
More Than 25 Years of
CRAN

Kurt Hornik

June 24, 2024



How it all began

Once upon a time . . .

Almost 30 years ago . . .

FL and KH had fallen in love with R (and gotten write access to the R
sources)

The base system was rather small, and extensions providing add-on
functionality were needed.

Before R these was S . . . contributed extensions for S available from
Statlib, bur rather inconvenient to use. Typically easy to port to R (date,
chron, htest, . . . ), but how to use conveniently?

And of course, what about extensions newly written for R?

Slide 2



How it all began

Once upon a time . . .

Almost 30 years ago . . .

FL and KH had fallen in love with R (and gotten write access to the R
sources)

The base system was rather small, and extensions providing add-on
functionality were needed.

Before R these was S . . . contributed extensions for S available from
Statlib, bur rather inconvenient to use. Typically easy to port to R (date,
chron, htest, . . . ), but how to use conveniently?

And of course, what about extensions newly written for R?

Slide 2



How it all began

Once upon a time . . .

Almost 30 years ago . . .

FL and KH had fallen in love with R (and gotten write access to the R
sources)

The base system was rather small, and extensions providing add-on
functionality were needed.

Before R these was S . . . contributed extensions for S available from
Statlib, bur rather inconvenient to use. Typically easy to port to R (date,
chron, htest, . . . ), but how to use conveniently?

And of course, what about extensions newly written for R?

Slide 2



How it all began

Once upon a time . . .

Almost 30 years ago . . .

FL and KH had fallen in love with R (and gotten write access to the R
sources)

The base system was rather small, and extensions providing add-on
functionality were needed.

Before R these was S . . . contributed extensions for S available from
Statlib, bur rather inconvenient to use. Typically easy to port to R (date,
chron, htest, . . . ), but how to use conveniently?

And of course, what about extensions newly written for R?

Slide 2



How it all began

FL and KH (actually, the whole “Center for Computational Intelligence”
at Technische Universität Wien) were proud & happy users of Debian
(testing) and its package management system

So went went about doing something similar for R:

■ Implement a package management system (tools for build, check and
install)

■ Set up a repository for distributing packages

Slide 3



What’s in a name?

We already knew and used

The Comprehensive TeX Archive Network (CTAN)
The Comprehensive Perl Archive Network (CPAN)

so it seemed obvious to go for

The Comprehensive R Archive Network (CRAN)

Actually, “comprehensive” was more meant as

all kinds of things for R (code, docs, data, . . . )

and not

all things for R

(in particular, not providing the only CRAN-style package repository).

Slide 4



What’s in a name?

We already knew and used

The Comprehensive TeX Archive Network (CTAN)
The Comprehensive Perl Archive Network (CPAN)

so it seemed obvious to go for

The Comprehensive R Archive Network (CRAN)

Actually, “comprehensive” was more meant as

all kinds of things for R (code, docs, data, . . . )

and not

all things for R

(in particular, not providing the only CRAN-style package repository).

Slide 4



Why Debian testing matters

Debian always has at least three releases in active maintenance:

stable: the latest officially released distribution. Production release
for general users.

testing: packages in a queue for stable. For users who like having
more recent versions of software.

unstable: where active development occurs: for users who like to live
on the edge.

Debian releases rather infrequently =⇒ testing worked nicely for us

Except when it got frozen for a new release: DON’T DO THAT.

And except for things that took very long to make it from unstable to
testing (e.g, due to issues with reverse dependencies): DON’T DO THAT.

Slide 5



CRAN design principles

Altogether, this suggested to have

one "rolling" repository for "stable" releases of R packages

■ no hosting of development versions of packages (use forges instead)
■ collaborative development through controlled releases and active

repository maintenance
■ no releases for the whole repository

Clearly, very nice if you want timely access to state-of-the-art software
without too much breakage.

Particularly nice when the state-of-the-art changes rapidly

Slide 6



CRAN design principles

Altogether, this suggested to have

one "rolling" repository for "stable" releases of R packages

■ no hosting of development versions of packages (use forges instead)

■ collaborative development through controlled releases and active
repository maintenance

■ no releases for the whole repository

Clearly, very nice if you want timely access to state-of-the-art software
without too much breakage.

Particularly nice when the state-of-the-art changes rapidly

Slide 6



CRAN design principles

Altogether, this suggested to have

one "rolling" repository for "stable" releases of R packages

■ no hosting of development versions of packages (use forges instead)
■ collaborative development through controlled releases and active

repository maintenance

■ no releases for the whole repository

Clearly, very nice if you want timely access to state-of-the-art software
without too much breakage.

Particularly nice when the state-of-the-art changes rapidly

Slide 6



CRAN design principles

Altogether, this suggested to have

one "rolling" repository for "stable" releases of R packages

■ no hosting of development versions of packages (use forges instead)
■ collaborative development through controlled releases and active

repository maintenance
■ no releases for the whole repository

Clearly, very nice if you want timely access to state-of-the-art software
without too much breakage.

Particularly nice when the state-of-the-art changes rapidly

Slide 6



CRAN design principles

Altogether, this suggested to have

one "rolling" repository for "stable" releases of R packages

■ no hosting of development versions of packages (use forges instead)
■ collaborative development through controlled releases and active

repository maintenance
■ no releases for the whole repository

Clearly, very nice if you want timely access to state-of-the-art software
without too much breakage.

Particularly nice when the state-of-the-art changes rapidly

Slide 6



CRAN design principles

We then have the following.

Theorem: Let CRAN be a “rolling” repository of mostly “working”
packages. Then CRAN must be actively maintained.

Proof: obvious. If a package p no longer “works” due to changes
outside of p (other package, R itself, toolchain/systems, . . . ), then p
must get updated, and this will not happen automagically.

Corollary: Under the above conditions, let p be a package in CRAN.
Then p also needs to be actively maintained.

Proof: trivial.

More later on the possible interpretations of “working” . . .

Slide 7



CRAN design principles

We then have the following.

Theorem: Let CRAN be a “rolling” repository of mostly “working”
packages. Then CRAN must be actively maintained.

Proof: obvious.

If a package p no longer “works” due to changes
outside of p (other package, R itself, toolchain/systems, . . . ), then p
must get updated, and this will not happen automagically.

Corollary: Under the above conditions, let p be a package in CRAN.
Then p also needs to be actively maintained.

Proof: trivial.

More later on the possible interpretations of “working” . . .

Slide 7



CRAN design principles

We then have the following.

Theorem: Let CRAN be a “rolling” repository of mostly “working”
packages. Then CRAN must be actively maintained.

Proof: obvious. If a package p no longer “works” due to changes
outside of p (other package, R itself, toolchain/systems, . . . ), then p
must get updated, and this will not happen automagically.

Corollary: Under the above conditions, let p be a package in CRAN.
Then p also needs to be actively maintained.

Proof: trivial.

More later on the possible interpretations of “working” . . .

Slide 7



CRAN design principles

We then have the following.

Theorem: Let CRAN be a “rolling” repository of mostly “working”
packages. Then CRAN must be actively maintained.

Proof: obvious. If a package p no longer “works” due to changes
outside of p (other package, R itself, toolchain/systems, . . . ), then p
must get updated, and this will not happen automagically.

Corollary: Under the above conditions, let p be a package in CRAN.
Then p also needs to be actively maintained.

Proof: trivial.

More later on the possible interpretations of “working” . . .

Slide 7



CRAN design principles

We then have the following.

Theorem: Let CRAN be a “rolling” repository of mostly “working”
packages. Then CRAN must be actively maintained.

Proof: obvious. If a package p no longer “works” due to changes
outside of p (other package, R itself, toolchain/systems, . . . ), then p
must get updated, and this will not happen automagically.

Corollary: Under the above conditions, let p be a package in CRAN.
Then p also needs to be actively maintained.

Proof: trivial.

More later on the possible interpretations of “working” . . .

Slide 7



CRAN design principles

We then have the following.

Theorem: Let CRAN be a “rolling” repository of mostly “working”
packages. Then CRAN must be actively maintained.

Proof: obvious. If a package p no longer “works” due to changes
outside of p (other package, R itself, toolchain/systems, . . . ), then p
must get updated, and this will not happen automagically.

Corollary: Under the above conditions, let p be a package in CRAN.
Then p also needs to be actively maintained.

Proof: trivial.

More later on the possible interpretations of “working” . . .

Slide 7



CRAN design principles

Clearly, how CRAN works is rather unusual:

■ Allows maintainers of packages (including base packages) to move
things forward rather quickly (within reason)

■ This can only work if affected maintainers react rather quickly.

This is CRAN’s notion of

actively maintained packages

(so both a right and a duty).

Slide 8



CRAN design principles

One of the key ingredients of the social contract established by agreeing
to the CRAN Repository Policy.

Challenges:

■ maintainers may not be aware of what they contract for (modern
world style click on accept without reading)

■ maintainers may be aware and disagree, but nevertheless want to
have their package on CRAN (professional recognition, . . . )

■ the fine print parts are missing (e.g., does “work” include the
“important NOTEs” and what the .u.. are these?)

■ communication via email sucks

Slide 9



CRAN design principles

One of the key ingredients of the social contract established by agreeing
to the CRAN Repository Policy.

Challenges:

■ maintainers may not be aware of what they contract for (modern
world style click on accept without reading)

■ maintainers may be aware and disagree, but nevertheless want to
have their package on CRAN (professional recognition, . . . )

■ the fine print parts are missing (e.g., does “work” include the
“important NOTEs” and what the .u.. are these?)

■ communication via email sucks

Slide 9



CRAN design principles

One of the key ingredients of the social contract established by agreeing
to the CRAN Repository Policy.

Challenges:

■ maintainers may not be aware of what they contract for (modern
world style click on accept without reading)

■ maintainers may be aware and disagree, but nevertheless want to
have their package on CRAN (professional recognition, . . . )

■ the fine print parts are missing (e.g., does “work” include the
“important NOTEs” and what the .u.. are these?)

■ communication via email sucks

Slide 9



CRAN design principles

One of the key ingredients of the social contract established by agreeing
to the CRAN Repository Policy.

Challenges:

■ maintainers may not be aware of what they contract for (modern
world style click on accept without reading)

■ maintainers may be aware and disagree, but nevertheless want to
have their package on CRAN (professional recognition, . . . )

■ the fine print parts are missing (e.g., does “work” include the
“important NOTEs” and what the .u.. are these?)

■ communication via email sucks

Slide 9



Email madness

CRAN communicates with package maintainers (in order to “activate”
them) old-style via emails.

Provides some level of “security” (by default updates can only be
performed by someone with access to the maintainer email address).

But:

■ sending emails is getting increasingly complicated
■ there is no guarantee that emails were actually received
■ emails may be undeliverable, e.g., when email addresses change

Slide 10



Email madness

CRAN communicates with package maintainers (in order to “activate”
them) old-style via emails.

Provides some level of “security” (by default updates can only be
performed by someone with access to the maintainer email address).

But:

■ sending emails is getting increasingly complicated
■ there is no guarantee that emails were actually received
■ emails may be undeliverable, e.g., when email addresses change

Slide 10



Email madness

CRAN communicates with package maintainers (in order to “activate”
them) old-style via emails.

Provides some level of “security” (by default updates can only be
performed by someone with access to the maintainer email address).

But:

■ sending emails is getting increasingly complicated

■ there is no guarantee that emails were actually received
■ emails may be undeliverable, e.g., when email addresses change

Slide 10



Email madness

CRAN communicates with package maintainers (in order to “activate”
them) old-style via emails.

Provides some level of “security” (by default updates can only be
performed by someone with access to the maintainer email address).

But:

■ sending emails is getting increasingly complicated
■ there is no guarantee that emails were actually received

■ emails may be undeliverable, e.g., when email addresses change

Slide 10



Email madness

CRAN communicates with package maintainers (in order to “activate”
them) old-style via emails.

Provides some level of “security” (by default updates can only be
performed by someone with access to the maintainer email address).

But:

■ sending emails is getting increasingly complicated
■ there is no guarantee that emails were actually received
■ emails may be undeliverable, e.g., when email addresses change

Slide 10



Email madness

Bounces are bad (no longer an active maintainer)

Non-bounces not necessarily good.

Need to have better tools for tracking maintainers

Need to have better tools for communicating with maintainers

Slide 11



Stability

All nice, but what if you want/need "more stability"? It depends . . .

Having stable repository releases is not the answer to everything
(hence, not 42). In particular, as there may be serious bugs that need
fixing (or changes needed for system changes).

One can in fact get very stable releases by using Windows or macOS
binaries for old versions of R (e.g., binaries for R 4.2 or older were frozen
when R 4.4.0 was released)

One can in fact always access older versions of CRAN packages (things
no longer in current are in the archive), and could write tools for
conveniently accessing these.

Well, not quite: currently only true for source packages. Binary builds do
not necessarily persist.
Slide 12



Issues with binary packages

In fact, things are even worse.

Binary packages may change without changing their version.

E.g., if the binary for source package foo 1.2.3 gets rebuilt (e.g.,
because of changes in the toolchain or dependency ABIs), it will
still/again show as foo_1.2.3.zip or foo_1.2.3.tgz.

Bad for stability/reproducibility (“I want the foo for YYYY-mm-dd” cannot
be guaranteed for current versions of R).

Slide 13



Issues with binary packages

Part of the problem: no good naming scheme!

■ Binary version 1.2.3-1 could also be for source version 1.2.3-1
■ Binary versions like 1.2.3+b1 or 1.2.3-b1 are not possible: that

chance was “missed” once upon a time

(Of course, Debian had that, but looked too complicated) when
developing the R package management system all these years ago.)

These issues clearly need to be addressed eventually (better soon,
along with enhancements needs for Linux binary packages).

Slide 14



Stability again

You’re still not convinced and want/need stable releases of CRAN?

You can do this yourself!

Point I already made many years ago: idea is that “package objects” are
unique and persistent, and everyone can create services providing
specific/desired “subviews”.

(Perhaps better/easier to only do this for subsets of interest.)

In particular, everyone could provide a daily snapshot service!

Slide 15



Stability again

You’re still not convinced and want/need stable releases of CRAN?

You can do this yourself!

Point I already made many years ago: idea is that “package objects” are
unique and persistent, and everyone can create services providing
specific/desired “subviews”.

(Perhaps better/easier to only do this for subsets of interest.)

In particular, everyone could provide a daily snapshot service!

Slide 15



Stability again

You’re still not convinced and want/need stable releases of CRAN?

You can do this yourself!

Point I already made many years ago: idea is that “package objects” are
unique and persistent, and everyone can create services providing
specific/desired “subviews”.

(Perhaps better/easier to only do this for subsets of interest.)

In particular, everyone could provide a daily snapshot service!

Slide 15



Stability again

You’re still not convinced and want/need stable releases of CRAN?

You can do this yourself!

Point I already made many years ago: idea is that “package objects” are
unique and persistent, and everyone can create services providing
specific/desired “subviews”.

(Perhaps better/easier to only do this for subsets of interest.)

In particular, everyone could provide a daily snapshot service!

Slide 15



Active CRAN repository management in
practice

Based on running regular checks (for the packages currently in the
repository)

Using either standard builds of current versions of R on Linux, macOS or
Windows, or special/enhanced builds (sanitizers, different BLAS/LAPACK
subsystems, special toolchains/settings, . . . ).

Important problems (ERRORs, WARNINGs and the important NOTEs)
from these are reported (via email) to maintainers with a fixed
(typically) short deadline for a fix.

These problems can conveniently be seen from the package check
results pages (including “additional issues”).

Sometimes (and then often confusingly), there may be issues to be
addressed which do not show in the regular check results/pages
Slide 16



Active CRAN repository management in
practice

Running these checks is (mostly) automatic. Dealing with problems
found is definitely not!

Active maintainers submit updates in time which successfully go
through the incoming checks.

Not so active maintainers (“non-maintainers”) miss the deadline.

Packages without revdeps then typically get archived.

Packages with revdeps get another reminder (“final deadline”), and if
that deadline is missed too, another reminder with the revdep
maintainers in cc.

Archival and escalation cost the CRAN team’s scarce time and energy.

Slide 17



Submission checks (aka incoming checks)

Submissions are done via a web interface (or wrappers around this, but
the social contract part is important, see above).

Submissions are always checked automatically on Debian testing with
current LLVM compilers, and Windows using GCC compilers.

Slide 18



Submission checks (aka incoming checks)

■ If there are problem, auto-archive.
■ Otherwise, if a new package (newbie), inspect in detail by the

submission team (currently funded by the R Foundation).
■ Packages which got archived currently need a manual processing

step.
■ If there were additional issues for the current version, these are

manually re-checked.
■ Otherwise, if there are no revdeps, auto-publish (unless there is a

maintainer change).
■ Otherwise, check revdeps, and if no new problems in these,

auto-publish.
■ Otherwise, manual actions by the submission team are needed.

Slide 19



Some basic stats

Number of package objects in current: 20977

Number of package objects in archive: 147361

Number of packages only in archive: 6516

Total size in GB (decimal): 130.21

Total size in GiB (binary): 121.27

Slide 20



Some basic stats

Log number and log size of CRAN packages (current and archive):

Slide 21



Some basic stats

Recency of current packages:

2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
2 1 4 29 38 63 267 594 741 964 1131 1649

2021 2022 2023 2024
1997 3178 5387 4933

Slide 22



Some basic stats

Numbers of package updates:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 6.121 7.000 217.000

In case you want to know . . .

rgdal mgcv RcppArmadillo spatstat Matrix
152 167 170 212 217

Update intervals (for packages added before 2023-12-31):

Min. 1st Qu. Median Mean 3rd Qu. Max.
20.36 269.85 561.23 924.41 1204.50 9757.00

Note that the Policy says “no more than every 1–2 months”

Slide 23



Some basic stats

Numbers of package updates:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 6.121 7.000 217.000

In case you want to know . . .

rgdal mgcv RcppArmadillo spatstat Matrix
152 167 170 212 217

Update intervals (for packages added before 2023-12-31):

Min. 1st Qu. Median Mean 3rd Qu. Max.
20.36 269.85 561.23 924.41 1204.50 9757.00

Note that the Policy says “no more than every 1–2 months”

Slide 23



Some basic stats

Numbers of package updates:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 6.121 7.000 217.000

In case you want to know . . .

rgdal mgcv RcppArmadillo spatstat Matrix
152 167 170 212 217

Update intervals (for packages added before 2023-12-31):

Min. 1st Qu. Median Mean 3rd Qu. Max.
20.36 269.85 561.23 924.41 1204.50 9757.00

Note that the Policy says “no more than every 1–2 months”

Slide 23



Some basic stats

Numbers of package updates:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 6.121 7.000 217.000

In case you want to know . . .

rgdal mgcv RcppArmadillo spatstat Matrix
152 167 170 212 217

Update intervals (for packages added before 2023-12-31):

Min. 1st Qu. Median Mean 3rd Qu. Max.
20.36 269.85 561.23 924.41 1204.50 9757.00

Note that the Policy says “no more than every 1–2 months”

Slide 23



Regular check problems part one

OK NOTE WARNING ERROR FAILURE n
r-devel-linux-x86_64-debian-clang 15911 5571 42 39 0 21563
r-devel-linux-x86_64-debian-gcc 15919 5556 14 48 1 21538
r-devel-linux-x86_64-fedora-clang 13771 8797 13 28 0 22609
r-devel-linux-x86_64-fedora-gcc 14614 7496 13 25 0 22148
r-devel-windows-x86_64 15490 6129 14 39 0 21672
r-oldrel-macos-arm64 16272 5229 25 177 0 21703
r-oldrel-macos-x86_64 16133 5485 40 165 0 21823
r-oldrel-windows-x86_64 17140 4145 14 35 0 21334
r-patched-linux-x86_64 16055 5370 7 49 2 21483
r-release-linux-x86_64 16019 5374 6 58 1 21458
r-release-macos-arm64 14920 6962 22 131 0 22035
r-release-macos-x86_64 14860 6977 187 79 0 22103
r-release-windows-x86_64 15490 5998 240 171 119 22018

Slide 24



Regular check problems part two

Status
Check NOTE WARNING ERROR FAILURE

tests 0 0 23 1
examples 0 0 14 0
re-building of vignette outputs 0 1 11 0
compiled code 191 5 0 0
whether package can be installed 0 5 0 0
S3 generic/method consistency 0 1 0 0
for code/documentation mismatches 0 1 0 0
use of S3 registration 0 1 0 0
Rd files 1990 0 0 0
LazyData 1938 0 0 0
C++ specification 530 0 0 0
package dependencies 282 0 0 0
for GNU extensions in Makefiles 205 0 0 0
package subdirectories 160 0 0 0
for non-standard things in the check directory 97 0 0 0
DESCRIPTION meta-information 54 0 0 0
HTML version of manual 50 0 0 0
R code for possible problems 23 0 0 0
Rd cross-references 19 0 0 0
dependencies in R code 11 0 0 0

Slide 25



Reported issues

(Currently based on “text mining” of the emails. Improvements under
way.)

Total number of Issues reported since 2023-01-01: 7222

2nd deadline (final): 719, 3rd deadline (revdeps): 354

Problems for additional issues: 697, with web access: 454

Numbers of issues reported per day:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 3.00 6.00 13.35 11.00 734.00

Number of days without issue reports: 28

Quite impressive, given that the time span includes CRAN holidays . . .
Slide 26



Repository actions

Manual repository actions (add/new, archive, unarchive, remove)
programmatically tracked since 2022-11-01:

Total numbers of actions:

new archived unarchived removed
3305 2477 1372 18

Numbers of actions per day:

new archived unarchived removed
5.51 4.13 2.29 0.03

Slide 27



Repository actions

Numbers of actions according to month for the past 12 months:

new archived unarchived removed
2023-07 117 66 43 0
2023-08 197 336 69 0
2023-09 167 118 78 3
2023-10 166 223 88 0
2023-11 167 97 85 0
2023-12 122 42 44 1
2024-01 153 150 77 4
2024-02 203 99 81 0
2024-03 172 98 60 2
2024-04 170 211 55 0
2024-05 184 83 69 1
2024-06 124 27 56 0

Slide 28



Repository actions

Numbers of unarchivals:

0 1 2 3 4 5 6 7
23854 2891 582 145 52 17 5 1

Numbers of days between archival and unarchival:

Min. 1st Qu. Median Mean 3rd Qu. Max. n
2016 1 2.00 48.0 164.54545 127.00 1110 11
2017 0 6.75 53.5 196.87879 195.75 1949 132
2018 0 7.00 32.5 139.88889 130.00 2096 432
2019 0 6.00 21.0 112.42213 96.50 1935 488
2020 0 7.00 26.0 111.00402 91.00 1523 996
2021 0 8.00 24.0 87.94466 86.00 1025 777
2022 0 8.00 34.0 101.62599 121.00 886 1008
2023 0 7.00 27.0 62.44049 84.00 476 731
2024 0 5.00 15.0 23.54694 30.00 162 245
Slide 29



Incoming check actions

Incoming action logs start 2018-05-23, Since then:

Number of actions: 324264 in total (145.87 per day)

Number of submissions: 171630 in total (77.21 per day)

Number of actions according to auto or manual, variant one:

auto manual
196978 99415

Number of actions according to auto or manual, variant two:

auto manual_NN manual_UL
196978 33434 65981

Slide 30



Incoming check actions

Daily numbers of submissions:

2020 2022 2024

0
10

0
20

0
30

0
40

0

Slide 31



Incoming check actions

Auto-processing rates according to action:

archive inspect newbies pending publish recheck

m
an

ua
l

au
to

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slide 32



Incoming check actions

Auto-processing rates for action publish according to year:
A

ut
o

2018 2019 2020 2021 2022 2023 2024

m
an

ua
l

au
to

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slide 33



Incoming check actions

Auto-processing rates for action archive according to year:
A

ut
o

2018 2019 2020 2021 2022 2023 2024

m
an

ua
l

au
to

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slide 34



Deadlines

The usual deadline is 2 weeks (some “lesser” issues get one month).

Clearly, 2 weeks is very short: even active maintainers may be away
and offline for 2 weeks.

So why not give more time? Some observations:

■ Simple problems can be fixed very quickly. Longer deadlines typically
result in delaying the trivial fix.

■ Hard problems should be fixed rather urgently, but typically cannot.
(E.g, memory problems detected by valgrind or sanitizers.)

■ Severity (ERROR, WARNING, NOTE) does not necessarily correspond
to importance (a test may simply be wrong and hence not be a real
problem, but an Rd xref that no longer works is a real problem).

Slide 35



Deadlines

The usual deadline is 2 weeks (some “lesser” issues get one month).

Clearly, 2 weeks is very short: even active maintainers may be away
and offline for 2 weeks.

So why not give more time? Some observations:

■ Simple problems can be fixed very quickly. Longer deadlines typically
result in delaying the trivial fix.

■ Hard problems should be fixed rather urgently, but typically cannot.
(E.g, memory problems detected by valgrind or sanitizers.)

■ Severity (ERROR, WARNING, NOTE) does not necessarily correspond
to importance (a test may simply be wrong and hence not be a real
problem, but an Rd xref that no longer works is a real problem).

Slide 35



Deadlines

The usual deadline is 2 weeks (some “lesser” issues get one month).

Clearly, 2 weeks is very short: even active maintainers may be away
and offline for 2 weeks.

So why not give more time? Some observations:

■ Simple problems can be fixed very quickly. Longer deadlines typically
result in delaying the trivial fix.

■ Hard problems should be fixed rather urgently, but typically cannot.
(E.g, memory problems detected by valgrind or sanitizers.)

■ Severity (ERROR, WARNING, NOTE) does not necessarily correspond
to importance (a test may simply be wrong and hence not be a real
problem, but an Rd xref that no longer works is a real problem).

Slide 35



Deadlines

What are the times between reporting issues and getting these fixed?

Numbers of days between report and next publish (may be unrelated):

Min. 1st Qu. Median Mean 3rd Qu. Max.
1st 1 3 8 13.06884 13 370
2nd 1 3 10 15.72203 26 328
3rd 1 2 5 15.79412 12 301

Percentage of these days relative to given deadline:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1st 2.70 14.29 50.00 83.00 89.47 2371.43
2nd 3.23 14.29 64.29 77.62 100.00 2342.86
3rd 3.33 14.29 35.71 110.75 85.71 2150.00

Slide 36



Deadlines

Numbers of days between report and next publish (may be unrelated,
hence cut at 50):

Days

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

40

0 10 20 30 40 50

1st

0 10 20 30 40 50

2nd

0 10 20 30 40 50

3rd

Slide 37



CRAN task views

Provide guidance on which packages on CRAN are relevant for tasks
related to a certain topic.

Very nice CRAN service provided by the CRAN Task View Initiative
(pioneered by Achim Zeileis).

Current number of views: 44 (topics from ActuarialScience to
WebTechnologies)

Numbers of packages in views:

Min. 1st Qu. Median Mean 3rd Qu. Max.
31.00 54.25 105.00 123.95 170.25 394.00

Overall, cover 4574 packages (21.79% of all currently active CRAN
packages)

Slide 38



CRAN package DOIs

Starting 2024-06, all current CRAN packages have DOIs.

Registration costs are covered by the R Foundation.

Ideally, registration (with crossref) would provide metadata, including
ORCID iDs for authors and DOIs for references.

Ideally maintainers would provide Authors@R.

Ideally maintainers would provide ORCID iDs and DOIs where “possible”.

Slide 39



CRAN package DOIs

Percentages of CRAN packages with Authors@R fields (TRUE) according
to year of publication:

Year

H
as

 A
ut

ho
rs

@
R

2008 2014 2017 2019 2021 2022 2023 2024

FA
LS

E
T

R
U

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slide 40



CRAN package DOIs

Percentages of CRAN packages with Authors@R fields with at least one
person with ‘aut’ role and ORCID iD (TRUE), according to year of
publication:

Year

H
as

 S
om

e 
A

ut
ho

r 
w

ith
 O

R
C

ID
 iD

2012 2017 2019 2021 2022 2023 2024

T
R

U
E

FA
LS

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Slide 41



CRAN package HTML refmans

R 4.4.0 has added pkg2HTML() for creating static HTML package refmans

Want to change CRAN package web pages to use these in preference to
the PDF refmans

Work in progress (over the summer?)

Biggest challenge: handling Rd cross-references (xrefs)

Consider \link{FOO}. Where should topic FOO be found?

For dynamic help, if not in package itself, try base & recommended
packages, then everything else “available” (installed).

Makes some sense, but actually not that much (suppose you have all of
CRAN installed).

Slide 42



CRAN package HTML refmans

For static CRAN refmans, we clearly have the topics from all CRAN
packages available.

Rd xrefs can only reliably be resolved if they use package anchors:

\link[PKG]{FOO}

(or \link[PKG:BAR]{FOO} if necessary).

So (in due course), all Rd xrefs to topics not in package itself or the base
packages should get package anchors.

How much active maintenance will this require?

Note: needs a concerted effort of CRAN and Bioconductor.

Slide 43



CRAN package HTML refmans

Total number of Rd xrefs in base and CRAN packages: 1262980

Total number of these Rd xrefs with package anchors: 182135

Where can these packages be found?

base CRAN BioC rems none
42167 139000 888 11 69

Number of CRAN packages with no Rd xrefs: 7170

Number of CRAN packages with Rd xrefs needing package anchors:
2434

(I.e., with at least one Rd xref to topic not in package itself or the base
packages and without a package anchor.)

Slide 44



CRAN package HTML refmans

Distribution of numbers of package anchors needed:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
699 395 227 172 117 123 73 75 54 47 44 35 21 22 18 27
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
9 19 18 13 8 18 10 11 9 12 7 8 1 8 3 7

33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 52
5 5 5 1 2 3 6 6 1 2 6 1 3 4 1 1

53 54 55 56 57 58 59 62 64 66 67 68 69 70 71 73
3 1 2 2 2 4 2 3 2 1 3 2 1 1 1 1

76 80 81 84 86 89 90 93 95 101 110 112 118 127 128 130
2 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1

132 149 151 155 156 157 160 161 169 182 197 209 217 237 281 309
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

426 460 971 1393
1 1 1 1

Slide 45



Activate yourself

Keep your maintainer email address up-to-date and working

Provide Authors@R in your package DESCRIPTION

Provide ORCID iDs for the persons in your Authors@R and inst/CITATION.

Provide DOIs where “possible”

Add Rd xref package anchors where now necessary

Contribute to services (CRAN task views, . . . )

Provide services based on CRAN

Help with core CRAN services

Donate to the R Foundation

Slide 46



Activate yourself

Keep your maintainer email address up-to-date and working

Provide Authors@R in your package DESCRIPTION

Provide ORCID iDs for the persons in your Authors@R and inst/CITATION.

Provide DOIs where “possible”

Add Rd xref package anchors where now necessary

Contribute to services (CRAN task views, . . . )

Provide services based on CRAN

Help with core CRAN services

Donate to the R Foundation

Slide 46



Activate yourself

Keep your maintainer email address up-to-date and working

Provide Authors@R in your package DESCRIPTION

Provide ORCID iDs for the persons in your Authors@R and inst/CITATION.

Provide DOIs where “possible”

Add Rd xref package anchors where now necessary

Contribute to services (CRAN task views, . . . )

Provide services based on CRAN

Help with core CRAN services

Donate to the R Foundation

Slide 46



Activate yourself

Keep your maintainer email address up-to-date and working

Provide Authors@R in your package DESCRIPTION

Provide ORCID iDs for the persons in your Authors@R and inst/CITATION.

Provide DOIs where “possible”

Add Rd xref package anchors where now necessary

Contribute to services (CRAN task views, . . . )

Provide services based on CRAN

Help with core CRAN services

Donate to the R Foundation

Slide 46



Activate yourself

Keep your maintainer email address up-to-date and working

Provide Authors@R in your package DESCRIPTION

Provide ORCID iDs for the persons in your Authors@R and inst/CITATION.

Provide DOIs where “possible”

Add Rd xref package anchors where now necessary

Contribute to services (CRAN task views, . . . )

Provide services based on CRAN

Help with core CRAN services

Donate to the R Foundation

Slide 46



Activate yourself

Keep your maintainer email address up-to-date and working

Provide Authors@R in your package DESCRIPTION

Provide ORCID iDs for the persons in your Authors@R and inst/CITATION.

Provide DOIs where “possible”

Add Rd xref package anchors where now necessary

Contribute to services (CRAN task views, . . . )

Provide services based on CRAN

Help with core CRAN services

Donate to the R Foundation

Slide 46



Activate yourself

Keep your maintainer email address up-to-date and working

Provide Authors@R in your package DESCRIPTION

Provide ORCID iDs for the persons in your Authors@R and inst/CITATION.

Provide DOIs where “possible”

Add Rd xref package anchors where now necessary

Contribute to services (CRAN task views, . . . )

Provide services based on CRAN

Help with core CRAN services

Donate to the R Foundation

Slide 46



Activate yourself

Keep your maintainer email address up-to-date and working

Provide Authors@R in your package DESCRIPTION

Provide ORCID iDs for the persons in your Authors@R and inst/CITATION.

Provide DOIs where “possible”

Add Rd xref package anchors where now necessary

Contribute to services (CRAN task views, . . . )

Provide services based on CRAN

Help with core CRAN services

Donate to the R Foundation

Slide 46



Activate yourself

Keep your maintainer email address up-to-date and working

Provide Authors@R in your package DESCRIPTION

Provide ORCID iDs for the persons in your Authors@R and inst/CITATION.

Provide DOIs where “possible”

Add Rd xref package anchors where now necessary

Contribute to services (CRAN task views, . . . )

Provide services based on CRAN

Help with core CRAN services

Donate to the R Foundation

Slide 46



Coordinates

Kurt Hornik
Institute for Statistics and Mathematics
Department of Finance, Accounting and Statistics
WU Wirtschaftsuniversität Wien
Welthandelsplatz 1, A-1020 Wien

Tel: +43/1/313-36x4756
Email: Kurt.Hornik@wu.ac.at
WWW: https://statmath.wu.ac.at/~hornik

Slide 47

https://statmath.wu.ac.at/~hornik

