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1. Introduction: a composable custom extension
ecosystem


Tip blocks signify non-normative commentary. This Introduction is non-normative. Sections titled
Example are non-normative.

 Note blocks signify review comments: open issues, suggested improvements.

SoC designs employ application-specific hardware accelerators to improve performance and reduce energy
use — particularly so with FPGA SoCs that offer both plasticity and abundant spatial parallelism. The RISC-V
instruction set architecture (ISA) anticipates this and invites domain-specific custom instructions within the base
ISA (Waterman & Asanović, 2019, p. 5).

There are many RISC-V processors with custom instruction extensions, and vendor tooling for creating them. But
the software libraries that use these extensions and the cores that implement them are authored by different
organizations, using different tools, and might not work together side-by-side in a new system. Different
composable extensions may conflict in use of custom opcodes, custom CSR addresses, or their implementations
may require different CPU cores, pipeline structures, logic extensions, models of computation, means of discovery,
or error reporting regimes. Composition is difficult, impairing reuse of hardware and software, and fragmenting the
RISC-V ecosystem: if you can’t use this extension, you can’t also use that extension.

The RISC-V Composable Custom Extensions Specification defines an ISA extension plus non-ISA interoperation
interfaces (HW-HW and HW-SW) and metadata, enabling a new, entirely optional, backwards compatible, managed
subcategory of custom extensions, that make it easy and routine to compose my composable extensions with yours,
and others, without prior coordination, and without recompiling our libraries or our operating system.

This enables robust reuse of anyone’s composable extensions and libraries, and provides a uniform programming
model across all such extensions, together enabling a marketplace of reusable extensions, libraries, and hardware
modules.

1.1. Open, agile, interoperable instruction set innovation

RISC-V International uses a community process to define a new optional standard extension to the RISC-V
instruction set architecture. Candidate extensions must be of broad interest and general utility to justify the
permanent allocation of precious RISC-V opcode space, CSR space, and more generally to add to the enduring,
essential complexity of the RISC-V platform. New standard extensions typically require months or years to reach
consensus and ratification.

In contrast, the extensions defined in this specification allow anyone, whether individual, organization, or
consortium, to rapidly define, develop, and use:

• a composable extension (CX): the interface contract of a composable custom extension consisting of a set of custom
function (CF) instructions and CX custom CSRs (CX CSRs) and their behavior;

• a composable extension unit (CXU): a composable hardware core that implements a composable extension;

• a composable extension library that issues custom functions of composable extensions;

• a processor that can use any CXU;

• tools to create or consume these elements; and
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• to compose these arbitrarily into a system of hardware accelerated software libraries.

There need be no central authority, no lock in, no lock out, and no asking for permission. Composable extensions,
their CXUs and libraries, may be open or proprietary, of broad or narrow interest. A new processor can use existing
CXUs and CX libraries. A new composable extension, CXU, and library can be used by existing CPUs and systems.
Many CXUs may implement a given composable extension, and many libraries may use a composable extension.

Such open composition requires routine, robust integration of separately authored, separately versioned elements
into stable systems that just work so that if the various hardware and software elements correctly work separately,
they correctly work together, and so that if a composed system works correctly today, it continues to work, even as
extensions and implementations evolve across years and decades.

Composition also requires an unlimited number of independently developed composable extensions to coexist
within a fixed ABI and ISA. This is achieved with composable extension multiplexing, described below.

1.2. Examples

Alice develops a multicore RISC-V-based FPGA SmartNIC application processor subsystem. The software stack
includes processes that already use a cryptography CX library that issues custom instructions, of a cryptography
composable extension, that execute on a cryptography composable extension unit.

Profiling reveals a compute bottleneck in file block data compression. Fortunately, the compression library can use
a hardware-accelerated compression composable extension, if present in the system. Alice obtains a compression
CXU package that implements the extension, adds it to the MPSoC system manifest, configures its parameter
settings, then re-composes and rebuilds the FPGA design. The cryptography CXU, compression CXU, CXU
interconnect, and CPU cores all use the same CXU Logic Interface, so this incurs no RTL coding. The system CXU map
(a new part of the device tree) is updated to map from the compression composable extension ID (CX_ID) (a 128-bit
GUID) to the compression unit CXU_ID.

The compression library calls the CX Runtime to discover if compression acceleration is available. The runtime
consults the CXU map for that CX_ID, finding the compression CXU_ID. Next the library uses the CX Runtime to
select the compression extension, and its CXU, prior to issuing compression instructions to this CXU. Later the
cryptography library uses the same CX Runtime API to discover and select the cryptography extension prior to
issuing cryptography instructions to the cryptography CXU.
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Figure 1. Bob’s system, composed from CPU and CXU packages and composable extension libraries

Later, Bob takes Alice’s system design, replaces the CPU cores with different (but also CXU-compatible) cores, and
adds an ML inference library. For further acceleration, Bob defines a new binary neural network inference
composable extension, IBNN, identified with a new CX_ID he mints. Bob’s new BNN custom instructions reuse the
standard custom instruction encodings, which is fine because they’re scoped to IBNN. Bob develops bobs_bnn_cxu
core, and CXU metadata that describes it. He adds that package to the system manifest and rebuilds the system,
updating the CXU map. Bob’s system now runs highly accelerated with cryptography, compression, and inference
custom function instructions issuing from the various CPU cores and executing in the various CXUs.

Figure 1 illustrates this. A Composer EDA tool assembles and configures the reusable, composable CPU and CXU RTL
packages into a complete system, per the system manifest, and generates a devicetree (or similar) that determines
the system CXU map. Each extension library uses the CX Runtime to select its respective composable extension, and
its CXU, prior to issuing custom function instructions of that extension to that CXU.

1.3. Scope: reliable composition via strict isolation

To ensure that composition of composable extensions and their CXUs does not subtly change the behavior of any
extension, each must operate in isolation. Therefore, each custom function (CF) instruction is of limited scope:
exclusively computing an ALU-like integer function of up to two operands (integer register(s) and/or immediate
value), with read/write access to the extension’s private state (if any), writing the result to a destination register.

A CF may access the CX’s custom CSRs (CX CSRs).

A CF may not access other resources, such as floating-point registers or vector registers, pending definition of
suitable custom instruction formats.

A CF may not access isolation-problematic shared resources such as memory, standard CSRs, the program counter,
the instruction stream, exceptions, or interrupts, pending a means to ensure correct composition by design. (Except
that, as with RISC-V floating point extensions, the error model accumulates CX custom operation errors in a shared
CX status standard CSR.)

 The isolated state of a composable extension can include private registers and private memories.
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 CX CSRs provide a uniform, conflict-free way to provide, and access, per CX custom CSRs.

1.3.1. Stateless and stateful composable extensions

A composable extension may be stateless or stateful. For a stateless extension, each CF is a pure function of its
operands, whereas a stateful extension has one or more isolated state contexts, and each CF may access, and as a
side effect, update, the hart’s current state context of the extension (only).

Isolated state means that latency notwithstanding, 1) the behavior of the extension only depends upon the series of
CF requests issued on that extension, and of CX CSR accesses to that extension, and never upon on any other
operation of the system; and 2) besides updating extension state, the CX status CSR, and a destination register,
issuing a CF has no effect upon any other architected state or behavior of the system. Issuing a CF instruction or
accessing a CX CSR may update the current state context of the composable extension but has no effect upon
another state context of that extension, nor that of any other extension.

A CXU implementing a stateful composable extension is typically provisioned with one state context per hart, but
other configurations, including one context per request, activity, fiber, task, or thread, or a small pool of shared
contexts, or several harts sharing one context, or one singleton context, are also possible. Similarly, each CXU in a
system may be configured with a different number of its state contexts.

All stateful composable extensions are serializable and support uniform (extension-agnostic) CX state context
save/restore/management.


CX CSRs provide access to control and status of a stateful composable extension. A stateful CX may also
have other isolated state that is not architecturally visible, but which nevertheless determines the
behavior and results of the CX’s CF instructions and custom CSRs.

1.4. Standard extensions and formats

To facilitate an open ecosystem of composable extensions, CXUs, libraries, and tools, the specification defines
common interop extensions and formats:

• CX-ISA, the Composable Extensions' ISA Extension,

• CX-API, the Composable Extensions' Application Programming Interface,

• CX-ABI, the Composable Extensions' Application Binary Interface,

• CXU-LI, the CXU Logic Interface,

• CXU-MD, build-time CXU Metadata.
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Figure 2. Hardware-software extensions stack. New standard extensions and formats are shaded.

The hardware-software extensions stack (Figure 2) shows how these extensions and formats work together to
compose user-defined composable extensions CX0 and CX1, their libraries, and their CXUs into a system.

1.4.1. CXU Logic Interface (CXU-LI)

The CXU-LI defines the hardware-to-hardware logic extension between a CXU requester (e.g., a CPU) and a CXU
responder (e.g., a CXU). When a custom function instruction issues, the CPU sends a CXU request, providing the
request’s CXU identifier (CXU_ID), the function identifier (FUNC_ID), _state index (STATE_ID), if any, and request
data (operands). The CXU performs the function then sends a CXU response providing response data and error
status.

In a system with multiple CPUs and/or CXUs, switch and adapter CXUs accept and route requests to CXUs and
accept and route responses back to CPUs. The CXU-LI supports CPUs and CXUs of various feature levels of capability
and complexity, including combinational CXUs, fixed-latency CXUs, and variable latency CXUs with flow control.

1.4.2. CX-ISA: composable extensions' ISA extension

The CX-ISA "composable extensions" extension adds four new standard CSRs (and zero new instructions), that
provide access-controlled composable extension multiplexing and error signaling. These CSRs modify the behavior
of custom-[012] instructions (Waterman & Asanović, 2019, p. 143) and custom address CSRs, to compose, conflict-
free, with other composable extensions and with any built-in custom extensions. The four new CXU CSRs are:

• mcx_selector: selects the hart’s current CXU_ID and STATE_ID, for composable extension multiplexing;

• cx_status: accumulates CXU errors;

• mcx_table, cx_index: efficient access control to CXUs and CXU state.


The machine mode mcx_table CSR is probably insufficient for processors with hypervisor privilege
levels. This will require additional spec design work and additional CX-ISA CSRs.

1.4.3. Composable extension multiplexing

Composable extension multiplexing provides inexhaustible collision-free custom instruction opcodes and custom
CSR addresses, for diverse composable extensions, without resort to any central assigned opcodes authority, and
thereby facilitates direct reuse of CX library binaries.
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A custom-extension-aware library, prior to issuing a CF instruction, must first CSR-write a system and hart specific
CX selector value to mcx_selector, routing subsequently issued CF instructions on this hart to its CXU and to a
specific state context. Like the -V vector extension’s vsetvl instructions, a CSR-write to mcx_selector is a prefix
that modifies the behavior of CF instructions that follow. With each CF instruction issued, the CPU sends a CXU
request to the hart’s current CXU and its current state. This request is routed by standard switch and adapter CXUs
to the hart’s current CXU, which performs the custom function using the hart’s current state context. Its response is
routed back to the CPU which writes the destination register and updates cxu_status.

The mcx_selector CX selector value, a tuple (CXU_ID, STATE_ID), is system specific because different systems
may be configured with different sets of CXUs, with different CXU_ID mappings, and is hart specific because
different harts may use different isolated state contexts. Raw CX selector values are not typically compiled into
software binaries.

In a system with multiple CX libraries that invoke CF instructions on different extensions, each library uses the CX
Runtime to look up selectors for a CX_ID and update mcx_selector, routing CF instructions to its extension’s CXU
and state context. Over time, across library calls, mcx_selector is written again and again.


Reuse of custom instruction encodings across extensions will make debugging, esp. disassembly, more
challenging.

The mcx_selector also incorporates a custom operation trap enable (cte). When set, custom instructions and
accesses to custom CSRs raise an illegal instruction exception. This enables software emulation of absent custom
instructions, software emulation of absent composable extensions, and transparent virtualization of stateful
composable extensions.

1.4.4. IStateContext and serializable stateful composable extensions

The specification defines a composable extension IStateContext with four standard custom functions for
serializable stateful composable extensions:

extension IStateContext {
//  CF_ID       custom function
    [1023] int  cf_read_status ();
    [1022] void cf_write_status(int status);
    [1021] int  cf_read_state  (int index);
    [1020] void cf_write_state (int index, int state);
};

The CXU status indicates cumulative error flags, clean/dirty, and state context size. The read/write state functions
access words of the state context.

These standard custom functions enable an extension-aware CX library to access stateful extension specific error
status, and an extension-agnostic runtime or operating system to reset, save, and reload state context(s).

1.4.5. CX-API (Application Programming Interface) and CX-ABI (Application
Binary Interface)

Together the CX-API (the CX Runtime API) and CX-ABI provide the programming model used by composable
extension libraries.
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Both are necessary for correct discovery, operation, and composition of CX libraries. As described above (1.4.2) the
current mcx_selector CSR selects the current composable extension/CXU and state context for the hart. However,
a CX library should not directly create a CX selector value, nor directly access the CSR. Rather a CX library uses the
CX Runtime to look up the CX selector value for its composable extension’s CX_ID and to write it to mcx_selector,
prior to issuing CF instructions. For example,

#include "cx.h"                         // CX Runtime: class use_cx { ... }
..
use_cx cx(CX_ID_IBitmanip);             // csrrw mcx_selector
uint32_t count = cf(pcnt_cf, data, 0);  // cx_reg cf_id, rd, rs1, rs2

The CX-ABI defines the calling convention for managing the mcx_selector CSR.

Its design follows these tenets and (competing) goals:

1. Support composition of CX libraries, including nested composition of CX libraries, alongside legacy custom
extension libraries.

2. Support preexisting legacy custom extension libraries, even when they don’t explicitly manage (disable) CX
muxing.

3. Minimize the CX selection "trust surface" to that of the current function (or perhaps, current library).

4. Minimize the number of CX selector writes.

Therefore for maximum preexisting legacy custom extension library compatibility and maximum paranoia (least
trust of other code), the CX-ABI keeps CX muxing off across function calls, only enabling CX muxing and selecting a
CX and CX state context immediately prior to issuing that CX’s custom instructions.

The CX-ABI defines these five rules, which must be implemented explicitly in code or automatically by CX-ABI
aware compilers:

1. [ABI-INIT]: Initially, the selection is legacy mode.

2. [ABI-ENTRY]: On entry to a function, or following a function call, the selection is legacy mode.

3. [ABI-SELECT-CX]: Code must select a CX prior to issuing that CX’s custom operations.

4. [ABI-DESELECT-CX]: Code that selects a CX must select legacy mode prior to calling a function, returning, or
stack unwinding.

5. [ABI-SELECT-LEGACY]: Code should select legacy mode prior to issuing built-in custom operations.

This is discussed in more detail in the CX-ABI chapter.

1.5. System composition

1.5.1. Metadata and system manifest

To support automatic composition of CPUs and CXUs into working systems, this specification defines a standard
CXU metadata format that details each core’s properties, features, and configurable parameters, including CXU-LI
feature level, data widths, response latency (or variable), and number of state contexts. Each CPU and CXU package,
as well as the system manifest, include a metadata file.
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1.5.2. Composer

A system composer (human or tool) gathers the system manifest metadata and the metadata of the manifest-
specified CPUs and CXUs, then uses (manual or automatic) constraint satisfaction to find feasible, optimal
parameter settings across these components. The composer may also configure or generate switch and adapter
CXUs to automatically interconnect the CPU and the CXUs.

For example, a system composed from a CPU that supports two or three cycle fixed latency CXUs, a CXU1 that
supports response latency of one or more cycles, a CXU2 that has a fixed response latency of three cycles, and CXU3

which is combinational (zero cycles latency), overall has a valid configuration with three cycles of CXU latency, with
the CPU coupled to a switch CXU, coupled to CXU1 and CXU2 and to a fixed latency adapter CXU, coupled to CXU3.

1.5.3. Diversity of systems and operating systems

Composable extensions and CXUs are designed for use across a broad spectrum of RISC-V systems, from a simple
RVI20U (+CX-ISA) microcontroller running bare metal fully trusted firmware, to a multicore RVA20S Linux
profile, running secure multi-programmed, multithreaded user processes running various CX libraries, and with
privileged hypervisors and operating systems securely managing access control to CXUs and CXU state.

1.6. Versioning

Interoperation specifications live for decades. Meanwhile "the only constant is change". This specification
anticipates various axes of versioning.

• Specification versioning. This specification and its requirements will evolve. The extensions and formats it
specifies will evolve. This includes the CXU Logic Interface, for example.

• CXU-LI versioning. The CXU hardware-hardware extension spec will evolve, with new signals, behaviors,
constraints, metadata.

• Composable extension versioning. Any user-defined composable extension may evolve, changing or adding
custom functions, changing behaviors, semantics.

• Component implementation versioning. Without changing the extensions it implements, the implementation of
a component such as a CXU, CPU, or a CX library may change for a bug fix, a performance enhancement, or any
other reason..

How are these anticipated and addressed?

CXU-LI versioning: A CXU module configuration parameter CXU_LI_VERSION indicates to the CXU the version of
the CXU-LI signals and semantics in effect.

Versioning of the extension multiplexing mechanism: The mcx_selector.version field determines the current
extension multiplexing version. It provides backwards compatibility with legacy custom instructions (i.e.,
multiplexing off) and forwards compatibility with future extension multiplexing schemes, anticipating future
layouts and interpretations of other selector fields and future means of decoding custom-[0123] instructions into
CXU requests.

Composable extension versioning: A composable extension is immutable. To change or add any custom functions or
their behaviors, a new composable extension must be minted. (Consider the many AVX vector extensions variants
have been introduced over many years.) With Microsoft COM software components, an extension IFoo might
evolve to become IFoo2. The original IFoo remains and IFoo clients are unaffected. But every component
implements IUnknown::QueryInterface(), to determine if the component implements a given extension. A
component might implement both extensions, giving its client a choice.
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Similarly a CXU might implement two composable extensions, e.g. IPosit, and IPosit2, an enhanced version of
IPosit introduced later. In that case, the CXU will have two CXU IDs, CXU_CXU_ID_MAX=2, one for each extension it
implements, each present in the CXU Map, from CX_ID_IPosit to the first CXU ID and CX_ID_IPosit2 to the
second. Thus each CX software library present can access the extension, functions, and behavior it depends upon,
even if only one CXU module implements both behaviors.

Note how composable extension multiplexing facilitates extension versioning: a new version of an extension (i.e., a
new extension) may be introduced at no cost to any existing or future extension.

Implementation versioning: This does not change the extension to a component (e.g.. for a CXU, its CXU-LI and the
composable extension it implements). At system composition time it may be necessary to specify implementation
version requirements, perhaps in metadata, but this should not be visible to, computed upon, nor depended upon,
the HW-HW-SW interfaces.

 TODO: Add examples of Alice and Bob’s travails with their composed SoC designs, over time.

All version numbering uses semantic versioning semver.org.

1.7. Pushing the envelope

The hardware-hardware and hardware-software extensions proposed in this draft specification are a foundational
step, necessary but insufficient to fully achieve the modular, automatically interoperable extension ecosystem we
envision.

A complete solution probably entails much new work, for example in runtime libraries, language support, tools
(binary tools, debuggers, profilers, instrumentation), emulators, resource managers including operating systems and
hypervisors, and tests and test infrastructure including formal systems to specify and validate composable
extensions and their CXU implementations.

Whether or not the specific abstractions and interoperation extensions proposed herein are adopted, we believe this
specification motivates composable extension composition, and illustrates one approach for such composition
scenarios using RISC-V, in sufficient detail to understand how the moving pieces achieve a workable composition
system, and to spotlight some of the issues that arise.

1.8. Future directions, TODOs

The present specification focuses on composition at the hardware-software extension, and below. Future work
includes:

• Expand the scope of composable extensions to include access to non-integer registers, CSRs, and memory, while
preserving composition.

• Expand the CXU Logic Interface to support greater computation flexibility and speculative execution.

• Design and implement an automatic system composition tool.

1.9. Acknowledgements

Composable Extensions are inspired by the Interface system of the Microsoft Component Object Model (COM), a
ubiquitous architecture for robust arms-length composition of independently authored, independently versioned
software components, at scale, over decades (Microsoft, 2020).

1.7. Pushing the envelope | Page 10

Draft Proposed RISC-V Composable Custom Extensions Specification

https://semver.org


 (End of non-normative Introduction section.)
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2. Composable extensions: the hardware-
software interface
The Composable Extension abstraction bridges software and hardware, enabling diverse software libraries which
target the same extension and diverse hardware CXU cores which implement the same extension. Then composable
extension multiplexing enables composition of systems of separately authored and versioned components.

2.1. Definitions

A custom function (CF) is a function from two integer operands to an integer result and response status. May be
stateless or stateful.

A custom function identifier (CF_ID) is an integer, in the scope of a composable extension, identifying a custom
function. A valid CF_ID is a value that identifies a CF instruction implemented by a configured extension.

A stateless custom function is a CF that is a pure function of its operands (only). Never reads nor writes any other
architected state. Given the same operand values, always produces the same result and response status.

A stateful custom function is a CF that is a function of its operands and its composable extension state context
(only). May read and write the context but never reads or writes other architected state. Equivalently: a CF that is a
function of its operands and of any prior CF invocations upon its composable extension (only).

A composable extension (CX, extension) is a fixed named set of custom functions and custom CSRs. May be
stateless or stateful. Fixed: immutable, i.e., any versioning of the CFs or custom CSRs or the behavior of an extension
necessarily defines a new extension. Named: has a composable extension identifier.

A composable extension identifier (CX_ID) is a 128-bit globally unique ID (GUID) [see RFC-4122], unique in
history, identifying a composable extension.

A stateless composable extension is a fixed named set of set of stateless custom functions. A stateless CX has no
read-write custom CSRs but may have read-only custom CSRs.

A stateful composable extension is a fixed named set of custom functions, at least one of which is a stateful custom
function, plus a set of custom CSRs, plus a composable extension state context.

A composable extension state context (state context, state, context) is an isolated collection of state associated
with a stateful composable extension. Isolated: stateful custom functions of the extension may read and write the
state context, but no other element or operation of the system may read or write the state context.

A CX CSR is a custom CSR of a stateful composable extension.

A custom operation is a custom opcode instruction or a custom address CSR access.

A function ID (FUNC_ID) is an integer, in the scope of a composable extension, that identifies a custom operation.
At present it conveys either a CF_ID of a custom function instruction or a CSR access of a custom CSR access
instruction.

IStateContext is a stateful composable extension, identified as CX_ID_IStateContext, and with four stateful
custom functions: {cf_read_status, cf_write_status, cf_read_state, cf_write_state }, providing a standard
way to manage a composable extension state context. A serializable composable extension is a stateful composable
extension that inherits IStateContext.
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A configured composable extension (configured extension) is an extension that is configured (included) within a
system and is implemented by a CXU of the system (a configured CXU). Within a system, a configured extension
has some configured number of state contexts.

A configured extension subset is a configured extension in which one or more custom functions of the extension
are not implemented. The CF_IDs of unimplemented custom functions are invalid.

A composable extension state context identifier (STATE_ID) is an integer index, in the scope of a configured
extension, in the range [0, no. of state contexts-1] identifying one of an extension’s contexts in the system. A stateless
extension has zero state contexts and uses STATE_ID=0 whenever a STATE_ID is required. A valid STATE_ID is a
value that identifies a state context of a configured extension.

A custom function instruction (CF instruction) is a RISC-V custom instruction that executes a custom function
using a composable extension unit, sourcing the integer operands from the register file and/or from an immediate
field of the instruction, writing the integer result to the register file, and updating the CX status CSR with the
response status.

A composable extension unit (CXU) is a core that implements one or more composable extensions. A stateful CXU
implements at least one stateful composable extension.

A CXU_ID is an integer, in the scope of a system, that identifies a configured extension implemented by a CXU.
When one CXU implements multiple configured extensions, different CXU_IDs identify the configured extensions.
A valid CXU_ID is a CXU_ID value that identifies a configured extension.

A composable extension selector (CX selector, selector) is a 32-bit value written to mcx_selector CSR to select
the hart’s current extension multiplexing version, (e.g., off, version-1, …), whether trap on custom operation is enabled,
and to specify the hart’s current configured extension / CXU and current state context.

A CX selector table is a 4 KB aligned, 4 KB sized table of 1024 CX selectors. When CX access control (§2.8) is
supported, each hart has a mcx_table CSR to address its CX selector table.

A selector index is an integer that identifies an entry in a CX selector table (§2.8).

2.2. New CX control / status registers

A CX-ISA compatible CPU shall implement the mcx_selector and cx_status CSRs for extension multiplexing and
custom function instruction execution.

When CX access control (§2.8) is supported, a CX-ISA compatible CPU shall implement the mcx_table and
cx_index CSRs.

All CX-ISA CSR fields marked reserved are WPRI, write preserve, read ignored, and all other fields are WARL, write
any/read legal values. (An invalid CXU_ID or STATE_ID value is still legal).

All CX-ISA CSRs are initialized to zero on reset.

2.2.1. mcx_selector CSR 0xBC0: select active CXU and state context

The mcx_selector CSR implements composable extension multiplexing. It is assigned various CX selectors over
time. This enables or disables CX multiplexing and selects the hart’s current CXU and state context (within that
CXU). It may only be read or written in machine level.
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
In a privileged architecture system, user level read access to mcx_selector values could reveal goings-
on in other software threads and thus facilitate side channel attacks.


In a privileged architecture with M/S/U levels, for example, what CSRs are required and what access
permissions should they have?

027282931

reservedcxe000

version

Figure 3. mcx_selector CSR 0xBC0 (version 0: legacy custom instructions))

0781516232427282931

cxu_idreservedstate_idreservedcxe100

version

Figure 4. mcx_selector CSR 0xBC0 (version 1: extension multiplexing)

The mcx_selector CSR has the following fields:

.version: extension multiplexing version

• When version=0, disable composable extension multiplexing. When cxe=0, custom-[0123] instructions
execute the CPU’s built-in custom instructions and custom CSR addresses select the CPU’s built-in custom
CSRs. When cxe=1, custom-[0123] instructions and custom CSR accesses raise an illegal-instruction
exception.

• When version=1, enable version-1 composable extension multiplexing. The cxu_id and state_id fields select
the current CXU and state context. When cxe=0, custom-[012] instructions issue CXU requests, and custom
CSR accesses access CX CSRs, of the CXU and state context identified by cxu_id and state_id. When cxe=1,
custom-[012] instructions and custom CSR accesses raise an illegal instruction exception.

• version values 2-7 are reserved.

.cxe: custom operation exception enable

• When (version=0 or version=1) and cxe=1, a custom operation raises an illegal-instruction exception.

.cxu_id: select the hart’s current CXU

• A valid cxu_id identifies a configured CXU.

• When enabled, when cxu_id does not identify a configured CXU, executing a custom operation instruction
causes an invalid CXU_ID error. The cx_status.CX error bit is set and the instruction’s destination register, if
any, is zeroed.

.state_id: select the hart’s current CXU’s current state context

• A valid state_id identifies a state context of a CXU.

• When enabled, when cxu_id is valid, but state_id does not identify a state context of the current CXU,
executing a custom operation instruction causes an invalid STATE_ID error. The cx_status.IS error bit is set
and the custom operation instruction’s destination register, if any, is zeroed.

No error occurs when mcx_selector is CSR-written with an invalid CX selector, i.e., when .cxu_id or .state_id
are invalid. Rather, subsequently executing a custom operation instruction may cause a CXU_ID or STATE_ID
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error.


The hardware that detects these two errors might not be implemented by an extensible processor but
rather in the CXU interconnect (bad .cxu_id) or in a selected CXU (bad .state_id).



The version field provides backwards compatibility with legacy custom extensions, and forwards
compatibility with future CX systems. In future a new CX multiplexing version may be added, with a new
layout and interpretation of selector fields and new means of decoding custom instruction fields into
CXU requests. With seven non-zero values, it accomodates an additional extension multiplexing scheme
every three years for twenty years.



The cxe field enables 1) software emulation of any built-in (legacy) custom instruction or custom CSR;
2) software emulation of any composable extension custom instruction or custom CSR; 3) transparent
virtualization of CX state contexts; and 4) a representation of invalid selector sentinel value(s) to detect
use of erroneous selector indices.

An illegal-instruction trap handler can emulate any absent built-in custom instruction or any custom
instruction of a composable extension, then return to the following instruction.

Using CX access control (§2.8) CSRs, an OS can transparently virtualize many logical CX state contexts
on fewer (or just one!) physical CX state contexts. When multiple CX libraries each try to open the same
(e.g., singleton) CX state context, the OS can give each a unique CX selector index value, with all-but-one
of their corresponding CX selector table entries set cxe=1 to trap on first custom operation. Once such
a selector index is used to select the thread’s current CX, a custom operation incurs an illegal-
instruction exception. The illegal-instruction trap handler determines which virtual CX state context
currently has the physical CX state context, saves that CX state context, sets cxe=1 on its selector table
entry, restores the thread’s current CX’s state context, clears cxe=0 for its selector table entry, rewrites
cx_index with cx_index for the side-effect of updating mcx_selector with this selector table entry
value with cxe=0, and returns from exception, reissuing the custom operation, which does not trap.


The selector’s cxe field is subordinate to the version field so that future revisions of this specification
may incorporate new trap behaviors and trap control bits.

The selector 0x10000000 = '{version:3’b0, cxe:1’b1, reserved:28’b0} is the canonical invalid selector.


Typically an OS will fill unused mcx_table[] entries with this invalid selector to trap first custom
operation use of an invalid selector index.

2.2.2. cx_status CSR 0x801: CX status

The cx_status CSR accumulates CX error flags, which include CX multiplexing errors as well as stateless and
stateful CX custom operation errors. It may be written and read in all privilege levels.

Typical application software will write a CX selector to mcx_selector (perhaps indirectly via cx_index), write 0 to
cx_status, execute some custom operation instructions, and read cx_status to determine if there were any errors.

Updates to cx_status are precise, as if each custom operation instruction issues and completes prior to the next,
even if under the hood custom operations instructions are pipelined or complete out-of-order.
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

Since cx_status behaves like fcsr, it should have similar high performance implementation
considerations.

For example, cx_status bits only accumulate (i.e., are only set, never cleared, as a side-effect of custom
operation instructions that go wrong). This may simplify a cx_status implementation if/when such
instructions may complete out-of-order (e.g., when a first custom operation instruction is much longer
latency than a second such instruction).

Also, it is not until software reads cx_status that previously issued custom instructions must
complete, and even then, an out-of-order processor may value-speculate on cx_status to execute
ahead of completion of previously issued custom operation instructions.

0123456731

IVICISOFIFOPCUreserved

accrued errors

Figure 5. cx_status CSR 0x801

The cx_status CSR has the following fields:

.IV: invalid CX version error

• Set by a CSR-write to mcx_selector, or by a custom operation instruction, when mcx_selector.version is
invalid. (For example, when new software writes a new selector type that old hardware does not implement.)



Arguably issuing a custom operation instruction with an invalid selector version should raise an
illegal-instruction exception. This can only arise when a fatally broken CX runtime or operation system
issues new version selectors for old version hardware. Raising an illegal-instruction exception here
would be consistent with V extension’s vtype.vill behavior.

.IC: invalid CXU_ID error

• Set by a custom operation instruction when mcx_selector.cxu_id is invalid.

.IS: invalid STATE_ID error

• Set by a custom operation instruction when mcx_selector.cxu_id is valid but mcx_selector.state_id is
invalid.

.OF: state context is off error

• Set by a custom operation instruction when mcx_selector.cxu_id and mcx_selector.state_id are valid but
the selected state context is in the off state.

.IF: invalid function ID error

• Set by a custom function instruction when mcx_selector.cxu_id and mcx_selector.state_id are valid but
the instruction’s CF_ID is invalid.

• Also set by a custom address CSR access instruction when mcx_selector.cxu_id and
mcx_selector.state_id are valid but the custom CSR address is invalid.

.OP: CXU operation error

• Set by a custom operation instruction when mcx_selector.cxu_id, mcx_selector.state_id, and its
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CF_ID/CSR address are valid but there is an error in the requested operation or its operands, in lieu of custom
error state.

.CU: custom CXU operation error

• Set by a custom operation instruction of a stateful extension when mcx_selector.cxu_id,
mcx_selector.state_id, and its CF_ID/CSR address are valid but there is an error in the requested operation
or its operands, with custom (extension-defined) error state available.


The custom error state of a stateful extension may be obtained using custom functions of the extension.
In addition, the custom error state of a serializable extension may also be obtained using
IStateContext custom functions cf_read_status and/or cf_read_state.



Should writing mcx_selector automatically zero cx_status? This shortens the code path to use an
extension by one instruction but it precludes the use case of clearing errors, issuing a series of custom
function instructions across multiple extensions, then checking for errors.

For simplicity we do not adopt this option.



How to best anticipate future changes to cx_status? One option: fields and behavior determined by
hart’s current CX version (mcx_selector.version). This becomes unwieldy when multiplexing
between extensions switches different versions. One option: add a cx_status.version field, selecting
an interpretation of cx_status CSR fields. Both options may lead to unnecessarily complicated error
handling in software. Best option: only add new fields to it. Here simplest seems best.

2.2.3. mcx_table CSR 0xBC1: CX selector table base

When CX access control (§2.8) is supported, the MXLEN-bit-wide mcx_table CSR specifies the base address of the
hart’s CX selector table. The CSR may be read and written in machine level.

0111231

0base_page

Figure 6. mcx_table CSR 0xBC1 (when MXLEN=32)

CSR-writes to mcx_table zero the twelve least significant bits of the table address, so a CX selector table address
must be 4 KB aligned.

2.2.4. cx_index CSR 0x800: CX selector index

When CX access control (§2.8) is supported, the cx_index CSR selects an entry from the hart’s CX selector table
entry to write to the mcx_selector CSR. The CSR may be read and written in all privilege levels.

091031

indexreserved

Figure 7. cx_index CSR 0x800

The 10-bit zero-extended index field specifies which entry in the hart’s CX selector table (at the hart’s mcx_table) to
use as the hart’s current CX selector.

In response to CSR-write of cx_index, load the 32-bit CX selector at address (mcx_table + cx_index.index*4)
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and CSR-write the CX selector to mcx_selector, performing the load and the CSR-write at the next higher privilege
level, as if it were a lw instruction (and with a lw instruction’s memory ordering rules) (§2.8).

 Perhaps "at the next higher privilege level" should be "at machine mode privilege level".

2.2.5. Implicit CX-ISA CSR fences

There is an implicit fence between any CX-ISA CSR access and any series of custom operation instructions. All CX-
ISA CSR accesses happen before any custom operation instructions which follow, and all custom operation
instructions happen before any CX-ISA CSR accesses that follow.


For example, after issuing a long latency CF instruction, a CSR read of cx_status must await the CF
instruction’s CXU response.

2.3. Custom function instruction encodings

When mcx_selector.version=1, software issues CF instructions to the current state context of the current
extension (i.e., of the current configured CXU) using R-type, I-type, and flex-type custom function instruction
encodings.

A CX custom instruction may access some subset of the CPU architected state, as well as the selected CX state
context. Presently a CX custom instruction may access the CPU’s integer registers.


What other aspects of the CPU’s state are accessible to a CX custom instruction are the subject of
ongoing design and debate. A non-normative proposal, below, also accomodates CX access to floating-
point registers.

For each instruction encoding, the CF instruction specifies the CF_ID, and source operand values, which may be
two source registers, or one source register and one immediate value. R-type and I-type instructions may write a
destination register whereas flex-type instructions never do so.

In addition, the selected CXU may be configured to also receive the raw 32-bit instruction word and further decode
it to address the selected CX state context’s private registers, register files, RAMs, channels, etc.

2.3.1. Custom-0 R-type encoding

Assembly instruction: cx_reg cf_id,rd,rs1,rs2

Custom-0 R-type encoding

An R-type CF instruction issues a CXU request for a zero-extended 10-bit CF_ID cf_id with two source register
operands identified by rs1 and rs2. The CXU response data is written to destination register rd.

067111214151920242531

1101000rdcf_id[2:0]rs1rs2cf_id[9:3]

custom-0

Figure 8. CX Old R-type instruction encoding
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

When the custom instruction discards either of the X[rs1] or X[rs2] source operands, this encoding
causes false read dependencies on the rs1 and rs2 registers. These can be disclaimed by reading from
source register x0 but each such x0 wastes 5 instruction bits.

When the custom instruction does not write a destination register X[rd] this can be disclaimed by
writing to destination register x0 but this also wastes 5 instruction bits.

In contrast, the following proposed alternative R-type encodings encode specifies register operand and
destination register usage / non-usage using cf_id values, at the cost of fewer (64-256) custom
function instructions per register usage type. We judge this worthwhile to avoid encoding false register
operand and destination register dependencies in the uniform CX custom instruction predecoding, and
to include access to floating-point registers in the CX custom function instructions repetoire.

Proposed New Custom-0 R-type encoding

 Proposal. Non-normative.

An R-type CF instruction issues a CXU request for a zero-extended 10-bit CF_ID cf_id with zero, one, or two
source register operands identified by rs1 and rs2. The CXU response data may optionally be written to destination
register rd.

For CPUs that implement the CX floating-point extension (TBD), source and destination registers are integer
registers or floating-point registers. Otherwise, source and destination registers are integer registers.

067111214151920242531

1101000rdcf_id[2:0]rs1rs2cf_id[9:3]

custom-0

Figure 9. CX R-type custom instruction encoding

Specific cf_id value ranges encode which custom instruction source and destination register fields denote register
file accesses, and which are ignored by the CPU (but may be significant to the CXU).

Table 1. R-type register specifiers encoding

cf_id Type Dest Source Source 2
0-127 RXDSS X[rd] X[rs1] X[rs2]

128-255 RXDS X[rd] X[rs1] 0
256-383 RXD X[rd] 0 0
384-511 RXSS - X[rs1] X[rs2]
512-639 RXS - X[rs1] 0
640-767 RX - 0 0
768-831 RFDSS F[rd] F[rs1] F[rs2]
832-895 RFDS F[rd] F[rs1] 0
896-959 RFD F[rd] 0 0

960-1023 RFSS - F[rs1] F[rs2]

CPUs that implement the CX floating-point extension must also implement the D or F extension. For such CPUs,
CF_IDs 768-1023 encode floating-point custom instructions that access f registers.

If the CPU does not implement the CX floating-point extension, or if floating-point unit status field mstatus.FS is
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Off then any attempt to execute a floating-point custom instruction will raise an illegal instruction exception. Any
floating-point CX custom instruction that modifies floating-point extension state (i.e., f registers) must set
mstatus.FS to Dirty.

As with all CPU CSRs, there is no means for a CXU to access fcsr. If necessary, that must be performed explicitly.


This could require conveying fcsr state back and forth between the CPU and the CXU implementing the
CX floating-point custom instructions, requring additional CXU logic interface signals.

2.3.2. Custom-1 I-type encoding

Assembly instruction: cx_imm cf_id,rd,rs1,imm

An I-type CF instruction issues a CXU request for a zero-extended 3-bit CF_ID cf_id with one source register
operand identified by rs1 and a sign-extended 12-bit immediate value imm. The CXU response is written to
destination register rd.

06711121415192031
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custom-1

Figure 10. CX I-type instruction encoding


This encoding uniformly follows existing I-type instructions such as addi and csrrw, providing an
immediate operand custom function instruction encoding at zero additional datapath cost.

2.3.3. Custom-2 flex-type encoding

Assembly instruction: cx_flex cf_id,rs1,rs2
Assembly instruction: cx_flex25 custom

A flex-type CF instruction issues a CXU request for a zero-extended 10-bit CF_ID cf_id with two source register
operands identified by rs1 and rs2. There is no destination register and CXU response data (but not a possible error
status) is discarded. The instruction is executed purely for its effect upon the selected state context of the selected
CXU.

067111214151920242531

1101101customcf_id[2:0]rs1rs2cf_id[9:3]

custom-2

Figure 11. CX flex-type instruction encoding

Alternatively, equivalently, the cx_flex25 form of instruction issues an arbitrary 25-bit custom instruction.

06731

1101101custom

custom-2

Figure 12. CX flex-type instruction alternate encoding


A flex-type CF instruction may be used with a CXU-L2 request’s raw instruction field req_insn (3.4.6)
to provide an arbitrary 32-7=25-bit custom request to a CXU. The absence of an (integer) destination
register field is a feature that provides added, CPU-uninterpreted, custom instruction bits to a CXU.
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2.4. CX CSR accesses

When mcx_selector.version=1, CSR read/write instructions issue custom CSR accesses (i.e., CX CSR accesses) to
the current state context of the current composable extension.

Per the Priv spec, an attempt to access a custom CSR without appropriate privilege level raises an illegal-instruction
exception and an attempt to write a read-only custom CSR register raises an illegal-instruction exception.

Per the Zicsr spec, the only CSR access instructions that do not write to a CSR are CSRRS and CSRRC with rs1=x0
and CSRRSI and CSRRCI with uimm=0. These are mapped to a CXU request pseudo-instruction CSRR, enabling a CXU
to distinguish between a read-write access and a read-only access. There is no means to distinguish between a CX
CSR read-write access and a write-only access: all CX CSR accesses are read accesses. There is no need and no
means to distinguish between a CX CSR access using a source value from a source register and the equivalent access
using a source value from the 5-bit uimm field.

06711121415192031
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dest
dest
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In summary CX CSR access instructions are mapped into one of four CXU CSR access pseudo-instructions: CSRR,
CSRRW, CSRRS, CSRRR.

2.5. Multiplexing custom instructions and custom CSR accesses
across composable extensions

Figure 13 illustrates how custom function instruction and custom CSR accesses enjoy conflict-free composable
extension composition via composable extension multiplexing. With multiplexing enabled
(mcx_selector.version=1), when the CPU issues a custom operation instruction, it produces a CXU request from
the fields of the instruction, two source operands from the register file and/or an immediate field of the instruction,
and the cxu_id and state_id fields of mcx_selector. The CXU request may include the request ID cookie
(defined by the CPU), the CXU_ID, STATE_ID, raw instruction, function (CF_ID or CSR access function), and
operands. The CXU_ID identifies which CXU must process the request. The CXU includes state context(s) and a
datapath. The STATE_ID selects the state context to use for this request. The CXU checks for errors in CXU_ID,
STATE_ID, and function per 2.2.2, processes the request, possibly updating this state context, and produces a CXU
response, which may include the same request ID cookie, a success/error status, and the response data. The CPU
commits the custom operation instruction by updating cx_status (when response status is an error condition) and
writing the response data to the destination register.
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Figure 13. HW-SW interface: flow of information for execution of a custom operation instruction

Multiple custom operation instructions may be in flight at the same time, particularly in a system with pipelined
CPUs or pipelined CXUs. A CPU may send a request ID and later receive the (same) ID back to correlate requests
sent and responses received.

Table 2 defines the mapping from HW-SW interface entities, such as the cf_id, rd, rs1, rs2, imm, csr, uimm fields
of a custom function instruction or a custom CSR access instruction and the mcx_selector and cx_status CSRs,
to the CXU Logic Interface’s request and response signals (§3.4).

Table 2. Mapping of HW-SW interface entities to CXU-LI signals

CXU-LI
signal

← Source or → Destination

req_id ← CPU
req_cxu ← mcx_selector.cxu_id
req_state ← mcx_selector.state_id
req_insn ← insn
req_func ← insn.cf_id {custom-[012]} or csr_func_id(insn) {csrr*}
req_data0 ← R[insn.rs1] {custom-[012] or csrr[wsc]} or insn.uimm {csrr[wsc]i}
req_data1 ← R[insn.rs2] {custom-[02]} or insn.imm {custom-1} or insn.csr {csrr*}
resp_id → CPU
resp_status → cx_status bits
resp_data → R[insn.rd] {custom-[01] or csrr*}

A custom CSR access instruction (CSRR, CSRRW, CSRRS, CSRRC) maps to one of four req_func FUNC_IDs with msb
set to one to distinguish them from custom function instructions' CF_ID function IDs. In general, CXU_FUNC_ID_W =
min(3, 1 + CF_ID_W) bits.
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enum { CSRR = 1<<CF_ID_W, CSRRW, CSRRS, CSRRC }; // msb set => CSR access
csr_read_only(insn) = (insn.funct3 == CSRR[SR][I]) && (insn.rs1 == 0);
csr_func_id(insn)   = CSRR + (csr_read_only(insn) ? 0 : insn.funct3[1:0]);


The signal that distinguishes custom function instruction from custom CSR access instruction CXU
requests is conveyed as the MSB of CXU-LI’s req_func FUNC_ID, rather than a separate one bit
req_csr_access signal, to minimize the number of CXU-LI signal ports.

2.5.1. Precise exceptions

Custom function instruction execution preserves precise exception semantics. If an instruction preceding (in
execution order) a custom operation instruction is an exception, the custom operation instruction does not execute,
and has no effect upon architected state, including the cx_status CSR, and no effect on the current state context of
the composable extension / CXU.

If an instruction following (in execution order) a custom operation instruction is an exception, the custom operation
instruction executes, updating destination register, cx_status, and current state context, as appropriate.


A CPU may speculatively issue a custom operation instruction to a stateless CXU. Misspeculation
recovery entails completing and discarding the CXU response. The custom operation instruction does
not commit and there is no change to architectural state.



A CPU may not speculatively issue a custom operation instruction to a stateful CXU because the
instruction may update the current state context and the CXU Logic Interface has no means to cancel a
CXU request. In other words, a custom operation instruction of a stateful CXU, once issued, always
commits.



Speculation is more than branch prediction. For example, in a pipelined CPU, instructions that follow a
load or store instruction typically issue speculatively until the load or store is determined to not raise an
access fault. Custom operation instructions of stateful CXUs must not issue in the wake of an
instruction that may yet trap.


When a long latency custom operation instruction issues and a pipelined CPU continues issuing the
following instructions in its wake, and one traps, the CPU nevertheless commits the custom operation
instruction when the CXU eventually sends the response.
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

How can a CPU core determine dynamically whether a custom function instruction, or its composable
extension, is stateless? (By definition custom CSR access instructions are always stateful.)

A software-defined approach could decorate the specification of a custom function to indicate whether
it is stateful or stateless, and to encode this as an opcode bit in the custom-[012] instructions. Then a
CPU may safely speculatively issue stateless CF instructions but non-speculatively issue stateful CF
instructions.

A hardware-defined approach could add to the request and response streams defined in CXU-LI, a third
stream, called the commit stream. This enables a CPU to speculatively issue any CF instruction and
issue its CXU request, then later, when speculation is resolved, issue its commit token or cancel token. A
stateful CXU, receiving and performing a CXU request, would defer from updating any CXU state until
the request’s corresponding commit token arrives.

2.6. IStateContext: the standard custom functions

The IStateContext composable extension defines four standard custom functions to manage extension state
context data. Stateful custom extensions should (albeit not must) inherit from this extension, i.e., incorporate these
four custom functions. IStateContext provides a standard, uniform way to access the extension’s custom error
state and enables an extension-agnostic runtime or operating system to reset, save, and reload state contexts.

Table 3. Standard stateful custom functions

Custom function CF_ID Assembly instruction Encoding
cf_read_status 1023 cx_read_status rd cx_reg 1023,rd,x0,x0
cf_write_status 1022 cx_write_status rs1 cx_reg 1022,x0,rs1,x0
cf_read_state 1021 cx_read_state rd,rs1 cx_reg 1021,rd,rs1,x0
cf_write_state 1020 cx_write_state rs1,rs2 cx_reg 1020,x0,rs1,rs2

CF_IDs 1008-1023 (0x3F0-0x3FF) are reserved for standard custom functions. It is recommended, not mandatory,
that these CF_IDs not be used for another purpose.

Any CF instruction with CF_ID=1023 must be side effect free, i.e., never modify any CXU state.

2.6.1. Interface state context status word

The cf_read_status and cf_write_status functions access the selected extension state context’s status word.

0121112232431

csstate_sizereservederror

Figure 14. CXU state context status word

The extension state context status word has the following fields:

.cs: context status

• The state context has four context status values: { 0: off; 1: initial; 2: clean; 3: dirty } which correspond to
those of the XS field of the mstatus CSR, per the RISC-V Privileged ISA specification (Waterman et al., 2021,
p. 26).

• On system reset, each state context of a serializable stateful extension CXU is in the initial state.
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• A write .cs=0 has the side effect of explicitly turning off the current state context. In this state, all CF
instructions except cf_write_status and cf_read_status signal CXU_ERROR_OFF, until the state context
status is set to another state by a subsequent cf_write_status.

• A write .cs=1 has the side effect of resetting the entire current state context to its initial (power up) state.

• When a CF instruction modifies any aspect of the current state context of a serializable CXU, its state context
status automatically changes to dirty.

.state_size: state context size

• This WARL field specifies the current size (number of XLEN-sized words) of the current state context.

• Reads return the current size of the current state context.

• The value read need not equal the last value written.

• Writes return the previous size and cs status of the current state context.

• Different CXU implementations of the same composable extension may have different state context sizes.

• Different state contexts of the same CXU may have different state context sizes.

• At different times, the same state context of the same CXU may have different state context sizes.

.error: custom error status

• An 8-bit custom error status for the current extension / CXU and its state context.


Define rules for what the extension can or must to with writes to this field. Need a way to zero a custom
error. But this is not a free byte of storage per state context. An implementation is permitted to
implement this as constant 0, for example.

2.6.2. cx_read_status standard custom function instruction

Assembly instruction: cx_read_status rd

This instruction retrieves the state status word (§[_extension_state_context_status_word]) of the selected state
context of the selected CXU and writes it to the rd destination register.

cx_read_status can never modify the selected state context, nor modify the behavior of the extension.

The status word .state_size field may change as a side effect of executing a stateful CF instruction.

For the CF instruction sequence [ cx_read_status; cx_read_state*; cx_read_status ], the first and second
cx_read_status must return the same .state_size.

For the CF instruction sequence [ cx_read_status, any-other-CF-instruction *, cx_read_status ], the first and
second cx_read_status need not return the same .state_size.



For most stateful CXUs, the size of a state context is fixed. For some stateful CXUs, the size of a state
context may depend upon the sequence of CF instructions performed. For example, a stateful vector
math CXU may provide CF instructions to allocate per-state context vector storage from a common,
private shared pool, and may allow different state contexts to represent different sized vectors.

cx_read_status may be used as a probe after a mcx_selector write, to check whether the selector addresses a valid
CXU and state context:
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csrw mcx_selector,x1    ; select some CXU and state context
csrw cx_status,x0       ; clear cx_status
cx_read_status x0       ; probe, discarding state status word
csrr x2,cx_status       ; retrieve cx_status
...                     ; cx_status.ci => invalid CXU_ID
...                     ; cx_status.si => invalid STATE_ID

2.6.3. cx_write_status standard custom function instruction

Assembly instruction: cx_write_status rs1

This instruction writes the value of the rs1 source register to the state status word of the selected state context of the
selected CXU, and writes the previous value of the state context status word to the rd destination register.

A write .cs=1 always has the side effect of resetting the selected state context to its initial (power up) state.

For the sequence [ cx_write_status; *; cx_read_status ] the value of .state_size read need not equal the last
value written.

A cx_write_status CF instruction never has any effect upon any other state context of the CXU, or of any other
CXU.

2.6.4. cx_read_state standard custom function instruction

Assembly instruction: cx_read_state rd,rs1

This instruction reads one (XLEN-bit) word of state, at the index specified by the rs1 source register, from the
selected state context of the selected CXU, and writes it to the rd destination register.

2.6.5. cx_write_state standard custom function instruction

Assembly instruction: cx_write_state rs1,rs2

This instruction reads the value of the rs2 source register and writes it to the selected state context of the selected
CXU at the index specified by the value of the rs1 source register. It also writes the value of the rs2 source register
to the rd destination register. It silently drops attempts to write state at an invalid state index.

2.7. Resource management and context switching

A software resource manager (e.g., thread pool, language runtime, language virtual machine, RTOS, operating
system, hypervisor) multiplexes software loci of execution (e.g., request, worker, actor, activity, task, fiber,
continuation, thread, process), locus for short, upon one or more hardware threads (harts).

The RISC-V per-hart state includes the program counter and integer register file, and optionally, floating-point and
vector register files, and various CSRs. CX-ISA extends per-hart state with the CX-ISA CSRs (§2.2) and the subset of
the various configured state contexts of the stateful configured composable extensions allocated to that hart.

A CXU implementing a stateful composable extension is typically configured with one state context per hart in the
entire system, but other configurations, including one context per locus, or a small pool of cooperatively or
preemptively managed contexts, or several harts sharing one context, or one singleton context, are possible.
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Similarly, each CXU in a system may be configured with a different number of its state contexts.

The resource manager maintains the mapping of loci to harts, and the mapping of harts to (per-CXU) state contexts.
The resource manager consults a system CXU map specifying the mapping CXU_IDs of the configured extensions of
the system, and for each extension/CXU, the no. of state contexts it is configured with. A stateless CXU has zero
contexts.

Over time, the resource manager must reset, save, and restore hart state, including its extension state contexts, to
initialize a hart or to perform a context switch.

To reset hart state, for each extension state context of the hart, execute

li a1,{.error=0,.cs=1/*initialize*/}
lw a0,selectors[i]
csrw mcx_selector,a0
cx_write_status a1

This resets that state context to its initial state. It is also necessary to reset cx_status.

csrw cx_status,x0

To save hart state, first save cx_status, then for each extension state context of the hart, execute

csrr a0,cx_status
sw a0,saved_cx_status
...
lw a0,selectors[i]
csrw mcx_selector,a0
cx_read_status a0
sw a0,status[i]

to obtain .state_size, the size (in XLEN-bit words) of the serialized state context for the selected state context.
Allocate array save[i][] to store the serialized state context. For each word in .state_size, execute

cx_read_state a0,j
sw/sd a0, save[i][j]

(When XLEN=32, use sw; when XLEN=64, use sd.)

To restore hart state, for each extension state context of the hart, first execute
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lw a0, selectors[i]
csrw mcx_selector, a0
lw a0, status[i]
cx_write_status a0

to restore the state context status word. Then for each word in status[i].state_size, execute

lw/ld a0, save[i][j]
cx_write_state j,a0

to restore each word of the state context. Finally restore the saved cx_status.

lw a0,saved_cx_status
csrw cx_status,a0

When different CXUs implement the same composable extension, they may have different serializations, of
different sizes.


Discuss preemption scenario where following context save, later restore, the locus moves to a different
STATE_ID of a CXU. cx_index may (but should not) change. However, resource manager must change
mcx_selector.


cf_read_state and cf_write_state are random access. It is possible this induces unnecessary
CXU hardware area. Perhaps specify a stream-out/stream-in extension instead.


Discuss impact of mixed sized serialized contexts upon system code and upon CXU design. Can a
serialized state context ever be too big to reload?

 Is it necessary or helpful for CXU metadata to declare fixed- or variable-sized extension state contexts?

2.8. CX access control

Fully trusted software, executing in machine level, has full access to every CXU and every state context. Software
may write an arbitrary CX selector value to the mcx_selector CSR, addressing any CXU and any state context. This
is sufficient to implement composable extension multiplexing but does not provide means to protect one hart’s
CXUs' state from another hart, nor to limit a hart’s access to a given CXU.

When a CPU implements user level and machine level privileged architecture, an attempt to CSR-write
mcx_selector from user level generates an illegal-instruction exception.

Machine level software may provide to user level software an ECALL function to change mcx_selector.

Alternatively, the machine level illegal-instruction exception handler can determine whether the new CX selector
value is valid for the user level code executing on the hart, optionally perform the CSR-write on its behalf, and
return from exception.

2.8. CX access control | Page 28

Draft Proposed RISC-V Composable Custom Extensions Specification



Whether ECALL or exception handler, a detour into system level is prohibitively slow: reconfiguring composable
extension multiplexing should take, at most, a few clock cycles.

The optional CX access control CSRs mcx_table and cx_index allow less privileged user code to rapidly multiplex
composable extensions, but only among those extensions and state contexts that it is granted access by more
privileged system code.

CX access control requires at least user level and machine level privileged architecture, and a memory access
control system, i.e., either RISC-V PMP or RISC-V virtual memory access control.

For each hart, the system code provisions a CX selector table, 4 KB aligned, comprising 1024 32-bit CX selectors,
which is read/write to system code and inaccessible from user code.

Initially the table is initialized with 0 in the 0th entry, and the invalid selector (0x10000000) in every other entry.
Selector index 0 selects table entry 0, with value 0x0000000 = '{version:0, cxe:0}, which disables CX
multiplexing, thereby selecting the CPU’s built-in custom instructions and custom CSRs. The system code CSR-
writes the table address to the hart’s mcx_table CSR. Then in response to a system call requesting access to a
composable extension and one of its state contexts, system code determines whether the access is granted. If so, it
determines the CX selector value for it, allocates an entry for that CX selector value in the CX selector table, and
returns the index (the selector index) of that entry to user code.


This index is analogous to a Unix file descriptor — an opaque token to a resource granted by system
code.

To select this CX/CXU and its state, user code CSR-writes its index to cx_index. In response, the CPU loads from
memory (at more privileged level) the CX selector word at that index in the selector table and copies it (CSR-writes
it) to mcx_selector — no OS detour required.


This mechanism also conceals the specific CXU_ID and STATE_ID information from user code,
precluding some possible side channel attacks.
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3. Composable Extension Unit Logic Interface
The CXU-LI defines a set of common hardware logic signaling extensions enabling straightforward, correct
composition of CPUs and CXUs. In the CXU-LI, a CPU is a requester and a CXU is a responder. The CPU sends a
CXU request and eventually receives a CXU response. For each request there is exactly one response.

3.1. Definitions

A CXU request (request) is a group of CXU-LI signals that may include request flow control, REQ_ID, CXU_ID,
FUNC_ID, STATE_ID, the raw instruction, and integer operands, produced by a CXU requester, conveying request
data to a CXU.

A CXU response (response) is a group of CXU-LI signals that may include response flow control, REQ_ID, response
status, and integer result, produced by a CXU, conveying response data to a CXU requester.

A request ID (REQ_ID) is a tag (a magic cookie) that correlates a CXU request and its corresponding CXU response.

A CXU response status (response status, status) is a CXU-LI success/error code produced by a CXU in response to
receiving a CXU request, indicating success or else an error in the request’s CXU_ID, FUNC_ID, STATE_ID,
operation, or a composable extension specific error.

A CXU requester (requester) is a core that sends CXU requests to CXU(s) and receives CXU response(s) from CXUs.

A CPU is a CXU requester that implements RISC-V RV-I-Zicsr + (CX-ISA extension) instruction set, issues CXU
requests upon issuing custom function instructions and custom CSR access instructions (collectively, custom
operation instructions), and writes a destination register and the CX status CSR in response to CXU responses.

A composable extension unit (CXU, responder) is a core that implements one or more composable extensions. It
receives CXU requests and sends CXU responses to CXU requesters. A CXU that also issues CXU requests is an
intermediary CXU; otherwise it is a leaf CXU.

A Switch CXU (switch) is an intermediary CXU. For each request received, the switch either sends a response itself
(e.g., a CXU_ERROR_CXU response) or arbitrates and forwards the request to a subordinate CXU, and later
forwards the corresponding response to the original requester.

A CXU feature level adapter (adapter) is an intermediary CXU that receives requests and sends responses at one
CXU-LI feature level and adapts them for and forwards them to a subordinate CXU with a lesser feature level.

A configured system (system) is a computer system including one or more CPUs and zero or more CXUs that
implement a set of configured composable extensions.

3.2. Example configured system

Figure 15 illustrates a configured system composed of two CPUs and five CXUs, plus two switches and a level
adapter for CXU3. Each CPU has two harts. CXUs 0-2 are stateful and CXUs 3-4 are stateless. Each stateful CXU has
one state context per hart. CXU1 has an additional state context per hart for isolated stateful requests from CXU2.
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Figure 15. Configured system composed of two CPUs and five CXUs

In general, a CPU that issues one CXU request per cycle is directly coupled to one CXU, usually a switch CXU. A
system of CXUs forms a directed acyclic graph.

3.3. CXU-LI feature levels

The CXU-LI is stratified into separate feature levels: -L0: combinational; -L1: fixed latency; -L2: variable latency; and
-L3: reordering. Each feature level adds yet more CXU request and response signals, module ports, and behaviors to
the feature level below it.

 Stratification keeps simple use cases simple and frugal, and makes more complex use cases possible.

3.3.1. CXU-L0: combinational CXU

The CXU, which implements a stateless composable extension, computes a combinational function of the CXU
request, sending a CXU response after some propagation delay. There is no flow control.

 Example: combinational bitmanip unit with a population count custom function.

3.3.2. CXU-L1: fixed latency CXU

Each cycle, the CXU computes a function of the CXU request and the specified state context, if any, updating the
context, sending a CXU response after a configured fixed non-negative number of clock cycles. With an initiation
interval of II=1/cycle, there is no flow control of requests or responses.


Examples: stateless: a pipelined multiplier; stateful: a pipelined multiply-accumulate unit wherein the
state is the current total.

 Perhaps minimum II should also be configurable, e.g. CXU_INIT_INTERVAL=1+.

3.3.3. CXU-L2: variable latency CXU

The CXU computes a function of the CXU request and the specified state context, if any, updating the context,
sending a CXU response, in order, in a later clock cycle. There is request and response flow control so the CXU
can suspend receiving requests and the CPU can suspend receiving responses.

 Example: a multiply-divide unit with a variable-latency multi-cycle divide, with early-out.
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3.3.4. CXU-L3: reordering CXU

The CXU computes a function of the CXU request and the specified state context, if any, updating the context, and
sending a CXU response in a later clock cycle. Responses for requests with the same state context are sent in
order, otherwise may be sent out of order. There is request and response flow control.

CXU-L3 incorporates a request-response ID for the requester to correlate responses received to requests sent.


Example: a stateless, variable latency posit floating point unit, which, having received a pdiv request
then a pmul request, responds out of order, sending the pmul response ahead of the pdiv response.

3.3.5. Feature levels summary

In summary, all CXU-LI feature levels have request and response function, data, and status. Level 0 is
combinational. Level 1 adds clocking, fixed latency, and state contexts. Level 2 adds variable latency and request and
response flow control and the raw instruction. Level 3 adds reordering. (Table 4.)

Table 4. CXU-LI feature levels summary

Level CXU type Req valid, func, data,
resp data, status

Clock, reset, clock enable,
state ID, resp valid

Req ready, resp
ready, raw insn

Reordering,
req ID

0 combinational Y
1 fixed latency Y Y
2 variable latency Y Y Y
3 reordering Y Y Y Y


Compared to all possible subsets of features, CXU-LI levels are relatively simple and practical. Each
level is a superset of lower levels, simplifying composition of dissimilar CXUs using common CXU
feature level adapters.

3.4. CXU-LI signaling

CXU cores of a particular feature level implement a common set of request and response signals. Table 5 lists all
CXU-LI signals of all feature levels in a canonical order: transaction signals (request/response valid, ready,
REQ_ID), context (CXU_ID, STATE_ID), function (raw instruction, FUNC_ID), and data. The Level column
indicates which levels introduce which signals. The Dir column indicates the signal direction from the perspective
of a responder. The bit width of each bit vector is determined by a width parameter, configurable per CXU (§3.4.1).

Table 5. All CXU-LI signals, by feature level

Level Dir Port Width Parameter Description
1+ in clk clock
1+ in rst reset
1+ in clk_en clock enable

in req_valid request valid
2+ out req_ready request ready
3 in req_id CXU_REQ_ID_W request REQ_ID

in req_cxu CXU_CXU_ID_W request CXU_ID
1+ in req_state CXU_STATE_ID_W request STATE_ID

in req_func CXU_FUNC_ID_W request FUNC_ID
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Level Dir Port Width Parameter Description
2+ in req_insn CXU_INSN_W request raw instruction

in req_data0 CXU_DATA_W request operand data 0
in req_data1 CXU_DATA_W request operand data 1 / CSR address

1+ out resp_valid response valid
2+ in resp_ready response ready
3 out resp_id CXU_REQ_ID_W response ID

out resp_status CXU_STATUS_W response status
out resp_data CXU_DATA_W response data

All signals are positive-true logic.

3.4.1. CXU-LI configuration parameters

Table 6 presents CXU-LI bit vector width parameters and ranges of possible values.

Table 6. CXU-LI width configuration parameters

Level Quantity Width Parameter Range Default Description
3 REQ_ID CXU_REQ_ID_W 0-64 0 request/response ID width

CXU_ID CXU_CXU_ID_W 0-16 0 CXU_ID width
1+ STATE_ID CXU_STATE_ID_W 0-16 0 STATE_ID width

FUNC_ID CXU_FUNC_ID_W 3-11 11 FUNC_ID width
2+ insn CXU_INSN_W 0, 32 0 raw instruction width

data CXU_DATA_W 32, 64 32 request/response data width
status CXU_STATUS_W 3 3 response status width


Zero width bit vectors are problematic in some HDLs. Parameter signals declared 0-bits wide should
nevertheless be declared [0:0], driven 1’b0 by sender, and ignored by receiver.

Table 7 presents other CXU configuration parameters.

Table 7. CXU-LI: other CXU configuration parameters

Level Parameter Range Default Description
CXU_LI_VERSION 24’h010000 24’h010000 CXU-LI version; 24’h01_00_00 == 1.00.00
CXU_N_CXUS 1+ 1 number of CXUs at/below this CXU

1+ CXU_N_STATES 0+ 0 number of composable extension state contexts
1 CXU_LATENCY 0+ 1 latency (clock cycles) from a request to its response
1 CXU_RESET_LATENCY 0+ 0 min. latency (clock cycles) from negation of reset to

first request

CXU_LI_VERSION indicates the version of the CXU-LI signals and semantics in effect, using semantic versioning
semver.org, encoded as 24’hxx_yy_00: (major=xx,minor=yy,patch=00). Since CXU_LI_VERSION is an extension
specification and not an implementation, there is never a patch level. See also §1.6.

 CXU_LI_VERSION anticipates subsequent evolution of CXU-LI.

CXU_N_CXUS is the number of logical CXUs at/below this CXU. For a leaf CXU this may be more than one when the
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CXU implements multiple composable extensions (including multiple versions of one composable extension).

CXU_N_STATES is the number of composable extension state contexts for every stateful extension implemented by
this CXU. It must be 0 if every composable extension implemented by the CXU is stateless. It must be 1+ if any
composable extension implemented by the CXU is stateful. When a leaf CXU implements multiple stateful
composable extensions, i.e. CXU_N_CXUS>1, each must be configured with the same number of state contexts.

CXU_LATENCY and CXU_RESET_LATENCY are specific to CXU-L1 fixed latency CXUs. See §3.3.2.

3.4.2. Clock, reset, clock enable

CXU-L0 is combinational. Other feature levels' signaling is (mostly) synchronous to rising edge (posedge) of clk.

When the reset input signal rst is asserted on posedge clk, it supersedes all other CXU-LI signaling. Any request
processing in progress is abandoned, all internal state is reset, and req_ready and resp_valid output signals, if
present, are negated. A CXU-L1 CXU (which does not have a req_ready output) must be ready to receive its first
request after no more than its configured CXU_RESET_LATENCY clock cycles following negation of rst.

A clock enable input signal clk_en facilitates clock gating of a CXU. When clk_en is asserted on posedge clk,
synchronous elements of the CXU (i.e., memories, registers, flip-flops) may change. When clk_en is negated on
posedge clk, no changes may occur to synchronous elements of the CXU. CXU operation is suspended. Therefore,
when negating clk_en, a CXU requester must disregard all CXU output signals, esp. req_ready and resp_valid.


In the twilight of Moore’s Law, energy efficiency is a first order design concern, and it is a shame to burn
power computing routinely discarded results.

 All modern FPGAs enable simple clock gating via free clk_en inputs on all LUT-cluster D flip-flops.


If a requester never clock gates a CXU with clk_en, it should assert clk_en with a constant '1. FPGA
and ASIC implementation tools typically optimize away such signals and their D flip-flop clock enables.


Perhaps provide another configuration parameter CXU_USE_CLK_EN=0/1 to configurably-ignore
clk_en. This could simplify conversion of preexisting RTL function units, sans clk_en gating, into new
CXUs.

3.4.3. Request and response valid-ready flow control

CXU-L2 and -L3 provide CXU request and response channel synchronous valid-ready flow control. For each
channel, the sender may assert data and a positive-true data valid signal indicating it is ready to send data. The
receiver may assert a positive-true ready signal indicating it is ready to receive data. On posedge clk, if both valid
and ready are asserted, data transfers from sender to receiver; otherwise, no transfer occurs during that clock cycle.

Once a sender asserts data and asserts data valid on posedge clk, it must assert the same data and valid on each
subsequent posedge clk until the receiver asserts ready and the transfer occurs.

A valid output must not depend (via combinational logic) upon a ready input. However, a ready output may
depend upon a valid input.

With request and response flow control, a requester must not indefinitely negate resp_ready in response to a
responder negating req_ready.
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 This precludes a potential cyclical wait deadlock in a composed system.

3.4.4. Response status / error checking

At any feature level, in response to receiving a CXU request, the CXU error-checks the request data, performs the
request, and outputs the first (i.e., lowest numbered) [2:0] resp_status condition that applies:

Table 8. CXU response status values and conditions

Name Value Condition
CXU_OK 0 no errors occurred processing request
CXU_ERROR_CXU 1 req_cxu is not a CXU_ID implemented by CXU
CXU_ERROR_STATE 2 req_state is not a valid STATE_ID for req_cxu
CXU_ERROR_OFF 3 req_state is valid but this serializable state context is in the off state
CXU_ERROR_FUNC 4 req_func is not a valid CF_ID / req_data1 is not a valid CSR address / write

access to a read-only CSR
CXU_ERROR_OP 5 request operand(s) or state are a domain error for the custom function or

custom CSR access
CXU_ERROR_CUSTOM 6 request causes a custom error (of a serializable composable extension)

When parameter CPU_CXU_ID_W=0, req_cxu is ignored: no CXU_ERROR_CXU errors.

When parameter CPU_STATE_ID_W=0, req_state is ignored: no CXU_ERROR_STATE errors.

STATE_ID=0 is the only valid STATE_ID for the CXU of a stateless composable extension.

CXU state may change if and only if the response status is one of CXU_OK, CXU_ERROR_OP, or CXU_ERROR_CUSTOM.



When a response status is CXU_ERROR_CUSTOM, the CXU should update the specified state context’s
custom error status as a side effect of the request. Otherwise, a CX library may be surprised to observe
that the custom error bit cx_status.CU is set without observing a corresponding error bit upon
retrieving (via cx_read_status) its state context’s error state.

In response to receiving resp_status of CXU_ERROR_CXU, CXU_ERROR_STATE, CXU_ERROR_OFF, or CXU_ERROR_FUNC,
a CPU ignores resp_data and uses zero as the result of the CF instruction.

When a CF instruction writes a destination register, (i.e., custom-[01] but not custom-2), the result of the CF
instruction is written to the register, irrespective of the CXU response status.


Can certain errors suppress destination register writes? No: data dependent writeback cancelation is
irregular and unnecessarily complicates out of order CPUs.



Together these rules ensure { CXU, state, function } ID errors are well behaved at the hardware-software
extension. By making the CPU responsible for zeroing such results, each CXU in a system’s CXU DAG
need not incur redundant logic and delay to respond resp_data=0 on these three errors. For
synchronously signaled CXU-LI levels, in an FPGA, with reset-able flip-flops, a registered resp_data
input may be zeroed for negligible cost.

3.4. CXU-LI signaling | Page 35

Draft Proposed RISC-V Composable Custom Extensions Specification



3.4.5. Function ID

The CXU request FUNC_ID req_func indicates the custom operation to perform: when the most-significant bit of
req_func is 0, the remaining bits are the CF_ID of a custom opcode instruction; when the most-significant bit of
req_func is 1, bits req_func[1:0] encode one of four CSR access requests:

Table 9. FUNC_ID CSR access requests

Value Req. Description Behavior
1:0 CSRR read-only access resp_data = CSRs[req_data1];
1:1 CSRRW read-write access resp_data = CSRs[req_data1]; CSRs[req_data1] = req_data0;
1:2 CSRRS read-set access resp_data = CSRs[req_data1]; CSRs[req_data1] |= req_data0;
1:3 CSRRC read-clear access resp_data = CSRs[req_data1]; CSRs[req_data1] &= ~req_data0;

The minimum CXU_FUNC_ID_W is 3: 1-bit MSB + 2-bit CSR access request type; the maximum is 11: 1-bit MSB +
maximum 10-bit CF_ID_W.


Perhaps the spec should require "When the most-significant bit of req_func is 1, bits
req_func[CXU_FUNC_ID_W-2:2] must be 0."

3.4.6. Raw instruction

At CXU-LI feature level 2, or higher, CXU requests may be configured (CXU_INSN_W=32) to include the raw
instruction word (req_insn) of the custom operation instruction that issued the CXU request, or all zeroes
otherwise. A CXU may use the raw instruction data to help perform the custom operation, or it may ignore the raw
instruction entirely.


The raw instruction complements the CF_ID-derived FUNC_ID req_func identifier. CF_ID is the
preferred, future proof way to select a custom function. It is ISA neutral and abstracts the CPU away
from CXU, and potentially reduces verification complexity.



However, access to the raw CF instruction word can enable additional use cases. As an example,
consider a CXU with a private vector, matrix, or complex number register file. When this CXU receives a
CXU request including its raw instruction word, it may opt to ignore either or both of the two integer
request operands req_data0 and req_data1, and instead partially decode the raw instruction word to
recover rs1 and rs2 fields, even rs3 if there are spare custom instruction bits, to determine which of its
CXU register file entries to read. Similarly, the CXU can decode the raw instruction word to recover an
rd field to determine which CXU-private register file entry to write back and whether to do so.


This feature is best used with the custom-2 flex instruction format which has no rd destination register
field, freeing those bits for arbitrary uses.


Does raw instruction access merits security threat modeling? Imagine adversarial CXUs, snoopily
watching the dynamic instruction stream go by, even when req_valid is negated.


At present the custom instructions and CSR access instructions are 32b instructions. If this changes,
CXU_INSN_W may have values other than 0 and 32.
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

Half-baked idea (not recommended): Imagine a dynamic facility by which any arbitrary instruction
word, not just custom-[012] format instructions, may be a CF instruction, issued to a CXU. This might
be a table of (mask,pattern) tuples, or a 32-bit mcx_opcodes_mask CSR bit vector of 5-bit major
opcodes, identifying instructions to divert to the current CXU. Or perhaps, in the hardware domain, a
CPU might first issue each instruction to the current CXU, and only execute the instruction in the CPU if
the CXU delegates it back to the CPU.

3.4.7. Request-response ID

CXU-LI feature level 3 (reordering CXU) includes a request-response ID REQ_ID, a REQ_ID_W -bit signal used by
requesters to correlate responses received with requests sent. With each request, the CXU receives the REQ_ID as
req_id, and later, with each response, the CXU sends back the same REQ_ID as resp_id. For each
request/response pair, the CXU must send the requester the identical request-response ID value that the requester
previously sent to the CXU.

Operation and behavior of a CXU must not depend in any way upon any req_id value received, except to receive it
and later to return it to the requester.


An out-of-order completion CPU may send a REQ_ID indicating the destination register of the request,
and rely upon it when the response eventually returns.

3.5. CXU-L0 combinational CXU signaling

A combinational CXU, which implements a stateless composable extension, computes a combinational function of
the CXU request, sending a CXU response after some propagation delay. There is no flow control.

3.5.1. CXU-L0 configuration parameters

Table 10. CXU-L0 configuration parameters

Parameter Description
CXU_LI_VERSION CXU-LI version number
CXU_N_CXUS number of CXUs at/below this CXU

For CXU_LI_VERSION and CXU_N_CXUS, see §3.4.1.

3.5.2. CXU-L0 signals

Table 11. CXU-L0 signals

Dir Port Width Parameter Description
in req_valid request valid
in req_cxu CXU_CXU_ID_W request CXU_ID: selects the requested CXU
in req_func CXU_FUNC_ID_W request FUNC_ID
in req_data0 CXU_DATA_W request operand data 0
in req_data1 CXU_DATA_W request operand data 1

out resp_status CXU_STATUS_W response status
out resp_data CXU_DATA_W response data

CXU-L0 signaling is asynchronous. CXU outputs are pure combinational functions of CXU inputs.
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 CXU-L0 has no resp_valid signal because it would just reflect req_valid.

3.5.3. CXU-L0 signaling protocol

Protocol:

1. Request transfer

a. Requester asserts CXU request signals req_* and asserts req_valid.

b. CXU asynchronously receives CXU request.

2. Response transfer

a. CXU performs steps 1, 2, 4, and 6 of response status / error checking per §3.4.4, and asserts resp_status.

b. CXU asserts resp_data, a combinational custom function of the operands.

c. Requester asynchronously receives CXU response.

As a CXU-L0 CXU is combinational, its delay folds into to the path timing analysis of its requester.

3.5.4. CXU-L0 example
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Figure 16. Example CXU-L0 signaling protocol waveform

Figure 16 is an example waveform for three CXU-L0 requests and responses, arising from executing custom
function instructions f0(a0,b0), f1(a1,b1), and f2(a2,b2). All three instructions issue to the same CXU u0.
Function f1 incurs an error.

3.6. CXU-L1 fixed latency CXU signaling

Each cycle, a fixed latency CXU computes a function of the CXU request and the specified state context, if any,
updating the context, sending a CXU response after a configured fixed non-negative number of clock cycles. With
an initiation interval of II=1/cycle, there is no flow control of requests or responses.

Lacking request flow control, if a CXU-L1 CXU is configured with multiple requesters, requesters must not send
multiple simultaneous requests.

3.6.1. CXU-L1 configuration parameters

Table 12. CXU-L1 configuration parameters
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Parameter Description
CXU_LI_VERSION CXU-LI version number
CXU_N_CXUS number of CXUs at/below this CXU
CXU_N_STATES number of composable extension state contexts
CXU_LATENCY latency (clock cycles) from a request to its response
CXU_RESET_LATENCY minimum latency (clock cycles) from negation of reset to first request

For CXU_LI_VERSION, CXU_N_CXUS, and CXU_N_STATES, see §3.4.1.

CXU_LATENCY, specific to CXU-L1, configures the CXU latency, which is the number of clock cycles from receiving a
request to sending a response, of every custom function implemented by the CXU. CXU_LATENCY=0 configures the
CXU to respond to the request in the same clock cycle.

A CFI-L1 CXU with CXU_LATENCY=0 resembles a CXU-L0 combinational CXU, except it may implement a stateful
composable extension.


Example: an extended precision arithmetic CXU which implements add_save_carry and
add_with_carry_save_carry CF instructions. Like an ALU, this has zero cycle latency, but supports
additional state context(s), each with a carry bit.

CXU_RESET_LATENCY, specific to CXU-L1, configures the CXU reset latency, which is the minimum number of clock
cycles from negation of rst to first assertion of req_valid. CXU_RESET_LATENCY=0 configures the CXU to be ready
for a CXU request in the same cycle that rst is first negated.

3.6.2. CXU-L1 signals

Table 13. CXU-L1 signals

Dir Port Width Parameter Description
in clk clock
in rst reset
in clk_en clock enable
in req_valid request valid
in req_cxu CXU_CXU_ID_W request CXU_ID
in req_state CXU_STATE_ID_W request STATE_ID
in req_func CXU_FUNC_ID_W request FUNC_ID
in req_data0 CXU_DATA_W request operand data 0
in req_data1 CXU_DATA_W request operand data 1

out resp_valid response valid
out resp_status CXU_STATUS_W response status
out resp_data CXU_DATA_W response data

3.6.3. CXU-L1 signaling protocol

CXU-L1 is (mostly) synchronous to posedge clk when CXU_LATENCY>0. See §3.4.2.

Protocol:

1. Request transfer.
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a. Requester asserts CXU request signals req_* and asserts req_valid.

b. CXU_LATENCY=0: CXU receives CXU request asynchronously.
CXU_LATENCY>0: CXU receives CXU request on posedge clk.

2. Custom function execution.

a. CXU performs response status / error checking per §3.4.4.

b. CXU performs a function of the operands and the selected state context.

c. CXU may update the selected state context, logically prior to any updates from subsequent requests.

3. Response transfer.

a. CXU_LATENCY=0:

i. CXU asserts CXU response signals resp_valid, resp_status, and resp_data asynchronously.

ii. Requester receives CXU response asynchronously.

b. CXU_LATENCY>0:

i. After (CXU_LATENCY-1) cycles, CXU asserts resp_valid, resp_status, and resp_data.

ii. Requester receives CXU response on posedge clk.

3.6.4. CXU-L1 example
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Figure 17. Example CXU-L1 signaling protocol waveform (CXU_LATENCY=2, CXU_RESET_LATENCY=0)

Figure 17 is an example waveform for four CXU-L1 CXU requests and responses, arising from executing four custom
function instructions f0-f3. Since CXU_RESET_LATENCY=0, the CXU is ready for request f0 in cycle 1, the same cycle
rst is negated. With CXU_LATENCY=2, each response occurs 2 (enabled) clock cycles after each request is received.
Each instruction issues a CXU request to the same CXU u0. Instructions f0 and f1 use state context s0; f2 and f3
use state context s2. Request f1 results in an error response. With clk_en negated in cycles 6-19, the CXU is frozen
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until cycle 20, when it finally receives the f3 request. The f2 response, otherwise due in cycle 7, is also delayed,
until cycle 21.

3.7. CXU-L2 variable latency CXU signaling

A variable latency CXU computes a function of a CXU request and the specified state context, if any, updating the
context, sending a CXU response, in order, in a later clock cycle. There is request and response flow control so the
CXU can suspend receiving requests and the requester can suspend receiving responses.



When the requester is a CPU, use of CXU-L2 allows the CPU to delay receipt of a CXU response. This
affords the CPU pipeline greater flexibility to dynamically prioritize other units' accesses to register file
write port(s). Conversely, CXU-L2 can complicate design of a CXU, which may have to respond to
negated resp_ready by buffering the response in an output FIFO or by applying back pressure through
its processing pipeline, or negate req_ready to delay receipt of new requests.

3.7.1. CXU-L2 configuration parameters

Table 14. CXU-L2 configuration parameters

Parameter Description
CXU_LI_VERSION CXU-LI version number
CXU_N_CXUS number of CXUs at/below this CXU
CXU_N_STATES number of composable extension state contexts

For CXU_LI_VERSION, CXU_N_CXUS, and CXU_N_STATES, see §3.4.1.

3.7.2. CXU-L2 signals

Table 15. CXU-L2 signals

Dir Port Width Parameter Description
in clk clock
in rst reset
in clk_en clock enable
in req_valid request valid

out req_ready request ready
in req_cxu CXU_CXU_ID_W request CXU_ID
in req_state CXU_STATE_ID_W request STATE_ID
in req_func CXU_FUNC_ID_W request FUNC_ID
in req_insn CXU_INSN_W request raw instruction
in req_data0 CXU_DATA_W request operand data 0
in req_data1 CXU_DATA_W request operand data 1

out resp_valid response valid
in resp_ready response ready

out resp_status CXU_STATUS_W response status
out resp_data CXU_DATA_W response data
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3.7.3. CXU-L2 signaling protocol

CXU-L2 is synchronous to posedge clk. See §3.4.2. CXU-L2 includes the request’s raw instruction. See §3.4.6.

Protocol:

1. Request transfer.

a. Requester asserts CXU request signals req_* and asserts req_valid.

b. Responder may assert req_ready.

c. CXU receives CXU request on posedge clk when req_valid and req_ready are both asserted, per §3.4.3.

2. Custom function execution.

a. CXU performs response status / error checking per §3.4.4.

b. CXU performs a function of the operands and the selected state context.

c. CXU may update the selected state context, logically prior to any updates from subsequent requests.

3. Response transfer.

a. Prior to issuing responses from subsequent requests (i.e., in order of requests) CXU asserts resp_status and
resp_data and asserts resp_valid.

b. Requester may assert resp_ready.

c. Requester receives CXU response on posedge clk when resp_valid and resp_ready are both asserted, per
§3.4.3.

3.7.4. CXU-L2 example

Figure 18 is an example waveform for four CXU-L2 CXU requests and responses, arising from executing four CF
instructions f0-f3. (Assume CXU_INSN_W=0, no req_insn.) Each instruction issues a CXU request to the same CXU
u0. Instructions f0 and f1 use state context s0; f2 and f3 use state context s2.
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Figure 18. Example CXU-L2 signaling protocol waveform

The CXU receives request f0 in cycle 2 and responds in cycle 3.

Requester asserts request f1 in cycle 3, but it is not received by the CXU until it asserts req_ready in cycle 4. The
CXU sends the f1 response in cycle 6, an error response, a latency of 2 cycles. Requester asserts resp_ready and
receives the response in cycle 7.

Requester asserts request f2 in cycle 6, but it is not received by the CXU until it asserts req_ready in cycle 7. The
CXU responds to f2 in cycle 21, a latency of 14 cycles.

Requester asserts request f3 in cycle 21, and the CXU responds in cycle 22.

3.8. CXU-L3 reordering CXU signaling

A reordering CXU computes a function of the CXU request and the specified state context, if any, updating the
context, and sending a CXU response in a later clock cycle. Responses for requests with the same context are sent
in order, otherwise may be sent out of order. There is request and response flow control.

CXU-L3 incorporates a request-response ID for the requester to correlate responses received to requests sent.
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

This CXU-LI feature level is motivated by past experience building floating point CXUs. Different
functions, e.g., comparison, conversion, multiplication, addition, division, and square root, exhibit a wide
range of latencies. Some functions, e.g. addition and multiplication, may be pipelined and afford an
initiation interval II=1/cycle, while others, e.g. division and square root, may be variable latency and
perform one request at a time.

Particularly when a composable extension is stateless and when the requester (e.g., an in-order-
issue/out-of-order completion CPU) tolerates out of order responses, response reordering can improve
performance and simplify CXU logic by reducing average CXU latency, enabling greater CXU
parallelism, and reducing request blocking and response queueing.


When a composable extension is stateful, response reordering cannot occur for any sequence of requests
with the same state context, to ensure identical response data and program behavior over time and over
different CXU implementations of the same composable extension.

3.8.1. CXU-L3 configuration parameters

Table 16. CXU-L3 configuration parameters

Parameter Description
CXU_LI_VERSION CXU-LI version number
CXU_N_CXUS number of CXUs at/below this CXU
CXU_N_STATES number of composable extension state contexts

For CXU_LI_VERSION, CXU_N_CXUS, and CXU_N_STATES, see §3.4.1.

3.8.2. CXU-L3 signals

Table 17. CXU-L3 signals

Dir Port Width Parameter Description
in clk clock
in rst reset
in clk_en clock enable
in req_valid request valid

out req_ready request ready
in req_id CXU_REQ_ID_W request REQ_ID
in req_cxu CXU_CXU_ID_W request CXU_ID
in req_state CXU_STATE_ID_W request STATE_ID
in req_func CXU_FUNC_ID_W request FUNC_ID
in req_insn CXU_INSN_W request raw instruction
in req_data0 CXU_DATA_W request operand data 0
in req_data1 CXU_DATA_W request operand data 1

out resp_valid response valid
in resp_ready response ready

out resp_id CXU_REQ_ID_W response ID
out resp_status CXU_STATUS_W response status
out resp_data CXU_DATA_W response data
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3.8.3. CXU-L3 signaling protocol

CXU-L3 is synchronous to posedge clk. See §3.4.2. CXU-L3 includes a request-response ID. See §3.4.7. CXU-L3
includes the request’s raw instruction. See §3.4.6.

Protocol:

1. Request transfer.

a. Requester asserts CXU request signals req_* (including new CXU-L3 signal req_id) and asserts req_valid.

b. Responder may assert req_ready.

c. CXU receives CXU request on posedge clk when req_valid and req_ready are both asserted, per §3.4.3

2. Custom function execution.

a. CXU performs response status / error checking per §3.4.4.

b. CXU performs a function of the operands and the selected state context.

c. CXU may update the selected state context, logically prior to any updates to the same state context from
subsequent requests.

3. Response transfer.

a. Prior to issuing responses from subsequent requests to the same state context (i.e., in order of requests to the
same state context) CXU asserts resp_id, resp_status, resp_data and asserts resp_valid.

b. Requester may assert resp_ready.

c. Requester receives CXU response on posedge clk when resp_valid and resp_ready are both asserted, per
§3.4.3.

3.8.4. CXU-L3 example

Figure 19 is an example waveform for four CXU-L3 CXU requests, illustrating two different valid out-of-order
response sequences, arising from executing four CF instructions f0-f3. (Assume CXU_INSN_W=0, no req_insn.)
Each instruction issues a CXU request to the same CXU u0, but with various state contexts s0, s1, s0 (again), and s3.
This constrains the CXU to respond to request f0 with state s0, before responding to subsequent request f2 for state
s0.

Note that each CXU request is tagged with a req_id, a value that is returned by the CXU with the corresponding
resp_id, and used by the requester to correlate responses to requests and recover the reordering as necessary.
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Figure 19. Example CXU-L3 signaling protocol waveform, with two of the possible response orderings

In the first example response, with signals labeled Response, the CXU receives requests (f0, f1, f2, f3) but responds
in order (f1, f3, f0, f2). In the second example response, with signals labeled Another Ordering, the CXU responds in
order (f3, f0, f2, f1). Bother orderings are valid because they preserve the order f0<`f2` caused by these two CXU
requests using the same state s0.

3.9. CXU feature level adapters

A CXU feature level adapter is an intermediary CXU that receives requests and sends responses at one CXU-LI
feature level and adapts them for and forwards them to a subordinate CXU at a lower CXU-LI feature level.

CXU-LI includes a set of configurable adapters to raise any CXU to any higher feature level, easing composition:
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• Cvt01: raise L0 to L1: add configurable latency pipelining

• Cvt02, Cvt12: raise L0 or L1 to L2: add request-response flow control (may suspend requests)

 TODO: Describe the L3 adapters, which are just L2 adapters with a request-response ID FIFO.

3.9.1. Cvt01: raise CXU-L0 to CXU-L1

A Cvt01 adapter CXU implements CXU-L1, including its configuration parameters (§3.6.1), adapting L1 requests to
and responses from a subordinate combinational L0 CXU.

When CXU_LATENCY=0, the adapter’s request/response channels are directly coupled to the subordinate CXU
request/response channels. Otherwise, these channels I/Os are registered and pipelined, with a total latency of
CXU_LATENCY cycles.


Automatic pipeline retiming may slice the combinational logic cone into several pipeline stages,
achieving higher frequency operation.

3.9.2. Cvt02: raise CXU-L0 to CXU-L2

A Cvt02 adapter CXU implements CXU-L2, including its configuration parameters (§3.7.1), adapting L2 requests to
and responses from a subordinate combinational L0 CXU. The adapter has a fixed latency of one cycle — a response
is sent one cycle after a request is received.


To avoid arbitrary CXU response queuing, yet keep signaling simple and frugal, the Cvt02 adapter
might negate req_ready on any cycle that it has a valid response waiting (asserting resp_valid) and
the requester negates resp_ready.

3.9.3. Cvt12: raise CXU-L1 to CXU-L2

A Cvt12 adapter CXU implements CXU-L2, including its configuration parameters (§3.7.1), plus CXU_LATENCY
(§3.6.1), adapting L2 requests to and responses from a subordinate fixed latency L1 CXU.

The CXU_LATENCY parameter, which specifies the latency of the subordinate L1 CXU, typically configures the depth of
a response FIFO — an entire response stream must be buffered when the requester, having just issued CXU_LATENCY
of requests to the L1 CXU, negates resp_ready through as many clock cycles. Eventually, with response transfers
paused, the response FIFO fills and the adapter CXU negates req_ready.

When CXU_LATENCY=0, the subordinate CXU response must be registered and therefore the adapter’s response
latency is at least one cycle.

3.10. CXU-LI-compliant CPUs

A CXU-LI-compliant CPU implements RISC-V RV-I -Zicsr + (CX-ISA extension) instruction set, sends CXU requests
upon issuing custom operation instructions, and writes a destination register and CX status CSR in response to CXU
responses.
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3.10.1. CPUs and CXU-LI feature levels

CPUs, as CXU requesters, use specific CXU-LI feature levels.



An austere single-cycle CPU might use CXU-L0 with a combinational CXU (only).

A pipelined in-order CPU might use CXU-L1 with a fixed latency CXU configured for (e.g.) 2 cycles
latency. It might also use CXU-L2 with a variable latency CXU, stalling the pipeline during cycles where
CF instructions cannot issue because the selected CXU negates req_ready, and itself negating
resp_ready during write-back cycles when the register file’s write port or other necessary resource is
unavailable.

An out-of-order completion CPU, i.e. one that may commit low latency instructions before prior high
latency instructions, might issue CF instructions to a CXU-L2 variable latency CXU and in some future
cycle retire the variable latency CXU response, here again negating resp_ready when it is unable to
accept a response to writeback.

An OoO completion CPU, that handles reordered CXU responses, might use a CXU-L3 reordering CXU.

A CPU may have one or more sets of CXU request and response ports. For each such set, a CPU may send zero or one
CXU request per cycle and receive zero or one CXU response per cycle.


Most CPUs send up to one request and receive up to one response. However, a CXU-LI compliant
superscalar CPU might send multiple CXU requests and receive multiple CXU responses, to multiple
CXUs of the same, or different, CXU-LI feature levels, in parallel, in the same cycle.

3.11. Example: CXU signaling in a composed system

Consider Figure 20, a system composed from two single-hart CPUs, two stateful CXUs, and a 2-input, 2-output
Switch CXU. Fixed latency CXU0 implements CXU-L1, configured with CXU_LATENCY=1. The CPUs, CXU1, and
Switch22 use/implement CXU-L2. Cvt12, a CXU level converter, up-converts CXU0 from CXU-L1 to CXU-L2.

Figure 20. CXU-L2 system, with two CPUs, switch CXU, converter CXU, CXU0 (L1), and CXU1 (L2)

With one hart per CPU, the composable extensions' CXUs are configured with two state contexts each (<2>).

Both CPU0 and CPU1 are configured to issue CF instructions mapping CX_ID0 → CXU_ID=0 → CXU0 and CX_ID1 →
CXU_ID=1 → CXU1.

The exemplary 2x2 Switch CXU is frugal, if low frequency, while sustaining one cycle initiation interval transfers of
requests and responses. It multiplexes downstream request transfers and upstream response transfers. In both
directions, the switch consists of input ports (not registered), output port registers, an approximately fair output port
arbiter, and a 2x2 channel crossbar. Each cycle, the switch determines which output ports are available (i.e., are
empty, or will transfer (valid & ready) this cycle) and which valid inputs are eligible to transfer, then asserts ready,
and transfers, some eligible inputs to available output ports, based upon a rotating priority order.
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A request input port is eligible to transfer if it is valid and if the target req_cxu CXU_ID is the same as the last
request, or if there are no pending responses for this port. This ensures that responses for requests, routed to
different CXUs with different latencies, are always returned in order to the requester, as required by CXU-L2.

Downstream request routing is per the request inputs' req_cxu elements: CXU_ID=0 routes to the first output port
and CXU_ID=1 routes to the second output port. The switch itself responds to requests with invalid CXU_IDs with
a CXU_ERROR_CXU response.

For upstream response routing, the Switch incorporates, for each subordinate CXU, a FIFO queue that records the
requester port ID that issued each request to that CXU. As each (in order) response from that CXU is received, the
requester port ID is dequeued from that FIFO and used to route the response to its corresponding requester.

In this example, assume each CPU decouples issue and commit using a scoreboarded register file enabling arbitrary
extension unit latencies. Each CPU runs the same code (Listing 1):

1. Write mcx_selector for CXU_ID=0 and STATE_ID=HART_ID, issue two CF instructions to CXU0;

2. Write mcx_selector for CXU_ID=1 and STATE_ID=HART_ID, issue two CF instructions to CXU1;

3. Write mcx_selector for CXU_ID=0 and STATE_ID=HART_ID, issue one CF instruction to CXU0.

Listing 1. Issue stateful CF instructions f0 and f1 to CXU0, f2 and f3 to CXU1, and f4 to CXU0 again.

csrw mcx_selector,x20   ; version=1, cte=0, CXU_ID=0, STATE_ID=HART_ID
cx_reg 0,x3,x1,x2       ; u0.f0
cx_reg 1,x6,x5,x4       ; u0.f1

csrw mcx_selector,x21   ; version=1, cte=0, CXU_ID=1, STATE_ID=HART_ID
cx_reg 2,x9,x7,x8       ; u1.f2
cx_reg 3,x12,x11,x10    ; u1.f3

csrw mcx_selector,x20   ; version=1, cte=0, CXU_ID=0, STATE_ID=HART_ID again
cx_reg 4,x15,x13,x14    ; u0.f4

Figure 21 is an example waveform executing Listing 1 near-simultaneously on the two CPUs of Figure 20.

(1:u2<3>.f4 denotes CXU request #1 with CXU_ID=2 STATE_ID=3 FUNC_ID=4)

In the narrative that follows, that A sends B means A asserts B ahead of next posedge clk, whereas B transfers to C
means during this cycle C receives and accepts it. Recall with CXU-L2, request transfers occur when both req_valid
and req_ready are asserted (§3.4.3), and response transfers occur when resp_valid and resp_ready are asserted.
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Figure 21. Example 2-input 2-output CXU-L2 Switch CXU signaling protocol waveform

Cycle-by-cycle:

0. Both CPUs CSR-write their hart’s mcx_selector registers, selecting CXU_ID=0=CXU0, and their hart’s
STATE_ID.
Both CPUs issue the first CF instruction (f0).

0. CPU0 sends first CXU request (request #0): CXU_ID=0 STATE_ID=0 FUNC_ID=0, a.k.a. 0:u0<0>.f0.
CPU1 sends first CXU request (request #5): CXU_ID=0 STATE_ID=1 FUNC_ID=0, a.k.a. 5:u0<1>.f0.

1. CPU0's first request, destined for CXU0, wins arbitration for Switch output port 0.
Switch asserts CPU0's req_ready and negates CPU1's req_ready.
CPU0's first request 0:u0<0>.f0 transfers to Switch.
Switch sends CPU0's first request to Cvt12(CXU0)
CPU0 sends second CXU request: 1:u0<0>.f1.

2. CPU1's first request, destined for CXU0, wins arbitration for Switch output port 0.
Switch asserts CPU1's req_ready and negates CPU0's req_ready.
CPU1's first request 5:u0<1>.f0 transfers to Switch.
Switch sends CPU1's first request to Cvt12(CXU0).
CPU1 sends second CXU request: 6:u0<0>.f1.
CPU0's first request 0:u0<0>.f0 transfers to CXU0.
CXU0 executes 0:f0, updates state <0>, sends response to Switch.

3. CPU0 sends no CXU request this cycle, due to its second csrw execution cycle.
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CPU0's second request 1:u0<0>.f1, wins arbitration, transfers to Switch, is sent to Cvt12(CXU0).
CPU1's first request 5:u0<1>.f0 transfers to CXU0, executes, updates <1>, sends response to Switch.
CXU0's response to CPU0's first request transfers to Switch, is sent to CPU0.

4. CPU1 sends no CXU request this cycle, due to its second csrw execution cycle.
CPU1's second request 6:u0<0>.f1, wins arbitration, transfers to Switch, is sent to Cvt12(CXU0).
CPU0's second request 1:u0<1>.f1 transfers to CXU0, executes, updates <0>, sends response to Switch.
CXU0's response to CPU1's first request transfers to Switch, is sent to CPU1.
CXU0's response to CPU0's first request transfers to CPU0.

5. CPU0 bubble in CXU request issue due to its second csrw execution cycle.
CPU1 sends third request 2:u1<1>.f2, with CXU_ID=1, destined for CXU1.
CPU0's third request 2:u1<0>.f2, transfers to Switch, is sent to CXU1.
CPU0 sends fourth request 3:u1<0>.f3, with CXU_ID=1, destined for CXU1.
CPU1's second request 6:u0<1>.f1 transfers to CXU0, executes, updates <1>, sends response to Switch.
CXU0's response to CPU0's second request transfers to Switch, is sent to CPU0.
CXU0's response to CPU1's first request transfers to CPU1.

6. CPU1's third request 7:u1<0>.f2 wins arbitration, transfers to Switch, is sent to CXU1.
CPU1 sends fourth request 8:u1<0>.f3, with CXU_ID=1, destined for CXU1.
CPU0's third request 2:u1<0>.f2 transfers to CXU1, executes, updates <0>, sends response to Switch.
CXU0's response to CPU1's second request transfers to Switch, is sent to CPU1.
CXU0's response to CPU0's second request transfers to CPU0.

7. CPU0 sends no CXU request this cycle, due to its third csrw execution cycle.
CPU0's fourth request 3:u1<0>.f3 wins arbitration, transfers to Switch, is sent to CXU1.
CPU1's third request 7:u1<1>.f2 transfers to CXU1, begins execution.
CXU1's response to CPU0's third request transfers to Switch, is sent to CPU0.
CXU0's response to CPU1's second request transfers to CPU1.

8. CPU1 sends no CXU request this cycle, due to its third csrw execution cycle.
CPU0 sends fifth request 4:u0<0>.f4, with CXU_ID=0, destined for CXU0.
At CXU1, CPU1's third request 7:u1<0>.f2 completes execution, updates <1>, sends response to Switch.
CXU1's response to CPU0's third request transfers to CPU0.

9. CPU0's fifth CXU request is ineligible to transfer because CPU0 has pending requests to CXU1. It becomes eligible
at cycle 13.
CPU1's fourth request 8:u1<0>.f3 transfers to Switch, is sent to CXU1.
CPU0's fourth request 3:u1<0>.f3 transfers to CXU1, begins execution.
CXU1's response to CPU1's third request transfers to Switch, is sent to CPU1.

10. CPU1 sends fifth request 9:u0<1>.f4, with CXU_ID=0, destined for CXU0.
CPU0's fourth CXU request 3:u1<0>.f3 continues execution.
CXU1's response to CPU1's third request transfers CPU1.

11. CPU1's fifth CXU request is ineligible to transfer because CPU1 has pending requests to CXU1. It becomes eligible
at cycle 14.
CPU0's fourth CXU request 3:u1<0>.f3 completes execution, updates <0>, sends response to Switch.

12. CPU1's fourth request 8:u1<1>.f3 transfers to CXU1, executes, updates <1>, sends response to Switch.
CXU1's response to CPU0's fourth request transfers to Switch, is sent to CPU0.

13. CXU1's response to CPU0's fourth request transfers to CPU0.
CPU0's fifth request 4:u0<0>.f4 becomes eligible, transfers to Switch, is sent to CXU0.

14. CXU1's response to CPU1's fourth request transfers to CPU1.
CPU1's fifth request 9:u0<1>.f4 becomes eligible, transfers to Switch, is sent to CXU1.
CPU0's fifth request 4:u0<0>.f4 transfers to CXU0, executes, updates <0>, sends response to Switch.

3.11. Example: CXU signaling in a composed system | Page 51

Draft Proposed RISC-V Composable Custom Extensions Specification



15. CPU1's fifth request 9:u0<1>.f4 transfers to CXU0, executes, updates <1>, sends response to Switch.
CXU0's response to CPU0's fifth request transfers to Switch, is sent to CPU0.

16. CXU0's response to CPU1's fifth request transfers to Switch, is sent to CPU1.
CXU0's response to CPU0's fifth request transfers to CPU0.

17. CXU0's response to CPU1's fifth request transfers to CPU1.

3.12. Composing CXUs with AXI4-Streams

In some configured systems, preexisting infrastructure components that implement AXI4-Stream protocol may be
used to help compose CPUs and CXUs. A fully flow controlled CXU-LI -L2 or -L3 transfer may be transported over
two AXI4-Stream (AXI-S) streams, one for requests and one for responses.



For example, in a AMD/Xilinx Versal FPGA, a CPU might transfer CXU requests, via CXU-L2-to-AXI-S
bridge, AXI-S-to-NOC bridge, Versal NOC, NOC-to-AXI-S bridge, AXI-S-to-CXU-L2 bridge, to a CXU at
the far corner of the FPGA fabric, later transferring CXU responses back to the distant CPU by the same
means.

Table 18 presents a recommended canonical mapping between CXU-LI signals and the two AXI-S streams.

Table 18. Recommended mapping between CXU-L2/-L3 and request/response AXI4-Streams

Dir CXU-LI Port Width AXI-S Port
in clk aclk
in rst aresetn (inverted)
in clk_en -
in req_valid reqs_tvalid

out req_ready reqs_tready
in req_id CXU_REQ_ID_W reqs_tid or reqs_tdest
in req_cxu CXU_CXU_ID_W reqs_tuser or reqs_tdest
in req_state CXU_STATE_ID_W reqs_tuser
in req_func CXU_FUNC_ID_W reqs_tuser
in req_insn CXU_INSN_W reqs_tuser
in req_data0 CXU_DATA_W reqs_tdata
in req_data1 CXU_DATA_W reqs_tdata
in - reqs_tlast optional
in - * reqs_tstrb optional
in - * reqs_tkeep optional

out resp_valid resps_tvalid
in resp_ready resps_tready

out resp_id CXU_REQ_ID_W resps_tid or resps_tdest
out resp_status CXU_STATUS_W resps_tuser
out resp_data CXU_DATA_W resps_tdata
out - resps_tlast optional
out - * resps_tstrb optional
out - * resps_tkeep optional

When several CXU-LI signals map to a single AXI-S port, the signals are to be concatenated in order, each signal
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assigned successively more significant bits. For example, using Verilog concatenation:

reqs_tuser = { req_insn,req_func,req_state,req_cxu };
reqs_tdata = { req_data1,req_data0 };

Use reqs_tdest when req_id and/or req_cxu indicate/encode a specific AXI-S destination (of a bridge to a CXU).
Use resps_tdest when of resp_id indicates a specific AXI-S destination (of a bridge to a requester, e.g., CPU).
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4. CX-ABI: CX Application Binary Interface

4.1. Basic ABI

Each thread has a current CX selection that determines how custom instructions and custom CSR accesses ("custom
operations") are performed. The current selection may be:

1. Legacy mode: CX multiplexing is disabled: custom operations issue pre-existing built-in custom operations.

2. CX mode: CX multiplexing is enabled: custom operations issue to the selected CX and CX state context.

The CX-ABI defines these rules, which must be implemented explicitly in code or automatically by CX-ABI aware
compilers:

1. [ABI-INIT]: Initially, the selection is legacy mode.

2. [ABI-ENTRY]: On entry to a function, or following a function call, the selection is legacy mode.

3. [ABI-SELECT-CX]: Code must select a CX prior to issuing that CX’s custom operations.

4. [ABI-DESELECT-CX]: Code that selects a CX must select legacy mode prior to calling a function, returning, or
stack unwinding.

5. [ABI-SELECT-LEGACY]: Code should select legacy mode prior to issuing built-in custom operations.

4.2. ABI with CX functions — provisional

 This provisional ABI section is non-normative.

At present there is a proposal to designate certain functions as CX functions which must be called in CX mode, with
selected CX and state context.

Therefore for this "CX-ABI with CX functions" there are two types of functions:

1. Ordinary functions. Ordinary functions expect legacy mode.

2. CX functions. CX functions are so-designated by a language-specific attribute, declaration, or type specifier. CX
functions require CX mode.

This provisional ABI defines these rules, which must be implemented explicitly in code or automatically by CX-ABI
aware compilers:

1. [ABI-INIT]: Initially, the selection is legacy mode.

2. [ABI-ENTRY]: On entry to an ordinary function, or following any function call, the selection is legacy mode.

3. [ABI-CX-ENTRY]: On entry to a CX function, the selection is CX mode.

4. [ABI-SELECT-CX]: Code must select a CX prior to issuing that CX’s custom operations or calling a CX function.

5. [ABI-DESELECT-CX]: Code that selects a CX must select legacy mode prior to calling an ordinary function,
returning, or stack unwinding.

6. [ABI-SELECT-LEGACY]: Code should select legacy mode prior to issuing built-in custom operations.
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4.3. Rationale

 This Rationale section is non-normative.

The CX ABI ensures correct composition of independently authored CX libraries and legacy custom extension
libraries under CX multiplexing.

CX multiplexing operates by setting the hart’s CX selector (mcx_selector write), or setting it indirectly (cx_index
write), to select a specific CX and CX state context to issue custom instructions or accessing custom CSRs (together,
custom operations).

Per §2.2.1, mcx_selector.version determines whether CX multiplexing is enabled or disabled:

• "When version=0, disable composable extension multiplexing. … Custom-[0123] instructions execute the
CPU’s built-in custom instructions."

• "When version=1, enable … composable extension multiplexing. … Custom-[012] instructions issue CXU
requests to the CXU identified by cxu_id and to the state context identified by state_id."

So software must write the CX selector prior to issuing CX custom operations, and software must also ensure the CX
selector is disabled prior to issuing legacy custom operations.

Since application software is composed of dozens or hundreds of separately authored, sometimes separately
versioned libraries, we require an application binary interface (ABI) that ensures dependable disciplined use of the
thread’s shared CX selector, so that whenever software performs custom operations, these are performed against
exactly the expected CX or legacy custom.

4.3.1. Callee-save won’t do

An older version of the spec defined a provisional CX ABI that managed the CX selector with a callee-save discipline:

1. Initial selection is legacy mode.

2. Any code that writes CX selector must save the prior value and restore it upon return / stack unwind.

3. Code which does not change selectors need not save or restore selectors.

This callee-save discipline has the advantages that:

• It provides correct nested composition of CX libraries.

◦ If CX A lib selects CX A, performs A custom operations then calls lib B, which selects CX B and performs B
custom operations, B must re-select the previous selection (CX A) prior to returning to lib A, which can then
happily perform more A custom operations.

• Compared to caller-save, wherein a CX library defensively re-selects its CX after every function call out, the CX
library trusts the transitive callees to restore its CX selection, minimizing the number of CX selector writes in a
given code path.

What’s wrong with callee-save?

It breaks legacy custom code. Under callee-save you must always select your CX (or legacy mode) prior to issuing
custom operations. However preexisting legacy custom code, and legacy compilers, both predating CX, do not
include the required CX selector writes to select legacy mode, nor a matching CX selector write to restore the caller’s
selection. So any explicit or implicit use of a legacy custom operation may instead forward to some other selected
CX — a disaster! In summary, callee-save discipline is incompatible in general with legacy libraries and compilers
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that use legacy custom operations at will. Since legacy custom code may appear almost anywhere, it follows the
default, ambient CX selection should be legacy mode.

Wrong trust model. Callee-save CX selection means you must trust code you do not control to preserve your current
CX selection. In general any C function capable ABI assumes that a callee will not corrupt the stack or do other
undefined behavior that corrupts the caller, but CX multiplexing is a sharp knife, and if the callee violates the
callee-save ABI and returns with a different CX selector in place, the caller may issue custom operations to the
wrong CX or CX state context. In applications comprising separately authored, separately versioned libraries, it is
not possible to inspect the transitive call graph from a CX library to ensure callers preserve the CX selection as
required. A more secure, more defensive, more amenable to program analysis ABI merits a greater degree of
paranoia in each CX library, by assuming that callees do not preserve the current CX selection.

4.3.2. Ambient legacy mode ABI

These two problems with callee-save discipline led to a redesign of the ABI. The revised design tenets are:

1. Support composition of CX libraries, including nested composition of CX libraries, alongside legacy custom
extension libraries.

2. Support preexisting legacy custom extension libraries, even when they don’t explicitly manage (disable) CX
muxing.

3. Minimize the CX selection "trust surface" to that of the current function (or perhaps, current library).

4. Minimize the number of CX selector writes.

The present ABI endeavors to maintain an ambient legacy mode selection when not actively issuing CX custom
operations. This ensures, to the greatest extent possible, that legacy custom code, unaware of CX multiplexing, and
lacking the code to select legacy custom mode, nevertheless always operates in legacy custom mode.

For CX libraries, this code supports composition and nested composition. Composition works because each library
selects its CX prior to issuing its custom operations. Nested composition also works, because, after following a
function call ([ABI-ENTRY]) the caller must re-select its CX ([ABI-SELECT-CX]) prior to issuing additional custom
operations:

CX A lib sets CX selection to CX A, issues A operations
CX A lib sets CX selection to legacy mode, calls CX B lib
CX B lib sets CX selection to CX B, issues B operations
CX B lib sets CX selection to legacy mode, returns
CX A lib sets CX select to CX A, issues more A operations
CX A lib sets CX selection to legacy mode, returns.

Also, all is well when a CX A lib calls legacy custom code:

CX A lib sets CX selection to CX A, issues A operations
CX A lib sets CX selection to legacy mode, calls legacy lib
legacy lib issues its legacy custom operations
legacy lib returns
CX A lib sets CX select to CX A, issues more A operations
CX A lib sets CX selection to legacy mode, returns.
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Rule [ABI-DESELECT-CX] helps ensure that following a brief excursion into a CX lib which changes the CX
selection, we immediately return to legacy mode in case we encounter selection-less legacy custom code.

There is still an attack surface caused by malicious code violating the ABI by selecting some CX, then calling (or
returning to) selection-less legacy custom code, which issues custom operations which are not the legacy custom
operations it intends causing unboundedly undefined behavior.

Rule [ABI-SELECT-LEGACY] helps defend against this. To the extent practical or necessary, legacy custom code
should be compiled defensively to set legacy mode on entry and after function calls prior to issuing its custom
operations.

Unlike the deprecated callee-save ABI, these rules will incur additional unnecessary CX selection writes and will
give up a little bit of performance (which after all may be the reason for using that CX in the first place.) For
example, in the CX A lib + CX B lib nested example above, several CX selector writes are unnecessary. It is possible
for a CX enlightened compiler+linker to analyze control flow within a monolithic CX library and optimize the
generated code by eliding provably unnecessary defensive CX selector writes.
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5. CXU Metadata (CXU-MD)
To help automate system composition, each composable hardware core (each CPU and CXU) shall include a
metadata file which defines the properties, features, and supported values of its configuration parameters.

For each core, for each configuration parameter, metadata may specify a subset of the set of legal configuration
parameter values defined in §3.4.1.

Metadata configuration parameter values are encoded as either a single value, a list of values, or a range of values.
For a continuous range of integer values, the parameter value is range, and the inclusive range of values is found in
a corresponding parameter whose name ends in _range. For example,

parameter1: 0           # single value (scalar)
parameter2: [32, 64]    # list of allowed values (sequence)
parameter3: range       # range, via parameter3_range
parameter3_range: [5,9] # inclusive range of integer values. Expands to [5,6,7,8,9]

5.1. CXU Metadata

Listing 2 specifies the CXU metadata format, in YAML. Each legal configuration parameter range of §3.4.1
CXU_PARAM may be overridden (subsetted) through a YAML parameter line param: .

The CXU metadata may also be used to specify other custom (non-standard / CXU specific) configuration
parameter settings.

Listing 2. CXU metadata format

cxu_name: string
cxu_li:
    feature_level: scalar                   # required.  allowed: 0-3
    state_id_max: scalar | list | 'range'   # level:any. default: any. 0 => stateless
    req_id_w: scalar | list | 'range'       # level:2+.  default: 0
    cxu_id_w: scalar | list | 'range'       # level:any. default: 0
    state_id_w: scalar | list | 'range'     # level:1+.  default: 0
    insn_w: scalar | list | 'range'         # level:1+.  default: 0
    func_id_w: scalar | list | 'range'      # level:any. default: 10
    data_w: scalar | list                   # level:any. default: 32
    latency: scalar | list | 'range'        # level:1.   default: 1
    reset_latency: scalar | list | 'range'  # level:1.   default: 0
    xyz_range: [min,max]                    # when parameter xyz is range

 Need some stronger naming of CXUs and CPUs here. Perhaps a GUID, perhaps a URL.

 Do we need to specify here which CX_IDs the CXU implements?
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5.2. Example CXU metadata

Listing 3 is example CXU metadata for a CXU-L1 CXU which supports only one state context, requires at least 5-bit
CF_IDs, requires XLEN=32, and supports a response latency of 2-4 cycles.

Listing 3. Example CXU metadata (CXU-L1)

cxu_name: bobs_bnn_cxu
cxu_li:
    feature_level: 1
    state_id_max: 1         # only supports 1 state context
    req_id_w:               # any req_id is fine
    cxu_id_w: 0             # no req_cxu
    state_id_w: 0           # no req_state_id
    insn_w: 0               # no req_insn
    func_id_w: range        # need >= 5-bit CF_IDs
    func_id_w_range: [5,10] # so [5,6,7,8,9,10] are OK
    data_w: 64              # XLEN=64-bit only
    latency: [2,3,4]        # configurable w/ 2-4 cycles of latency
    reset_latency: 1        # requires at least 1 cycle of reset latency
other:
    adder_tree: [0,1]       # non-standard config parameter
    element_w: [4,8,16,32]  # non-standard config parameter

5.3. CPU Metadata

As described in §3.10, CPUs, as CXU requesters, use specific CXU-LI feature levels. As with CXUs, CPUs use CXU
metadata to override configuration parameter defaults, in this case to define what the CPU requires or accepts of its
CXU (which is, generally, the root of the DAG of CXUs).

Listing 4. CPU metadata format

cpu_name: string
cxu_li: # see [Listing 1].

5.4. Example CPU metadata

Listing 5 is example CXU metadata for a CPU that requires and supports only 32-bit combinational CXUs.
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Listing 5. Example CPU metadata (requires a CXU-L0 CXU DAG)

cpu_name: carols_simple_scalar_cpu
cxu_li:
    feature_level: 0    # L0 combinational CXUs only
    state_id_max:       # L0: n/a
    req_id_w:           # L0: n/a
    cxu_id_w:           # supports arbitrary CXU_IDs
    state_id_w:         # L0: n/a
    insn_w:             # L0: n/a
    func_id_w:          # supports arbitrary CF_IDs
    data_w: 32          # XLEN=32-bit only

5.5. System manifest

 TODO

 Consider CX library metadata too. "I may use this subset { CF_IDs } of the CF_IDs of extension CX_ID."
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6. TODO
Todo:

• Chapter on CX Runtime (runtime) API

• How CX and CXU versioning works; how CXU-LI versioning works

• A place for miscellaneous design notes

6.1. Open design problems (post 1.0)

• Developer tooling recommendations for disassembly, debugging, profiling, perf monitoring.

6.2. Cost model


Here write up a brief estimate of the FPGA area overhead of various CX-ISA and CXU-LI mechanisms
and behaviors.
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7. Specification Change History

7.1. Version 0.95.240403, 2024-04-03: Add CX CSRs

Add CX-scoped custom CSRs:

1. Extend CX multiplexing to multiplex both custom opcode instructions and now also custom CSR access
instructions.

2. Extend CXU-LI to convey CX CSR access requests and responses.

3. Change cx_imm CX custom function instruction format to follow the format of addi and csrrw, with a 12-bit
imm field.

4. Rename mcx_selector.cte to mcx_selector.cxe (custom operation exception enable) — enables illegal-
instruction exceptions on use of custom operations; resize mcx_selector.version from 4-bits to 3-bits.

7.2. Version 0.94.240327, 2024-03-27: Add mcx_selector.cte.

Add mcx_selector.cte, custom operation trap enable.

This enables emulation of absent custom instructions, emulation of absent composable extensions, and
virtualization of stateful composable extensions state contexts.

7.3. Version 0.93.240310, 2024-03-10: Revise CX ABI.

Add a CX ABI chapter. Update CX ABI section of Introduction.

The old CX ABI was callee-save management of the CX mux CSRs, optimizing for minimum CX mux CSR writes.

The new CX ABI is ambient legacy mode, maximally paranoid and backwards compatible, keeping CX muxing off
(e.g., selecting for legacy built-in custom extensions) except when actively issuing CX custom instructions.

7.4. Version 0.92.231111, 2023-11-11: Add extension multiplexing
version.

Introduce _CX version, improving CX forward compatibility. Replace mcx_selector.en with
mcx_selector.version. Add cx_status.iv error field. Replace cx_status field names CI/SI/FI with IC/IS/IF.

7.5. Version 0.91.230803, 2023-08-03: Simplify and improve
terminology.

Replace term Custom Interface (CI) with Composable Extension (CX). Similarly replace CFU with CXU. And so forth.

From To
Custom Interface (CI) Composable Extension (CX)
Custom Function Unit (CFU) Composable Extension Unit (CXU)
-Zicfu -Zicx
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From To
mcfu_* and cfu_* CSRs mcx_* and cx_* CSRs

7.6. Version 0.90.220327, 2022-03-27: First complete draft.
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