{ "cells": [ { "cell_type": "markdown", "id": "google", "metadata": {}, "source": [ "##### Copyright 2025 Google LLC." ] }, { "cell_type": "markdown", "id": "apache", "metadata": {}, "source": [ "Licensed under the Apache License, Version 2.0 (the \"License\");\n", "you may not use this file except in compliance with the License.\n", "You may obtain a copy of the License at\n", "\n", " http://www.apache.org/licenses/LICENSE-2.0\n", "\n", "Unless required by applicable law or agreed to in writing, software\n", "distributed under the License is distributed on an \"AS IS\" BASIS,\n", "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "See the License for the specific language governing permissions and\n", "limitations under the License.\n" ] }, { "cell_type": "markdown", "id": "basename", "metadata": {}, "source": [ "# assignment_sat" ] }, { "cell_type": "markdown", "id": "link", "metadata": {}, "source": [ "\n", "\n", "\n", "
\n", "Run in Google Colab\n", "\n", "View source on GitHub\n", "
" ] }, { "cell_type": "markdown", "id": "doc", "metadata": {}, "source": [ "First, you must install [ortools](https://pypi.org/project/ortools/) package in this colab." ] }, { "cell_type": "code", "execution_count": null, "id": "install", "metadata": {}, "outputs": [], "source": [ "%pip install ortools" ] }, { "cell_type": "markdown", "id": "description", "metadata": {}, "source": [ "\n", "Solves a simple assignment problem with CP-SAT.\n" ] }, { "cell_type": "code", "execution_count": null, "id": "code", "metadata": {}, "outputs": [], "source": [ "import io\n", "\n", "import pandas as pd\n", "\n", "from ortools.sat.python import cp_model\n", "\n", "\n", "\n", "def main() -> None:\n", " # Data\n", " data_str = \"\"\"\n", " worker task cost\n", " w1 t1 90\n", " w1 t2 80\n", " w1 t3 75\n", " w1 t4 70\n", " w2 t1 35\n", " w2 t2 85\n", " w2 t3 55\n", " w2 t4 65\n", " w3 t1 125\n", " w3 t2 95\n", " w3 t3 90\n", " w3 t4 95\n", " w4 t1 45\n", " w4 t2 110\n", " w4 t3 95\n", " w4 t4 115\n", " w5 t1 50\n", " w5 t2 110\n", " w5 t3 90\n", " w5 t4 100\n", " \"\"\"\n", "\n", " data = pd.read_table(io.StringIO(data_str), sep=r\"\\s+\")\n", "\n", " # Model\n", " model = cp_model.CpModel()\n", "\n", " # Variables\n", " x = model.new_bool_var_series(name=\"x\", index=data.index)\n", "\n", " # Constraints\n", " # Each worker is assigned to at most one task.\n", " for unused_name, tasks in data.groupby(\"worker\"):\n", " model.add_at_most_one(x[tasks.index])\n", "\n", " # Each task is assigned to exactly one worker.\n", " for unused_name, workers in data.groupby(\"task\"):\n", " model.add_exactly_one(x[workers.index])\n", "\n", " # Objective\n", " model.minimize(data.cost.dot(x))\n", "\n", " # Solve\n", " solver = cp_model.CpSolver()\n", " status = solver.solve(model)\n", "\n", " # Print solution.\n", " if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:\n", " print(f\"Total cost = {solver.objective_value}\\n\")\n", " selected = data.loc[solver.boolean_values(x).loc[lambda x: x].index]\n", " for unused_index, row in selected.iterrows():\n", " print(f\"{row.task} assigned to {row.worker} with a cost of {row.cost}\")\n", " elif status == cp_model.INFEASIBLE:\n", " print(\"No solution found\")\n", " else:\n", " print(\"Something is wrong, check the status and the log of the solve\")\n", "\n", "\n", "main()\n", "\n" ] } ], "metadata": { "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 5 }