacency. Then a dominating PLD for the Poisson sub-sampled
version of M with sub-sampling probability of q is given as PLDµ/ν′ , where ν′ := (1− q) ·
µ+ q · ν.

Similarly, suppose PLDµ/ν is a worst-case (or even a dominating) PLD for a mechanism
M with respect to the removal adjacency. Then a dominating PLD of the Poisson sub-
sampled version of M with sub-sampling probability of q is given as PLDµ′/ν , where µ′ :=
q · µ+ (1− q) · ν.

The privacy loss function of a Poisson sub-sampled mechanism, with respect to the
addition and removal adjacency, are respectively given as

Lµ/ν′(o) = − log
(

1− q + q · e−Lµ/ν(o)
)
,

Lµ′/ν(o) = log
(

1− q + q · eLµ/ν(o)
)
.

The accounting library supports Poisson sub-sampling for additive noise mechanisms (namely
Laplace, Gaussian, Discrete Laplace and Discrete Gaussian mechanisms). For convenience,
in the case of Laplace mechanism, we use the PLD between Lap(−∆̃, 1) and Lap(0, 1) as
the worst-case PLD with respect to the removal adjacency, and the PLD between Lap(0, 1)
and Lap(∆̃, 1) as the worst-case PLD with respect to the addition adjacency. This ensures
that the privacy loss function of the Poisson subsampled mechanism is non-increasing in o
for each type of adjacency. (We adopt the same convention for Gaussian, Discrete Laplace
and Discrete Gaussian mechanisms as well).

Also, note that in the special case of additive noise mechanisms, the dominating PLDs
we consider with respect to removal and addition adjacencies are in fact also worst-case
PLDs. Hence optimistic estimates of the privacy loss for these PLDs are also optimistic
estimates of the privacy loss of the Poisson subsampled additive noise mechanism.

5 Other Implementation Details

In this section, we discuss other implementation details that are included in the library.

5.1 Fast Computation of Divergence of Composition of Two PLDs

Suppose we would like to find the ε-hockey stick divergence of the composition of two PLDs
ω, ω′. This can, of course, be computed by first computing the convolution ω ∗ ω′ and then
compute the ε-hockey stick divergence using the formula in Observation 2.

8

Here we also implement a faster way to compute this: we may write the desired hockey
stick divergence as

Deε(ω ∗ ω′) =
∑

v∈supp(ω)

∑
v′∈supp(ω′)

ω(v) · ω′(v′) ·max{0, 1− eε−v−v
′
}

=
∑

v∈supp(ω)

∑
v′∈supp(ω′)
v+v′>ε

ω(v) · ω′(v′) · (1− eε−v−v
′
)

=
∑

v∈supp(ω)

ω(v) ·

 ∑
v′∈supp(ω′)
v+v′>ε

ω′(v′)

− eε−v
 ∑
v′∈supp(ω′)
v+v′>ε

ω′(v′) · e−v
′

(2)

The above formula can be computed efficiently by first iterating over v ∈ supp(ω) in in-
creasing order, and then keeping a cumulative sum for∑

v′∈supp(ω′)
v+v′>ε

ω′(v′) (3)

and ∑
v′∈supp(ω′)
v+v′>ε

ω′(v′) · e−v
′

(4)

5.2 Truncation

Recording an entire PLD (even after discretization) is often costly and sometimes even
impossible if the privacy loss values can be very large. As a result, our implementation
truncates the tails of the distribution after compositions. For composition of two PLDs,
we compute the composition using convolution and then truncate the two ends of the dis-
tribution so that the truncated mass is no more than a given value. For composing PLD
with itself a number of times, truncation is slightly more complicated as we cannot see
the entire output beforehand but needs to decide on truncation threshold right away for
efficient convolution. Thus, we resort to using a Chernoff bound (similar to [KJPH20]).
To state the bound, recall that the moment-generating function (MGF) of a distribution
µ over real numbers is defined as Mµ(t) = Eo∼µ[eto]. The Chernoff bound states that
Pro∼µ[µ ≥ a] ≤ Mµ(t)/eta for any t > 0. Recall also that, if we let ω∗n denote ω ∗ · · · ∗ ω
where the convolution is done n − 1 times, then we have the identity Mω∗n(t) = Mω(t)n.
Thus, we may compute a truncation point aupper such that Pro∼ω∗n [µ ≥ aupper] ≤ τ by

aupper =
n · log (Mω(t)) + log(1/τ)

t
. (5)

In our code, we compute the above bound for many orders t > 0 and take the best (i.e.
smallest) among the derived bounds. A similar approach can be used for t < 0 to derive a
truncation point alower such that Pro∼ω∗n [µ ≤ alower] ≤ τ .

9

References

[BBG18] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by
subsampling: Tight analyses via couplings and divergences. In NeurIPS, pages
6280–6290, 2018.

[BW18] Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for dif-
ferential privacy: Analytical calibration and optimal denoising. arXiv preprint
arXiv:1805.06530, 2018.

[CCGST23] Christopher A. Choquette-Choo, Arun Ganesh, Thomas Steinke, and
Abhradeep Thakurta. Privacy amplification for matrix mechanisms, 2023.

[CKS20] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete
gaussian for differential privacy. In NeurIPS, 2020.

[DGK+22] Vadym Doroshenko, Badih Ghazi, Pritish Kamath, Ravi Kumar, and Pasin
Manurangsi. Connect the dots: Tighter discrete approximations of privacy loss
distributions. Proc. Priv. Enhancing Technol., 2022(4):552–570, 2022.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In
EUROCRYPT, pages 486–503, 2006.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, pages 265–284, 2006.

[DR16] Cynthia Dwork and Guy N. Rothblum. Concentrated differential privacy.
CoRR, abs/1603.01887, 2016.

[GRS12] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Univer-
sally utility-maximizing privacy mechanisms. SIAM Journal on Computing,
41(6):1673–1693, 2012.

[KJH19] Antti Koskela, Joonas Jälkö, and Antti Honkela. Computing exact guarantees
for differential privacy. arXiv preprint arXiv:1906.03049, 2019.

[KJPH20] Antti Koskela, Joonas Jälkö, Lukas Prediger, and Antti Honkela. Tight ap-
proximate differential privacy for discrete-valued mechanisms using FFT. arXiv
preprint arXiv:2006.07134, 2020.

[KOV15] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem
for differential privacy. In ICML, pages 1376–1385, 2015.

[MM18] Sebastian Meiser and Esfandiar Mohammadi. Tight on budget?: Tight bounds
for r-fold approximate differential privacy. In CCS, pages 247–264, 2018.

[MV18] Jack Murtagh and Salil P. Vadhan. The complexity of computing the optimal
composition of differential privacy. Theory Comput., 14(1):1–35, 2018.

[SMM19] David M. Sommer, Sebastian Meiser, and Esfandiar Mohammadi. Privacy loss
classes: The central limit theorem in differential privacy. PoPETs, 2019(2):245–
269, 2019.

10

[War65] Stanley L Warner. Randomized response: A survey technique for eliminat-
ing evasive answer bias. Journal of the American Statistical Association,
60(309):63–69, 1965.

[ZDW21] Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. Optimal accounting of dif-
ferential privacy via characteristic function. arXiv, abs/2106.08567, 2021.

11

	Notation and Preliminaries
	Privacy Loss Distribution
	Composition via Privacy Loss Buckets
	Tighter discrete approximation via Connect-the-Dots

	PLDs of Specific Mechanisms
	Laplace Mechanism
	Gaussian Mechanism
	Calculating epsilon-hockey stick divergence of Gaussian Mechanism

	Mixture of Gaussians Mechanism
	Discrete Laplace Mechanism
	(Truncated) Discrete Gaussian Mechanism
	k-Randomized Response
	Pessimistic PLD for (epsilon,delta)-DP Algorithms

	Mechanisms with sub-sampling
	Other Implementation Details
	Fast Computation of Divergence of Composition of Two PLDs
	Truncation

