
Code-Reuse A�acks for the Web: Breaking Cross-Site Scripting
Mitigations via Script Gadgets

Sebastian Lekies

Google

slekies@google.com

Krzysztof Kotowicz

Google

koto@google.com

Samuel Groß

SAP

mail@samuel-gross.com

Eduardo A. Vela Nava

Google

evn@google.com

Martin Johns

SAP

martin.johns@sap.com

ABSTRACT
Cross-Site Scripting (XSS) is an unremitting problem for the Web.

Since its initial public documentation in 2000 until now, XSS has

been continuously on top of the vulnerability statistics. Even though

there has been a considerable amount of research [15, 18, 21] and

developer education to address XSS on the source code level, the

overall number of discovered XSS problems remains high. Because

of this, various approaches to mitigate XSS [14, 19, 24, 28, 30] have

been proposed as a second line of defense, with HTML sanitiz-

ers, Web Application Firewalls, browser-based XSS �lters, and the

Content Security Policy being some prominent examples. Most of

these mechanisms focus on script tags and event handlers, either

by removing them from user-provided content or by preventing

their script code from executing.

In this paper, we demonstrate that this approach is no longer

su�cient for modern applications: We describe a novel Web attack

that can circumvent all of theses currently existing XSS mitiga-

tion techniques. In this attack, the attacker abuses so called script
gadgets (legitimate JavaScript fragments within an application’s

legitimate code base) to execute JavaScript. In most cases, these

gadgets utilize DOM selectors to interact with elements in the Web

document. Through an initial injection point, the attacker can inject

benign-looking HTML elements which are ignored by these mitiga-

tion techniques but match the selector of the gadget. This way, the

attacker can hijack the input of a gadget and cause processing of his

input, which in turn leads to code execution of attacker-controlled

values. We demonstrate that these gadgets are omnipresent in al-

most all modern JavaScript frameworks and present an empirical

study showing the prevalence of script gadgets in productive code.

As a result, we assume most mitigation techniques in web applica-

tions written today can be bypassed.

CCS CONCEPTS
• Security and privacy → Browser security; Web application
security; Intrusion detection systems; Firewalls; Penetration testing;

Web protocol security;

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’17, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-4946-8/17/10. . . $15.00

DOI: 10.1145/3133956.3134091

1 INTRODUCTION
Web technology is moving forward at a rapid pace. Everyday new

frameworks and APIs are pushed to production. This constant

development also leads to a change in attack surface and vulner-

abilities. In this process Cross-Site Scripting (XSS) vulnerabilities

have evolved signi�cantly in the recent years. The traditional re-

�ected XSS issue is very di�erent from modern DOM-based XSS

vulnerabilities such as mXSS [12], or expression-language-based

XSS [10]. While the topic of XSS becomes increasingly more com-

plex, many mitigation techniques only focus on the traditional and

well-understood re�ected XSS variant.

In this paper, we present a novel Web attack which demonstrates

that many mitigation techniques are ine�cient when confronted

with modern JavaScript libraries. At the core of the presented attack

are so-called script gadgets, small fragments of JavaScript contained

in the vulnerable site’s legitimate code. Generally speaking, a script

gadget is piece of JavaScript code which reacts to the presence

of speci�cally formed DOM content in the Web document. In a

gadget-based attack, the adversary injects apparently harmless

HTML markup into the vulnerable Web page. Since the injected

content does not carry directly executable script code, it is ignored

by the current generation of XSS mitigations. However, during

the web application lifetime, the site’s script gadgets pick up the

injected content and involuntarily transform its payload into exe-

cutable code. Thus, script gadgets introduce the practice of code-reuse
attacks [27], comparable to return-to-libc , to the Web.

To explore the severity and prevalence of the underlying vul-

nerability pattern, we conduct a qualitative and quantitative study

of script gadgets. For this, we �rst identify the various gadget

types, considering their functionality and their potential to un-

dermine existing XSS mitigations. Furthermore, we examine 16

popular JavaScript frameworks and libraries, focusing on contained

script gadgets and mapping the found gadget instances to the af-

fected XSS mitigations. For instance, in 13 out of the 16 examined

code-bases we found gadgets capable to circumvent the emerging

strict-dynamic variant of the Content Security Policy [34]. Fi-

nally, we report on a large-scale empirical study on the prevalence

of script gadgets in popular web sites.

By crawling the Alexa top 5000 Web sites and their �rst-level

links, we measured gadget-related data �ows for approximately

650,000 individual crawled URLs. In total, we measured 4,352,491

sink executions with data retrieved from the DOM. Using our fully-

automated exploit generation framework, we generated exploits

and veri�ed gadgets on 19.88% of all domains in the data set. As

we applied a very conservative, but false-positive-free veri�cation

approach, we believe that this number is just a lower bound and

that the numbers of gadgets are considerably higher in practice.

In particular, this paper makes the following contributions:

• To the best of our knowledge, we are the �rst researchers to

systematically explore this new Web attack that allows to

circumvent popular XSS mitigation techniques by abusing

script gadgets. We describe the attack in detail and give a

categorization of di�erent types of gadgets.

• In order to explore script gadgets in detail, we present the

results of a manual study on 16 modern JavaScript libraries.

Based on proof-of-concept exploits we demonstrate that

almost all of these libraries contain gadgets. Furthermore,

we demonstrate how these di�erent script gadgets can

be used to circumvent all 4 popular classes of mitigation

techniques: The Content Security Policy, HTML sanitizers,

Browser-based XSS �lters and Web Application Firewalls.

• Based on the results of the manual study, we built a tool

chain capable of automatically detecting and verifying gad-

gets at scale. Based on this tool, we conducted an empirical

study of the Alexa top 5000 Web sites including more than

650k Web pages. The results of this study suggests that

script gadgets are omnipresent in modern JavaScript-heavy

applications. While our study is very conservative when

measuring gadgets, we managed to detect and verify gad-

gets in 19.88% of all domains. This number just represents

a lower bound and is likely much higher in practice.

2 TECHNICAL BACKGROUND
2.1 JavaScript, HTML and the DOM
Since its development, JavaScript has been used to interact

with the DOM to make HTML documents more interactive.

To do this, JavaScript working in the browser uses many

di�erent ways to read data from the DOM. Most of the cor-

responding functions such as document.getElementById
or document.getElementsByClassName are based on DOM
selectors[33] by providing convenient wrappers around

document.querySelectorAll.

DOM selectors are a powerful pattern language that can be used

to query the DOM for certain elements, and therefore are the basis

for all modern JavaScript frameworks. For example, one of the most

famous JavaScript functions - jQuery’s $ function - enhances the

browser-based selector language with a lot of syntactic sugar. In

the following table, we describe some selector features in detail:

Selector E.g. Matches...

Tag-based div div elements

Id-based #foo elements with id ’foo’

Class-based .foo elements with class ’foo’

Attr.-based [foo] elements with an attribute named ’foo’

2.2 Cross-site Scripting (XSS)
The term Cross-site Scripting (XSS) [29] describes a class of string-

based code injection vulnerabilities that let adversaries inject HTML

and/or JavaScript into Web content that is not legitimately under

their control. XSS vulnerabilities are generally categorized based on

the location of the vulnerable source code, i.e., server- or client-side
XSS, and the persistence of the injected attack code, i.e., re�ected
or stored XSS.

XSS can be avoided through secure coding practices, which

mainly rely on the careful handling of attacker controlled input

and context-aware sanitization/encoding of untrusted data before

processing it in a security sensitive context. For brevity, we’ll omit

further details on the basic vulnerability class and refer to the vast

body of existing work on the topic [7, 8, 17, 18, 21, 31].

2.3 XSS Mitigation Techniques
The basic XSS problem has been recognized since the beginning

of the decade [5], the root cause is understood, and a signi�cant

amount of work has been done to design approaches to detect and

prevent XSS issues in source code. XSS is statistically still the most

common vulnerability class however, and there seems to be no

overall decline in its prevalence. It therefore seems safe to assume

that XSS problems will not be solved completely with secure coding

practices alone.

For this reason various XSS mitigations have been introduced as

an important second line of defense. Instead of removing the under-

lying vulnerability, XSS mitigations aim to prevent the exploitation
of the vulnerability by stopping the execution of the injected script

code. XSS mitigations are widely implemented in four di�erent

forms:

(1) HTML Sanitizers. These are libraries used by developers

to clean untrusted HTML into HTML that is safe to use

within the application. This category contains examples

such as DOMPurify
1

and Google Closure
2

HTML sanitizer.

(2) Browser XSS Filters. These �lters are implemented as

part of the browser navigation and rendering, and they

attempt to detect an XSS attack and neuter it. Internet

Explorer, Edge, and Chrome implement XSS �lters as part

of their default con�guration. Firefox does not have one,

but the popular NoScript
3

AddOn implements one.

(3) WebApplication Firewalls.This is software that runs on

the server, and attempts to allow benign requests from web

tra�c, while detecting and blocking malicious requests. An

example of an open-source Web Application Firewall is

ModSecurity
4

with OWASP Common Rule Set
5
.

(4) Content Security Policy [34]. This is a browser feature

that a web developer can con�gure to de�ne a policy that

allows the browser to whitelist the JavaScript code that

belongs to the application.

These mitigations all fundamentally rely one of three basic strate-

gies:

(1) Request �ltering blocks HTTP requests before they

reach the application, working either at the browser level

1
https://github.com/cure53/DOMPurify

2
https://github.com/google/closure-library

3
https://noscript.net/

4
https://modsecurity.org/

5
https://github.com/SpiderLabs/owasp-modsecurity-crs

2

https://github.com/cure53/DOMPurify
https://github.com/google/closure-library
https://noscript.net/
https://modsecurity.org/
https://github.com/SpiderLabs/owasp-modsecurity-crs

(like NoScript), or at the network or application level (like

WAFs).

(2) Response sanitization focuses on detecting malicious

code and sanitizing it out of the response. Examples of

these are HTML sanitizers, as well as Internet Explorer’s

and Edge’s XSS �lter.

(3) Code �ltering detects malicious JavaScript just before it

is executed and tries to detect whether it is benign or not.

Examples of this strategy include CSP and Chrome’s XSS

�lter.

We will go into more details about the implementation of such

strategies and the ways to bypass them in Section 4.

3 SCRIPT GADGETS
In this section, we introduce the concept of script gadgets, explain-

ing how injecting a benign HTML markup may result in arbitrary

JavaScript execution by reusing parts of legitimate application code

and how this can be used to negate the e�ects of XSS mitigations.

3.1 Benign HTML markup
XSS mitigation techniques described in Section 2.3 aim to stop XSS

attacks by blocking execution of illegitimate, injected JavaScript

code. Mitigations detect the injected code, present in inline event

handlers or in separate script elements and prevent its execu-

tion, while legitimate JavaScript code, carrying appropriate trust

information, is left as-is and is allowed to execute.

Those XSS mitigations ignore injected HTML markup that would

not result in JavaScript execution - we’ll call such markup benign

HTML. Benign HTML does not contain <script> tags, inline event

handlers, src or href attributes with javascript: or data: URLs,

or other tags capable of JavaScript execution (<link rel=import>,

<meta>, <style>). The following snippet is an example of benign

HTML:

<div class="greeting">
Hello world!

</div>

Listing 1: Benign HTML markup ignored by the mitigation

3.2 DOM selectors
The presence of benign HTML in a document does not directly

trigger code execution. However, in virtually all web applications

JavaScript code already present in the page interacts with the DOM,

reading data from the document by using various DOM selectors

(2.1). For example, a web application might take all elements with a

tootltip attribute to decorate them by showing a given text when

the user selects these elements. JavaScript code reading data from

the DOM based on a selector is a common pattern in both user-land

and library code - example code snippets might look like this:

// Userland code
var button = document.getElementById("button");
button.getAttribute("data-text");

var links = $("a[href]").children();

// Reading 'ref' attributes in Aurelia framework
if (attrName === 'ref') {

info.attrName = attrName;
info.attrValue = attrValue;
info.expression = new NameExpression(

this.parser.parse(attrValue), 'element',
resources.lookupFunctions);=

}
// Vue.js reading from v-html attribute
if ((binding = el.attrsMap['v-html'])) {

return [{ type: EXPRESSION, value: binding }]
}

Listing 2: Reading data from the DOM

By injecting benign HTML markup matching DOM selectors

used in the application we are able to trigger the execution of

speci�c pieces of legitimate application code
6

- script gadgets.

3.3 Script Gadgets - Introduction
Script gadgets are fragments of legitimate JavaScript code belonging

to the web application that execute as a result of benign HTML

markup present in the web page. Script gadgets are not injected

by the attacker - they are already present either in the user-land

web application code, or one of the libraries/frameworks used by

the web application.

Our research explores using script gadgets to bypass XSS miti-

gations. In order to do that, gadgets must both result in arbitrary

script execution, and be triggered from benign HTML injection.

For example, a web application might assign a value read from the

DOM to the innerHTML property of an element:

var button = getElementById("my-button");
button.innerHTML = button.getAttribute("data-text");

Listing 3: Simple innerHTML gadget

Simple gadgets like these are often explored in the context of

DOM XSS vulnerabilities [16], but for the purpose of this research

we propose a new classi�cation of gadgets of varying complexity.

But �rst we’ll explain how to use script gadgets in attacks against

XSS mitigations.

6
An alternative way of triggering speci�c code paths in a web application from benign

markup is DOM clobbering. DOM clobbering allows markup to override variables

in JavaScript execution environment, making it possible to trigger speci�c script

behavior. While we have identi�ed working bypasses of some XSS mitigations via

DOM clobbering, for clarity we focus only on DOM selector-based code triggers.

3

3.4 Attack Outline
In this paper, we introduce a novel XSS attack that relies on script

gadgets to cause the execution of the adversary’s JavaScript code.

Attacker model: The applicable attacker is the classic XSS at-

tacker [29], who is able to inject arbitrary HTML code into the

content of the attacked web document. In the context of this paper

whether the injection technique used is re�ected or stored XSS is

irrelevant.

As discussed above, existing XSS mitigations rely on the basic

assumption that malicious code is being directly injected into the

a�ected page in the course of an XSS attack. All non-script carrying,

injected HTML content is therefore assumed to be benign and

remains untouched by the mitigation. This assumption is exploited

by the proposed attack method. The HTML code injected by the

attacker exposes two characteristics:

(1) The actual attack payload, for example the attack’s

JavaScript, is contained in the benign HTML in a non-

executable form.

(2) The HTML is speci�cally crafted so that its presence in

the web document triggers a script gadget already con-

tained in the web page’s legitimate JavaScript code. In other

words, the injected HTML payload triggers a code-reuse

attack, similar to ret2libc techniques used in exploitation

of memory-corruption vulnerabilities.

In the course of an attack, a script gadget accesses the injected

DOM content and uses the contained information in an insecure

manner, ultimately leading to the execution of the adversary’s code,

which was hidden in the benign HTML code. In summary, the class

of attacks described in this paper follows this basic pattern:

(1) Injection into the rawHTML. The attacker controls the

DOM of the webpage and injects a payload that triggers

script gadgets in the application code. This payload con-

tains only benign HTML markup and matches the DOM

selectors used by the web application.

(2) Mitigation attempt. An XSS mitigation inspects the in-

jected content, trying to detect script insertion. The benign

HTML markup is left as-is.

(3) Gadgets transforms the markup. Gadgets present in

the legitimate JavaScript code take the injected payload

from the DOM using the DOM selectors and transform it

into JavaScript statements.

(4) Script executes. The transformed JavaScript statements

are executed, resulting in XSS.

The precise ways to abuse gadgets to bypass XSS mitigations de-

pend on the type of mitigation and implemented mitigation strategy,

as we described in Section 2.3

3.5 Gadget Types
We identi�ed several types of script gadgets useful in bypassing XSS

mitigations. Some of them may result in indirect script execution

on their own; others need to be combined in chains to be useful in

an attack.

3.5.1 String manipulation gadgets. These gadgets transform

their string input by using regular expressions, character replace-

ment and other types of string manipulation. When present, they

can be used to bypass mitigations based on pattern matching. For

example, the following gadget can be used to bypass some mitiga-

tions by using the inner-h-t-m-l attribute name that will later on

be used by Polymer framework to assign to element’s innerHTML
property.

dash.replace(/-[a-z]/g, (m) => m[1].toUpperCase())}

Listing 4: Camel-casing the input in Polymer

Similar features are present in AngularJS frameworks, which

allows the attackers to use benign data attributes in place of ng-
attributes that would be blocked by HTML sanitizers:

var PREFIX_REGEXP = /^((?:x|data)[:\-_])/i;
var SPECIAL_CHARS_REGEXP = /[:\-_]+(.)/g;
function directiveNormalize(name) {

return name.replace(PREFIX_REGEXP, '')
.replace(SPECIAL_CHARS_REGEXP, fnCamelCaseReplace);

}

Listing 5: Directive name normalization in AngularJS

3.5.2 Element construction gadgets. These gadgets create new

DOM elements. For XSS mitigation bypass purposes, we’re mostly

focused on identifying gadgets that may programmatically create

new script elements.

document.createElement(input)
document.createElement("script")
jQuery("<" + tag + ">")
jQuery.html(input) // if input contains <script>

Listing 6: Example element creation gadgets

One notable element construction gadget is present in jQuery’s

$.globalEval function. This function creates a new script ele-

ment, sets its text property and appends the element to the DOM,

executing the code. $.globalEval combines an element creation

gadget with a JavaScript execution gadget (3.5.4). As $.globalEval
is called in various common jQuery methods (e.g. $.html), a con-

trolled input to those may create new script elements, which is a

useful property for bypassing strict-dynamic CSP (see 4.4)

3.5.3 Function creation gadgets. These gadgets create new

Function objects. The function body is usually composed of a mix

of the input and constant strings. Note that the created function

object needs to be executed by a di�erent gadget.

4

// Knockout Function creation gadget.
var body = "with($context){with($data||{}){return{" +

rewrittenBindings + "}}}";
return new Function("$context", "$element", body);

// Underscore.js Function creation gadget.
source = "var __t,__p='',__j=Array.prototype.join," +

"print=function(){__p+=__j.call(arguments,'');};\n" +
source + 'return __p;\n';

var render = new Function(
settings.variable || 'obj', '_', source);

Listing 7: Example function creation gadgets

3.5.4 JavaScript execution sink gadgets. These gadgets are usu-

ally standalone, or are the last in the constructed gadget chain,

taking the input from the previous gadgets and putting it into a

DOM XSS[16] JavaScript execution sink.

eval(input);
inputFunction.apply();
node.innerHTML = "prefix" + input + "suffix";
jQuery.html(input);
scriptElement.src = input;
node.appendChild(input);

Listing 8: Example execution sink gadgets

3.5.5 Gadgets in expression parsers. Some modern JavaScript

frameworks (for example, Aurelia
7
, AngularJS

8
, Polymer

9
, Rac-

tive.js
10

, Vue.js
11

) interpret parts of the DOM tree as templates for

the application UI components. Those templates contain expres-

sions written in framework-speci�c expression languages to bind a

result of expression evaluation to a given position in the rendered

UI. For example, the following expression displays a capitalized

customer name:

<td>${customer.name.capitalize()}</td>

Listing 9: Sample expression in Aurelia

The framework extracts the template de�nition from the DOM,

identi�es embedded expressions by searching for appropriate code

delimiters (here: ${ and }), parses the expressions into an AST, and

evaluates them when the UI is rendered.

If the expression language syntax is expressive enough, attackers

can create expressions resulting in arbitrary JavaScript code exe-

cution - for example by traversing a prototype chain or accessing

object constructors [9] [10]. We found that various script gadgets

7
http://aurelia.io/

8
https://angularjs.org/

9
https://www.polymer-project.org/

10
http://www.ractivejs.org/

11
https://vuejs.org/

can be typically identi�ed in the framework expression parsing and

evaluation engine which can lead to arbitrary code execution. For

example, the following gadgets can be found in Aurelia’s expression

parser:

if (this.optional('.')) { // Property access
result = new AccessMember(result, name);}
}
AccessMember.prototype.evaluate = function(...) {
return instance[this.name];
};
if (this.optional('(')) { // Function call
result = new CallMember(result, name, args);
}
CallMember.prototype.evaluate = function(...) {
return func.apply(instance, args);
};

Listing 10: Script gadgets in Aurelia expression parser (sim-
pli�ed code)

It’s possible to link the above script gadgets into chains that

execute arbitrary functions such as window.alert - all by using

only benign HTML markup injection. (Aurelia looks for ref and

*.bind attributes in the document - that triggers our gadgets).

<div ref=me
s.bind="$this.me.ownerDocument.defaultView.alert(1)"
></div>

Listing 11: HTMLMarkup triggering gadget chain inAurelia

In a similar fashion, the following benign HTML markup may

trigger a gadget chain calling alert in Polymer 1.x:

<template is=dom-bind><div
c={{alert('1',ownerDocument.defaultView)}}
b={{set('_rootDataHost',ownerDocument.defaultView)}}>
</div></template>

Listing 12: HTML Markup triggering gadget chain in Poly-
mer 1.x

3.6 Expressiveness of Gadget-based Exploits
In this section we discuss the expressiveness of gadget-based miti-

gation bypasses. Via gadgets, an attacker is able to execute arbitrary,

Turing-complete code. In general, we identi�ed three ways of doing

so:

• Eval-like functions: If a gadget is able to trigger a call

to eval or another eval-like function, executing arbi-

trary code is straightforward. In our examples, we usually

demonstrate how the gadget is able to call a single function

5

http://aurelia.io/
https://angularjs.org/
https://www.polymer-project.org/
http://www.ractivejs.org/
https://vuejs.org/

inside the window object with a single attacker-controlled

parameter (e.g. alert(1)). As the eval function is also

located inside the window object and accepts one or more

parameters, all of these examples are capable of executing

arbitrary, Turing-complete JavaScript code.

• Appending a script element: Another class of gadgets

aims at appending a script element with either an attacker-

controlled src attribute or an attacker-controlled script

body. Similar to eval-based gadgets, this allows an attacker

to execute arbitrary code.

• Abusing the expressiveness of an expression lan-
guage: Most gadget-based mitigation bypasses leverage

eval-like functions or new script elements. However, in

Web applications employing some variants of CSP (see Sec-

tion 4.1.1), it is not possible to use these bypass methods. In

these cases, we can leverage expression languages to gain

arbitrary code execution. All expression languages that we

investigated are Turing-complete. If an exploit is able to

execute the expression interpreter, the exploit is as expres-

sive as the expression language itself. However, even if the

expression language itself is not Turing-complete, we can

still gain Turing-complete code execution in some cases.

Listing 17, for example, shows a very simple expression-

based attack to steal and reuse a CSP nonce in order to

add a seemingly trusted script, that allows us to achieve

arbitrary JavaScript code execution.

3.7 Finding Script Gadgets
Script gadgets (3.3) on their own are legitimate, trusted JavaScript

statements or code blocks. While some of them (3.5.4) are also

DOM XSS [16] sinks, others are as benign as property assignment,

or property traversal statements. This fact makes it particularly

di�cult to identify such gadgets in the web application codebase.

We found the following two techniques are useful to identify

script gadgets:

3.7.1 Manual code inspection. First of all, gadgets can be found

manually or with the assistance of static-analysis tools. Finding

some of the simpler gadget types (for example, JS execution sinks or

Function creation gadgets) is straightforward. We found that more

complex gadgets, especially the ones present in expression parsers,

require signi�cant e�ort to locate and evaluate for usefulness. A

gadget may only be used if it’s reachable from a benign HTML

markup injection. For example, any property access, property setter,

or function call may potentially be useful in a chain, but only if the

property name or function object may be directly controlled from

the markup.

We found that manual code inspection makes it possible to �nd

gadgets that would not otherwise be triggered in the usual applica-

tion code �ow. For example, in Polymer 1.x (see Listing 12) we were

able to determine that overriding a _rootDataHost property lets us

execute JavaScript statements in a di�erent scope, which lets us trig-

ger subsequent gadgets in the chain. This "private" _rootDataHost
property was never meant to be accessible from Polymer expres-

sions.

In this research, we used manual code inspection to identify

gadgets in modern JavaScript frameworks (4.1).

3.7.2 Taint tracking. A subset of gadgets may be identi�ed by

rendering the web application in a browser enriched with a taint-

tracking engine [17]. By marking the entirety of DOM tree as tainted

(i.e. simulating that the attacker has a re�ected HTML injection

capability), and checking whether tainted values reach speci�c

JavaScript execution sinks, we were able to identify �ows linking

certain DOM selectors with JavaScript execution. While this ap-

proach is e�ective at scale, it has the limitation of only discovering

gadgets that are already used in a given web application (albeit not

neccesarily for script execution).

In this research, we used the taint tracking approach to evaluate

script gadget prevalence in user-land code (5.4).

4 CONCRETE XSS MITIGATION BYPASSES
USING SCRIPT GADGETS

In this section, we provide detailed information on how script gad-

gets can be leveraged to circumvent concrete state-of-the-art XSS

mitigations. We’ll follow the countermeasure classi�cations, based

on their underlying mechanisms, that we introduced in Section 2.3.

4.1 Gadgets in Popular JavaScript Libraries
In order to measure the e�ectiveness of gadgets in bypassing XSS

mitigations, we needed to collect:

(1) A list of XSS mitigation implementations with di�erent

strategies

(2) A list of as many gadgets as possible in popular frameworks

and libraries

4.1.1 Collecting a list of popular XSS mitigations. We selected

XSS mitigations that were either open-source, or widely distributed.

We also wanted a cross-section di�erent mitigation implementation

strategies. The mitigations we decided to test were:

• Content Security Policy using di�erent types of code

�ltering:

– Whitelist-based where code is trusted based on

where it originates.

– Nonce-based where code is trusted only if it’s accom-

panied by a secret cryptographic nonce.

– Unsafe-eval source expression is usually used to-

gether with other policies, but looking at it separately

allows us to investigate eval-based gadgets.

– Strict-dynamic source expression is usually used to-

gether with a nonce-based CSP to automatically prop-

agate the trust of a nonced script to all script elements

generated by it.

• Client-sideHTML sanitizers using di�erent approaches

of sanitization:

– DOMPurify is a JavaScript-based HTML sanitizer

that supports HTML, SVG, MathML, among others.

– Google’s Closure library contains another

JavaScript-based HTML sanitizer that only supports

HTML.

• Web Application Firewalls are request �ltering mitiga-

tions deployed as hardware in front of web servers, as well

as as software next to the web server itself.

6

CSP XSS Filters HTML Sanitizers WAFs

Whitelists Nonces Unsafe-eval Strict-dynamic Chrome Edge NoScript DomPurify Closure ModSecurity

3 4 10 13 13 9 9 9 6 9

Table 1: Mitigation-bypasses via gadgets in 16 Popular Libraries

– ModSecurity is an open-source Web Application

Firewall, commonly used with the OWASP Core Rule

Set.

• XSS �lters employ either request �lter, response sanitiza-

tion or code �ltering approaches.

– Chrome / Safari employs a code �ltering approach,

blacklisting scripts that appear in the request.

– Internet Explorer / Edge employs a response san-

itization approach, rewriting potentially dangerous

responses with something safe.

– NoScript employs a request �ltering approach, block-

ing requests that look suspicious or potentially mali-

cious.

4.1.2 Collecting a list of popular JavaScript libraries. In order to

�nd as many di�erent gadgets as possible to test against mitigations,

we decided to search for gadgets in di�erent popular JavaScript

frameworks and libraries. We obtained the lists of popular frame-

works and libraries from various online resources
12 13 14 15 16

. From

those lists, we focused on searching for gadgets in the following

frameworks (selected based on popularity and code familiarity by

the authors):

• Trending JavaScript frameworks (Vue.js, Aurelia, Poly-

mer)

• Widely popular frameworks (AngularJS, React, Em-

berJS)

• Older still popular frameworks (Backbone, Knockout,

Ractive, Dojo)

• Libraries and compilers (Bootstrap, Closure, RequireJS)

• jQuery-based libraries (jQuery, jQuery UI, jQuery Mo-

bile)

The process we used for manually identifying gadgets is de-

scribed in Section 3.7.1, but generally it was done by identifying

HTML and eval-based sinks, as well as any documented feature that

seemed like an expression language. In cases when no sinks of that

form were reachable, we then looked for any mechanism exposed

by the framework or library that touched the DOM in any way, and

manually audited the code.

In Table 1 we summarize how many frameworks had gadgets that

could bypass each of the mitigations. Complete bypass collection

found during this analysis is available in the GitHub repository
17

.

12Mustache Security is a list of frameworks with gadgets.

https://github.com/cure53/mustache-security/tree/master/wiki

13GitHub contains a list of trending front-end JavaScript frameworks.

https://github.com/showcases/front-end-javascript-frameworks

14TodoMVC is a list of a sample application written in many di�erent JavaScript

frameworks. http://todomvc.com/

15JS.org Rising Stars 2016 is based on the activity on di�erent GitHub projects

related to JavaScript frameworks in 2016. https://risingstars2016.js.org/

16State of JS 2016 is based on a survey to web developers.

http://stateofjs.com/2016/frontend/

17
https://github.com/google/security-research-pocs

Table 2 within the Appendix also summarizes our research �ndings.

For clarity, in the following sections we present and discuss only a

chosen selection of those bypasses.

4.2 Bypassing Request Filtering Mitigations
Request �ltering mitigations attempt to identify malicious or un-

trusted HTML patterns, and stop them before they reach the appli-

cation. To accomplish this, these mitigations generally employ the

following approaches:

• Enumerate known strings used in attacks. For ex-

ample, HTML tags like <script> or attributes such as

onerror allow the user to execute JavaScript with a single

HTML injection. The ModSecurity Core Rule Set version

3.0 is, at the time of writing, one of the most comprehensive

lists of attack vectors.

• Detect characters used to escape from the contexts
where XSS vulnerabilities usually occur. For example,

if an XSS vulnerability existed by directly injecting HTML

where the application expected to just output text, a request

�ltering mitigation will attempt to detect the injection of

< or >. If the vulnerability is present when injecting inside

an HTML attribute, escaping from the attribute would be

detected as the vulnerability.

• Detect patterns and sequences frequently used in ex-
ploits. For example, when an XSS attack is succesful, the

user will often attempt to steal credentials, or issue HTTP

requests. Therefore, some mitigations attempt to detect ac-

cess to document.cookie, or access to XMLHTTPRequest.

They also attempt to detect usual mechanisms to obfuscate

code execution, like references to eval or innerHTML, even

after doing several layers of agressive decoding.

Examples of XSS mitigations that adopt these approaches are:

• NoScript XSS Filter

• Web Application Firewalls

Request �ltering mitigations detect only speci�c, XSS-related

HTML tags and attributes. Gadgets use HTML tags and attributes

that are considered benign, and that makes them capable of bypass-

ing such mitigations. For example, if a library takes the value of the

data-html attribute and executes it as HTML, mitigations in this

group would not be able to detect that as malicious. An example of

HTML markup triggering such gadget chain was shown in Listing

11.

In addition, detection of context-breaking characters suddenly

becomes ine�ective because some gadgets change the meaning

of otherwise-safe text sequences, and make them dangerous. For

example, in AngularJS the use of two curly braces {{ is a way to

de�ne the beginning of an AngularJS expression. Aurelia, in turn,

uses a di�erent delimiter: ${. An example of such seemingly-benign

markup was shown in Listing 9.

7

https://github.com/google/security-research-pocs

<iframe src="//knockout.example.com/?xss=
<div data-bind=value:a=location></div>
<div data-bind=value:a.href=name></div>"

name="javascript:alert(1)"></iframe>

Listing 13: Example of bypassing NoScript with Knockout
gadget

A good example of how to bypass request �ltering mitigations

like NoScript with gadgets is presented in Listing 13. In this exam-

ple the expressiveness of the framework is used to split an exploit

such as location.href=name (which is detected as an attack by

NoScript as the global name property can generally be set by an

attacker to arbitrary content), into two components. a=location
followed by a.href=name. Individually, these expressions are harm-

less, but together they allow the user to redirect the user to a

JavaScript URL speci�ed in the name attribute. NoScript is not able

to parse the markup to �gure out that they are both meant to be

executed together.

4.3 Bypassing Response Sanitization
Mitigations

Response sanitization mitigations are designed to reduce the num-

ber of false positive results that are potentially generated by re-

quest �ltering. Instead of blocking potentially malicious requests,

response sanitization mitigations aim to detect whether a suspicious

payload actually gets injected into the response.

Response sanitization mitigations usually follow one of two

di�erent techniques:

• Remove or neuter the malicious attack. One possible

way to tackle the potential injection of code is to neuter

it, or remove it from the HTTP response. In this approach,

the rest of the response is left as-is, but the suspicious code

is removed or made inert.

• Block the response completely. Another possible way

to react to an injection attempt is to completely block the

response, and display an error to the user. This approach

avoids cases in which an attacker tricks a mitigation tech-

nique into blocking a legitimate script (e.g. a frame buster).

Examples of implementations of XSS mitigations that adopt these

types of approaches are:

• HTML sanitizers. Most HTML sanitizers work by taking

a piece of HTML code and cleaning it of any malicious

input, and returning otherwise safe HTML. Most HTML

sanitizers, however, are based on whitelists that try to enu-

merate safe HTML tags and attributes across all browsers.

• Internet Explorer / Edge XSS �lter. The XSS �lter in

Microsoft Internet Explorer and Edge also sanitizes HTML

by replacing parts of HTML attributes and tag names with

a pound # symbol. Note that while HTML sanitizers use

whitelists, XSS �lters on the other hand work on a black-

listing approach, enumerating dangerous HTML tags and

attributes known by the browser.

Bypassing HTML sanitizers usually requires a slightly di�erent

approach than bypassing XSS �lters. For HTML sanitizers, the

gadgets must reuse an otherwise safe and whitelisted attribute,

such as class or id. Gadgets that bypass XSS �lters can also use

custom HTML tags and attributes such as ng-click in Angular or

v-html in Vue.

Given that mitigations based on response sanitization only block

vulnerabilities, but make no attempts at detecting artifacts of ex-

ploits, this makes them easier to bypass, since gadgets are by de�-

nition "safe" code that becomes unsafe when it interacts with other

JavaScript code that is otherwise safe. Aiming to lower the false

positive rate by using response sanitization has the downside of not

being able to detect attacks that exploit features that are normally

safe when the JavaScript library is not used.

<div data-role=popup id='-->
<script>alert(1)</script>'>

</div>

Listing 14: Example of bypassing DOMPurify with jQuery
Mobile gadget

An example on how to use gadgets to bypass response sani-

tization mitigations is presented in listing 14. As far as DOMPu-

rify is aware, the HTML it sanitized is completely safe. However,

jQuery Mobile, upon encountering an element with the attribute

data-role=popup, will automatically try to inject an HTML com-

ment with its id. In the code above, we can escape from that com-

ment and execute our code. Note that the same attack works against

Internet Explorer’s XSS �lter.

4.4 Bypassing Code Filtering Mitigations
Code �ltering mitigations are an evolution on top of response sani-

tization. They attempt to leave the potentially malicious markup

untouched, and instead focus on preventing the execution of mali-

cious code. This approach has even lower false positive rate than

sanitization, since the code is �ltered out only if it’s actually about

to be executed.

However, one side-e�ect of such an approach is that since gad-

gets do not directly execute any malicious code, but do so indirectly

through trusted code, it is a lot harder for XSS mitigations based

on code �ltering to detect injections using gadgets.

The approaches taken by XSS mitigations based on code �ltering

are:

• Detectmalicious code. To detect whether a speci�c piece

of code is malicious, it is checked against the HTTP request.

If the code to be executed is also present in the request,

it is blocked as not trustworthy and potentially attacker-

controlled.

• Detect benign code. Benign code passes various policy

checks based on code provenance, content, or generation

method. Code violating the policy requirements is consid-

ered malicious and its execution is blocked.

Examples of implementations of XSS mitigations that adopt this

approach are:

8

• Chrome and Safari’s XSS Auditor. The latest XSS �lter

to be implemented in a major browser was Chrome and Sa-

fari’s XSS Auditor. The XSS Auditor hooks into JavaScript

runtime in the browser. XSS Auditor uses the ’detect mali-

cious code’ approach - before Auditor permits code exe-

cution, it validates that the code was not included in the

HTTP request, and blocks it if it was.

• Content Security Policy. Content Security Policy [34]

is the most popular example of code-�ltering mitigation.

Web applications using this mitigation de�ne a policy that

speci�es which scripts are benign and should be allowed

to execute. Scripts violating the policy are blocked by the

supporting browser. Existing policies usually adopt one

the �ltering variants described in Section 4.1.1. A typical

policy is either URL whitelist-based or nonce/hash-based. A

policy may also use strict-dynamic and/or unsafe-eval
source expressions. These keywords propagate trust to

additional code created by already trusted scripts, making

CSP easier to adopt on existing websites.

Code �ltering mitigations hook on code execution and aim to

assure only legitimate code gets executed. Since script gadgets are

already part of a legitimate code base they are extremely useful in

bypassing this mitigation group. In the analysis performed against

popular frameworks and libraries in section 4.1, we found that code

�ltering mitigations are the ones most vulnerable to gadgets. We

used element construction gadgets (3.5.2), JavaScript execution sink

gadgets (3.5.4) and gadgets in expression parsers (3.5.5) to bypass

code �ltering mitigations. While we found that expression-parser-

based gadgets were the most universally applicable, some bypass

methods employed were mitigation-variant speci�c:

Bypassing XSS Auditor. We bypassed XSS Auditor in 13 out

of 16 frameworks, as many gadgets use traditional DOM XSS [16]

sinks, DOM XSS protection being a known shortcoming of XSS

Auditor [32]. For example, a gadget in the Dojo framework calls an

eval function, with the value extracted from the data-dojo-props
attribute. This allowed us to create the following bypass:

<div
data-dojo-type="dijit/Declaration"
data-dojo-props="}-alert(1)-{">

</div>

Listing 15: Example of bypassing XSSAuditor with Dojo gad-
get

Bypassing unsafe-eval CSP. In order to bypass CSP with an

unsafe-eval keyword we either used gadgets in expression parsers

or gadgets calling an eval-like function. Listing 15 demonstrates

a bypass using such gadget. We were able to circumvent policies

using unsafe-eval in 10 out of 16 frameworks.

Bypassing strict-dynamic CSP. Adding a strict-dynamic
keyword to the CSP enables already trusted code to programmati-

cally create new script elements. When such scripts are introduced

into the DOM, they are implicitly trusted and allowed to execute.

We found that most analyzed JavaScript frameworks contain gad-

gets capable of creating and inserting script elements with con-

trolled body or src attribute. Such gadgets can be used to bypass

strict-dynamic CSP. As an example, we present the bypass found

in RequireJS:

<script data-main='data:1,alert(1)'></script>

Listing 16: Example of bypassing strict-dynamic with Re-
quireJS gadget

Since the <script> tag has a data-main attribute, a gadget in

RequireJS will generate a new script element, with its source

pointing to data:,alert(1). As RequireJS is already trusted,

strict-dynamic propagates this trust to the new element, and

the code will execute, bypassing the page’s Content Security Policy.

We found strict-dynamic bypasses in 13 out of 16 tested frame-

works (two of the bypasses relied on co-presence of unsafe-eval).

The prevalence of script gadgets in the tested JavaScript frame-

works suggests that using the strict-dynamic variant of CSP to

mitigate XSS vulnerabilities in modern web applications is less

e�ective than previously thought [35].

Bypassing other CSP variants. Both aforementioned CSP key-

words relax the restrictions of the policy in order to facilitate its

adoption. Some websites opt to use a stronger version of CSP, e.g.

relying solely on nonces, or using a whitelist of script source URLs,

with no known bypasses in the list of allowed origins [35]. We found

that even such variants of Content Security Policy can be bypassed

using script gadgets in expression parsers (3.5.5). In some frame-

works, expression parsers themselves create a runtime environment

that allows the attacker to obtain a window object reference and call

arbitrary JavaScript functions. Such vectors do not use eval and do

not create new script elements, so Content Security Policy cannot

detect and block them. Listings 11 and 12 present examples for this

type of bypasses. Such gadgets were found in Aurelia, Vue.js and

Polymer 1.x. Additionally, in Ractive we found a gadget capable of

ex�ltrating the CSP nonce into a newly created script, allowing for

its execution, despite a strong, only nonce-based policy:

<script id='template' type='text/ractive'>
<iframe srcdoc='<script

nonce={{@global.document.currentScript.nonce}}>
alert(document.domain)
</{{}}script>'>
</iframe>

</script>

Listing 17: Bypass ex�ltrating CSP nonce in Ractive

It’s worth noting that the success of CSP mitigation depends on

the used variant. If the policy is con�gured to use whitelists, hashes,

or nonces alone, then only gadgets in expression parsers (3.5.5) are

useful, as the code passed to JavaScript execution sinks (3.5.4) would

not be trusted. A notable exception is strict-dynamic, which

9

propagates trust to <script> tags generated programmatically.

Attackers may bypass such CSP with gadgets generating arbitrary

HTML elements, or importing nodes from foreign DOM documents.

Such gadgets are common in templating libraries.

As we have presented above, the gadgets used to bypass di�erent

mitigations vary signi�cantly from mitigation to mitigation. Some

abuse the expression language in libraries, others inject markup

in a text attribute, while others abuse trust propagation in DOM

element creation. This indicates which type of gadgets to search

for to bypass di�erent types of mitigations.

5 PREVALENCE OF SCRIPT GADGETS
In this section we present the results of an empirical study on the

prevalence of script gadgets in real-world applications. We �rst

present our research questions and methodology, then discuss the

results.

5.1 Research Statement
As shown above, script gadgets have the potential to undermine

the protections provided by XSS mitigations. While we manually

discovered many of these gadgets in popular libraries, it is important

to understand the prevalence of these code patterns at scale. If

gadgets are rare in real-world code, we can address the problem by

taking special care when building generic libraries. If script gadgets

are wide-spread in real-world applications however, addressing this

problem might be as hard as �xing XSS itself. Therefore, the goal

of this study is to measure the prevalence of gadgets in real-world

applications.

After measuring gadget pervasiveness, we aim to �nd out more

about the impact of script gadgets on speci�c XSS mitigations.

Speci�cally, we would like to focus on the Content Security Policy

and HTML sanitizers as these mitigation techniques seem to be the

most robust and relevant ones.

A previous study [35] has already demonstrated that the do-

main whitelisting and the ’unsafe-inline’ CSP source expres-

sion harm the protection capabilities of CSP. In this study, we’d like

to investigate the ’unsafe-eval’ and ’strict-dynamic’ source

expressions. Speci�cally, we want to investigate how prevalent

script gadgets are that can potentially bypass these expressions.

Many sanitizers, by default, allow seemingly benign attributes

such as data-*, id or class. Furthermore, sanitizers usually allow

non-malicious tags such as div or span tags. Hence, we’d like to

understand how many real-world gadget chains can be triggered

from such tags and attributes.

5.2 Methodology
In order to detect gadgets in real-world applications, we built a

toolchain to automatically detect and verify them at scale. Based

on this toolchain, we crawled the Alexa Top 5000 Web sites.

Detecting Gadgets at Scale. As we did not expect to see many ex-

pression parsers (see 3.5.5) present in user-land code (assuming that

expression parsers are mostly present in JavaScript frameworks),

we decided to focus on gadgets that end in HTML, JavaScript or URL

execution sinks (see 3.5.4). In order to detect such potential gadgets,

we built a browser-based, dynamic taint tracking engine. The engine

is capable of reporting data �ows from DOM nodes into security

sensitive functions such as eval, innerHTML, document.write, or

XMLHttpRequest.open()18
. We used this engine to crawl our data

set and identify all data �ows. Each of these �ows represents a

potentially exploitable gadget chain.

Verifying Gadgets. In order to verify whether a found �ow is

exploitable from benign HTML markup, we built a generator that

is capable of creating a real-world exploit based on each �ow. The

generator is similar to the one presented in [17]. Subsequently, we

simulate a re�ected XSS vulnerability in the page, into which we

inject the generated exploit. The goal of the exploit is to indirectly

execute a JavaScript function from a source that would not usually

execute such code (e.g. from a data- attribute). Listing 18 shows

an exemplary gadget that might exist in a legitimate JavaScript �le.

<!-- source element -->
<div id="button" data-text="I am a button"></div>

<script>
// Script gadget reading from #button element.
var button = document.getElementById("button");
button.innerHTML = button.getAttribute("data-text");

</script>

Listing 18: An exemplary gadget

For this sample, the engine detects a data �ow originating from

button.getAttribute(’data-text’) that ends up in the HTML

execution sink innerHTML. Based on the context of the sink (HTML,

JavaScript, URL), the exploit generator generates an exploit that

triggers JavaScript execution within this context:

<svg onload=verify()>

Listing 19: XSS payload

Subsequently, we use the source element to generate the �nal

exploit as shown in Listing 20. The actual XSS payload can thereby

be disguised via the use of di�erent encoding schemes (depending

on the injection context).

<div id="button"
data-text="<svg onload=verify()>">

</div>

Listing 20: Final Exploit

This lets us build the exploits in a way that our veri�er function

does not trigger by default. This function is called only if a script

gadget reads the payload from benign markup and executes it.

Therefore, if the function gets called, we have veri�ed the gadget

in a false-positive-free way.

18
In total the engine supports 60+ sinks, which we cannot easily list due to space

constraints

10

Crawling The Data Set. Our initial seed data set consists of the

Alexa Top 5000 Web sites. We crawled these pages and also vis-

ited all the http: and https: links from these pages that point

to the same domain or a subdomain. This approach might bias

the data set, since Web pages with more links on the start pages

will be over-represented in the �nal data set. The same is true for

subdomains: Some Web sites make excessive use of subdomains,

while others are not using them at all. Because of this, we decided

to deduplicate our �nal results based on the �rst domain before

the top level domain (subsequently called "second level domains").

E.g. we merge results from sub.example.co.uk, example.co.uk
and foo.example.co.uk and just regard all of these domains as

belonging to example.co.uk. We are aware that this approach has

a signi�cant impact on the �nal results, but we think that this

provides the most realistic view on the data.

5.3 Limitations
Our testing and veri�cation approach has the following limitations:

Only �rst level links: We only followed the �rst-level of links,

so our data set does not cover all the pages of a site.

Nouser interaction: Our crawlers do not interact with the page.

This means that we are only able to �nd gadgets in code that get

executed at page load by default.

No authentication: Our crawlers do not authenticate to the

pages under test. Consequently, we might have missed results in

authenticated parts of an application, signi�cantly reducing the

potential coverage of crawled web applications.

Veri�cation does not focus on mitigation bypasses: In the

study, we do not arti�cially add, modify or remove any speci�c

XSS mitigation to crawled websites. We only verify that a data �ow

from a non-executing source is capable of executing arbitrary code

in a page via a gadget, even in the presence of a given mitigation.

The reason for this is that some mitigations cannot be easily applied

to Web sites. For example, applying a Web Application Firewall or

Content Security Policy (see 2.3) to a page requires a non-trivial

amount of con�guration, and is likely to break the functionality

when done automatically. Furthermore, exploits need to be adopted

to the speci�c mitigation techniques. Hence, by focusing on the

mere code execution aspect, we can verify gadgets more e�ciently.

Our XSS simulation approach is false-negative-prone: In

a real-world mitigation setting, the initial XSS attack should be

blocked by stopping the execution of the injected code. However,

even when the original injection was stopped, a gadget can still po-

tentially execute the injected content, e�ectively bypassing the mit-

igation. For example, while script elements are initially blocked

by CSP, they remain in the DOM and gadgets may reintroduce

them, triggering them again. While this would be a valid mitigation-

speci�c bypass, this payload would execute directly without trig-

gering any gadget when a CSP is not present. In order to avoid

such false-positive �ndings, we only generate exploits that do not

trigger JavaScript execution by default. For example, we did not
inject gadgets in the following form:

<div id="foo"><script>verify()</script></div>

Listing 21: Invalid Exploit

Instead, we transform the payload into a form that cannot exe-

cute by default, by using the xmp plaintext tag, for example:

<xmp id="foo"><script>verify()</script></xmp>

Listing 22: Non-executing Exploit

While this approach completely removes false positives from

our results, it might cause a considerable number of false negatives.

For example, often the name of a tag is part of the DOM selector

trigerring the gadget. Hence, by changing the tag name (in the

example: from div to xmp), the exploit might not be able to trigger

the gadget correctly. E�ectively we lowered our veri�cation rate

and in turn signi�cantly increased the quality of our results.

Limitation Summary. All these limitations should be taken into

account when reading the following sections. Most importantly,

we want to point out that the presented results are lower bounds.

If deep crawling, user interaction and a less restrictive veri�cation

are applied, the resulting numbers will likely be higher.

5.4 Results
This section is divided into several subsections. After reporting

on general crawling results, we present numbers and statistics

about the detected data �ows. Then we report on the results of our

automatic gadget veri�cation, and �nally we discuss the results in

the context of XSS mitigation techniques.

5.4.1 Crawling Results. As mentioned above, our initial data set

consisted of the Alexa top 5000 Web sites. By following the �rst-

level links, we crawled 647,085 Web pages on the same domains or

subdomains of this set, which �nally contained 37,232 di�erent sub

domains and 4,557 second-level-domains. The number of second-

level domains is lower than 5000, because some entries in the Alexa

Top Sites �le redirect to the same domain based on geo location. For

example, google.it, google.de, google.fr all redirect to google.com.

Furthermore, some Web sites were not reachable or timed out while

crawling. In some cases, this is due to sites that only use regional

CDNs. For example, a site from Asia might be fast in Asia but very

slow when requested from the US or Europe. For all the remaining

pages, we collected data �ows using our taint engine.

5.4.2 Taint Results. On average we measured 7.67 sink calls per

crawled URL and around 450 sink calls aggregated per second-level

domain. In total, we counted 4,352,491 sink calls with data result-

ing from 4,889,568 unique sources within the DOM. Grouped by

second-level domain, sink and source, we measured 22,379 unique

combinations.

5.4.3 Mitigation results. In the following, we want to relate

these results to the XSS mitigations, especially CSP ’unsafe-eval’,

CSP ’strict-dynamic’ and HTML sanitizers.

11

Content Security Policy - ’unsafe-eval’: As opposed to the ’unsafe-

inline’ keyword, unsafe-eval in the past seemed to be more secure

in general. While unsafe-inline almost completely removes the

protection capabilities of a CSP policy, unsafe-eval by default

does not make the policy bypass-able. In order to bypass the policy

with unsafe-eval an attacker needs to �nd an injection into a

JavaScript execution function (eval, new Function, setTimeout,

setInterval, etc.). Finding a direct injection is often hard and time

consuming, because the use of such function is limited and can be

easily audited by the application owner. Hence ’unsafe-eval’ was

seen as an acceptable trade-o� between security and usability of

CSP. However, the results of our study imply that this long-held

belief should be changed. Gadgets can be used as an indirect way

of reaching an execution sink. If DOM content gets evaluated by

default, the attacker can inject the code as a DOM node in order

to abuse the eval-gadget to execute arbitrary code. In our data

set 47.76% of all second-level domains contained a data �ow that

ended within a JavaScript execution function. During our crawl, for

example, we unintentionally automatically bypassed Tumblr’s CSP

policy with a gadget bypassing its unsafe-eval source expression.

Content Security Policy - ’strict-dynamic’: The strict-dynamic
source expression was added to CSP to increase the usability of

nonce-based policies. As described in 4.1.1, strict-dynamic en-

ables automatic trust propagation to child scripts. If a nonced, and

thus legitimate, script appends a child script element to the DOM,

the child script would be blocked unless the parent script propa-

gates the nonce to the script as well. As many libraries are not aware

of CSP, these libraries do not propagate the nonce and thus CSP

would block the child script and break the library’s functionality.

When strict-dynamic is enabled trust is automatically propa-

gated to non-parser-inserted script elements. Consequently, under

strict-dynamic, child script elements are automatically executed

even if they do not carry a nonce. In this situation, attackers may

use gadgets to bypass CSP. If DOM content gets injected into a

script element, or into a library function (e.g. jQuery.html) that

creates and appends new script elements, strict-dynamic CSP

can be bypassed. In order to measure potentially a�ected Web sites,

we counted the following data �ows:

• The data �ows ending within text, textContent or

innerHTML of a script tag

• The data �ow ending within text, textContent or

innerHTML of a tag, where the tag name is DOM-controlled

(tainted)

• The data �ow ending within script.src
• The data �ow ending in a API which is known for creating

and appending script tags to the DOM.

In total, 73.03% of all second-level domains contained at least

one data �ow with the described characteristics. For example, we

detected a gadget capable of bypassing strict-dynamic in Face-

book’s fbevents.js library
19

.

Content Security Policy - Summary. Given the numbers and

examples provided above, we believe that unsafe-eval and

strict-dynamic considerably weaken a CSP policy. Great care

should be taken when using these source expressions.

19
https://developers.facebook.com/docs/ads-for-websites/pixel-events/v2.9

HTML Sanitizers: Sanitizers aim at removing potentially mali-

cious content. Most sanitizers do this by de�ning a known-good

list of tags and attributes and removing anything else from a pro-

vided string. This list varies from sanitizer to sanitizer. The Closure

sanitizer for example, removes data- attributes, while DOMPurify

allows them in its default con�guration. Furthermore, all sanitizers

we looked at allow id and class attributes. Hence, we investigated

whether this behavior is secure. In our data set 78.30% of all second-

level domains had at least one data �ow from an HTML attribute

into a security-sensitive sink, whereas 59.51% of the sites exhibited

such �ows from data- attributes. Furthermore, 15.67% executed

data from id attributes and 10% from class attributes. Based on

these numbers, we recommend to revisit at least the sanitization

approach towards blocking data- attributes.

5.4.4 Gadget Results. Based on the identi�ed data �ows, we gen-

erated 1,762,823 gadget-based exploit candidates, based on which

we validated 285,894 gadgets on 906 (19.88%) of all second-level

domains.

6 SUMMARY & DISCUSSION
Our study has demonstrated that data �ows from the DOM into

security-sensitive functions are very frequent in modern applica-

tions and frameworks. In fact, 81.85% of all second-level domains

exhibited at least one relevant data �ow. Furthermore, we have

shown that we can detect these �ows and generate exploits that

are capable of bypassing all modern XSS mitigations. In a fully

automated fashion, we detected and veri�ed gadgets on 19.88%

of all second-level domains. However, due to our methodology,

we believe that this is just a lower bound for the real extent of

this problem. By applying deeper crawling, authentication, user

interaction and less conservative testing approach the numbers

would doubtlessly increase considerably. We speci�cally removed

or changed all exploits that would result in an immediate execution

at the initial injection.

Given these results, we believe that XSS mitigations in their

current form are not well aligned with modern applications, frame-

works and vulnerabilities. In general, we see three di�erent ways

to address the issue of script gadgets:

6.1 Fix the Mitigation Techniques
Making mitigation techniques gadget-aware in general is hard. To-

day there are so many expression languages, frameworks, libraries

and instances of user-land code that it will be very di�cult to ad-

dress all of the di�erent types of gadgets. For example, request

�ltering mitigations (4.2) will have a hard time in detecting all the

various forms that script gadgets can take, especially when the gad-

get chain makes use of string transformation functions. However,

we believe that a few of the vectors can be addressed by speci�c mit-

igations. HTML sanitizers, for example, could start to �lter data-,

id or class attributes.

6.2 Fix the Applications
Another approach to address the identi�ed problems is to try to

�x the applications. Popular libraries and frameworks, for example,

could aim at removing gadgets in order to safeguard their users.

12

https://developers.facebook.com/docs/ads-for-websites/pixel-events/v2.9

Given the extent of the problem however, we will likely not be able

to address this problem at scale.

As some gadgets and gadget chains are part of the feature set of

a framework, it is unlikely that developers of such frameworks are

willing to remove or restrict these features for preventing XSS miti-

gation bypasses. Furthermore, we found a number of unintentional

gadgets; code paths that were triggered through gadgets that were

not intended by their developers. These unintended code paths are

hard to �nd, sometimes even harder than a simple XSS vulnerabil-

ity. As a result, we believe that �xing XSS mitigations and script

gadgets might be as hard and time consuming as �xing the XSS

problem itself.

6.3 Shift from Mitigation to Isolation and
Prevention techniques

Due to the results of our study, we believe that the focus of Web

Security engineers should shift from mitigation techniques towards

isolation and prevention techniques. Sandboxed Iframes [13], Su-

borigins [36] or Isolated Scripts [22] are promising proposals for

Isolation techniques. Furthermore, the Web needs to focus on XSS

prevention techniques: The Web platform is inherently insecure.

A novice programmer without much security knowledge is hardly

able to create a secure Web application. The Web platform should

let a developer easily create a secure app by providing secure-by-

default APIs. Language-based security concepts, for example, could

be added to the Web platform, so that it is impossible to introduce

security vulnerabilities without malicious intent.

7 RELATEDWORK
Client-side XSS:. While the source of the initial content injec-

tion can be caused by all classes of XSS, gadget-based attacks are

rooted in insecure client-side data �ows caused by JavaScript. Thus,

the closest related class of vulnerabilities is client-side XSS, also

known as DOM-based XSS. The �rst public documentation of this

vulnerability class was done by Amit Klein in 2005 [16]. In 2013

Lekies et al. [17] conducted a large scale study that demonstrated

the prevalence of this XSS type, showing that approximately 10%

of the examined web sites exposed at least one client-side XSS

problem. To address this problem, Stock et al. [32] proposed a taint

tracking-based protection mechanism to stop insecure data-�ows

within the web browser. While taint tracking could potentially de-

tect or stop gadget-based attacks, this paper only covers client-side

data �ows. Most of our exploits, however, have hybrid data �ows

that span across the client and the server. Hence, in its current ver-

sion Stock et al.’s approach cannot stop our attacks. More recently,

Parameshwaran et al. [26] advanced this defense via server-side

instrumentation of the JavaScript code, thus eliminating the need

of browser modi�cations. It is unclear to which degree these taint-

based techniques can be adapted to address script gadget attacks,

as the initial payload does not come from a untrusted source, and

thus, are not easily distinguishable from the legitimate targets of

the gadget code.

The potential security problems of insecure JavaScript trans-

forming DOM content was initially documented by Heiderich et al.

in two distinct variations. In the �rst, they showed how JavaScript

frameworks like AngularJS create insecure injection vulnerabili-

ties which are out-of-scope for classic server-side XSS sanitization

techniques, due to custom client-side markup conventions [10].

Furthermore, they uncovered how speci�c, non-standard browser

behavior potentially transformed initially secure DOM content into

executable code, if read and rewritten via JavaScript [12]. Athana-

sopoulos et al. [2] described return-to-JavaScript, a similar attack

scenario circumventing mitigations based on script whitelists. In

their attack, the attacker executes already whitelisted scripts in an

unwanted fashion. The basic assumption of their attack is that an

XSS exists in the application and the attacker is only able to execute

already whitelisted scripts. Under these assumptions the attacker

could try to repurpose whitelisted scripts. For example, if there is

a button with a whitelisted event handler that logs out the user,

the attacker could reuse the whitelisted event handler and attach

it to an onload event via the XSS vulnerability. In this way users

would be logged out immediately once they visit the application.

While the mitigation prevents general exploitation, the attacker

could still harm the user experience considerably by abusing the

existing scripts.

Circumventing XSS mitigations: The topic of undermining the

protective capabilities of XSS mitigations has been explored pre-

viously as well. Zalewski [37] outlined potential future direction

of mitigation combating in his in�uential essay "Postcards from

the post-XSS world", touching many emerging techniques, such as

content in�ltration, whitelist abuse, or potential possibilities for

Web code reuse attacks.

On the topic of browser-based XSS mitigations, Nava and Lind-

say [23] and Bates et al. [3] exposed inherent weaknesses in XSS

mitigation approaches that rely on regular expression based de-

tection mechanism. These results directly motivated the design

of the XSSAuditor [3]. In turn, Stock et al. [32] demonstrated the

weakness of all string-based XSS �lters in non-trivial vulnerability

scenarios, such as partial or double injections.

In addition to research on client-side XSS �lters, Content Secu-

rity Policy was subject of several research endeavors. For one, in

concurrent work Weichselbaum et al [35] and Calzavara et al. [4]

examined the quality and e�ectiveness of currently deployed CSP

policies with sobering results. In addition, Weichselbaum et al. [35]

demonstrated how whitelist-based policies can be easily evaded

using overly permissive whitelisted script providers. In comple-

mentary work, Chen et al. [6] and Van Acker et al.[1] presented

various techniques to evade CSP’s information �ow restrictions.

Furthermore, Pan et al [25] investigated how to automatically gen-

erate secure CSP policies (without the unsafe-inline or unsafe-eval

keywords). While these policies could resist simple gadgets, such

strong policies are still vulnerable to expression-based gadgets as

outlined in section 4.4. Finally, Heiderich et al. [11] demonstrated

how injected HTML and CSS code alone is su�cient to conduct a

wide range of attacks, even when a comprehensive CSP for script

execution prevention is in place.

13

8 CONCLUSION
In this paper, we comprehensively explored code-reuse attacks

in Web pages using script gadgets. Script gadgets come in many

variations and, as our empirical study uncovered, are omnipresent

in modern Web code.

As we have demonstrated, the current generation of XSS mitiga-

tions is unable to handle XSS attacks that leverage script gadgets

to execute their payloads. And, unfortunately, there is no linear

upgrade path to adapt the current mitigation approaches to robustly

handle the uncovered vulnerability pattern. While speci�c mitiga-

tion techniques can be modi�ed to handle selected gadget types,

the high variance of script gadget form and functionality, due to

the vastly growing amount of custom client-side code and the con-

stant �ow of new client-side frameworks, prevents a comprehensive

adaption to accommodate the problem.

This leads to a conundrum for the future of client-side Web se-

curity: The last 15 years of di�culty in addressing XSS have shown

that XSS apparently cannot be thoroughly addressed in practice

through secure coding practices alone. And the subject of this paper,

especially in combination with complementary results [9, 32], sug-

gest that the current approaches in XSS mitigation are insu�cient

to compensate the de�cits of code-based XSS prevention.

The question then arises: how do we handle XSS on the road

ahead? As discussed above, sophisticated isolation techniques could

o�er a third way of dealing with the potential consequences of

attacker controlled JavaScript. Alternatively, safe code abstrac-

tions [15] and secure-by-default browser APIs [20] might also be an

option to overcome today’s inherent problems of ad-hoc, insecure

Web content generation.

However, regardless of which paradigm the next generation of

XSS countermeasures will be build upon, it is essential that they

have to be capable to handle the unexpected client-side execution-

and data-�ows which may be caused by legitimate script gadgets.

REFERENCES
[1] Acker, S. V., Hausknecht, D., and Sabelfeld, A. Data Ex�ltration in the Face

of CSP. In AsiaCCS (2016).

[2] Athanasopoulos, E., Pappas, V., Krithinakis, A., Ligouras, S., Markatos,

E. P., and Karagiannis, T. xjs: practical xss prevention for web application

development. In Proceedings of the 2010 USENIX conference on Web application
development (2010), USENIX Association, pp. 13–13.

[3] Bates, D., Barth, A., and Jackson, C. Regular expressions considered harmful

in client-side XSS �lters. In WWW ’10: Proceedings of the 19th international
conference on World wide web (New York, NY, USA, 2010), ACM, pp. 91–100.

[4] Calzavara, S., Rabitti, A., and Bugliesi, M. Content security problems?:

Evaluating the e�ectiveness of content security policy in the wild. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(New York, NY, USA, 2016), CCS ’16, ACM, pp. 1365–1375.

[5] CERT/CC. CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in

Client Web Requests. [online], http://www.cert.org/advisories/CA-2000-02.html

(01/30/06), February 2000.

[6] Chen, E. Y., Gorbaty, S., Singhal, A., and Jackson, C. Self-ex�ltration: The

dangers of browser-enforced information �ow control. In Proceedings of the
Workshop of Web (2012), vol. 2, Citeseer.

[7] Gundy, M. V., and Chen, H. Noncespaces: Using Randomization to Enforce

Information Flow Tracking and Thwart Cross-site Scripting Attacks. In 16th
Annual Network and Distributed System Security Symposium (NDSS 2009) (2009).

[8] Heiderich, M. Towards Elimination of XSS Attacks with a Trusted and Capability
Controlled DOM. PhD thesis, Ruhr-University Bochum, 2012.

[9] Heiderich, M. Jsmvcomfg - to sternly look at javascript mvc and tem-

plating frameworks. [online], https://www.slideshare.net/x00mario/

jsmvcomfg-to-sternly-look-at-javascript-mvc-and-templating-frameworks,

2013.

[10] Heiderich, M. Mustache security wiki. [online], https://github.com/cure53/

mustache-security, 2014.

[11] Heiderich, M., Niemietz, M., Schuster, F., Holz, T., and Schwenk, J. Scriptless

attacks: stealing the pie without touching the sill. In Proceedings of the 2012 ACM
conference on Computer and communications security (2012), ACM, pp. 760–771.

[12] Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J., and Yang, E. Z. mxss

attacks: Attacking well-secured web-applications by using innerhtml mutations.

In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security (2013), ACM, pp. 777–788.

[13] Hickson, I. The iframe element, November 2013.

[14] Jim, T., Swamy, N., and Hicks, M. Defeating script injection attacks with browser-

enforced embedded policies. In Proceedings of the 16th international conference
on World Wide Web (2007), ACM, pp. 601–610.

[15] Kern, C. Securing the tangled web. Communications of the ACM 57, 9 (2014),

38–47.

[16] Klein, A. Dom based cross site scripting or xss of the third kind. Web Application
Security Consortium, Articles 4 (2005), 365–372.

[17] Lekies, S., Stock, B., and Johns, M. 25 Million Flows Later - Large-scale

Detection of DOM-based XSS. In Proceedings of the 20th ACM Conference on
Computer and Communication Security (CCS ’13) (2013).

[18] Louw, M. T., and Venkatakrishnan, V. BluePrint: Robust Prevention of Cross-

site Scripting Attacks for Existing Browsers. In IEEE Symposium on Security and
Privacy (Oakland’09) (May 2009).

[19] Maone, G. Noscript, 2009.

[20] MSDN. toStaticHTML method. [API], https://msdn.microsoft.com/library/

Cc848922.

[21] Nadji, Y., Saxena, P., and Song, D. Document Structure Integrity: A Robust

Basis for Cross-site Scripting Defense. In Network & Distributed System Security
Symposium (NDSS 2009) (2009).

[22] Nava, E. A. V. Fighting XSS with Isolated Scripts. [online], http://sirdarckcat.

blogspot.de/2017/01/�ghting-xss-with-isolated-scripts.html, January 2017.

[23] Nava, E. V., and Lindsay, D. Our favorite XSS �lters/IDS and how to attack

them. Presentation at the BlackHat US conference, 2009.

[24] Oda, T., Wurster, G., van Oorschot, P. C., and Somayaji, A. Soma: Mutual

approval for included content in web pages. In Proceedings of the 15th ACM
conference on Computer and communications security (2008), ACM, pp. 89–98.

[25] Pan, X., Cao, Y., Liu, S., Zhou, Y., Chen, Y., and Zhou, T. Cspautogen: Black-box

enforcement of content security policy upon real-world websites. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(New York, NY, USA, 2016), CCS ’16, ACM, pp. 653–665.

[26] Parameshwaran, I., Budianto, E., Shinde, S., Dang, H., Sadhu, A., and Saxena,

P. Auto-patching dom-based xss at scale. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (New York, NY, USA, 2015), ACM,

pp. 272–283.

[27] Roemer, R., Buchanan, E., Shacham, H., and Savage, S. Return-oriented

programming: Systems, languages, and applications. ACM Trans. Info. & System
Security 15, 1 (Mar. 2012).

[28] Ross, D. Ie 8 xss �lter architecture/implementation. Blog: http://blogs. tech-
net. com/srd/archive/2008/08/18/ie-8-xss-�lter-architecture-implementation. aspx
(2008).

[29] Ross, D. Happy 10th birthday cross-site scripting! [online], https://blogs.msdn.

microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/,

2009.

[30] Stamm, S., Sterne, B., and Markham, G. Reining in the web with content

security policy. In Proceedings of the 19th international conference on World wide
web (2010), ACM, pp. 921–930.

[31] Stamm, S., Sterne, B., and Markham, G. Reining in the web with content

security policy. In Proceedings of the 19th international conference on World wide
web (New York, NY, USA, 2010), WWW ’10, ACM, pp. 921–930.

[32] Stock, B., Lekies, S., Mueller, T., Spiegel, P., and Johns, M. Precise Client-side

Protection against DOM-based Cross-Site Scripting. In 23rd USENIX Security
Symposium (USENIX Security ’14) (2014).

[33] Tantek Celik, Daniel Glazman, I. H. P. L. J. W. Selectors level 4. W3C Editor’s
Draft (2017).

[34] W3C. Content Content Security Policy Level 3. W3C Editor’s Draft, 10 May

2017, https://w3c.github.io/webappsec-csp/, May 2017.

[35] Weichselbaum, L., Spagnuolo, M., Lekies, S., and Janc, A. Csp is dead, long live

csp! on the insecurity of whitelists and the future of content security policy. In

Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security (2016), ACM, pp. 1376–1387.

[36] Weinberger, J., Akhawe, D., and Eisinger, J. Suborigins. W3C Editor’s Draft,

18 May 2017, https://w3c.github.io/webappsec-suborigins/, May 2017.

[37] Zalewski, M. Postcards from the post-xss world. Online at http://lcamtuf.
coredump. cx/postxss (2011).

14

http://www.cert.org/advisories/CA-2000-02.html
https://www.slideshare.net/x00mario/jsmvcomfg-to-sternly-look-at-javascript-mvc-and-templating-frameworks
https://www.slideshare.net/x00mario/jsmvcomfg-to-sternly-look-at-javascript-mvc-and-templating-frameworks
https://github.com/cure53/mustache-security
https://github.com/cure53/mustache-security
https://msdn.microsoft.com/library/Cc848922
https://msdn.microsoft.com/library/Cc848922
http://sirdarckcat.blogspot.de/2017/01/fighting-xss-with-isolated-scripts.html
http://sirdarckcat.blogspot.de/2017/01/fighting-xss-with-isolated-scripts.html
https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/
https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/
https://w3c.github.io/webappsec-csp/
https://w3c.github.io/webappsec-suborigins/

A
X
SS

M
IT

IG
A
T
IO

N
B
YP

A
SS

ES
V
IA

SC
R
IP
T
G
A
D
G
ET

S
IN

JS
FR

A
M
EW

O
R
K
S

F
r
a
m

e
w

o
r
k

/
L

i
b
r
a
r
y

C
S
P

w
h

i
t
e
l
i
s
t
s

C
S
P

n
o

n
c
e
s

C
S
P

u
n

s
a
f
e
-
e
v
a
l

C
S
P

s
t
r
i
c
t
-
d

y
n

a
m

i
c

C
h

r
o

m
e

X
S
S

A
u

d
i
t
o

r
E

D
G

E
X

S
S

�
l
t
e
r

N
o

S
c
r
i
p

t
X

S
S

F
i
l
t
e
r

5
.0

.2
D

O
M

P
u

r
i
f
y

0
.8

.7

G
o

o
g
l
e

C
l
o

s
u

r
e

H
T

M
L

s
a
n

i
t
i
z
e
r

(
2
0
1
7
-
0
5
-
0
1
)

M
o

d
S
e
c
u

r
i
t
y

O
W

A
S
P

C
R

S
3
.0

.0

V
u

e
.j
s

2
.3

.0

A
u

r
e
l
i
a

(
2
0
1
7
-
0
3
-
2
1
)

A
n

g
u

l
a
r
J
S

1
.6

.1

P
o

l
y

m
e
r

1
.7

.1

-
(
<

t
e
m

p
l
a
t
e
)

-
(
<

t
e
m

p
l
a
t
e
)

U
n

d
e
r
s
c
o

r
e

1
.8

.3
/

b
a
c
k

b
o

n
e

-

K
n

o
c
k

o
u

t

3
.4

.1

-
(
d

a
t
a
-

o
r

c
o

m
m

e
n

t
s
)

j
Q

u
e
r
y

M
o

b
i
l
e

1
.4

.5

-
-

E
m

b
e
r
.j
s

2
.1

0
.2

-
-

R
e
a
c
t

-

C
l
o

s
u

r
e

-
(
<

a
.*
)

R
a
c
t
i
v
e

0
.8

.1

-
(
{
{
}
}

u
s
e
s

e
v
a
l
)

-
(
<

s
c
r
i
p

t
)

-
(
s
c
r
i
p

t
n

o
d

e
)

-
(
s
c
r
i
p

t
)

-
(
s
c
r
i
p

t
)

-
(
s
c
r
i
p

t
)

D
o

j
o

1
.1

2
.2

-
(
d

a
t
a
-
)

R
e
q

u
i
r
e
j
s

2
.3

.2

-
(
<

s
c
r
i
p

t
)

j
Q

u
e
r
y

3
.1

.1
-

-
-

(
<

s
c
r
i
p

t
)

j
Q

u
e
r
y

U
I

1
.1

2
.1

-
-

B
o

o
t
s
t
r
a
p

3
.3

.7

-
(
H

T
M

L
i
n

H
T

M
L

a
t
t
r
)

15

	Abstract
	1 Introduction
	2 Technical Background
	2.1 JavaScript, HTML and the DOM
	2.2 Cross-site Scripting (XSS)
	2.3 XSS Mitigation Techniques

	3 Script Gadgets
	3.1 Benign HTML markup
	3.2 DOM selectors
	3.3 Script Gadgets - Introduction
	3.4 Attack Outline
	3.5 Gadget Types
	3.6 Expressiveness of Gadget-based Exploits
	3.7 Finding Script Gadgets

	4 Concrete XSS Mitigation Bypasses Using Script Gadgets
	4.1 Gadgets in Popular JavaScript Libraries
	4.2 Bypassing Request Filtering Mitigations
	4.3 Bypassing Response Sanitization Mitigations
	4.4 Bypassing Code Filtering Mitigations

	5 Prevalence of Script Gadgets
	5.1 Research Statement
	5.2 Methodology
	5.3 Limitations
	5.4 Results

	6 Summary & Discussion
	6.1 Fix the Mitigation Techniques
	6.2 Fix the Applications
	6.3 Shift from Mitigation to Isolation and Prevention techniques

	7 Related Work
	8 Conclusion
	References
	A XSS mitigation bypasses via script gadgets in JS frameworks

