
GWP-ASan: Sampling-Based Detection of Memory-Safety Bugs in
Production

Kostya Serebryany

Google

kcc@google.com

Chris Kennelly

Google

ckennelly@google.com

Mitch Phillips

Google

mitchp@google.com

Matt Denton

Google

mpdenton@google.com

Marco Elver

Google

elver@google.com

Alexander Potapenko

Google

glider@google.com

Matt Morehouse
∗

Independent Researcher

mattmorehouse@gmail.com

Vlad Tsyrklevich
∗

Independent Researcher

vlad@tsyrklevi.ch

Christian Holler

Mozilla Corporation

choller@mozilla.com

Julian Lettner

Apple

julian.lettner@apple.com

David Kilzer

Apple

ddkilzer@apple.com

Lander Brandt

Meta

landerb@meta.com

ABSTRACT
Despite the recent advances in pre-production bug detection, heap-

use-after-free and heap-buffer-overflow bugs remain the primary

problem for security, reliability, and developer productivity for

applications written in C or C++, across all major software ecosys-

tems. Memory-safe languages solve this problem when they are

used, but the existing code bases consisting of billions of lines of C

and C++ continue to grow, and we need additional bug detection

mechanisms.

This paper describes a family of tools that detect these two classes

of memory-safety bugs, while running in production, at near-zero

overhead. These tools combine page-granular guarded allocation

and low-rate sampling. In other words, we added an “if” statement

to a 36-year-old idea and made it work at scale.

We describe the basic algorithm, several of its variants and im-

plementations, and the results of multi-year deployments across

mobile, desktop, and server applications.

CCS CONCEPTS
• Software and its engineering → Allocation / deallocation
strategies; • Security and privacy→ Software security engi-
neering; • Theory of computation → Program analysis.

KEYWORDS
Memory Safety, Dynamic Program Analysis, Programming Lan-

guages, Software Engineering

∗
At Google when working on this project.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0501-4/24/04

https://doi.org/10.1145/3639477.3640328

ACM Reference Format:
Kostya Serebryany, Chris Kennelly, Mitch Phillips, Matt Denton, Marco

Elver, Alexander Potapenko, Matt Morehouse, Vlad Tsyrklevich, Christian

Holler, Julian Lettner, David Kilzer, and Lander Brandt. 2024. GWP-ASan:

Sampling-Based Detection of Memory-Safety Bugs in Production. In 46th
International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3639477.3640328

1 INTRODUCTION
Memory-safety bugs have been well-known since at least 1972 [1].

Exploitation of memory unsafety made news in 1988 [2] and ever

since. Numerous dynamic-analysis-based detection mechanisms

for pre-production use have been implemented: Valgrind Mem-

check [3], AddressSanitizer (ASan) [4], and HardwareAddressSan-

itizer (HWASan) [5] being the most popular. At least two hard-

ware detection mechanisms have been introduced; namely SPARC

ADI [6], which has disappeared alongside its hardware platform,

and Arm MTE [7], which is not yet widely available. The dev-

astating impact of memory unsafety was one of the reasons for

the creation of newer and safe(r) languages: Java, C#, Go, Swift,

and Rust. Advancements in automated pre-production testing and

fuzzing (“shift left” testing [8]) lead to detection and elimination of

millions of memory-safety bugs. Yet they remain the single major

source of security vulnerabilities, and continue to negatively impact

reliability and developer productivity [9, 10].

In the meantime, perhaps the oldest known detection mechanism

remained underutilized. The Electric Fence Malloc Debugger [11],

introduced in 1987, detects heap-use-after-free and heap-buffer-

overflow bugs. It replaces the standardmalloc() and free() functions.
The malloc() function rounds up the allocation size to the virtual

memory system’s page size, allocates the required size plus two

extra pages directly via the mmap() system call, and uses the mpro-
tect() system call to make the first and the last page inaccessible.

These pages are called the “redzone” or “guard pages”. The address

https://doi.org/10.1145/3639477.3640328
https://doi.org/10.1145/3639477.3640328

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Serebryany, et al.

of the first unprotected page is returned to the user. The original im-

plementation uses only one guard page at a time, but other variants

use two. The free() function calls mprotect() on the entire memory

region and prevents this virtual address range from being reused

soon. Any memory access to the guard page or the deallocated

address range causes a segmentation fault, at no additional effort.

Elegant and easy to use, this mechanism suffers from high execu-

tion costs. Rounding up the allocation size to the page granularity

may cause 100× RAMoverhead, while one system call per allocation

and deallocation causes slowdowns of comparable magnitude. Elec-

tric Fence [11] and its many clones [12] remain unusable outside of

small tests.

The tool named GWP-ASan and its variants, first introduced in

2018, adds an “if” statement to the Electric Fence algorithm and

makes it a successful sampling-based bug detector for production

use, with amortized near-zero overhead. Today several implementa-

tions of GWP-ASan run in production in mobile, desktop, and server

ecosystems. They have detected thousands of memory-safety bugs

in production that evaded all other kinds of detection. GWP-ASan

is a feature inside of malloc() implementations and does not require

any modifications to program binaries.

GWP-ASan does not replace tools like ASan or HWASan for

regular pre-production testing due to its extremely low probability

of detecting a bug, per instance. However, the low probability of per-

instance detection is offset by large-scale production deployment,

with the aggregate detection probability resulting in a large number

of detections. The detailed error messages usually enable developers

to fix the bugs without the reproducers being available.

We do not know how many memory-safety bugs remain un-

detected. GWP-ASan finds the bugs that occur in production fre-
quently and misses most others. GWP-ASan is not a security miti-
gation tool due to its low detection probability.

The name “GWP-ASan” is derived from Google-Wide Profil-

ing (GWP) [13]—a tool that collects profiling data by, amongst

other things, sampling malloc()—and AddressSanitizer (ASan) [4]—

a tool that detects use-after-frees and heap-buffer-overflows—even

though GWP-ASan is neither GWP nor ASan. Three independent

implementations of this tool use this name, and other implementa-

tions are named differently.

Paper organization. The following section, §2, will introduce

background on the types of bugs that GWP-ASan can detect; §3

describes the high-level GWP-ASan algorithm design; §4 describes

several implementations of that algorithm for a variety of platforms;

§5 discusses real-world results from deployment of the implemen-

tations; §6 and §7 discuss related work and opportunities for future

work.

2 BACKGROUND
Before diving deeper, we will take a brief look at the types of bugs

that GWP-ASan will be able to detect, and trade-offs in dynamic

program analysis.

Heap memory-safety bugs. Fundamentally, memory-safety is a

property of a programming language. Different languages choose

different strategies for memory safety [9]. Unsafe languages, specif-

ically the C and C++ programming languages, define some well-

typed programs to have undefined behavior, the source of which are

considered bugs in the program. Heap buffer overflows (viz. out-of-

bounds accesses) and use-after-free accesses (viz. dangling-pointer

accesses) are two such bugs.

A heap buffer overflow happens when an object of a certain size

is allocated on the heap, and then a pointer to this object is used to

access memory outside of the object’s bounds. Typically, the object

is an array of 𝑛 elements, and the code accesses the 𝑖-th element

where 𝑖 < 0 or 𝑖 ≥ 𝑛. Listing 1 shows examples of buffer overflows

in C code. Modern compilers can provide warnings for simple buffer

overflows, including the ones shown in the example. Unfortunately,

the non-obvious cases that also evade human review are far more

common.

Listing 1: Buffer overflow examples.
// heap allocation
int *array = malloc(n * sizeof(int));
// buffer overflow
array[n] = 42;
// buffer overflow (underflow)
array[-1] = 42;
// buffer overflow , assuming n <= 100500
array [100500] = 42;

A heap use-after-free happens when an object is allocated on the

heap, and later deallocated, while a pointer to the object is preserved

elsewhere and is used to access the deallocated memory after the

deallocation. Listing 2 shows an example of a simple use-after free.

Again, modern compilers will provide warnings for simple cases

as shown, but the non-obvious cases are much more common and

difficult to find (esp. cases involving racy use-after-frees).

Listing 2: Use-after-free example.
// heap allocation
int *val = malloc(sizeof(int));
// heap deallocation
free(val);
// heap use -after -free
*val = 0;

In both cases, the buggy memory access touches memory not

belonging to the respective objects. In the C and C++ standards,

this is considered undefined behavior. In practice, however, this

may result in a crash, a silent data corruption, or an exploitable

security vulnerability [9].

Dynamic analysis. Dynamic analysis tools perform program anal-

ysis at runtime, observing state changes by instrumenting relevant

instructions and functions as the program is running on real inputs.

More complex dynamic analyses also maintain shadow state, which
uses additional memory or metadata to maintain additional infor-

mation about the program’s state that is not efficiently available

otherwise (e.g. if memory is allocated or freed).

Consequently, typical dynamic analysis can only observe the

program transitioning into erroneous states. Consider the taxonomy

defined by Randell [14], with a fault—or simply “bug”—being a flaw

in the program’s logic, causing errors which are bad states that

can ultimately lead to program failure, i.e. the program crashes,

cannot deliver the requested service or worse. One of the biggest

challenges in dynamic analysis is giving developers the information

GWP-ASan: Sampling-Based Detection of Memory-Safety Bugs in Production ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

to localize faults, despite only being able to detect the resulting

error. Indeed, producing helpful reports that allow developers to

debug and fix a bug requires maintaining additional information

(e.g. stack traces of where memory was allocated or freed), which

can be very costly.

Analyzing memory accesses, as required for memory-safety anal-

ysis, adds additional overheads, depending on the precision of the

analysis. Tools such as AddressSanitizer choose to analyze every

memory access, along with maintaining every allocation’s and deal-

location’s metadata (valid, invalid, size, stack trace). Unsurprisingly,

this results in significant runtime and memory overheads, which

make such approaches unsuitable for production environments.

Hardware-based solutions make use of new CPU features, such

as Arm MTE [7], to offload storing some or all of the additional

metadata and checking to dedicated hardware. Unfortunately, some

of the newer hardware-based solutions are not yet widely available.

GWP-ASan makes use of a hardware feature available in all modern

CPUs’ Memory Management Units (MMUs) [15]: paged virtual

memory and the ability to set memory pages inaccessible.

3 GWP-ASAN ALGORITHM
This section describes the basic GWP-ASan algorithm design. Given

all implementations discussed in §4 are either implemented in the C

or C++ languages, the code snippets in this section show simplified

C language snippets. For the description of our implementation, we

assume a POSIX-compatible operating system.

We define the original pseudo-implementation of the heap al-

locator in Listing 3; the details of the original algorithms for heap

allocation, in Allocate(), and deallocation, in Deallocate(), can be

treated as a black box for the simple algorithm described here.

Listing 3: Unmodified heap allocation.
void *malloc(size_t size) {

return Allocate(size);
}

void free(void *ptr) {
Deallocate(ptr);

}

In order to implement sampling heap error detection, the change

as shown in Listing 4 should be made.

Listing 4: Heap allocation with sampling error detection.
void *malloc(size_t size) {

⊕ if (WantToSample(size))
⊕ return GuardAlloc(size);

return Allocate(size);
}

void free(void *ptr) {
⊕ if (IsGuarded(ptr)) {
⊕ GuardDealloc(ptr);
⊕ return;
⊕ }

Deallocate(ptr);
}

WantToSample() returns true infrequently. GuardAlloc() allo-
cates, and GuardDealloc() deallocates memory similar to Electric

Fence. IsGuarded() returns true if its argument is a pointer previ-

ously returned by GuardAlloc(). Details vary between implementa-

tions and some of them are described below.

3.1 Simple Version
In this section we describe a very simple, yet fully capable, imple-

mentation of GWP-ASan.

Initialization. At process start-up the GWP-ASan pool is allocated

using mmap() as a fixed-size region of virtual memory consisting

of 𝑁 page-sized allocation slots and 𝑁 + 1 page-sized guards, such

that guards on both ends surround every slot. Figure 1 illustrates

the initial memory state of the GWP-ASan pool. Initially all of this

memory is marked as inaccessible (with PROT_NONE). The red
zones remain inaccessible throughout the program execution.

Listing 5: Basic implementation of WantToSample().
// Returns a random number in the range
// [1 ... sample_rate * 2].
int RandSkip ();

// Initialized to a non -zero random number
// at thread start up.
static thread_local int skip = RandSkip ();

bool WantToSample () {
if (--skip > 0) return false;
skip = RandSkip ();
return true;

}

Sampling allocations. A possible implementation of WantToSam-
ple() is shown in Listing 5. A thread-local allocation skip counter

is used to decide which allocations to skip sampling (the common

case), and which to sample. The counter is initialized to a random

number in the range [1 . . . sample_rate ∗ 2], so that the median

value is sample_rate. The skip counter is then decremented by one

per unsampled allocation. When the number reaches zero, we try

to service the malloc() through GWP-ASan, and regenerate a new

random number. Therefore,WantToSample() in the common case

is just a single thread-local decrement and conditional branch.

Guarded allocation. GuardAlloc() checks if there are any al-

location slots available, chooses one, makes it accessible (with

PROT_READ|PROT_WRITE), and returns to the caller. Figure 2

illustrates the pool’s memory state after an allocation.

This way, buffer underflows (accesses below the allocation ad-

dress by up to a page) will always be detected, but overflows (ac-

cesses above the end of the allocated region) will be detected only

if the access crosses the page boundary. To find overflows, the allo-

cated region needs to be aligned right by the page boundary. The

implementation may randomly choose to align left or right.

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Serebryany, et al.

Figure 1: GWP-ASan pool initial memory state. Guard pages,
viz. “red zones”, are shown as (red hatch pattern), and
remain always inaccessible. Allocation slots are shown as
(black filled) when inaccessible.

Figure 2: GWP-ASan pool memory state after an allocation.
The allocation slot shown as (green dots) is allocated and
accessible.

Deallocation of sampled allocations. GuardDealloc() marks

the allocation slot as inaccessible (with PROT_NONE). For heap-
use-after-free bugs to be detected with high probability, this allo-

cation slot needs to remain unallocated for some amount of time.

IsGuarded() can be implemented as a range check.

Limitations. The obvious limitations of this simple implementa-

tion are:

(1) Only allocations of up to 1 page can be guarded.

(2) Only up to 𝑁 allocations can be guarded at the same time. For

large enough 𝑁 this stops being a significant limitation be-

cause we want to avoid more than a certain number of guarded

allocations anyway, to avoid high overheads.

3.2 Generating Descriptive Error Messages
Generating descriptive error messages is crucial for GWP-ASan to

bemaximally useful, given it is designed to run in production, where

reproduction of any given error is rather challenging. Without

an easy way to reproduce an error, developers require detailed

information about detected errors to debug.

When a memory access hits a protected page, the operating-

system kernel raises a signal (SIGSEGV on POSIX systems). If this

page is a GWP-ASan guard or a deallocated allocation slot, the

signal handler producing the report can provide additional infor-

mation, such as the offset from the allocation start, the stack trace

of deallocation (for heap-use-after-free), and the stack trace of allo-

cation (for both classes of bugs). Where possible, the report should

indicate if the erroneous access is a read or write.

This makes GWP-ASan error messages more informative than

other typical crash reports. In other words, GWP-ASan is capable

of producing the same quality of reports as ASan or HWASan.

Listings 6 and 7 show examples of GWP-ASan reports.
1

Listing 6: Example GWP-ASan use-after-free report.
∗ ∗ ∗ GWP−ASan d e t e c t e d a memory e r r o r ∗ ∗ ∗

Use− a f t e r − f r e e wr i t e a t 0 x 7 f e c c ab 26 0 0 8 by th r e ad 3 1 0 2 7 :

#1 . / t e s t (foo +0 x45) [0 x 55585 c 0 a f a 5 5]

#2 . / t e s t (main+0 x9 f) [0 x 5 5 5 8 5 c 0 a f 7 c f]

The a c c e s s i s w i th in 41B a l l o c a t i o n a t 0 x 7 f e c c ab 2 6 00 0

0 x7 f e c c ab 26 0 0 0 was d e a l l o c a t e d by th r e ad 3 1 0 2 7 :

1
The examples are modified to fit this document’s layout. All implementations in

§4 display variations of these example reports.

#1 . / t e s t (main+0 x83) [0 x55585 c0a f 7b3]

0 x 7 f e c c ab 26 0 0 0 was a l l o c a t e d by th r e ad 3 1 0 2 7 :

#1 . / t e s t (main+0 x57) [0 x 55585 c 0 a f 7 8 7]

∗ ∗ ∗ End GWP−ASan r e p o r t ∗ ∗ ∗

Listing 7: Example GWP-ASan out-of-bounds report.
∗ ∗ ∗ GWP−ASan d e t e c t e d a memory e r r o r ∗ ∗ ∗

Out−of −bounds read a t 0 x 7 f e c c a b 2 5 f f e by th r e ad 3 1 0 2 7 :

#1 . / t e s t (foo +0 x45) [0 x 55585 c 0 a f a 5 5]

#2 . / t e s t (main+0 x9 f) [0 x 5 5 5 8 5 c 0 a f 7 c f]

The a c c e s s i s 2B l e f t o f 41B a l l o c a t i o n a t 0 x 7 f e c c ab 2 6 00 0

0 x7 f e c c ab 26 0 0 0 was a l l o c a t e d by th r e ad 3 1 0 2 7 :

#1 . / t e s t (main+0 x57) [0 x 55585 c 0 a f 7 8 7]

∗ ∗ ∗ End GWP−ASan r e p o r t ∗ ∗ ∗

4 IMPLEMENTATIONS
This section lists various existing variants of GWP-ASan and some

of their most notable features.

4.1 TCMalloc
TCMalloc [16] is the open-source malloc() implementation used in

Google server-side code. It is highly optimized for CPU and RAM

efficiency on large multi-threaded applications. It contains the first

(historically) implementation of GWP-ASan.

TCMalloc’s implementation of WantToSample() did not intro-

duce a single new instruction on the hot path of the allocator. This

was made possible by piggybacking on the existing sampling mech-

anism in TCMalloc used for heap profiling. Effectively, the GWP-

ASan sampling logic hides behind pre-existing sampling logic.

IsGuarded() is implemented as a bit test on the pointer value,

thus requiring zero memory loads.

4.2 Google Chrome
Chrome implements a custom version of GWP-ASan, which hooks

malloc() using Chrome’s unified malloc() shim that works on all

of Chrome’s supported platforms.
2
The malloc() shim requires an

indirect call in every process using GWP-ASan’s hook. This hook

uses the simpleWantToSample() implementation above.

For stability and security reasons, Chrome has a multiprocess

architecture, including a main browser process, a GPU process that

renders to the screen, and a group of many “renderers” that run web-

sites or tabs. GWP-ASan is randomly enabled in each process at pro-

cess startup time, with a small probability in frequently-launched

renderer processes, and a larger probability in the unsandboxed

security-sensitive browser process, of which only a single instance

exists. If not enabled this avoids the runtime overhead of the indirect

call and allows GWP-ASan to use more memory per enabled pro-

cess. It also prevents some user frustration if a frequently occurring

bug is causing many GWP-ASan crashes.

Chrome’s GWP-ASan uses the simple implementation described

above, with the exception that the maximum number of simultane-

ously allocated slots is set to be significantly smaller than the total

number of reserved allocation slots (constant kReservedSlots). This
setup delays the reallocation of each slot, forming a quarantine,

2
Open source as part of the Chromium project: https://chromium.googlesource.

com/chromium/src/+/lkgr/docs/gwp_asan.md

https://chromium.googlesource.com/chromium/src/+/lkgr/docs/gwp_asan.md
https://chromium.googlesource.com/chromium/src/+/lkgr/docs/gwp_asan.md

GWP-ASan: Sampling-Based Detection of Memory-Safety Bugs in Production ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

while limiting the amount of physical memory overhead. Finally,

because each slot is associated with out-of-line memory-hogging

metadata such as compressed stack traces, the total number of slots

associated with metadata is selected to be much smaller than kRe-
servedSlots. If kReservedSlots were lower the quarantine would
be much less effective. The downside is that if a UAF occurs on a

slot that has lost its metadata, the resulting bug report is far less

detailed and actionable.

Because GWP-ASan is an alternative allocator, it must provide

at least the same security guarantees as Chrome’s hardened allo-

cator, PartitionAlloc. This includes never allocating object types

from separate “partitions” in the same slot for the lifetime of the

process (to avoid simple type confusion exploits) and never reusing

a memory address as long as there are known references to the

object that once resided at that address [17].

4.3 Android/LLVM
The compiler-rt project [18], which exists within LLVM [19], con-

tains an implementation of GWP-ASan that’s used for both Android

and the Scudo hardened allocator.
3
This implementation of GWP-

ASan is designed to be used as a library, and can be integrated with

any allocator through a simple hook in malloc() and free().
Android, by default, has been using GWP-ASan for its system

processes since Android 11 (September 2020), and apps have his-

torically been opt-in. As of Android 14 though, apps will have

GWP-ASan enabled by default (with an opt-out), but in what we

call a “recoverable” mode. In this mode, apps will get a full GWP-

ASan crash report, with stack traces and an error description, but

the app won’t be forced to crash with a segmentation fault. Instead,

the system’s signal handler (libsigchain, which runs before any sig-

nal handler installed by the app) will also disable GWP-ASan, make

the faulting page read/write-able, and retry the faulting instruction.

Use-after-free and buffer-overflow will thus succeed in writing to a

wrong memory location on the restart, and reads will return zero.

The primary benefit here is app compatibility—the Android app

ecosystem contains large quantities of apps with memory-unsafe

native code, and in the interest of user experience, such apps should

not be forced to crash when an Android user updates their device

to Android 14.

An additional Android-specific challenge is memory consump-

tion. Unlike server binaries, where hundreds of kilobytes is unno-

ticeable, Android has many processes (∼200) running simultane-

ously, and runs on memory-constrained devices. To reduce memory

pressure, we apply two techniques:

(1) Metadata compression. The largest part of GWP-ASan’s

metadata are the stack traces, the LLVM implementation of

GWP-ASan encodes each stack frame as the ULEB-encoded

difference between the return address of the current frame, and

the frame before it. This provides a 50-75% decrease in memory

usage of storing stack traces.

(2) Process sampling. We introduce another layer of sampling,

and only turn on GWP-ASan for 1/128 process launches.
These two techniques, combined with a carefully tuned small

pool of allocations (only 16 at any one time), means that an average

3
Open source documentation available at: https://llvm.org/docs/GwpAsan.html

device is only using ∼140 KiB of extra memory for GWP-ASan (∼70
KiB per sampled process). In addition, like in Chrome, the process

sampling prevents frequent crashes on the same process, which

can lead to user frustration.

4.4 Firefox
Firefox implements its own custom version of GWP-ASan, named

Probabilistic HeapChecker (PHC).
4
PHC is closely related to Chrome’s

GWP-ASan (§4.2). The internal Firefox allocator mozjemalloc of-
fers malloc()-replace support, allowing the PHC implementation

to intercept the respective allocator functionality and handle PHC-

controlled allocations separately.

Since Firefox has a different allocation profile compared to Chrome

(both in frequency and allocation size), PHC uses slightly different

parameters to decide when and how to sample allocations. This is

particularly relevant to decide when to start sampling at process

startup.

4.5 Apple Platforms
Apple’s variant of GWP-ASan, named Probabilistic Guard Mal-

loc (PGM), is implemented in the standard user space allocator.
5

It was first deployed to customer populations with iOS 14.5 and

macOS 11.3 (April 2021) and deployment gradually expanded to

additional platforms, including watchOS and tvOS. PGM is enabled

for all Apple-owned user space processes (including apps) and inte-

grates with the existing crash reporting pipeline. Crash reports are

augmented with additional information about the guarded alloca-

tion, most notably the allocation and deallocation stack traces. PGM

does not apply to third-party apps and there are a small number

of processes that use a custom memory allocator for some or all of

their allocations. Since these allocations are served by a different

allocator implementation, they do not benefit from PGM.

PGM uses conservative sampling rates and a fixed per-process

memory budget to ensure performance remains unaffected. The

per-process memory budget is 2 MiB (except for macOS, where it is

8 MiB) and bounds PGM’s total memory footprint. It accounts for

all reserved VM pages (guard, allocation, and quarantine pages) and

allocation metadata. Stack traces are stored in compressed form.

Process sampling is used to ensure the number of simultaneously

protected processes on a device is very small. The average number

of protected processes per device is tuned to be 0.5. In addition to

tuning system-wide overhead, process sampling also limits user

impact by avoiding crash loops.

4.6 Linux Kernel
The Linux kernel (since version 5.12) has its own implementation,

named Kernel Electric-Fence (KFENCE).
6
KFENCE’s implementa-

tion has to integrate with the Linux kernel SLAB and SLUB heap

allocators [20], with the latter having become the recommended

default allocator of the Linux kernel.

4
PHC is open source, available at: https://searchfox.org/mozilla-central/source/m

emory/replace/phc/PHC.cpp

5
PGM is part of Apple libmalloc: https://github.com/apple-oss-distributions/libm

alloc/blob/main/src/pgm_malloc.c

6
KFENCE is part of the mainline Linux kernel: https://docs.kernel.org/dev-

tools/kfence.html

https://llvm.org/docs/GwpAsan.html
https://searchfox.org/mozilla-central/source/memory/replace/phc/PHC.cpp
https://searchfox.org/mozilla-central/source/memory/replace/phc/PHC.cpp
https://github.com/apple-oss-distributions/libmalloc/blob/main/src/pgm_malloc.c
https://github.com/apple-oss-distributions/libmalloc/blob/main/src/pgm_malloc.c
https://docs.kernel.org/dev-tools/kfence.html
https://docs.kernel.org/dev-tools/kfence.html

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Serebryany, et al.

By virtue of being implemented in an OS kernel, KFENCE’s

implementation is more complex. Several abstractions that user

space can rely on are unavailable in an OS kernel environment

(signals, page-protection). Instead, per-target architecture support is

required to deal with both page-fault handling and page protection.

Indeed, page-protection from user space (using a defaultmprotect())
is rather costly, especially due to TLB shootdowns. Instead, on

some architectures (such as X86), KFENCE implements lazy page-

protection, where only the local TLB is invalidated, with the only

downside being few missed bugs (viz. false negatives).

Another significant difference in KFENCE’s implementation is

that its decision to sample allocations is time-based: the implementa-

tion uses a fixed sample interval (with a default of 100 milliseconds)

and a timer to toggle a bit checked by the SLAB or SLUB allocators.

The kernel’s allocator pressure is entirely workload dependent and

hard to predict. Since the kernel has to serve any number of dif-

ferent workloads at different points in time or even concurrently

for the entire uptime of the system, KFENCE’s decision to sample

should be independent of potentially pathological or even malicious

workloads, yet remain predictable to derive reliable performance

characteristics of the system with KFENCE enabled. A time-based

sampling policy is independent of allocator pressure, relatively

uniform, and therefore provides for a predictable upper bound on

kernel-wide sample rate.

The current default implementation checks a simple boolean

“gate” in the allocator fast path, which results in a load, compare,

and conditional jump: this implementation has been measured to

have negligible impact across a variety of real-world production

workloads. We note that an initial version of KFENCE used a dy-

namically patched branch (self-modifying code) to avoid checking

a boolean in the fast path at all. In certain configurations with rela-

tively large sample intervals of more than 500 milliseconds, this can

minimally perform better, especially on systems with few CPUs

(dual or quad core systems). On larger systems with large CPU

counts, however, patching the branch using the kernel’s existing

code-patching machinery (called "Static Keys" [21]) is equivalent to

taking a global system lock which turned out to be unacceptable.

4.6.1 Optimizing KFENCE Pool Utilization. KFENCE uses a

fixed pool of object pages and adjacent guard pages that are set up

once on boot. This pool must be able to service KFENCE allocation

requests until the next reboot of a system. One problem with that

is dealing with long-lived allocations eventually consuming the

entire pool: we implement a policy that rejects new allocations

if they are unlikely to contribute to new coverage. We define the

coverage source of an allocation to be based on its allocation stack

trace. More specifically, if pool utilization reaches 75% or above,

KFENCE skips new allocations if an existing valid allocation of the

same coverage source exists. The implementation hashes the stack

trace and a Counting Bloom filter is used to efficiently query if one

or more allocations of the same coverage source exist. The policy

ensures diverse coverage of allocations, and as a side-effect limits

frequent long-lived allocations (e.g. filesystem caches).

5 RESULTS
This section discusses the results of real-world deployment of GWP-

ASan variants and our experience over the past several years.

5.1 Google Server-Side Software
GWP-ASan for the Google server-side software was the first variant

we deployed, with the first production bugs observed in late 2018.

In 2019, 300+ bugs were reported and fixed. In 2020 and 2021 we

observed 450+ fixed bugs annually, and 500+ bugs in 2022. The

trend continued in 2023 with a total of 550+ bugs fixed.

Approximately 80% of the fixed bugs were heap-use-after frees,

and 20% were heap-buffer-overflows.

Since 2019 100+ bugs were marked as “can’t reproduce”, which

would typically indicate that the developers did not have sufficient

information to understand and fix the bug. 400+ bugs were marked

as “obsolete”, which would typically indicate that the bug is unim-

portant for some reason (e.g. the code is deleted or represents a

one-time experiment).

The GWP-ASan reports are processed by the telemetry and bug

reporting systems in the same way as any other process crashes.

The only notable difference is that GWP-ASan reports have two

(for buffer overflows) or three (for use after free) stack traces, while

the majority of other crashes (e.g. NULL dereferences) have only

one stack trace.

We have evaluated GWP-ASan performance using performance-

sensitive load tests and production telemetry [13]. With the selected

sampling rate, the performance impact is effectively undetectable.

There were several cases where GWP-ASan detected and re-

ported that the root cause of an ongoing issue in a production

service was caused by a use-after-free or heap-buffer-overflow.

5.2 Google Chrome
GWP-ASan has been enabled by default onWindows and Mac since

Chrome 80 in 2019, and has been partially enabled on Linux and

ChromeOS since 2022.

Bug reports are prescreened by security team members before

filing them in the bug tracker, as GWP-ASan sometimes produces

inactionable reports. A faulty access to GWP-ASan’s guarded region

may occur long after another memory-safety error has occurred and

the resulting bug report appears nonsensical. Some methods can be

used to reduce or eliminate some classes of common inactionable

reports (e.g. those that occur when ASCII values happen to form a

valid pointer to a guarded allocation.) In the last 120 days (as of Jun

07 2023), 71% of crashes are reported as bugs after the prescreening

(after filtering for crashes in old system-provided libraries and third-

party code).

There have been 271 bugs filed,
7
of which 176 (65%)

8
have been

judged to be possibly exploitable by attackers.

Of the 243 bugs that have been marked as resolved,
9
168 (69%)

have beenmarked as fixed.
10

35 (14.4%) have beenmarked as “Wont-

Fix”,
11

meaning the developer has judged the bug to not be action-

able in any way. Other resolutions include marking the bug as

7
https://crbug.com?q=Hotlist%3DGWP-ASan&can=1

8
https://crbug.com?q=Hotlist%3DGWP-ASan%20Type%3DBug-Security&can=1

9
https://crbug.com?q=Hotlist%3DGWP-ASan%20status%3AFixed%2CVerified%

2CDuplicate%2CWontFix%2CArchived&can=1

10
https://crbug.com?q=Hotlist%3DGWP-ASan%20status%3AFixed%2CVerified&

can=1

11
https://crbug.com?q=Hotlist%3DGWP-ASan%20status%3AWontFix&can=1

https://crbug.com?q=Hotlist%3DGWP-ASan&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20Type%3DBug-Security&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20status%3AFixed%2CVerified%2CDuplicate%2CWontFix%2CArchived&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20status%3AFixed%2CVerified%2CDuplicate%2CWontFix%2CArchived&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20status%3AFixed%2CVerified&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20status%3AFixed%2CVerified&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20status%3AWontFix&can=1

GWP-ASan: Sampling-Based Detection of Memory-Safety Bugs in Production ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

a duplicate, or marking it as the responsibility of an external de-

pendency, for example, bugs in macOS system code, for which we

receive crash reports when they occur in a Chrome process.

180 of the bugs are heap-use-after-free,
12

and 35 are heap-buffer-

overflow.
13

21/32 (65.6%) of the resolved heap-buffer overflows are

marked as fixed or a duplicate of an existing issue,
14,15

and 148/167

(88.6%) of the resolved heap use-after-frees are marked as fixed or

duplicate.
16,17

218/271 (80.4%)
18

of the GWP-ASan bugs filed were found and

reported by GWP-ASan before any other crash bug was filed for

the same crash. This is likely because GWP-ASan bugs can be

filed when only one crash has occurred (subject to prescreening),

whereas regular crash bugs are typically inactionable with only a

single report.

5.3 Android
GWP-ASan has been enabled by default for system processes and

system apps since Android 11. Since then, we’ve detected and fixed

a large quantity of both previously undetected memory-safety bugs,

and new regressions.

Within 60 days (starting in May 2023), we detected 1,972 unique

stack traces in system processes across the Android ecosystem

from ∼11.7𝑀 crash reports. We consider a stack trace to be unique

when the function name (where available) or dynamic shared object

(DSO) from the most significant frame of the bad memory access

(excluding common frames like libc or Android Runtime), is unique.

We believe that a small fraction of these crashes are caused

by hardware failures and not by software bugs, however, reports

observed more than once clearly indicate real memory-safety bugs:

54% (1,066) of unique stack traces were observed 5 or more times. Of

these crashes, 57% were use-after-free, 27% were buffer-overflow,

4% were buffer-underflow, and the remainder were double free,

invalid free, or indeterminate bugs.

5.4 Firefox
To understand PHC results on Firefox, there are two important

aspects to consider. First, PHC is currently only running on the

Nightly channel and therefore has limited user exposure. We are

working on bringing PHC to Firefox Release by the end of 2023. Sec-

ond, prior to PHC the “ASan Nightly Project” was used on Firefox.

In this project, a Firefox Nightly version built with AddressSani-

tizer was shipped to users who manually opted in to this (much

slower) version. Although the user base was of course limited, ASan

Nightly did not rely on probabilistic sampling and therefore it found

a significant chunk of existing use-after-free issues. Overall we as-

sume that this project is responsible for eliminating a lot of the

long-standing bugs that we would have found otherwise at the

12
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-use-after-free&can=1

13
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-buffer-overflow&can=1

14
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-buffer-overflow&can=1

15
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-buffer-overflow%20stat

us%3AFixed%2CVerified%2CDuplicate&can=1

16
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-use-after-free%20statu

s%3AFixed%2CVerified%2CDuplicate%2CWontFix%2CArchived&can=1

17
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-use-after-free%20statu

s%3AFixed%2CVerified%2CDuplicate&can=1

18
https://crbug.com?q=Hotlist%3DGWP-ASan%20%22reported%20by%20GWP-

ASan%22&can=1

beginning of PHC deployment. It is important to note that results

from the ASan Nightly Project directly influenced the decision to

implement PHC: the project showed us that use-after-free issues

can be fixed almost 100% of the time if the developers have the

“free” stack trace in addition to the usual “use” stack trace.

To date, PHC in Firefox has uncovered 7 use-after-free issues

and 2 buffer-overflows, some of which were in third-party code

and fixed upstream. For some of these bugs, we also saw collisions

with reports from other sources (e.g. the ASan Nightly Project).

We expect that deployment to more clients through the Release

channel will further increase the detection rate and allow us to

identify regressions more quickly.

5.5 Apple Platforms
The Apple crash reporting pipeline groups crashes using the no-

tion of an issue signature. Conceptually, an issue signature consists

of the stack trace of the crashing thread. For Probabilistic Guard

Malloc (PGM) crashes, the system files a bug for every new pair of

process and issue signature (see §5.8).

As of September 2023, a total of 3,748 PGM bugs have been filed

of which 1,438 are marked fixed with an associated code change. Of

all bug reports, only 13 were closed without a resolution, meaning

that despite the additional information in the crash report compo-

nent owners were unable to diagnose the bug without a reproducer.

This compares very favorably with standard crash reports for mem-

ory errors, resulting in a 99% fix rate for PGM bugs. Another 27

bugs were found in local experiments and code that was recently

removed. The remaining 2270 bugs were marked as duplicates re-

sulting from PGM finding already-fixed bugs and finding the same

bug in code shared by multiple processes (bugs are filed for pairs

of process and issue signature).

Of the found bugs, 77% constitute use-after-free bugs and 23%

are buffer-overflows. For about a third of fixed bugs the diagnosed

root cause was a concurrency or thread safety issue. Interestingly,

there even was an example for a locally-reproducible bug that was

detected using PGM, but eluded detection by AddressSanitizer. Our

explanation is that PGM’s lower overhead was more conducive to

reproducing the error condition.

In summary, PGM has been an effective tool for finding and

diagnosing memory errors at Apple. On average, 2.1 new bugs

have been found every day since it was first deployed at scale

in April 2021. The additional information in PGM crash reports

(most notably, allocation and deallocation stack traces) makes them

actionable even without a reproducer, resulting in a high 99% fix

rate. In a handful of cases, a single PGM crash report made the

difference for diagnosing a known high-impact bug. PGM even

found bugs (now fixed) in code that had remained unchanged for

over 20 years.

5.6 Meta
Meta has used a variant of GWP-ASan in the Facebook and Messen-

ger Apps on Android since 2020. GWP-ASan is bundled with the

applications in a way that allows for it to be dynamically configured

and tuned for a device population. This has allowed Meta to ship

and enable GWP-ASan on a wide range of Android devices and

versions, control key allocator properties such as the sampling rate,

https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-use-after-free&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-buffer-overflow&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-buffer-overflow&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-buffer-overflow%20status%3AFixed%2CVerified%2CDuplicate&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-buffer-overflow%20status%3AFixed%2CVerified%2CDuplicate&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-use-after-free%20status%3AFixed%2CVerified%2CDuplicate%2CWontFix%2CArchived&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-use-after-free%20status%3AFixed%2CVerified%2CDuplicate%2CWontFix%2CArchived&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-use-after-free%20status%3AFixed%2CVerified%2CDuplicate&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20heap-use-after-free%20status%3AFixed%2CVerified%2CDuplicate&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20%22reported%20by%20GWP-ASan%22&can=1
https://crbug.com?q=Hotlist%3DGWP-ASan%20%22reported%20by%20GWP-ASan%22&can=1

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Serebryany, et al.

Number of GWP-ASan crash reports received (2
𝑛
)

N
u
m
b
e
r
o
f
u
n
i
q
u
e
b
u
g
s
(
1
0
𝑛
)

Figure 3: Bug occurrences across Google server-side applications, Android, and Chrome.

and an allow-list of modules subject to allocation sampling. The

default sampling rate for a process is 1/1000 with a memory budget

of 1024 object pages (8 MiB). Meta can additionally opt devices in

or out of sampling at application launch time based on eligibility

criteria such as available system memory.

When a sampled allocation is determined to have resulted in a

memory-safety issue, a crash report is generated containing custom

streams with relevant information from the sampling such as allo-

cation and deallocation stack traces. Reports are ingested by Meta

infrastructure as part of the regular crash reporting pipeline and

integrated directly with crash analysis tools that engineers already

frequently use. Integration of GWP-ASan in their stack has over

time helped Meta fix multiple difficult-to-debug reliability issues

caused by use-after-frees and buffer overflows.

5.7 Linux Kernel
KFENCE has been deployed in Google’s server kernels, Android,

and ChromeOS kernels. We’re also aware of numerous third parties

using KFENCE, given it works out of the box by simply changing a

kernel build-time configuration parameter. More effort is required

to collect and analyze KFENCE reports from a fleet of machines,

which needs additional tooling. To date, KFENCE has reported 60+

bugs in Google’s downstream Linux kernels. The upstream Linux

kernel up to version 6.3 has 12 fix commits mentioning KFENCE-

reported bugs since the introduction of KFENCE in 2021 with Linux

5.12.

5.8 Analysis of Occurrences Per Bug
The number of occurrences of every bug detected by GWP-ASan

in production deserves a separate discussion. Intuitively, bugs that

occur in production frequently will also be frequently reported with

a sampling-based bug detector. But we don’t know the frequency

of the bug occurrences, only their detection frequency.

We analyzed the detection frequency in the Google server-side

applications, the Android platform (both the user space and the

kernel), and Chrome, shown in Figure 3. In all cases, we observed a

very similar picture. Roughly half of the bugs are only ever seen

once, a quarter of the bugs are seen 2-10 times, and very few bugs

are detected hundreds of times. The log-log plot looks like a straight

line, which is frequent for such phenomena.

Because of the low sampling rate GWP-ASan uses, most bugs

are only detected once. We suspect that many more bugs occur in

production infrequently enough to have never been detected by

GWP-ASan.

6 RELATEDWORK
As discussed in the introduction, the idea to rely on page protection

and dedicated guard pages around the object page for memory-

safety error detection was first found in the Electric Fence Malloc

Debugger [11] for various POSIX-compatible operating systems.

For Microsoft Windows, PageHeap [12] serves a similar purpose

and can find memory-safety errors. To the best of our knowledge,

PageHeap has a sampled mode but was never intended for produc-

tion use due to large overheads. The Debug Malloc Library [22] is

another allocator replacement, giving developers a library to track

object state to help debug errors; however, its overheads also make

it unsuitable for production.

While sampling program executions to analyze system perfor-

mance at scale has become ubiquitous [13], sampling to detect

errors is less common. Liblit et al. [23] first proposed compile-time

assertion sampling to detect bugs, including memory safety bugs.

A large number of builds for a single application are made, where

different builds have a small subset of assertions enabled; instru-

mentation with CCured [24] is used as an “assertion source” to find

memory safety bugs. A benefit of this approach is that it is not tied

to any particular compile-time instrumentation, and could be com-

bined with newer state-of-the art compiler-instrumentation based

dynamic analysis, such as HWASan [5]. Cooperative Bug Isolation

(CBI) [25] applies compiler instrumentation to collect values of

simple predicates observed at run-time; a post-execution statistical

analysis is performed to find anomalies and predict bugs. Here as

well, compile-time sampling is used to reduce the instrumentation

overhead. These approaches have at least two challenges: (a) main-

taining multiple builds for a single application may be expensive at

scale and (b) the overhead of compiler-instrumented code is still

GWP-ASan: Sampling-Based Detection of Memory-Safety Bugs in Production ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

non-zero and if a hot function happens to be instrumented in a

given build, the slowdown may be significant.

Hauswirth et al. [26] propose using a binary rewriting system to

instrument the code for bug detection and a dynamic dispatch to

choose between instrumented and non-instrumented code in order

to sample the checks at run-time. The drawback is that the dynamic

dispatch code is not free. The paper describes the idea of “sampling

executions of code segments at a rate inversely proportional to

their execution frequency,” which remains promising.

7 FUTUREWORK
Assuming memory unsafe code will remain in wide use and pre-

production testing will remain imperfect, we need to keep improv-

ing tools like GWP-ASan. Some notable directions are:

(1) Extend GWP-ASan or explore new low-overhead sampling-

based bug detection algorithms for bug classes currently not

found by GWP-ASan. Of particular interest are stack-use-after-

return bugs: our estimate based on pre-production testing is that

these bugs are roughly 40% as frequent as heap-use-after-free

bugs; their frequency in production is unknown to us. Further-

more, too many concurrency issues escape to production, and

we expect solutions for low-overhead sampling-based data-race

detection to be profitable [27].

(2) Tune the existing implementations to skew towards less fre-

quent heap allocation sites, similar towhat KFENCE does (§4.6.1).

This assumes that frequent allocations are better tested anyway.

(3) Find mechanisms that allow higher sampling rates. This may

include improving the scalability of the mmap system call in

operating system kernels, or using hardware features such as

Intel Memory Protection Keys (MPK) [28] or Arm Memory

Tagging (MTE) [7].

(4) Combinewith other related detectionmechanisms, e.g. Chrome’s

lightweight use-after-free detector which has a higher sampling

rate but does not detect all types of use-after-frees [29].

(5) Ensure that major implementations can handle allocations of

any size.

(6) Create a feedback loop from earlier executions to newer ones.

For example, by increasing sampling rates for allocations previ-

ously involved in a bug report, and decreasing sampling rates

for long-lived allocations that are less likely to cause bugs.

(7) Create mechanisms to dynamically direct the sampling budget

towards a specific process to help project teams track down

hard-to-diagnose bugs that evaded all other forms of testing.

8 CONCLUSION
Memory safety remains a major unresolved problem. The indus-

try must migrate away from memory-unsafe code, but this will

take decades. In the meantime, tools like GWP-ASan offer a low-

overhead and easy-to-deploy option for bug detection in production.

These tools rely on telemetry systems that send crash reports to

developers. They must be used along with available pre-production

detection mechanisms and security mitigations.

GWP-ASan is not a security mitigation mechanism. When used,

however, it improves the overall product security by allowing de-

velopers to detect and fix many vulnerabilities.

ACKNOWLEDGEMENTS
We would like to thank our colleagues and the respective open-

source communities for their helpful feedback, reviews, and com-

ments. We would like to thank the anonymous reviewers for their

helpful comments and advice.

REFERENCES
[1] James P. Anderson. 1972. Computer security technology planning study. Tech.

rep. ESD-TR-73-51.

[2] Hilarie Orman. 2003. Themorris worm: A fifteen-year perspective. IEEE Security
& Privacy, 1, 5, 35–43.

[3] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-

weight dynamic binary instrumentation. In PLDI. ACM, 89–100. doi: 10.1145/1

250734.1250746.

[4] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. 2012. Addresssanitizer: A fast address sanity checker. In USENIX.
USENIX Association, 309–318. https://www.usenix.org/conference/atc12/tech

nical-sessions/presentation/serebryany.

[5] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,

and Dmitry Vyukov. 2018. Memory tagging and how it improves C/C++ mem-

ory safety. CoRR, abs/1802.09517. arXiv: 1802.09517.
[6] Kathirgamar Aingaran, Sumti Jairath, Georgios K. Konstadinidis, Serena Leung,

Paul Loewenstein, Curtis McAllister, Stephen Phillips, Zoran Radovic, Ram

Sivaramakrishnan, David Smentek, and ThomasWicki. 2015. M7: Oracle’s Next-

Generation Sparc Processor. IEEE Micro, 35, 2, 36–45. doi: 10.1109/MM.2015.35.

[7] Kostya Serebryany. 2019. ARMmemory tagging extension and how it improves

C/C++ memory safety. login Usenix Mag., 44, 2. https://www.usenix.org/public
ations/login/summer2019/serebryany.

[8] Larry Smith. 2001. Shift-Left Testing. Dr. Dobb’s J., 26, 9, (Sept. 2001).
[9] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal

War in Memory. In 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013. IEEE Computer Society. doi: 10.1109/SP.20

13.13.

[10] Alex Gaynor. 2020. What science can tell us about C and C++’s security. (May

2020). Retrieved Aug. 8, 2023 from https://alexgaynor.net/2020/may/27/science

-on-memory-unsafety-and-security/.

[11] Bruce Perens. 2003. efence: Electric Fence Malloc Debugger. Retrieved Aug. 8,

2023 from https://web.archive.org/web/20100829220331/http://perens.com/Fre

eSoftware/ElectricFence/.

[12] Microsoft Corporation. 2022. GFlags and PageHeap. Retrieved Aug. 8, 2023

from https://learn.microsoft.com/en-us/windows-hardware/drivers/debugge

r/gflags-and-pageheap.

[13] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt.

2010. Google-Wide Profiling: A Continuous Profiling Infrastructure for Data

Centers. IEEE Micro, 30, 4, 65–79. doi: 10.1109/MM.2010.68.

[14] Brian Randell. 2003. On Failures and Faults. In FME 2003: Formal Methods,
International Symposium of Formal Methods Europe, Pisa, Italy, September 8-14,
2003, Proceedings (Lecture Notes in Computer Science). Vol. 2805. Springer. doi:

10.1007/978-3-540-45236-2_3.

[15] John L. Hennessy and David A. Patterson. 2012. Computer Architecture - A
Quantitative Approach, 5th Edition. Morgan Kaufmann. isbn: 978-0-12-383872-8.

[16] The TCMalloc Authors. 2023. TCMalloc: Thread-Caching Malloc. Retrieved

Aug. 8, 2023 from https://github.com/google/tcmalloc.

[17] Adrian Taylor, Bartek Nowierski, and Kentaro Hara. 2022. Use-after-freedom:

MiraclePtr. Retrieved Aug. 8, 2023 from https://security.googleblog.com/2022

/09/use-after-freedom-miracleptr.html.

[18] The LLVM Authors. 2023. compiler-rt runtime libraries. Retrieved Aug. 8, 2023

from https://compiler-rt.llvm.org/.

[19] Chris Lattner and Vikram S. Adve. 2004. LLVM: A compilation framework for

lifelong program analysis & transformation. In CGO. IEEE Computer Society,

75–88. doi: 10.1109/CGO.2004.1281665.

[20] Jonathan Corbet. 2007. The SLUB allocator. Linux Weekly News (LWN). https:
//lwn.net/Articles/229984/.

[21] The Linux Kernel Authors. 2023. Static Keys. Retrieved Aug. 8, 2023 from

https://docs.kernel.org/staging/static-keys.html.

[22] Gray Watson. 2020. Debug Malloc Library. Retrieved Jan. 8, 2024 from https:

//dmalloc.com/docs/dmalloc.pdf.

[23] Ben Liblit, Alexander Aiken, Alice X. Zheng, and Michael I. Jordan. 2003. Bug

isolation via remote program sampling. In PLDI. ACM. doi: 10.1145/781131.78

1148.

[24] George C. Necula, Scott McPeak, and Westley Weimer. 2002. Ccured: type-safe

retrofitting of legacy code. In POPL. ACM. doi: 10.1145/503272.503286.

[25] Piramanayagam Arumuga Nainar, Ting Chen, Jake Rosin, and Ben Liblit. 2007.

Statistical debugging using compound boolean predicates. In ISSTA. ACM. doi:

10.1145/1273463.1273467.

https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://arxiv.org/abs/1802.09517
https://doi.org/10.1109/MM.2015.35
https://www.usenix.org/publications/login/summer2019/serebryany
https://www.usenix.org/publications/login/summer2019/serebryany
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2013.13
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://web.archive.org/web/20100829220331/http://perens.com/FreeSoftware/ElectricFence/
https://web.archive.org/web/20100829220331/http://perens.com/FreeSoftware/ElectricFence/
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://doi.org/10.1109/MM.2010.68
https://doi.org/10.1007/978-3-540-45236-2_3
https://github.com/google/tcmalloc
https://security.googleblog.com/2022/09/use-after-freedom-miracleptr.html
https://security.googleblog.com/2022/09/use-after-freedom-miracleptr.html
https://compiler-rt.llvm.org/
https://doi.org/10.1109/CGO.2004.1281665
https://lwn.net/Articles/229984/
https://lwn.net/Articles/229984/
https://docs.kernel.org/staging/static-keys.html
https://dmalloc.com/docs/dmalloc.pdf
https://dmalloc.com/docs/dmalloc.pdf
https://doi.org/10.1145/781131.781148
https://doi.org/10.1145/781131.781148
https://doi.org/10.1145/503272.503286
https://doi.org/10.1145/1273463.1273467

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Serebryany, et al.

[26] Matthias Hauswirth and Trishul M. Chilimbi. 2004. Low-overhead memory

leak detection using adaptive statistical profiling. In ASPLOS. ACM. doi: 10.11

45/1024393.1024412.

[27] MattMorehouse and Kostya Serebryany. 2020. GWP-TSan: Zero-Cost Detection

of Data Races in Production. (Oct. 2020). Retrieved Aug. 8, 2023 from https://ll

vm.org/devmtg/2020-09/slides/Morehouse-GWP-Tsan.pdf.

[28] The Linux Kernel Authors. 2023. Memory Protection Keys. Retrieved Aug. 8,

2023 from https://www.kernel.org/doc/html/latest/core-api/protection-keys.h

tml.

[29] Kentaro Hara and Sergei Glazunov. 2022. Lightweight UaF Detector. (Dec.

2022). Retrieved Aug. 8, 2023 from https://docs.google.com/document/d/1xfGa

_IMtFZiQ3beOmkncEafODwn4U90ZyL4NfPaAtDY/edit?resourcekey=0-89

BZl1SVILB6ylOHula0IA.

https://doi.org/10.1145/1024393.1024412
https://doi.org/10.1145/1024393.1024412
https://llvm.org/devmtg/2020-09/slides/Morehouse-GWP-Tsan.pdf
https://llvm.org/devmtg/2020-09/slides/Morehouse-GWP-Tsan.pdf
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://docs.google.com/document/d/1xfGa_IMtFZiQ3beOmkncEafODwn4U90ZyL4NfPaAtDY/edit?resourcekey=0-89BZl1SVILB6ylOHula0IA
https://docs.google.com/document/d/1xfGa_IMtFZiQ3beOmkncEafODwn4U90ZyL4NfPaAtDY/edit?resourcekey=0-89BZl1SVILB6ylOHula0IA
https://docs.google.com/document/d/1xfGa_IMtFZiQ3beOmkncEafODwn4U90ZyL4NfPaAtDY/edit?resourcekey=0-89BZl1SVILB6ylOHula0IA

	Abstract
	1 Introduction
	2 Background
	3 GWP-ASan Algorithm
	3.1 Simple Version
	3.2 Generating Descriptive Error Messages

	4 Implementations
	4.1 TCMalloc
	4.2 Google Chrome
	4.3 Android/LLVM
	4.4 Firefox
	4.5 Apple Platforms
	4.6 Linux Kernel

	5 Results
	5.1 Google Server-Side Software
	5.2 Google Chrome
	5.3 Android
	5.4 Firefox
	5.5 Apple Platforms
	5.6 Meta
	5.7 Linux Kernel
	5.8 Analysis of Occurrences Per Bug

	6 Related Work
	7 Future Work
	8 Conclusion

