{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Saliency Papers\n", "Sam Greydanus | 2017 | MIT License\n", "\n", "## Summary\n", "\n", "Year | Author | Name | Keywords\n", ":--- | :--- | :---: | :---:\n", "2014 | Simonyan et al. | [Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps](https://arxiv.org/abs/1312.6034) | saliency (orig. paper)\n", "2014 | Zeiler, Fergus | [Visualizing and Understanding Convolutional Networks](https://arxiv.org/abs/1311.2901) | saliency, ablation study\n", "2015 | Springenberg et al. | [Striving for Simplicity: the All Convolutional Net](https://arxiv.org/abs/1412.6806) | guided backpropagation\n", "2015 | Bach et al. | [On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation](http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140) | layer-wise relevance propagation (LRP)\n", "2016 | Karpathy et al. | [Visualizing and Understanding Recurrent Networks](https://arxiv.org/abs/1506.02078v2) | visualization, LSTMs, RNNs, error analysis\n", "2016 | Ziyu et al. | [Dueling Network Architectures for Deep Reinforcement Learning](https://arxiv.org/abs/1511.06581) | saliency, atari, [video](http://torch.ch/blog/2016/04/30/dueling_dqn.html) \n", "2016 | Zahavy | [Graying the black box: Understanding DQNs](https://arxiv.org/abs/1602.02658) | atari, saliency, markov models\n", "2016 | Zhang et al. | [Top-down Neural Attention by Excitation Backprop](https://arxiv.org/abs/1608.00507) | excitation backprop\n", "2017 | Shrikumar et al. | [Learning Important Features Through Propagating Activation Differences](http://proceedings.mlr.press/v70/shrikumar17a/shrikumar17a.pdf) | DeepLIFT, decision boundaries\n", "2017 | Montavon et al. | [Explaining NonLinear Classification Decisions with Deep Taylor Decomposition](https://arxiv.org/abs/1512.02479) | deep taylor decomposition, LRP" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## [Visualizing and Understaning Atari Agents]()\n", "Sam Greydanus\n", "\n", "**Curated abstract.** \n", "\n", "<img src=\"./xpong.png\" alt=\"Pong policy visualization\" style=\"width: 400px;\"/>\n", "\n", "**Math.** \n", "\n", "**Pros.**\n", "\n", "**Cons.**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## [Visualizing and Understanding Recurrent Networks](https://arxiv.org/abs/1506.02078v2)\n", "Karpathy, Johnson, and Fei-Fei\n", "\n", "**Curated abstract.** Performance and limitations of RNNs are poorly understood. Using character-level language models as a testbed, authors analyze the internal representations, predictions and error types. Results include: 1) existence of interpretable cells that track long-range dependencies such as line lengths, quotes and brackets. 2) comparative analysis with finite horizon n-gram models shows LSTM improvements are due to longer time horizon. 3) analysis of the remaining errors with a pie chart error breakdown.\n", "\n", "<img src=\"./karpathy-rnns.png\" alt=\"Karpathy RNN error sources\" style=\"width: 750px;\"/>\n", "\n", "**Math.** \n", "\n", "**Pros.**\n", "\n", "**Cons.**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## [Explaining NonLinear Classification Decisions with Deep Taylor Decomposition](https://arxiv.org/abs/1512.02479)\n", "Montavon, Bach, Binder, Samek, Müller\n", "\n", "**Math.**\n", "\n", "**Words.**\n", "\n", "**Pros.**\n", "\n", "**Cons.**" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## [Striving for Simplicity: the All Convolutional Net](https://arxiv.org/abs/1412.6806)\n", "Springenberg, Dosovitskiy, Brox, Riedmiller\n", "\n", "**Math.**\n", "\n", "**Words.**\n", "\n", "**Pros.**\n", "\n", "**Cons.**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## [Graying the black box: Understanding DQNs](https://arxiv.org/abs/1602.02658)\n", "Zahavy, Baram, Mannor\n", "\n", "**Math.**\n", "\n", "**Words.**\n", "\n", "**Pros.**\n", "\n", "**Cons.**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }