{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# RNN using LSTM \n", " \n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<img src=\"../imgs/RNN-rolled.png\"/ width=\"80px\" height=\"80px\">" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<img src=\"../imgs/RNN-unrolled.png\"/ width=\"400px\" height=\"400px\">" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<img src=\"../imgs/LSTM3-chain.png\"/ width=\"60%\">" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_source: http://colah.github.io/posts/2015-08-Understanding-LSTMs_" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from keras.optimizers import SGD\n", "from keras.preprocessing.text import one_hot, text_to_word_sequence\n", "from keras.utils import np_utils\n", "from keras.models import Sequential\n", "from keras.layers.core import Dense, Dropout, Activation\n", "from keras.layers.embeddings import Embedding\n", "from keras.layers.recurrent import LSTM, GRU\n", "from keras.preprocessing import sequence" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reading blog post from data directory" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import os\n", "import pickle\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "DATA_DIRECTORY = os.path.join(os.path.abspath(os.path.curdir), '..', 'data', 'word_embeddings')\n", "print(DATA_DIRECTORY)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "male_posts = []\n", "female_post = []" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "with open(os.path.join(DATA_DIRECTORY,\"male_blog_list.txt\"),\"rb\") as male_file:\n", " male_posts= pickle.load(male_file)\n", " \n", "with open(os.path.join(DATA_DIRECTORY,\"female_blog_list.txt\"),\"rb\") as female_file:\n", " female_posts = pickle.load(female_file)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "filtered_male_posts = list(filter(lambda p: len(p) > 0, male_posts))\n", "filtered_female_posts = list(filter(lambda p: len(p) > 0, female_posts))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# text processing - one hot builds index of the words\n", "male_one_hot = []\n", "female_one_hot = []\n", "n = 30000\n", "for post in filtered_male_posts:\n", " try:\n", " male_one_hot.append(one_hot(post, n, split=\" \", lower=True))\n", " except:\n", " continue\n", "\n", "for post in filtered_female_posts:\n", " try:\n", " female_one_hot.append(one_hot(post,n,split=\" \", lower=True))\n", " except:\n", " continue" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# 0 for male, 1 for female\n", "concatenate_array_rnn = np.concatenate((np.zeros(len(male_one_hot)),\n", " np.ones(len(female_one_hot))))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "X_train_rnn, X_test_rnn, y_train_rnn, y_test_rnn = train_test_split(np.concatenate((female_one_hot,male_one_hot)),\n", " concatenate_array_rnn, \n", " test_size=0.2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "maxlen = 100\n", "X_train_rnn = sequence.pad_sequences(X_train_rnn, maxlen=maxlen)\n", "X_test_rnn = sequence.pad_sequences(X_test_rnn, maxlen=maxlen)\n", "print('X_train_rnn shape:', X_train_rnn.shape, y_train_rnn.shape)\n", "print('X_test_rnn shape:', X_test_rnn.shape, y_test_rnn.shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "max_features = 30000\n", "dimension = 128\n", "output_dimension = 128\n", "model = Sequential()\n", "model.add(Embedding(max_features, dimension))\n", "model.add(LSTM(output_dimension))\n", "model.add(Dropout(0.5))\n", "model.add(Dense(1))\n", "model.add(Activation('sigmoid'))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "model.compile(loss='mean_squared_error', optimizer='sgd', metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.fit(X_train_rnn, y_train_rnn, batch_size=32,\n", " epochs=4, validation_data=(X_test_rnn, y_test_rnn))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "score, acc = model.evaluate(X_test_rnn, y_test_rnn, batch_size=32)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(score, acc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Using TFIDF Vectorizer as an input instead of one hot encoder" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.feature_extraction.text import TfidfVectorizer" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "vectorizer = TfidfVectorizer(decode_error='ignore', norm='l2', min_df=5)\n", "tfidf_male = vectorizer.fit_transform(filtered_male_posts)\n", "tfidf_female = vectorizer.fit_transform(filtered_female_posts)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "flattened_array_tfidf_male = tfidf_male.toarray()\n", "flattened_array_tfidf_female = tfidf_male.toarray()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "y_rnn = np.concatenate((np.zeros(len(flattened_array_tfidf_male)),\n", " np.ones(len(flattened_array_tfidf_female))))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X_train_rnn, X_test_rnn, y_train_rnn, y_test_rnn = train_test_split(np.concatenate((flattened_array_tfidf_male, \n", " flattened_array_tfidf_female)),\n", " y_rnn,test_size=0.2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "maxlen = 100\n", "X_train_rnn = sequence.pad_sequences(X_train_rnn, maxlen=maxlen)\n", "X_test_rnn = sequence.pad_sequences(X_test_rnn, maxlen=maxlen)\n", "print('X_train_rnn shape:', X_train_rnn.shape, y_train_rnn.shape)\n", "print('X_test_rnn shape:', X_test_rnn.shape, y_test_rnn.shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "max_features = 30000\n", "model = Sequential()\n", "model.add(Embedding(max_features, dimension))\n", "model.add(LSTM(output_dimension))\n", "model.add(Dropout(0.5))\n", "model.add(Dense(1))\n", "model.add(Activation('sigmoid'))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "model.compile(loss='mean_squared_error',optimizer='sgd', metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.fit(X_train_rnn, y_train_rnn, \n", " batch_size=32, epochs=1,\n", " validation_data=(X_test_rnn, y_test_rnn))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "score,acc = model.evaluate(X_test_rnn, y_test_rnn, \n", " batch_size=32)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(score, acc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Sentence Generation using LSTM" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# reading all the male text data into one string\n", "male_post = ' '.join(filtered_male_posts)\n", "\n", "#building character set for the male posts\n", "character_set_male = set(male_post)\n", "#building two indices - character index and index of character\n", "char_indices = dict((c, i) for i, c in enumerate(character_set_male))\n", "indices_char = dict((i, c) for i, c in enumerate(character_set_male))\n", "\n", "\n", "# cut the text in semi-redundant sequences of maxlen characters\n", "maxlen = 20\n", "step = 1\n", "sentences = []\n", "next_chars = []\n", "for i in range(0, len(male_post) - maxlen, step):\n", " sentences.append(male_post[i : i + maxlen])\n", " next_chars.append(male_post[i + maxlen])\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Vectorisation of input\n", "x_male = np.zeros((len(male_post), maxlen, len(character_set_male)), dtype=np.bool)\n", "y_male = np.zeros((len(male_post), len(character_set_male)), dtype=np.bool)\n", "\n", "print(x_male.shape, y_male.shape)\n", "\n", "for i, sentence in enumerate(sentences):\n", " for t, char in enumerate(sentence):\n", " x_male[i, t, char_indices[char]] = 1\n", " y_male[i, char_indices[next_chars[i]]] = 1\n", "\n", "print(x_male.shape, y_male.shape)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "# build the model: a single LSTM\n", "print('Build model...')\n", "model = Sequential()\n", "model.add(LSTM(128, input_shape=(maxlen, len(character_set_male))))\n", "model.add(Dense(len(character_set_male)))\n", "model.add(Activation('softmax'))\n", "\n", "optimizer = RMSprop(lr=0.01)\n", "model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "auto_text_generating_male_model.compile(loss='mean_squared_error',optimizer='sgd')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import random, sys" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# helper function to sample an index from a probability array\n", "def sample(a, diversity=0.75):\n", " if random.random() > diversity:\n", " return np.argmax(a)\n", " while 1:\n", " i = random.randint(0, len(a)-1)\n", " if a[i] > random.random():\n", " return i" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [], "source": [ "# train the model, output generated text after each iteration\n", "for iteration in range(1,10):\n", " print()\n", " print('-' * 50)\n", " print('Iteration', iteration)\n", " model.fit(x_male, y_male, batch_size=128, epochs=1)\n", "\n", " start_index = random.randint(0, len(male_post) - maxlen - 1)\n", "\n", " for diversity in [0.2, 0.4, 0.6, 0.8]:\n", " print()\n", " print('----- diversity:', diversity)\n", "\n", " generated = ''\n", " sentence = male_post[start_index : start_index + maxlen]\n", " generated += sentence\n", " print('----- Generating with seed: \"' + sentence + '\"')\n", "\n", " for iteration in range(400):\n", " try:\n", " x = np.zeros((1, maxlen, len(character_set_male)))\n", " for t, char in enumerate(sentence):\n", " x[0, t, char_indices[char]] = 1.\n", "\n", " preds = model.predict(x, verbose=0)[0]\n", " next_index = sample(preds, diversity)\n", " next_char = indices_char[next_index]\n", "\n", " generated += next_char\n", " sentence = sentence[1:] + next_char\n", " except:\n", " continue\n", " \n", " print(sentence)\n", " print()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 1 }