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This poster introduces a draft specification for composable custom 
instruction extensions in RISC-V. The RISC-V custom instruction encoding space 
is unmanaged, leading to potential conflicts when combining different 
accelerators and their libraries into one system. This specification defines 
interop interfaces including a physical logic interface and CSRs that manage the 
composition of multiple, independently developed custom instruction 
extensions. Contributions include custom interface multiplexing and stateful but 
isolated state for multiple harts sharing multiple custom function units (CFUs). 

Today, custom extensions don’t interoperate 
SoCs may use app-specific hardware accelerators to improve 

performance and energy – particularly so with FPGA SoCs that 
offer plasticity and abundant spatial parallelism. The RISC-V ISA 
explicitly supports domain-specific custom extensions. 

There are many RISC-V processors with custom instruction 
extensions, and now some vendor tooling. But the accelerated 
libraries that use these extensions and the cores that implement 
them are authored by different organizations, using different 
tools, and may not work together. Different custom extensions 
may conflict in use of opcodes, or their implementations may 
require different CPU cores, pipeline structures, logic interfaces, 
models of computation, means of discovery, context switching, 
or error reporting. Composition is difficult, impairing reuse of 
hardware and software, and fragmenting the RISC-V ecosystem. 

Unleashing innovation in interoperable custom extensions 
RISC-V International uses a community process to define a 

new standard extension to the RISC-V ISA. New extensions must 
be of broad interest and utility to merit allocation of precious 
RISC-V opcode space, CSR space, and generally to add to the 
enduring complexity of the platform. New extensions typically 
require years to reach consensus and ratification. Each coexists 
with all other extensions. Might any new custom extension also 
safely coexist (compose) with all extensions? Might there be a 
rich ecosystem of plug-and-play custom extensions? Yes! 

Our proposed interop interfaces allow any party to rapidly 
define, develop, and use: 

• a custom interface (CI): a custom extension consisting of a 
set of custom function (CF) instructions, 

• a custom function unit (CFU): a composable hardware core 
that implements a custom interface, 

• an accelerated CI library that issues custom instructions, 
• a processor that can mix and match any CFUs (plural), and 
• tools to create and compose these elements into systems. 

 
Figure 1: Composing interfaces, CFU cores, and libraries into systems 

Custom interfaces, their CFUs and libraries, may be open or 
proprietary, even of narrow interest. Anyone can mint a new 
one. A new CPU core can use existing CFUs and CI libraries. A 
new interface, CFU, or library can be used by existing CPUs and 

systems. Many CFUs may implement a given custom interface, 
and many libraries may issue instructions of a custom interface. 

Such composition requires routine integration of separately 
authored, separately versioned elements into stable systems 
that just work together, now, and over time, as elements evolve. 

To ensure composition does not change the behavior of any 
interface, interfaces’ state contexts are isolated: a CF instruction 
only accesses its source operands and its current state context. 

Custom interface multiplexing 
Interface multiplexing provides an inexhaustible, collision-

free opcode space for custom instructions without any central 
opcode authority. Every new interface can use any or all of the 
custom-0/-1 opcode space. Each accelerated CI library, prior to 
issuing any custom instructions, calls a runtime to obtain that 
interface’s (CFU,state) selector value and write it to a new 
mcfu_selector CSR. This selects the hart’s current interface 
(and CFU core) and its current interface state context. Like the 
vector extension's vsetvl instruction, an mcfu_selector write 
configures the behavior of custom instructions that follow. 

 
Figure 2: SW-HW interface: CI multiplexing ⇒ CFU logic interface 

Custom function unit logic interface (CFU-LI) 
A CPU executes a CF instruction by sending a CFU request to 

a CFU, carrying context IDs and operands. The CFU processes 
the request, may update its state, and sends a CFU response, 
which updates a destination register and the cfu_status CSR. 

The CFU-LI defines standard signaling and metadata for 
combinational, fixed-latency, and variable-latency CFUs, so that 
CPU and CFU packages may be automatically composed. 

 
Figure 3: Example variable-latency CFU-L2 transactions 
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