Go kit

Peter Bourgon

Gopher

The story

1

S

The modern enterprise

A company that is

e Tech-oriented

e Consumer-focused

e Successful — exponential growth
¢ 50-1000 engineers

Microservice architecture

Modern enterprises

e Google — too big
e Amazon — too big
e Twitter
e Netflix
Spotify
SoundCloud
Etsy — monolith

Maturity

We're getting there.

ThoughtWorks'

TECHNOLOGY RADAR

Gitlab e Trial
May 2015

Go language e Adopt
January 2015

Google as corporate platform e Assess
August 2010

T —

Library support

A lack of higher-order library support held Go back at SoundCloud.

Modern enterprises need a set of code, tools, idioms, and best practices on which to
build their business logic.

Enter Go kit

e Higher-order abstractions for microservices

* Like Go, strong idioms and opinions

e But not too opinionated — you don't need to reinvent your infrastructure

Similar to...

e Twitter's Finagle

¢ Netflix's Ribbon (and friends)

Goal: make Go a first-class citizen at the application layer

e Border — HAProxy, nginx...
e Application — here

e Data — Cassandra, PostgreSQL, Redis, Elasticsearch, Riak...

Where your business logic lives.

Goal: (micro)service architecture

Go kit is focused on things that are important to microservices.

Our target market is overwhelmingly adopting this architecture.

Goal: RPC messaging pattern

Just to start — we're not fundamentally opposed to other patterns.

Focus on the 80% case, to get to a useful state.

Goal: operate in a mixed environment

We don't expect to have complete buy-in at your organization.

Go kit services must play nice with existing services.

Goal: pluggable transports

Your business logic should be decoupled from how you access it.
One service should be available over many transports — even in the same process.
e HTTP/)SON
e Thrift
e Protobuf
* net/rpc
gRPC

[]
e

(Remember, we don't want you to reinvent your infrastructure.)

Goal: strongly encourage best practices

Go kit contributors have experience in large-scale infrastructures.
We've made mistakes that you don't have to repeat.

This can be a big selling point to organizations on the fence.

Non-goals

Non-goal: require any specific infrastructure

Go kit won't have any infrastructure dependencies.

We'll work well in any scale environment, and grow with your organization.

Non-goal: opinions about orchestration

Go kit services can be deployed, run, and supervised however your organization does it.

Non-goal: opinions about configuration

Go kit won't mandate a specific mechanism of build or runtime configuration.

We'll work with whatever your organization prefers: flags, env vars, conf files — all OK.

Components

A service

request tracing circuit breaking

Qogging

—
metrics

rate limiting service discovery,
load balancing

A service

Transport

Service metrics
Service safety
Service connectivity

Biz analytics
Biz metrics

Biz logic

Go kit's domain

Your domain

package endpoint

// Endpoint is the fundamental building block of servers and clients.
// 1t represents a single RPC method.
type Endpoint func(ctx context.Context, request interface{}) (response interface{}, err error)

// Middleware is a chainable behavior modifier for endpoints.
type Middleware func(Endpoint) Endpoint

Implement your service as a collection of endpoints.

Transport

Most bindings can be made directly from your service to the transport library.

type grpcBinding struct{ endpoint.Endpoint }

func (b grpcBinding) MyMethod(ctx context.Context, req *pb.MyRequest) (*pb.MyReply, error) {
reply, err := b.Endpoint(ctx, convertRequest(req))
return convertReply(reply), err

package log

type Logger interface {
Log(keyvals ...interface{}) error

}
A hard-won lesson: structured logging is mandatory.
But, equally useful for both application logging and log-structured data pipelines.

Still iterating on the best APl — big thanks to Chris Hines.

package metrics

type Counter interface {
With(Field) Counter
Add(delta uint64)

}

type Gauge interface {
With(Field) Gauge
Set(value float64)
Add(delta float64)

}

type Histogram interface {
With(Field) Histogram
Observe(value int64)

}

Thanks to Prometheus & Coda Hale.

package ratelimit

func NewTokenBucketLimiter(tb *ratelimit.Bucket) endpoint.Middleware {
return func(next endpoint.Endpoint) endpoint.Endpoint {
return func(ctx context.Context, request interface{}) (interface{}, error) {
if tb.TakeAvailable(1) == 0 {
return nil, ErrLimited
}

return next(ctx, request)

Thanks to Roger Peppe and Tomas Senart.

package circuitbreaker

func HandyBreaker(cb breaker.Breaker) endpoint.Middleware {
return func(next endpoint.Endpoint) endpoint.Endpoint {
return func(ctx context.Context, request interface{}) (response interface{}, err error) {
if !cb.Allow() {
return nil, breaker.ErrCircuitOpen
}

defer func(begin time.Time) {
if err == nil {
cb.Success(time.Since(begin))
} else {
cb.Failure(time.Since(begin))
¥
Y(time.Now())

response, err = next(ctx, request)
return

An important safety feature for all microservices.

package loadbalancer

// Publisher is backed by a data source: DNS SRV, Consul, etcd...
type Publisher interface {

Subscribe(chan<- []endpoint.Endpoint)

Unsubscribe(chan<- []endpoint.Endpoint)

Stop()
Iy

// LoadBalancer is implemented by strategies: random, round-robin...
type LoadBalancer interface {
Get() (endpoint.Endpoint, error)

}

func Retry(max int, timeout time.Duration, lb LoadBalancer) endpoint.Endpoint {
return func(ctx context.Context, request interface{}) (interface{}, error) {
// Get and try endpoints from the load balancer until you succeed,
// reach max attempts, or exceed the timeout -- whichever comes first.

}

Publisher implementation for DNS SRV. Consul and etcd support is planned. (Others?)

package tracing

func AnnotateServer(newSpan NewSpanFunc, c Collector) endpoint.Middleware {

return func(next endpoint.Endpoint) endpoint.Endpoint {
return func(ctx context.Context, request interface{}) (interface{}, error) {

span, ok := fromContext(ctx)
if lok {
span = newSpan(newID(), newID(), 0)
ctx = context.WithValue(ctx, SpanContextKey, span)

¥
span.Annotate(ServerReceive)
defer func() { span.Annotate(ServerSend); c.Collect(span) }()

return next(ctx, request)

func AnnotateClient(newSpan NewSpanFunc, c Collector) endpoint.Middleware {
/1 ...
'y

Currently just Zipkin. Appdash support is planned. (HTrace, Salp, others?)

An example service

addsvc

Let's define a one-method service.

type addService interface {
Add(int, int) int
'y

It can be simplified to just a function type.

type addFunc func(int, int) int

And a simple implementation.

func pureAdd(a, b int) int { return a + b }

addRequest, addResponse

To fit genearlized RPC semantics, we'll define request and response types.

type addRequest struct{ A, B int }

type addResponse struct{ V int }

makeEndpoint

The signature of the Add function is in our business domain. Let's write an adapter to lift
it into the endpoint domain.

func makeEndpoint(f addFunc) endpoint.Endpoint {
return func(ctx context.Context, request interface{}) (interface{}, error) {
responses := make(chan interface{}, 1)
go func() {
req := request.(addRequest)
responses <- addResponse{V: f(req.A, req.B)}
YO
select {
case <-ctx.Done():
return nil, context.DeadlineExceeded
case response := <-responses:
return response, nil

¥

Binding

We'll need to bind our endpoint to one or more transports. Let's pick gRPC.

type grpcBinding struct{ endpoint.Endpoint }

func (b grpcBinding) Add(ctx context.Context, req *pb.AddRequest) (*pb.AddReply, error) {
convertedRequest := addRequest{
A: int(req.A),
B: int(req.B),
¥

resp, err := b.Endpoint(ctx, convertedRequest)
if err !'=nil {

return nil, err
¥

v := int64(resp.(addResponse).V)
return &pb.AddReply{V: v}, nil

Binding

Note: this requires a Protobuf definition.

syntax = "proto3";
package pb;

service Add {
rpc Add (AddRequest) returns (AddReply) {}
}

message AddRequest {
int64 a = 1;
int64 b = 2;

}

message AddReply {
inté4 v = 1;
Hy

Wire it up

Wrap an addFunc with an endpoint, and an endpoint with a binding, and then expose
the binding according to the rules of your transport.

var (
function = pureAdd
endpoint = makeEndpoint(function)
binding = grpcBinding{endpoint}
)

s := grpc.NewServer()
pb.RegisterAddServer(s, binding)
In, _ := net.Listen("tcp", ":8001") // I'm so sorry for ignoring the error :(

s.Serve(ln)

(This will be slightly different for every transport.)

Logging

We want to log our requests from the perspective of our business domain.

We could implement it as an endpoint middleware...
type Middleware func(Endpoint) Endpoint

...but then we'd need type assertions to get our parameters and return values.

Alternately, we can define a business middleware.

type addMiddleware func(addFunc) addFunc

Logging

Now we can implement logging as a composable middleware.

func logging(logger log.Logger) addMiddleware {
return func(next addFunc) addFunc {
return func(a, b int) (v int) {

defer func(begin time.Time) {
logger.Log("a", a, "b", b, "v", v, "took", time.Since(begin))
}(time.Now())

v = next(a, b)
return

Declarative composition

Compose business middlewares around the addFunc by using well-understood
chaining techniques.

var a addFunc = pureAdd
a = logging(logger)(a)
a = instrument(requests, durations)(a)

Compose endpoint middlewares the same way.

var e endpoint.Endpoint = makeEndpoint(a)
e = ratelimit.NewTokenBucketLimiter(rl.NewBucketWithRate(100, 100))(e)

This declarative composition is easy to read and reason about.

func main

func main() {
r a addFunc = pureAdd
logging(logger)(a)
instrument(requests, durations)(a)

r e endpoint.Endpoint = makeEndpoint(a)
e = ratelimit.NewTokenBucketLimiter(rl.NewBucketWithRate(100, 100))(e)

s := grpc.NewServer()

pb.RegisterAddServer(s, grpcBinding{e})

In, _ := net.Listen("tcp", ":8001") // Sorry again :(
s.Serve(1n)

Slide-ception

func main

func main() {
var a addFunc = pureAdd

= logging(logger)(a)
: = instrument(requests, durations)(a)

var e endpoint.Endpoint = makeEndpoint(a)
e = ratelimit.NewTokenBucketLimiter(rl.

s := grpc.NewServer()
pb. uegistermver(s
1n, _ := net.Listen("tcp",
s.Serve(ln)

grpcBinding{e})

L\ﬁ)ur domaiLJ

Go kit's domain

*:8001") // Sorry again :(

Clients

An endpoint can be used in both servers and clients.

func makeClient(cc *grpc.ClientConn) endpoint.Endpoint {
client := pb.NewAddClient(cc)
return func(ctx context.Context, request interface{}) (interface{}, error) {
// Convert our request to a gRPC request
// Invoke the gRPC client
// Convert the gRPC reply to our response

}
We can use the same set of endpoint middlewares.

var e endpoint.Endpoint = makeClient(grpcDial("addsvc.datacenter.local"))
e = circuitbreaker.Gobreaker (gobreaker.NewCircuitBreaker(gobreaker.Settings{}))(e)
e = ratelimit.NewTokenBucketLimiter(rl.NewBucketWithRate(100, 100))(e)

Is this a good idea?

| dunno.

But it seems like a good place to start.

What's next

TODO
Near-term:

e package loadbalancer: Consul, etcd support
e package log: continue to refine the API

e package tracing: Appdash support

* package transport: Avro support

e package transport: comprehensive client support
Long-term:

e Tools to generate adapters and bindings

* Expand example coverage

e Support for messaging patterns beyond RPC

Your use cases

Go kit is community-driven, and benefits from everyone's experience.

If you've done this at your organization, | want to hear from you.

If you need something before you can start using Go kit, | want to hear from you!

The next level

Go is already becoming the language of the server.

| think Go can become the language of the modern enterprise.

Let's Go to the next level.

Thank you

Peter Bourgon
Gopher
@peterbourgon
http://gokit.io

