
Composable Custom Extensions and Custom Function Units for RISC-V
Jan Gray (Gray Research) , Tim Vogt (Lattice Semiconductor), Tim Callahan (Google), Charles Papon (SpinalHDL),

Guy Lemieux (University of British Columbia), Maciej Kurc (Antmicro), Karol Gugala (Antmicro)

This poster introduces a draft specification for composable custom
instruction extensions in RISC-V. The RISC-V custom instruction encoding space
is unmanaged, leading to potential conflicts when combining different
accelerators and their libraries into one system. This specification defines
interop interfaces including a physical logic interface and CSRs that manage the
composition of multiple, independently developed custom instruction
extensions. Contributions include custom interface multiplexing and stateful but
isolated state for multiple harts sharing multiple custom function units (CFUs).

Today, custom extensions don’t interoperate
SoCs may use app-specific hardware accelerators to improve

performance and energy – particularly so with FPGA SoCs that
offer plasticity and abundant spatial parallelism. The RISC-V ISA
explicitly supports domain-specific custom extensions.

There are many RISC-V processors with custom instruction
extensions, and now some vendor tooling. But the accelerated
libraries that use these extensions and the cores that implement
them are authored by different organizations, using different
tools, and may not work together. Different custom extensions
may conflict in use of opcodes, or their implementations may
require different CPU cores, pipeline structures, logic interfaces,
models of computation, means of discovery, context switching,
or error reporting. Composition is difficult, impairing reuse of
hardware and software, and fragmenting the RISC-V ecosystem.

Unleashing innovation in interoperable custom extensions
RISC-V International uses a community process to define a

new standard extension to the RISC-V ISA. New extensions must
be of broad interest and utility to merit allocation of precious
RISC-V opcode space, CSR space, and generally to add to the
enduring complexity of the platform. New extensions typically
require years to reach consensus and ratification. Each coexists
with all other extensions. Might any new custom extension also
safely coexist (compose) with all extensions? Might there be a
rich ecosystem of plug-and-play custom extensions? Yes!

Our proposed interop interfaces allow any party to rapidly
define, develop, and use:

• a custom interface (CI): a custom extension consisting of a
set of custom function (CF) instructions,

• a custom function unit (CFU): a composable hardware core
that implements a custom interface,

• an accelerated CI library that issues custom instructions,
• a processor that can mix and match any CFUs (plural), and
• tools to create and compose these elements into systems.

Figure 1: Composing interfaces, CFU cores, and libraries into systems

Custom interfaces, their CFUs and libraries, may be open or
proprietary, even of narrow interest. Anyone can mint a new
one. A new CPU core can use existing CFUs and CI libraries. A
new interface, CFU, or library can be used by existing CPUs and

systems. Many CFUs may implement a given custom interface,
and many libraries may issue instructions of a custom interface.

Such composition requires routine integration of separately
authored, separately versioned elements into stable systems
that just work together, now, and over time, as elements evolve.

To ensure composition does not change the behavior of any
interface, interfaces’ state contexts are isolated: a CF instruction
only accesses its source operands and its current state context.

Custom interface multiplexing
Interface multiplexing provides an inexhaustible, collision-

free opcode space for custom instructions without any central
opcode authority. Every new interface can use any or all of the
custom-0/-1 opcode space. Each accelerated CI library, prior to
issuing any custom instructions, calls a runtime to obtain that
interface’s (CFU,state) selector value and write it to a new
mcfu_selector CSR. This selects the hart’s current interface
(and CFU core) and its current interface state context. Like the
vector extension's vsetvl instruction, an mcfu_selector write
configures the behavior of custom instructions that follow.

Figure 2: SW-HW interface: CI multiplexing ⇒ CFU logic interface

Custom function unit logic interface (CFU-LI)
A CPU executes a CF instruction by sending a CFU request to

a CFU, carrying context IDs and operands. The CFU processes
the request, may update its state, and sends a CFU response,
which updates a destination register and the cfu_status CSR.

The CFU-LI defines standard signaling and metadata for
combinational, fixed-latency, and variable-latency CFUs, so that
CPU and CFU packages may be automatically composed.

Figure 3: Example variable-latency CFU-L2 transactions

References

[1] Draft Proposed RISC-V Composable Custom Extensions
Specification, https://github.com/grayresearch/CFU.

https://github.com/grayresearch/CFU

