{
 "cells": [
  {
   "cell_type": "markdown",
   "source": [
    "# Tutorial 23: Low-level API - Geometry"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "In this tutorial, we will learn\n",
    "\n",
    "   -  How the `DiscreteModel` and its components work.\n",
    "   -  How to extract topological information from a `GridTopology`.\n",
    "   -  How to extract geometrical information from a `Grid`.\n",
    "   -  How periodicity is handled in Gridap, and the difference between nodes and vertices.\n",
    "   -  How to create a periodic model from scratch, use the example of a Mobius strip.\n",
    "\n",
    "## Required Packages"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "using Gridap\n",
    "using Gridap.Geometry, Gridap.ReferenceFEs, Gridap.Arrays\n",
    "using Plots"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "## Table of Contents\n",
    "1. Utility Functions\n",
    "2. The DiscreteModel Structure\n",
    "3. Working with Topology\n",
    "4. Geometric Mappings\n",
    "5. High-order Grids\n",
    "6. Periodicity in Gridap\n",
    "\n",
    "## 1. Utility Functions\n",
    "We begin by defining helper functions that will be essential throughout this tutorial.\n",
    "These functions help us visualize and work with our mesh structures."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Convert a CartesianDiscreteModel to an UnstructuredDiscreteModel for more generic handling"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "function cartesian_model(args...; kwargs...)\n",
    "  UnstructuredDiscreteModel(CartesianDiscreteModel(args...; kwargs...))\n",
    "end"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Visualization function to plot nodes with their IDs\n",
    "Input: node_coords - Array of node coordinates\n",
    "       node_ids - Array of corresponding node IDs"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "function plot_node_numbering(node_coords, node_ids)\n",
    "  x = map(c -> c[1], node_coords)\n",
    "  y = map(c -> c[2], node_coords)\n",
    "  a = text.(node_ids, halign=:left, valign=:bottom)\n",
    "  scatter(x, y, series_annotations = a, legend=false)\n",
    "  hline!(unique(x), linestyle=:dash, color=:grey)\n",
    "  vline!(unique(y), linestyle=:dash, color=:grey)\n",
    "end"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Overloaded method to plot node numbering directly from a model\n",
    "This function extracts the necessary information from the model and calls the base plotting function"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "function plot_node_numbering(model)\n",
    "  D = num_cell_dims(model)\n",
    "  topo = get_grid_topology(model)\n",
    "  node_coords = Geometry.get_node_coordinates(model)\n",
    "  cell_node_ids = get_cell_node_ids(model)\n",
    "  cell_vertex_ids = Geometry.get_faces(topo, D, 0)\n",
    "\n",
    "  node_to_vertex = zeros(Int, length(node_coords))\n",
    "  for (nodes,vertices) in zip(cell_node_ids, cell_vertex_ids)\n",
    "    node_to_vertex[nodes] .= vertices\n",
    "  end\n",
    "\n",
    "  plot_node_numbering(node_coords, node_to_vertex)\n",
    "end"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "## 2. The DiscreteModel Structure\n",
    "\n",
    "The `DiscreteModel` in Gridap is a fundamental structure that represents a discretized\n",
    "computational domain. It consists of three main components, each serving a specific purpose:\n",
    "\n",
    "  - The `GridTopology`: Defines the connectivity of the mesh elements\n",
    "    * Stores how vertices, edges, faces, and cells are connected\n",
    "    * Enables neighbor queries and traversal of the mesh\n",
    "    * Pure topological information, no geometric data\n",
    "\n",
    "  - The `Grid`: Contains the geometric information of the mesh\n",
    "    * Stores coordinates of mesh nodes\n",
    "    * Provides mappings between reference and physical elements\n",
    "    * Handles curved elements and high-order geometries\n",
    "\n",
    "  - The `FaceLabeling`: Manages mesh labels and markers\n",
    "    * Identifies boundary regions\n",
    "    * Tags different material regions\n",
    "    * Essential for applying boundary conditions\n",
    "\n",
    "### Key Concept: Nodes vs. Vertices\n",
    "\n",
    "One of the most important distinctions in Gridap is between nodes and vertices:\n",
    "\n",
    "  - **Vertices** (Topological entities):\n",
    "    * 0-dimensional entities in the `GridTopology`\n",
    "    * Define the connectivity of the mesh\n",
    "    * Used for neighbor queries and mesh traversal\n",
    "    * Number of vertices depends only on topology\n",
    "\n",
    "  - **Nodes** (Geometric entities):\n",
    "    * Control points stored in the `Grid`\n",
    "    * Define the geometry of elements\n",
    "    * Used for interpolation and mapping\n",
    "    * Number of nodes depends on the geometric order\n",
    "\n",
    "While nodes and vertices often coincide in simple meshes, they differ in two important cases:\n",
    "1. Periodic meshes: Where multiple nodes may correspond to the same vertex\n",
    "2. High-order meshes: Where additional nodes are needed to represent curved geometries\n",
    "\n",
    "## 3. Working with Topology\n",
    "\n",
    "Let's explore how to extract and work with topological information. We'll start by creating\n",
    "a simple 3x3 cartesian mesh:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "model = cartesian_model((0,1,0,1),(3,3))"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "First, let's get the topology component and count the mesh entities:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "topo = get_grid_topology(model)\n",
    "\n",
    "n_vertices = num_faces(topo,0)  # Number of vertices (0-dimensional entities)\n",
    "n_edges = num_faces(topo,1)     # Number of edges (1-dimensional entities)\n",
    "n_cells = num_faces(topo,2)     # Number of cells (2-dimensional entities)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Connectivity Queries\n",
    "Gridap provides various methods to query the connectivity between different mesh entities.\n",
    "Here are some common queries:"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Get vertices of each cell (cell → vertex connectivity)"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_to_vertices = get_faces(topo,2,0)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Get edges of each cell (cell → edge connectivity)"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_to_edges = get_faces(topo,2,1)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Get cells adjacent to each edge (edge → cell connectivity)"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "edge_to_cells = get_faces(topo,1,2)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Get vertices of each edge (edge → vertex connectivity)"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "edge_to_vertices = get_faces(topo,1,0)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Advanced Connectivity: Finding Cell Neighbors\n",
    "\n",
    "Finding cells that share entities (like vertices or edges) requires more work.\n",
    "A direct query for cell-to-cell connectivity returns an identity map:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_to_cells = get_faces(topo,2,2)  # Returns identity table"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "To find actual cell neighbors, we need to traverse through lower-dimensional entities.\n",
    "Here's a utility function that builds a face-to-face connectivity graph:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "function get_face_to_face_graph(topo,Df)\n",
    "  n_faces = num_faces(topo,Df)\n",
    "  face_to_vertices = get_faces(topo,Df,0)  # Get vertices of each face\n",
    "  vertex_to_faces = get_faces(topo,0,Df)   # Get faces incident to each vertex\n",
    "\n",
    "  face_to_face = Vector{Vector{Int}}(undef,n_faces)\n",
    "  for face in 1:n_faces\n",
    "    nbors = Int[]\n",
    "    for vertex in face_to_vertices[face]\n",
    "      append!(nbors,vertex_to_faces[vertex]) # Add incident faces\n",
    "    end\n",
    "    face_to_face[face] = filter(!isequal(face),unique(nbors)) # Remove self-reference and duplicates\n",
    "  end\n",
    "\n",
    "  return face_to_face\n",
    "end"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Now we can find neighboring cells and edges:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_to_cells = get_face_to_face_graph(topo,2)  # Cells sharing vertices\n",
    "edge_to_edges = get_face_to_face_graph(topo,1)  # Edges sharing vertices"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "## 4. Geometric Mappings\n",
    "\n",
    "The geometry of our mesh is defined by mappings from reference elements to physical space.\n",
    "Let's explore how these mappings work in Gridap:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "grid = get_grid(model)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "First, we extract the basic geometric information:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_map = get_cell_map(grid)          # Mapping from reference to physical space\n",
    "cell_to_nodes = get_cell_node_ids(grid) # Node IDs for each cell\n",
    "node_coordinates = get_node_coordinates(grid) # Physical coordinates of nodes"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Computing Cell-wise Node Coordinates\n",
    "\n",
    "There are two ways to get the coordinates of nodes for each cell:\n",
    "\n",
    "1. Using standard Julia mapping:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_to_node_coords = map(nodes -> node_coordinates[nodes], cell_to_nodes)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "2. Using Gridap's lazy evaluation system (more efficient for large meshes):"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_to_node_coords = lazy_map(Broadcasting(Reindex(node_coordinates)),cell_to_nodes)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Geometric Mappings\n",
    "\n",
    "The mapping from reference to physical space is defined by cell-wise linear combination of:\n",
    "1. Reference element shape functions (basis)\n",
    "2. Physical node coordinates (coefficients)"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_reffes = get_cell_reffe(grid)     # Get reference elements for each cell\n",
    "cell_basis = lazy_map(get_shapefuns,cell_reffes)  # Get basis functions\n",
    "cell_map = lazy_map(linear_combination,cell_to_node_coords,cell_basis)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "## 5. High-order Grids\n",
    "\n",
    "High-order geometric representations are essential for accurately modeling curved boundaries\n",
    "and complex geometries. Let's explore this by creating a curved mesh:\n",
    "\n",
    "### Example: Creating a Half-Cylinder\n",
    "\n",
    "First, we define a mapping that transforms our planar mesh into a half-cylinder:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "function F(x)\n",
    "  θ = x[1]*pi   # Map x-coordinate to angle [0,π]\n",
    "  z = x[2]      # Keep y-coordinate as height\n",
    "  VectorValue(cos(θ),sin(θ),z)  # Convert to cylindrical coordinates\n",
    "end"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Apply the mapping to our node coordinates:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "new_node_coordinates = map(F,node_coordinates)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Create new cell mappings with the transformed coordinates:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "new_cell_to_node_coords = lazy_map(Broadcasting(Reindex(new_node_coordinates)),cell_to_nodes)\n",
    "new_cell_map = lazy_map(linear_combination,new_cell_to_node_coords,cell_basis)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Create a new grid with the transformed geometry:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "reffes, cell_types = compress_cell_data(cell_reffes)\n",
    "new_grid = UnstructuredGrid(new_node_coordinates,cell_to_nodes,reffes,cell_types)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Save for visualization:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "writevtk(new_grid,\"half_cylinder_linear\")"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "If we visualize the result, we'll notice that despite applying a curved mapping,\n",
    "our half-cylinder looks faceted. This is because we're still using linear elements\n",
    "(straight edges) to approximate the curved geometry.\n",
    "\n",
    "### Solution: High-order Elements\n",
    "\n",
    "To accurately represent curved geometries, we need high-order elements:"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Create quadratic reference elements:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "order = 2  # Polynomial order\n",
    "new_reffes = [LagrangianRefFE(Float64,QUAD,order)]  # Quadratic quadrilateral elements\n",
    "new_cell_reffes = expand_cell_data(new_reffes,cell_types)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Create a finite element space to handle the high-order geometry:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "space = FESpace(model,new_cell_reffes)\n",
    "new_cell_to_nodes = get_cell_dof_ids(space)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Get the quadratic nodes in the reference element:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_dofs = lazy_map(get_dof_basis,new_cell_reffes)\n",
    "cell_basis = lazy_map(get_shapefuns,new_cell_reffes)\n",
    "cell_to_ref_coordinates = lazy_map(get_nodes,cell_dofs)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Map the reference nodes to the physical space:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_to_phys_coordinates = lazy_map(evaluate,cell_map,cell_to_ref_coordinates)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Create the high-order node coordinates:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "new_n_nodes = maximum(maximum,new_cell_to_nodes)\n",
    "new_node_coordinates = zeros(VectorValue{2,Float64},new_n_nodes)\n",
    "for (cell,nodes) in enumerate(new_cell_to_nodes)\n",
    "  for (i,node) in enumerate(nodes)\n",
    "    new_node_coordinates[node] = cell_to_phys_coordinates[cell][i]\n",
    "  end\n",
    "end"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Apply our cylindrical mapping to the high-order nodes:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "new_node_coordinates = map(F,new_node_coordinates)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Create the high-order grid:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "new_grid = UnstructuredGrid(new_node_coordinates,new_cell_to_nodes,new_reffes,cell_types)\n",
    "writevtk(new_grid,\"half_cylinder_quadratic\")"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "The resulting mesh now accurately represents the curved geometry of the half-cylinder,\n",
    "with quadratic elements properly capturing the curvature (despite paraview still showing\n",
    "a linear interpolation between the nodes)."
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "## 6. Periodicity in Gridap\n",
    "\n",
    "Periodic boundary conditions are essential in many applications, such as:\n",
    "- Modeling crystalline materials\n",
    "- Simulating fluid flow in periodic domains\n",
    "- Analyzing electromagnetic wave propagation\n",
    "\n",
    "Gridap handles periodicity through a clever approach:\n",
    "1. In the topology: Periodic vertices are \"glued\" together, creating a single topological entity\n",
    "2. In the geometry: The corresponding nodes maintain their distinct physical positions\n",
    "\n",
    "This separation between topology and geometry allows us to:\n",
    "- Maintain the correct geometric representation\n",
    "- Automatically enforce periodic boundary conditions\n",
    "- Avoid mesh distortion at periodic boundaries\n",
    "\n",
    "### Visualizing Periodicity\n",
    "\n",
    "Let's examine how periodicity affects the mesh structure through three examples:"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "1. Standard non-periodic mesh:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "model = cartesian_model((0,1,0,1),(3,3))\n",
    "plot_node_numbering(model)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "![](../assets/geometry/nodes_nonperiodic.png)"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "2. Mesh with periodicity in x-direction:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "model = cartesian_model((0,1,0,1),(3,3),isperiodic=(true,false))\n",
    "plot_node_numbering(model)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "![](../assets/geometry/nodes_halfperiodic.png)"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "3. Mesh with periodicity in both directions:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "model = cartesian_model((0,1,0,1),(3,3),isperiodic=(true,true))\n",
    "plot_node_numbering(model)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "![](../assets/geometry/nodes_fullperiodic.png)"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Notice how the vertex numbers (displayed at node positions) show the topological\n",
    "connectivity, while the nodes remain at their physical positions.\n",
    "\n",
    "### Creating a Möbius Strip\n",
    "\n",
    "We'll create it by:\n",
    "1. Starting with a rectangular mesh\n",
    "2. Making it periodic in one direction\n",
    "3. Adding a twist before connecting the ends\n",
    "\n",
    "#### Step 1: Create Base Mesh\n",
    "\n",
    "Start with a 3x3 cartesian mesh:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "nc = (3,3)  # Number of cells in each direction\n",
    "model = cartesian_model((0,1,0,1),nc)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Extract geometric and topological information:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "node_coords = get_node_coordinates(model)  # Physical positions\n",
    "cell_node_ids = get_cell_node_ids(model)  # Node connectivity\n",
    "cell_type = get_cell_type(model)          # Element type\n",
    "reffes = get_reffes(model)                # Reference elements"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "#### Step 2: Create Periodic Topology\n",
    "\n",
    "To create the Möbius strip, we need to:\n",
    "1. Identify vertices to be connected\n",
    "2. Reverse one edge to create the twist\n",
    "3. Ensure proper connectivity"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Create initial vertex numbering:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "np = nc .+ 1  # Number of points in each direction\n",
    "mobius_ids = collect(LinearIndices(np))"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Create the twist by reversing the last row:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "mobius_ids[end,:] = reverse(mobius_ids[1,:])"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Map cell nodes to the new vertex numbering:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_vertex_ids = map(nodes -> mobius_ids[nodes], cell_node_ids)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "#### Step 3: Clean Up Vertex Numbering\n",
    "\n",
    "The new vertex IDs aren't contiguous (some numbers are duplicated due to periodicity).\n",
    "We need to create a clean mapping:"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Find unique vertices and create bidirectional mappings:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "vertex_to_node = unique(vcat(cell_vertex_ids...))\n",
    "node_to_vertex = find_inverse_index_map(vertex_to_node)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Renumber vertices to be contiguous:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_vertex_ids = map(nodes -> node_to_vertex[nodes], cell_vertex_ids)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Convert to the Table format required by Gridap:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "cell_vertex_ids = Table(cell_vertex_ids)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Get coordinates for the vertices:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "vertex_coords = node_coords[vertex_to_node]\n",
    "polytopes = map(get_polytope,reffes)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "#### Step 4: Create the Model\n",
    "\n",
    "Now we can create our Möbius strip model:"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "Create topology with periodic connections:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "topo = UnstructuredGridTopology(\n",
    "  vertex_coords, cell_vertex_ids, cell_type, polytopes\n",
    ")"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Create grid (geometry remains unchanged):"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "grid = UnstructuredGrid(\n",
    "  node_coords, cell_node_ids, reffes, cell_type\n",
    ")"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Add basic face labels:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "labels = FaceLabeling(topo)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Combine into final model:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "mobius = UnstructuredDiscreteModel(grid,topo,labels)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "Visualize the vertex numbering:"
   ],
   "metadata": {}
  },
  {
   "outputs": [],
   "cell_type": "code",
   "source": [
    "plot_node_numbering(mobius)"
   ],
   "metadata": {},
   "execution_count": null
  },
  {
   "cell_type": "markdown",
   "source": [
    "![](../assets/geometry/mobius.png)"
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "---\n",
    "\n",
    "*This notebook was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*"
   ],
   "metadata": {}
  }
 ],
 "nbformat_minor": 3,
 "metadata": {
  "language_info": {
   "file_extension": ".jl",
   "mimetype": "application/julia",
   "name": "julia",
   "version": "1.10.8"
  },
  "kernelspec": {
   "name": "julia-1.10",
   "display_name": "Julia 1.10.8",
   "language": "julia"
  }
 },
 "nbformat": 4
}