{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "continuous-arnold", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "id": "assisted-energy", "metadata": {}, "outputs": [], "source": [ "def f(x):\n", " return(np.cos(x))\n", "def T(x):\n", " return(1)\n", "def E(x):\n", " return(f(x)-T(x))" ] }, { "cell_type": "code", "execution_count": 3, "id": "certified-civilian", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAn20lEQVR4nO3dd3hVVb7G8e8vgYSEDgmd0AUBqaGoiFhQERsCivQmlqsz41zrjM5YplhHZ0a9ioCCoqiACAhiHxhqQm8qAYQk9JZACiln3T9O1ACBHOAkJzl5P8/DQ072Yp/fIsnLZu211zLnHCIiUvqFBLoAERHxDwW6iEiQUKCLiAQJBbqISJBQoIuIBIlygXrjqKgo17hx40C9vYhIqbRy5coDzrnogo4FLNAbN25MfHx8oN5eRKRUMrMdpzumIRcRkSChQBcRCRIKdBGRIKFAFxEJEgp0EZEg4VOgm9l1ZvaDmSWY2aMFHO9lZilmtibv15/8X6qIiJxJodMWzSwUeA3oDSQBcWY22zm36aSmi5xzNxRBjSIi4gNfrtC7AgnOuW3OuSxgGnBz0ZYlIhKkvnsOdq8rklP7Euj1gcR8r5PyPneyi81srZnNN7M2BZ3IzMaZWbyZxe/fv/8cyhURKcVWT4Xv/gabZhXJ6X0JdCvgcyfvirEKaOScaw/8G5hV0Imcc+Odc7HOudjo6AKfXBURCU6718Fnv4fGl0GvPxTJW/gS6ElAw3yvGwC78jdwzqU6547lfTwPKG9mUX6rUkSkNMs4DB8OhYgaMOBtCC2aVVd8CfQ4oIWZNTGzMGAQMDt/AzOrY2aW93HXvPMe9HexIiKljscDM8dB6i64bQpUKrrRiUL/mXDO5ZjZfcACIBSY5JzbaGZ35x1/AxgA3GNmOUAGMMhps1IREVj0Imz5Aq5/ERp2KdK3skDlbmxsrNNqiyIS1LZ8BVMHQLvbod8bYAXdkjw7ZrbSORdb0DE9KSoiUhQO74AZY6B2G7jhZb+EeWEU6CIi/padCR8NA+fg9nchLLJY3jZgG1yIiASteQ/C7rVwxzSo0bTY3lZX6CIi/rRyMqx+F3o+BC37FOtbK9BFRPwlMc57dd7sSuj1WLG/vQJdRMQfju7xPjxUpR70nwghocVegsbQRUTOV85x+HAYHE+FYTMhskZAylCgi4icr/kPQ9IKGPiOd5pigGjIRUTkfMS/DSvfgR4PQJt+AS1FgS4icq52Lod5D0Hzq+HKJwpt7pzj6TmbWLnjUJGUo0AXETkXqbu9Dw9VbQD9J/h0E/TZz79n0uLtLE4omrULNYYuInK2co57w/z4MRg2CyKqF/pHxi/cypv/2caw7o24/8rmRVKWAl1E5Gw4B5/9LyTFwW3vQu3Whf6Rj+MT+du877mhXV2evKkNVkTrumjIRUTkbMRP9D4JetmD0PqmQpsv2LiHR2eu57IWUfzjtg6EhhTdIl0KdBERX+1YCvMfgRbXwBWFbyO3OOEA97+/mnYNqvLG0M6ElSvayFWgi4j44kiid9y8WiO49a1Cb4Ku3nmYO6fE0ySqIm+P7ELF8KIf4Vagi4gU5vgx+OAOyMnyrqAYUe2MzX/Yc5SRb8cRXTmcd8d0pVpkWLGUqZuiIiJn4vHArLth30YY/DFEX3DG5jsPpjNs4nIqlA/hvTHdqFWlQjEVqkAXETmz7/4Om+fAtX+HFlefsene1EyGTFxGVq6Hj+66mIY1imdji59pyEVE5HQ2zICFz0PHYdD9njM2PZyWxbCJyzl0LIvJo7pyQe3KxVTkr3SFLiJSkORVMOteiLkE+v7jjHuCHjuew8h34vjpYDrvjOpC+4bViq/OfHSFLiJystTdMG0wVKzl3RO03OlvamZm5zJuSjwbklN4bXAnLmkWVYyFnkhX6CIi+WVneMM8MxXGfAEVTx/QObkefvPBapZsPcjLt7end+vaxVjoqRToIiI/cw4+vQ92rYZBU6FO29M29XgcD89Yxxeb9vLUTW3o17FBMRZaMA25iIj8bNFLsGE6XPUEtOp72mbOOZ6eu4mZq5L5fe8LGHFJ4+Kr8QwU6CIi4J2a+M0zcNFA6PH7MzZ95astvLPkJ8b0aFJkKyeeCwW6iMiuNTBzHNTvDDf9+4wzWiYs2sY/v97CwM4NeLzvhUW2cuK5UKCLSNmWkgwfDIKIGjDofSgfcdqm7y3bwV8+28z1F9Xh77deVKLCHHRTVETKsuNH4f3bvWu1jFkAleuctun0lUk8PmsDV7WqxSu3d6RcaMm7Hlagi0jZlJsD08fAvk0w+COo3ea0Teeu28XD09fSo3kUrw3pVOTL4J4rBbqIlE0L/gBbFkDfl864RstXm/byu2lr6NyoOuOHd6ZC+cL3Dg0Un/6ZMbPrzOwHM0sws0fP0K6LmeWa2QD/lSgi4mfL34QVb8LF90GXsadttmjLfu6duoo29aowaWQXIsNK9jVwoYFuZqHAa0AfoDVwh5mdsoleXrvngAX+LlJExG9+XACfPwot+0Lvp0/bbPm2g9w5JZ6m0RWZPLorlSuUL8Yiz40vV+hdgQTn3DbnXBYwDbi5gHb3AzOAfX6sT0TEf3avg49HQZ120P/0uw6tSTzC6HfiqF8tgvfGdiu2DSrOly+BXh9IzPc6Ke9zvzCz+kA/4I0zncjMxplZvJnF79+//2xrFRE5d6m7vDNaIqp5dx0Kq1hgs027Uhk+cTk1K4UzdWx3oiqFF2+d58GXQC9ooqU76fUrwCPOudwzncg5N945F+uci42OjvaxRBGR83T8WN70xFTvjJYqdQtslrDvKMMmLqdieDmmju1GnarFt9uQP/gywp8ENMz3ugGw66Q2scC0vEn2UcD1ZpbjnJvljyJFRM6ZJxdm3gl7N3jD/DQLbu04mMbgt5ZjZkwd263YdxvyB18CPQ5oYWZNgGRgEDA4fwPnXJOfPzazd4C5CnMRCTjnYP7D8MM8uP5FaNG7wGaJh9IZ/NZysnM9TBt3MU2jKxVzof5RaKA753LM7D68s1dCgUnOuY1mdnfe8TOOm4uIBMziVyBuAlzyG+h6Z4FNko9kMHjCMo5mZvP+nd1pWaf4t47zF58mVTrn5gHzTvpcgUHunBt5/mWJiJyndR/BV09C2wFw9VMFNtmdksHgt5ZxJD2bqWO70bZ+1eKt0c9K5vOrIiLnY9t33v1AG18Gt7wOIadG3d7UTAa/tZyDx7KYMror7RpUK/Yy/U2BLiLBZc96mDYUolrA7e9BuVOnHe5LzeSOt5axLzWTyaO70DGmegAK9b+S/RyriMjZOJIIUwdChSowZLp3zvlJ9h89zuAJy9mTksnk0V3p3KhG8ddZRBToIhIcMg7D1AGQlQ6jP4eq9U9pcvDYcYZMWEby4QzeGdWFLo2DJ8xBgS4iwSA7E6YNgUPbYOgMqH3KclMcSstiyITl7DyUzqSRXejWtGYACi1aCnQRKd08Hph1N+xYDP0nQpOepzQ5kp7F0AnL2X4gjYkjunBJs6gAFFr0FOgiUrp9+QRs/AR6PwMXnbpyd0p6NkMnLidh/zHeGh5LjxbBGeagWS4iUpot+TcsfRW63Q2X3H/K4ZSMbIZNWs6Pe47x5tDOXH5BcK8hpUAXkdJpzfvwxePQ+ha49m9w0obNKRnZDJ+0gs27U3l9SCeuaFUrMHUWIw25iEjp88N8+PQ+aNoLbh1/yrrmKeneK3NvmHfm6ta1A1NnMVOgi0jpsmMJfDwS6rYv8MGhw2lZDJ24nC17j/HmsM5c2apshDko0EWkNNmzHt4fBFUbeh8cCj9xIa2fpyZu3X+MN4d35oqWwT/Mkp8CXURKh0Pb4b3+EF4Jhn0CFU+cR+59aMg7NXHC8Fh6BvkN0IIo0EWk5Du6F969BXKzYMQcqNbwhMP7j3qfAP35oaFLmwfv1MQzUaCLSMmWccR7ZX5sP4yYDdEtTzi876h31cTkwxlMGhm8Dw35QoEuIiVXdgZ8cAfs/x4GfwgNYk84vDdv1cQ9KZm8Myo4H+c/Gwp0ESmZcnNg+mjYuRQGTITmV51weE/Kr0vgThndldggW2jrXCjQRaTk8Xhg9n2/7gXatv8Jh3cdyeCOt5Z5N6cY043OjYJjPfPzpUAXkZLFOZj3IKz9AK744yl7gSYdTueOvG3j3h3TNWg2p/AHBbqIlBzOwZd/gviJcOlvoedDJxzetv8YQycs59jxHKaO7RYU28b5kwJdREqOhS/Akn9Bl7HejZ3zrc/yw56jDJmwHOcc08ZdTOt6VQJYaMmkQBeRkmHpa/DtX6H9HdDnhRPCfH1SCsMmLSe8XAhTx3anea3KZzhR2aVAF5HAi38bFvwBWt8MN70KIb8uBBv/0yFGvR1H1cjyvD+2OzE1IwNYaMmm5XNFJLDWfQRzH4AW18CtEyD01+vMxQkHGDZxBdGVw/norosV5oXQFbqIBM7mufDJ3dC4B9w2BcqF/XLo6817uWfqKprUrMh7Y7sRXTn8DCcSUKCLSKAkfA3TR0G9jnDHB1A+4pdDn63bzW+nraZ1vSpMHtWV6hXDznAi+ZkCXUSK344lMG0IRLWEoScugzt9ZRIPT19L50bVmTiyC1UqlA9goaWLAl1EitfOZTB1oHfFxGGfQMSvDwa9u/Qnnvh0Iz2aRzF+eGciwxRRZ0N/WyJSfBLj4L0BUKk2DJ8NlX5ds3z8wq38bd73XH1hLV4d3IkK5UPPcCIpiAJdRIpH0kp471ZviI+cC1XqAuCc48UvfuC1b7fSt11dXrm9A+VDNQHvXPj0t2Zm15nZD2aWYGaPFnD8ZjNbZ2ZrzCzezHr4v1QRKbWSV8G7/SCyBoyYC1XqAZDrcfxx1gZe+3Yrd3RtyL8GdVSYn4dCr9DNLBR4DegNJAFxZjbbObcpX7OvgdnOOWdm7YCPgFZFUbCIlDK71nh3G4qo5g3zqvUByMrx8MBHa/hs3W7u6dWMh69tieV7OlTOni9DLl2BBOfcNgAzmwbcDPwS6M65Y/naVwScP4sUkVJq91qYcjOEV/UOs+RtHZd2PIe731vJoi0H+MP1rRjXs1mACw0OvgR6fSAx3+skoNvJjcysH/B3oBbQt6ATmdk4YBxATEzM2dYqIqXJnvV5YV4ZRs6Bat6f+SPpWYx6J461iUd4fkA7bottWMiJxFe+DFYV9H+gU67AnXOfOOdaAbcAzxR0IufceOdcrHMuNjq67O3ILVJm7NkAk2+C8hW9mzpXbwx4t4y77c2lbExO5fUhnRXmfubLFXoSkP9vvQGw63SNnXMLzayZmUU55w6cb4EiUsrs3QRTboJyFbxX5jWaAPDTgTSGTlzO4bQs3hldtjdzLiq+XKHHAS3MrImZhQGDgNn5G5hZc8u7m2FmnYAw4KC/ixWREm7PBph8I4SGecfMazQFYNOuVAa8sZT0rFw+GNddYV5ECr1Cd87lmNl9wAIgFJjknNtoZnfnHX8D6A8MN7NsIAO43TmnG6MiZcnPs1nKRXiHWWp6b3Su2H6IMZPjqBxejiljutO8VqWAlhnMLFC5Gxsb6+Lj4wPy3iLiZ0nx3oeGwqvCiNm/DLN88/1e7nlvFfWrR/DumG7UrxZRyImkMGa20jkXW9AxPSkqIudnx1Lv2iwVa3qvzPNms3wUl8hjn6yndd0qvDOqCzUrafnboqZAF5Fzt30RvH+79zH+EXOgSj2cc7z6TQIvffkjPS+I5vUhnagUrqgpDvpbFpFzs/Ub+GAwVG/kXWircm1yPY4/fbqBqct3cmun+jzXv50e5S9GCnQROXs/fgEfDoWoC2D4LKgYRWZ2Lvd/sJovN+3l3l7NeEiP8hc7BbqInJ3Nc+HjkVC7jXc988gaHE7LYuyUeFbtPMxTN7VhxCWNA11lmaRAFxHfbZgJM8ZC/U4wZDpEVCPpcDojJq0g8XAGrw/uRJ+L6ga6yjJLgS4ivln9Hsy+Hxp2gyEfQ3hlNu1KZeTbK8jMzuW9Md3o2qRGoKss0xToIlK4pa/Bgj9Asyvh9vcgrCJLEg5w17srqVShHNPvuYQLalcu/DxSpBToInJ6zsG3f4WFL0Drm+HWt6BcODNXJfHIjHU0jarEO6O7ULeqHhgqCRToIlIwjwc+fwRWjIeOw+DGf+IshH9+9SOvfLWFS5rV5P+GdqZqRPlAVyp5FOgicqrcbPj0f2Ddh3DxfXDNX8jKdTw6cy0zVyUzoHMD/tbvIsLKaY55SaJAF5ETZWd6pyX+OB+ufAIu+19SMrw7DC3ddpD/7X0B913ZXHPMSyAFuoj86vhR+OAO+GkRXP8idL2TxEPpjHx7BYmHMnjl9g7c0rF+oKuU01Cgi4hX2kGY2h92r/Pe/Gx3G2sSjzB2chzZuY4pY7rSvWnNQFcpZ6BAFxFISYZ3+8GRHTDofWh5HZ9v2MPvPlxNdOVwpo3sqnXMSwEFukhZt28zvNcfMlNhyHRc4x5MXLSNv87bTPsG1ZgwIpYoLX1bKijQRcqyHUvhg9u9+3+Omkd2rbb8edYG3l++kz5t6/Dy7R2oUD400FWKjxToImXV5jkwfYx3Q4qhMzgSXpd7J61gydaD3NOrGQ9d05KQEM1kKU0U6CJlUdxEmPcg1OsEgz9ia3o4YyYsZteRTP5xW3tu7dQg0BXKOVCgi5QlzsG3f4OFz0OLa2Hg2yzakc69UxcTFhrCB+O60bmRFtgqrRToImVFbg7M/R2sfhc6DoUb/smUFUk8NWcTLWpVYsKIWBpUjwx0lXIeFOgiZcHxYzBjDPz4OfR8iOyej/H0nM28u2wHV19Yi1cGddS+n0FAX0GRYHd0D7x/G+xZD31fIqXNCO59J47FCQe5q2dTHr6uFaG6+RkUFOgiwWzvRph6G2QchjumsbX6pdz5+mISD6fzwoB2DIxtGOgKxY8U6CLBKuFr+GgEhFWE0fP5JqUOv311MeXLhTB1bHftLhSEtPalSDBaORmmDoRqMXjGfMW/N0UyZnI8MTUjmX3fpQrzIKUrdJFg4vHAN8/Af/8Bza7i2M0TePDT7Xy+cQ+3dKjH329tR0SYnvwMVgp0kWCRnQmf3gsbZkCnEezo/jR3TlxLwr5jPN73Qsb0aKI1zIOcAl0kGBzbB9OGQNIKuPpJ/hM9hPtfX05IiDFldDd6tIgKdIVSDBToIqXdnvXw/iBIP4gbOJnxBy7iuXfiuKB2ZcYPiyWmph4WKisU6CKl2ea5MHMcVKhK5rDPeGhJCHPWfk/fi+rywsB2RIbpR7ws8WmWi5ldZ2Y/mFmCmT1awPEhZrYu79cSM2vv/1JF5BfOwaKX4MMhEN2SnQM+45ZP0pi7bhcPX9eSVwd3VJiXQYV+xc0sFHgN6A0kAXFmNts5tylfs+3A5c65w2bWBxgPdCuKgkXKvOxMmPMbWPchtO3Plxf8id9P+oHQUOPtkV3o1bJWoCuUAPHln/CuQIJzbhuAmU0DbgZ+CXTn3JJ87ZcBWntTpCgc3eu9Kk+KI7fXH3k+/QbefH8j7RtU5bUhnbS4VhnnS6DXBxLzvU7izFffY4D5BR0ws3HAOICYmBgfSxQRAHat8c5kyThEyo0TGRdfn+XbtzO0ewxP3NCa8HKaX17W+RLoBU1cdQU2NLsCb6D3KOi4c2483uEYYmNjCzyHiBRg7TSY81uIjGLjdR8y6vMsUjOPaDMKOYEvN0WTgPwr+DQAdp3cyMzaAROAm51zB/1TnkgZl5sN8x+FT+7CNYjlvfaTuWnGMSLDQvnk3ksV5nICX67Q44AWZtYESAYGAYPzNzCzGGAmMMw596PfqxQpi9IOwMcj4adFZMXexe+P9Gful3u5pnVtXrytPVUqlA90hVLCFBrozrkcM7sPWACEApOccxvN7O68428AfwJqAq/nPVqc45yLLbqyRYLcrtUwbSikHyCp18sMi2/KjoMHeKxPK8b1bKpH+KVA5lxghrJjY2NdfHx8QN5bpERb8wHM+S2uYjTzWr/AA/81qkeW55+DOtK9ac1AVycBZmYrT3fBrCcPREqKnCz44nFY8SY5MZfyWOj/8vF3mfRqGcVLA9tTs1J4oCuUEk6BLlISpCR5x8uT4tjfZjQDtvYhOfU4j/VpxZ2XNSVEW8SJDxToIoGW8DXMGIvLzeKbts9x16oYalcpx0d3d6FTTPVAVyeliAJdJFA8ubDwBfjuWXKjWvJE+CO8Hx/OtW1q8Xz/9lSN1CwWOTsKdJFASDsIM8fC1m840KwfAxMHkpwWwlM3XcjwixtpFoucEwW6SHFLjIOPR+DS9vNV08e4a1NbYmpEMvPeTrStXzXQ1UkppkAXKS7OwbLX4cs/kV2xLo9WfoEZm6IZ0LkBT97Uhkrh+nGU86PvIJHikHYQZt0DWxaQXPsK+u8eSnpIZV4b3I6+7eoGujoJEgp0kaK2fRHMvBOXfpCPo+/j4R0X071pTf5xWwfqVYsIdHUSRBToIkUlNwcWPg//eZ6Myo25y/7G0l31ebRPS+68rCmhmlsufqZAFykKKckw807YsZj1Na9n0K4B1I6qySejOurGpxQZBbqIv/0wH2bdgyf7OP+IfIBXk7swpFsMj/dtTUSYNqGQoqNAF/GXrHTvWizxE9lfqSWDU+/iMDG8NbwdvVvXDnR1UgYo0EX8IXmVd4jlYAKzIm7l4QM30/uiGJ6+uY0W1ZJio0AXOR+5ObD4Zdx3z5JWvib/k/s4a4+356U72nJj+3qBrk7KGAW6yLk6tB0+uQsSl7OkwuXcc2QIXS9syhe3XkStyhUCXZ2UQQp0kbPlHKyZipv/CNke44+e+/k88zL+PLAN/TvV1zosEjAKdJGzcWwfzH0Avp/L92HtGHNsLM1atOKLAe2oW1UPCUlgKdBFfOEcbJiBm/cQuceP8bJnCFMyb+Cxfm25o2tDXZVLiaBAFynMsf3w2QOweQ5byl3AvRmPEtOyEwtuaatH96VEUaCLnMmGmbh5D5KbkcrLOYP4OKQfjw9qx43t6uqqXEocBbpIQdIOwGe/h02f8kNIc+7PfISLOnZjQd/WVK8YFujqRAqkQBfJL2+s3DPvYTyZqfwj+3bmVhrIM4M6cPkF0YGuTuSMFOgiPzuSiPvs99iWL/jemvHA8Ye59OKezL/mAipq8wkpBfRdKuLJhRXj8Xz9NFk5Hp7PHsayqP48278DHWOqB7o6EZ8p0KVs27Mez+zfELJrFYs8HXiGsQy67lI+vaQx5UNDAl2dyFlRoEvZlJ0B/3kOz+J/k0JF/px1Hzmt+/HujW30gJCUWgp0KXsSviJn7oOUO7KdGTk9mVx5LA8OupheLWsFujKR86JAl7LjSCKezx8j5Ps5JLq6PJn7R9pffgvTezWjQnltPCGlnwJdgl9OFix9ldzvnic7N5d/Zd/Gj81G8OcbO9A0ulKgqxPxG5/u+pjZdWb2g5klmNmjBRxvZWZLzey4mT3o/zJFztG278h6tTt8/RRfZbVhZOSrdBn2VyaM7qEwl6BT6BW6mYUCrwG9gSQgzsxmO+c25Wt2CPgNcEtRFCly1lJ3kT3/McpvnsUeV4tneZQOvW9jyiVNCCun2SsSnHwZcukKJDjntgGY2TTgZuCXQHfO7QP2mVnfIqlSxFfZGXgW/wvPopfx5ObwcnZ/9ra7myevb6dNJyTo+RLo9YHEfK+TgG7n8mZmNg4YBxATE3MupxApWN4j+5nzH6dC+m4+z+3Kp9F3cU+/q+nQsFqgqxMpFr4EekFLyrlzeTPn3HhgPEBsbOw5nUPkFEkrSZ/zMJF749nqacQbEc9wzfUDeEMrIkoZ40ugJwEN871uAOwqmnJEzkLqLjLm/4mIzR+T5qryvN1Nw6vH8uIlTQkvp2mIUvb4EuhxQAszawIkA4OAwUValciZZKaSteif2NJXCc3N4Q3PTaTG/obf9W5PtUgtbStlV6GB7pzLMbP7gAVAKDDJObfRzO7OO/6GmdUB4oEqgMfMfge0ds6lFl3pUubkHCd7xURyvn2OiOwjzM3tTlzz3zDmhiuIqRkZ6OpEAs6nB4ucc/OAeSd97o18H+/BOxQj4n8eDznrPiZzwVNUykhmRW4bFtT7C/1vuJEbdMNT5Bd6UlRKLufwbPma1M/+SLWU79nhacSMGn+h9w138HTzqEBXJ1LiKNClRHI7lnLosyepuW8ZRz3RvFn5QbrcMJYnWtXRzBWR01CgS4ni2bmCQ589SdTexXhcFV4NH0uT6+7noQ6NCAlRkIuciQJdSgRP4koOzH2SWnsXYq4yb4SPoM5V93F3bHPKaaMJEZ8o0CWgcpNWs3/Ok9TZ+x3lXSXeCh9Ond73c2fnFoTqilzkrCjQJSCyty9l/+d/p97e/1DBVWRShaHU6f07RndqriAXOUcKdCk+zpGx+QuOfPEsdY+sooKrxJSIIdS55neM7NBCY+Qi50mBLkXPk0vqqhlkfPsitdN+4IirweSqd9H42nsZ1rqRZq2I+IkCXYpOznEOLJkC/32FqKwkDnjqMqXOQ7TrcycjmtQOdHUiQUeBLn7nju0j8YtXqbZxMlG5R9joGrOg0dNc3Hckw2tXDXR5IkFLgS5+czx5PcnzX6JB0lxiyGYRndhz4Sgu7zOQIVUiAl2eSNBToMv58Xg4uPYzjn73LxqnrKCuC+OL8KsJvfgerujRgwrltYytSHFRoMs58aQdYsc3E4hcN5na2UlkuRp8UnMsDXrfS99WTXWjUyQAFOjiO+c4smUJe7/5PxrvWUATslhDS5Y2fYrOfUbRL1rj4yKBpECXQrnjR9n29duErZ1Mw+MJlHMV+C7yGsp3G8Mll15OBw2riJQICnQpmHMc/P6/7Fk4ica759OMDL6nEXNjHubCa0ZzbYO6ga5QRE6iQJcTZBzYybavJ1Jjy3Tq5iQR4cJZEXEZLnY0F/e8llZh+pYRKan00yl4jqez9b8f4lk1lRbH4mljjtUhrVnX/AkuvGoYverqISCR0kCBXka5nCx2xM/naPyHNDnwLS1IJ9lF83WtEUT1GEH7izpqbRWRUkaBXoa43BwS13zF4eXTaLzvKxpzlKMugtWVemDt76DT5TfSOzws0GWKyDlSoAc5l5tD4vqFHFw+jZg9XxDjDhPlwlkbeTHZrfvRtuetXFa1SqDLFBE/UKAHoZzMNLYu/4z09bNpfGAhMaRQ25VnbUQXNrbsR+vLB3BxjRqBLlNE/EyBHiTSDu9j65IZ8P1ntDi6gpYc56iLYFPFbmS16EOrHrfSNbpWoMsUkSKkQC+lXG4OOzcsYf+aeVROXkiz45tpZx72UoOV1fsQ3uYGLrykL90iIwNdqogUEwV6KXJ490/8tGI2tvUbmqTG0YhjNHTGltBmLK03nGodb+HCTj2pXU5PboqURQr0EixlfxI/rfySrK2LqHUojka5O6kO7Kcam6tcimt6FU2696VlnQa0DHSxIhJwCvQS5MCubSSu+pKc7Yupcziehp5k2gNpLpyE8DYkxtxCVIfradG2G9GhIYEuV0RKGAV6gGSmH2XH+iWkJCyj3J7V1D22gbpuP1HAURdBQkQ7dtbtT7ULe9Gs3aW0r1Ah0CWLSAmnQC8GxzPTSPpxNYcS4iEpnpopG4jJ2UFL8wCwi1okV2zD9rqdqdnmSpq27UbH8uUDXLWIlDYKdD9yHg97kxLY++NKMpLWEXZwM1FpW6ifm0wzczQDUl1FfqrQihV1elGhcTcatLmUevViqBfo4kWk1FOgn4OUwwfYu30jR5M3k7UvgbCUbVRJ30Hd7GTqWAZ18tolW232RTQjufq1hDW4iOjmnWnQtC3tNP4tIkXAp0A3s+uAfwKhwATn3LMnHbe849cD6cBI59wqP9daLDy5uRzan8yhXds4tu8nsg4lQkoyYWnJVMzcS3TObmqQys9783icsTukFgfDG7ChWjuo1YaqjTtQv2Un6letQf2A9kZEypJCA93MQoHXgN5AEhBnZrOdc5vyNesDtMj71Q34v7zfA8J5PBw/nkH60SNkph0lMy2FrLQUsjKOkpORSvaxg3iO7cfSD1Iu8xDhWYeIzDlC5dwUqrkUoiyXqHzny3BhHAiJIiWsFgmVe5JboxnhtS+gRsMLqdO4FfUjKiq4RSTgfLlC7wokOOe2AZjZNOBmIH+g3wxMcc45YJmZVTOzus653f4ueN2306m66ElCXC6h5BLqcry/48l7nUsY2VSwXAqbF3LURZASUpW00GocDa/DwbALyY2IIqRafcJrxFC5dmNq1mtK1Rq1aBgSQkN/d0ZExI98CfT6QGK+10mcevVdUJv6wAmBbmbjgHEAMTExZ1srAGGVqnEwsikeK4cLCcVZOQgJxYWUx1kohJTDhYZBeCVCwitj4ZUoF1GZ8hFVKB9RmfCKVahYrRZVa9amcoVIKp9TFSIiJY8vgV7QLgfuHNrgnBsPjAeIjY095bgvWnW5GrpcfS5/VEQkqPky3SIJThhtaADsOoc2IiJShHwJ9DighZk1MbMwYBAw+6Q2s4Hh5tUdSCmK8XMRETm9QodcnHM5ZnYfsADvtMVJzrmNZnZ33vE3gHl4pywm4J22OKroShYRkYL4NA/dOTcPb2jn/9wb+T52wP/4tzQRETkbemRRRCRIKNBFRIKEAl1EJEgo0EVEgoR572cG4I3N9gM7zvGPRwEH/FhOaaA+lw3qc9lwPn1u5JyLLuhAwAL9fJhZvHMuNtB1FCf1uWxQn8uGouqzhlxERIKEAl1EJEiU1kAfH+gCAkB9LhvU57KhSPpcKsfQRUTkVKX1Cl1ERE6iQBcRCRIlOtDN7Doz+8HMEszs0QKOm5n9K+/4OjPrFIg6/cmHPg/J6+s6M1tiZu0DUac/FdbnfO26mFmumQ0ozvqKgi99NrNeZrbGzDaa2X+Ku0Z/8+F7u6qZzTGztXl9LtWrtprZJDPbZ2YbTnPc//nlnCuRv/Au1bsVaAqEAWuB1ie1uR6Yj3fHpO7A8kDXXQx9vgSonvdxn7LQ53ztvsG76ueAQNddDF/nanj37Y3Je10r0HUXQ5//ADyX93E0cAgIC3Tt59HnnkAnYMNpjvs9v0ryFfovm1M757KAnzenzu+Xzamdc8uAamZWt7gL9aNC++ycW+KcO5z3chne3aFKM1++zgD3AzOAfcVZXBHxpc+DgZnOuZ0AzrnS3m9f+uyAymZmQCW8gZ5TvGX6j3NuId4+nI7f86skB/rpNp4+2zalydn2Zwzef+FLs0L7bGb1gX7AGwQHX77OFwDVzew7M1tpZsOLrbqi4UufXwUuxLt95Xrgt845T/GUFxB+zy+fNrgIEL9tTl2K+NwfM7sCb6D3KNKKip4vfX4FeMQ5l+u9eCv1fOlzOaAzcBUQASw1s2XOuR+Lurgi4kufrwXWAFcCzYAvzWyRcy61iGsLFL/nV0kO9LK4ObVP/TGzdsAEoI9z7mAx1VZUfOlzLDAtL8yjgOvNLMc5N6tYKvQ/X7+3Dzjn0oA0M1sItAdKa6D70udRwLPOO8CcYGbbgVbAiuIpsdj5Pb9K8pBLWdycutA+m1kMMBMYVoqv1vIrtM/OuSbOucbOucbAdODeUhzm4Nv39qfAZWZWzswigW7A5mKu05986fNOvP8jwcxqAy2BbcVaZfHye36V2Ct0VwY3p/axz38CagKv512x5rhSvFKdj30OKr702Tm32cw+B9YBHmCCc67A6W+lgY9f52eAd8xsPd7hiEecc6V2WV0z+wDoBUSZWRLwZ6A8FF1+6dF/EZEgUZKHXERE5Cwo0EVEgoQCXUQkSCjQRUSChAJdRCRIKNBFRIKEAl1EJEj8P0A95ysUtMmqAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "h=np.linspace(0,1,200)\n", "plt.plot(h,abs(E(h)))\n", "plt.plot(h,0.5*h**2)" ] }, { "cell_type": "code", "execution_count": null, "id": "mysterious-mistake", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.2" } }, "nbformat": 4, "nbformat_minor": 5 }