
Impulse-Response and CAD-Model-Based
Physical Modeling in Faust

Pierre-Amaury Grumiaux1, Romain Michon2,
Emilio Gallego Arias1, and Pierre Jouvelot1

1MINES ParisTech, PSL Research University, France
2CCRMA, Stanford University, USA

Abstract
We present a set of tools to quickly implement modal
physical models in the Faust programming lan-
guage. Models can easily be generated from any
impulse response or 3D graphical representation of
a physical object.

This system targets users with little knowledge
in physical modeling and willing to use this type of
synthesis technique in a musical context.

Keywords
Physical Modeling Synthesis, Faust Language, Dig-
ital Signal Processing

1 Introduction

The Faust programming language has proven
to be well suited to implement physical mod-
els of musical instruments [Michon and Smith,
2011] using waveguides [Smith, 2010] and modal
synthesis [Adrien, 1991].

In this short paper, we present two Python
scripts1 allowing to easily generate Faust
modal physical models: ir2dsp.py and
mesh2dsp.py.

• ir2dsp.py takes an audio file containing
an impulse response as its main argument
and converts it into a Faust file imple-
menting the corresponding modal physical
model.

• mesh2dsp.py outputs the same type of
model but takes an .stl2 file containing
the specification of any 3D object designed
with a CAD3 program as its main argu-
ment.

Faust programs generated by ir2dsp.py and
mesh2dsp.py are ready to use and can be
compiled to any of the Faust targets (stan-
dalone applications, plug-ins, etc.).

1https://github.com/rmichon/pmFaust/ –
All URLs in this paper were verified on 07/04/2017.

2STereoLithography.
3Computer-Aided Design.

After briefly describing these two tools, we’ll
evaluate them and provide directions for future
works.

2 Faust Modal Physical Model

Any linear percussion instrument can be imple-
mented using a bank of resonant bandpass fil-
ters [Smith, 2010]. Each filter implements one
mode (a sine or cosine function) of the system
and can be configured by providing three pa-
rameters: the frequency of the mode, its gain,
and its resonance duration (T60 ).

Such a filter can be easily implemented in
Faust using a biquad filter (tf2) and by com-
puting its poles and zeros for a given frequency
(f) and T60 (t60):

modeFilter(f,t60) = tf2(b0,b1,b2,a1,a2)
with{

b0 = 1;
b1 = 0;
b2 = -1;
w = 2*PI*f/SR;
r = pow(0.001,1/float(t60*SR));
a1 = -2*r*cos(w);
a2 = rˆ2;

};
mode(f,t60,gain) =

modeFilter(f,t60)*gain;

The modeFilter function can be easily ap-
plied in parallel in Faust using the par opera-
tor to implement any modal physical model:

model =
_ <:
par(i,nModes,

mode(freq(i),t60(i),gain(i)))
:> _;

The Faust-generated block diagram corre-
sponding to this code, with nModes = 4, freq(i
)= 100*(i+1), and (t60(i),gain(i)) as succes-
sively (0,9,0.9), (0.8,0.9), (0.6,0.5) and (0.5,0.6),
can be visualized in Figure 1.

This type of model can be easily excited by a
filtered noise impulse (see Figure 2). The cut-
off frequency of the lowpass and highpass filters



mode(100)(0.9f)(0.9f)

mode(200)(0.8f)(0.9f)

mode(300)(0.6f)(0.5f)

mode(400)(0.5f)(0.6f)

process

Figure 1: Block diagram of a Faust modal
physical model.

can be used to excite specific zones of the spec-
trum of the model and to choose the “excitation
position.” Since this system is linear, the same
behavior could be achieved by scaling the gain of
the different modes, but the filter approach that
we use here will better integrate to our modu-
lar physical modeling synthesis toolkit, briefly
presented in §6.

White Noise Lowpass Highpass Envelope To Model

Figure 2: Excitation generator algorithm used
to drive our modal physical models.

3 ir2dsp.py

ir2dsp.py takes an audio file containing an
impulse response as its main argument. After
performing the Fast Fourier Transform (FFT)
on it, modes information is extracted by carry-
ing out peaks detection. The T60 of each mode
is computed by measuring its bandwidth at -3
dB.

Modes information is formatted by
ir2dsp.py to be plugged to a generic
modal Faust physical model similar to the one
described in §2. The output of the Python pro-
gram is a ready-to-use Faust file implementing
the model.

The goal of this tool is not to create very ac-
curate models but rather to be able to strike any
object (e.g., a glass, a metal bar, etc.), record
the resulting sound, and turn it into a playable
digital musical instrument.

4 mesh2dsp.py

The output of mesh2dsp.py is the same as
ir2dsp.py (see §3), but it takes a .stl file as

its input instead of an impulse response. stl is
a common format supported by most CAD pro-
grams to export the description of 3D objects.

After converting the provided .stl file into
a mesh, mesh2dsp.py performs a Finite Ele-
ment Analysis (FEA) using Elmer 4 Various pa-
rameters such as the Young Modulus, the Pois-
son Coefficient, and the density of the material
of the object must be provided to carry out this
task.

The result of the analysis is a set of eigen-
values and mass participations for each mode.
Eigenvalues are then converted to mode fre-
quencies and mass participations to mode gains.
Unfortunately, this technique doesn’t allow to
calculate the T60 of the modes which can be
configured by the user directly from the Faust
program.

5 Evaluation

To evaluate the accuracy of ir2dsp.py, we
recorded the impulse response of a can and gen-
erated its corresponding modal physical model.
Figure 3 shows the spectrogram of the impulse
response of the can and Figure 4 the spectro-
gram of the impulse response of the physical
model generated by ir2dsp.py. ir2dsp.py
was configured to detect peaks at a minimum
value of -20 dB and at least 100 Hz spaced
from each other. We see that the synthesized
sound is pretty close to the recorded version.
T60 s are not perfectly accurate since they were
calculated by measuring the bandwidth of the
mode. Tracking their evolution in the time do-
main would provide better results; thus we plan
to use this technique in the future instead.

Figure 3: Spectrogram of an impulse response
of a can

4https://www.csc.fi/web/elmer/



Figure 4: Spectrogram of the output of the
modal model generated with ir2dsp.py from
a can IR

mesh2dsp.py was tested with the geomet-
ric 3D model of a solid bar and provided good
results.

6 Future Work

This work has been carried out as part of a
larger project on designing a physical modeling
toolkit for the Faust programming language.
ir2dsp.py and mesh2dsp.py will be inte-
grated to it.

We plan to improve ir2dsp.py by using a
better T60 measurement algorithm. Indeed,
the T60 of each mode is currently computed
by measuring its bandwidth after taking the
FFT of the entire impulse response. A better
approach would be to extract this information
from a time-frequency representation of the sig-
nal (i.e., spectrogram), which would be more
accurate.

Finally, we would like to try other open-
source packages than Elmer to carry out the
FEA in mesh2dsp.py to get better results and
to smooth its integration in our Faust physical
modeling toolkit.

7 Conclusion

We presented a series of tools allowing to design
at very high level ready-to-use physical mod-
els of musical instruments. Models can be gen-
erated from impulse responses or 3D graphical
representations of physical objects.

While the models generated by this system
are far from being accurate, we believe that it
provides a convenient way for composers and
musicians to design expressive custom instru-
ments usable in a musical context.

8 Acknowledgements

Our thanks go to Yann Orlarey for his help with
the use of Faust.

References

Jean-Marie Adrien. 1991. The missing link:
Modal synthesis. In Representations of Musi-
cal Signals, chapter The Missing Link: Modal
Synthesis, pages 269–298. MIT Press, Cam-
bridge, USA.

Romain Michon and Julius O. Smith. 2011.
Faust-STK: a set of linear and nonlinear
physical models for the Faust programming
language. In Proceedings of the 14th Inter-
national Conference on Digital Audio Effects
(DAFx-11), Paris, France, September.

Julius Orion Smith. 2010. Physical Audio
Signal Processing for Virtual Musical Instru-
ments and Digital Audio Effects. W3K Pub-
lishing.


