DOI:
UDC: 510.2:510.6

M.E. Sokhatskyi*
Igor Sikorsky Kyiv Polytechnical Institute, Kyiv, Ukraine

*corresponding author: maxim@synrc.com

ISSUE I: INTERNALIZING MARTIN-LOF TYPE THEORY

Background. The long road from pure type systems of AUTOMATH by de Bruijn to type checkers with homotopical core was made.
This article touches only the formal Martin-L6f Type Theory (MLTT) core type system with IT and X types (that correspond to V and 3
quantifiers for mathematical reasoning) and identity type. Expressing the MLTT embedding in a host type checker for a long time was
inaccessible due to the non-derivability of the J eliminator in pure functions. This was recently made possible by cubical type theory
and cubical type checker.

Objective. Select the type system as a part of conceptual model of theorem proving system that is able to derive the J eliminator and its
theorems based on the latest research in cubical type systems. The goal of this article is to demonstrate the formal embedding of MLTT
into MLTT* with constructive proofs of the complete set of inference rules including J eliminator.

Methods. As types are formulated using 5 types of rules (formation, intro, elimination, computation, uniqueness) that are in essence the
categorical isomorphism encoding of initial objects in categories of F-algebras, we constructed aliases for the host language primitives
and used the cubical type checker to prove that it has the realization of MLTT. As many may not be familiar with types, this issue
presents different interpretations of core types from other areas of mathematics to show the methods in action.

Results. This work leads to several results: 1) MLTT® — a special embedded version of type theory with infinite number of universes
and Path type suitable for HoTT purposes without uniqueness rule of equality type; 2) The actual embedding of MLTT with syntax
implying universe polymorphism and cubical primitives in MLTT*; 3) The different interpretations of types were given: set-theoretical,
groupoid, homotopical; 4) As aresult, this issue opens a series of articles dedicated to the formalization of the foundations of mathematics
in cubical type theory, MLTT modeling and theorems mechanization; 5) Internalization could be seen as an ultimate test sample for type
checker as intro-elimination fusion resides in beta-eta rules, so by proving them, we prove properties of the host type checker; 6) Due
to this success the cubical type system was chosen as a geometrical extension to inductive type system for mathematical reasoning and
as a part of the conceptual model of theorem proving system.

Conclusion. We should note that this is an entrance to the internalization technique, and after formal MLTT embedding, we could
go through inductive types up to embedding of CW-complexes as the indexed gluing of the higher inductive types. This means the
implementation of a wide spectrum of math theories inside HoTT up to algebraic topology. The further reflection on type theories
unveils the combinations in a spirit of do-it-yourself (DIY) type theories with unified higher-order abstract syntax (HOAS) for pluggable
initial objects, normalization modules, and equation checkers.

Keywords: Martin-L6f Type Theory, Cubical Type Theory

Introduction types.

This test is fully made possible only after 2017 when
new constructive HoTT[3] prover cubicaltt! prover was
presented[4]. We should note that this is only entrance to
internalization technique, and after formal MLTT embed-
ding we need to go further through CiC[5, 6] and towards
CW-complexes embedding as the higher inductive type sys-

tem.

Each language implementation needs to be checked.
The one of possible test cases for type checkers is the direct
embedding of type theory model into the language of type
checker. As types in Martin-Lof Type Theory[1, 2] (MLTT)
are formulated using 5 types of rules (formation, introduc-
tion, elimination, computation, uniqueness), we construct

aliases for host language primitives and use type checker to
prove that it is MLTT. This could be seen as ultimate test
sample for type checker as intro-elimination fusion resides
in beta-eta rules, so by proving them we prove properties of
the host type checker.

Also this issue opens a series of articles dedicated to for-
malization in cubical type theory the foundations of math-
ematics. This issue is dedicated to MLTT modeling and its
verification. Also as many may not be familiar with IT and
¥ types, this issue presents different interpretation of MLTT

Problem Statement

The formal initial problem was to create a full self-
contained MLTT internalization in the host typechecker,
where all theorems are being checked constructively. This
task involves a modern techniques in type theory, namely
cubical type theories. By following most advaced theories
apply this results for builsing minimal type checker that is

Uhttp://github.com/mortberg/cubicaltt

able to derive J and the whole MLTT theorems construc-
tively. This leads us to the compact MLTT core yet compat-
ible with future possible homotopy extensions.

MLTT” Language Syntax

The BNF notation of type checker language used in code
samples consists of: 1) telescopes (contexts or sigma chains)
and definitions; ii) pure dependent type theory syntax; iii)
inductive data definitions (sum chains) and split elimina-
tor; iv) cubical face system; v) module system. It is slightly
based on cubicaltt.

Sys [sides]
side := (id=0)—exp + (id=1)—exp
f1 := f1 /\ f2
f2 = —f2 +id + 0 + 1
form := form \/ f1 + f1 + f2
sides := #empty + cos + side
cos := side,side + side,cos
id = #list #nat
ids := #list id
mod := module id where imps dec
imps := #list imp
imp := import id
brs := #empty + cobrs
cobrs := | br brs
br := ids — exp + ids @ ids — exp
tel := #empty + cotel
dec := #empty + codec
cotel := (exp:exp) tel
codec := def dec
sum := #empty + id tel + id tel | sum
def := data id tel=sum + id tel:exp=exp
+ id tel exp where def
app := exp exp
exp cotel * exp + cotel — exp

exp — exp + (exp) + id
(exp,exp) + \cotele — exp

split cobrs + exp .1

exp .2 + (ids) exp

exp @ form + app + comp exp Sys

|

Here := (definition), + (disjoint sum), #empty, #nat, #list
are parts of BNF language and |, :, *, (,), (,), =, \, /, -, —,
0, 1, @, [,], module, import, data, split, where, comp,
.1, .2, and | are terminals of type checker language. This
language includes inductive types, higher inductive types
and gluening operations needed for both, the constructive
homotopy type theory and univalence. All these concepts
as a part of the languages will be described in the upcoming
Issues II—V.

1 Martin-Lof Type Theory

Martin-L6f Type Theory (MLTT) contains II, ¥, Id,
W, Nat, List types. For simplicity we wouldn’t take into
account W, Nat, List types as W type could be encoded
through X and Nat/List through W. Despite ¥ types could

be encoded through IT we include X type into the MLTT
model.

Any new type in MLTT presented with set of 5 rules: 1)
formation rules, the signature of type; ii) the set of construc-
tors which produce the elements of formation rule signature;
iii) the dependent eliminator or induction principle for this
type; iv) the beta-equality or computational rule; v) the eta-
equality or uniquness principle. I, X, and Path types will be
given shortly. This interpretation or rather way of modeling
is MLTT specific.

The most interesting are Id types. 1d types were added in
[2] while original MLTT was introduced in [1]. Predicative
Universe Hierarchy was added in [7]. While original MLTT
contains Id types that preserve uniquness of identity proofs
(UIP) or eta-rule of Id type, HoTT refutes UIP (eta rule
desn’t hold) and introduces univalent heterogeneous Path
equality ([8]). Path types are essential to prove computation
and uniquness rules for all types (needed for building signa-
ture and terms), so we will be able to prove all the MLTT
rules as a whole.

1 Interpretations

In contexts you can bind to variables (through de Brujin
indexes or string names): i) indexed universes; ii) built-in
types; iii) user constructed types, and ask questions about
type derivability, type checking and code extraction. This
system defines the core type checker within its language.

By using this languages it is possible to encode differ-
ent interpretations of type theory itself and its syntax by
construction. Usually the issues will refer to following in-
terpretations: 1) type-theoretical; ii) categorical; iii) set-
theoretical; iv) homotopical; v) fibrational or geometrical.

1.1.1 Logical or Type-theoretical interpretation

According to type theoretical interpretation of MLTT for
any type should be provided 5 formal inference rules: 1) for-
mation; ii) introduction; iii) dependent elimination princi-
ple; iv) beta rule or computational rule; v) eta rule or unique-
ness rule. The last one could be exceptional for Path types.
The formal representation of all rules of MLTT are given ac-
cording to type-theoretical interpretation as a final result in
this Issue I. It was proven that classical Logic could be em-
bedded into intuitionistic propositional logic (IPL) which is
directly embedded into MLTT.

Logical and type-theoretical interpretations could be dis-
tincted. Also set-theoretical interpretation is not presented
in the Table.

1.1.2 Categorical or Topos-theoretical interpretation

Categorical interpretation[9] is a modeling through cate-
gories and functors. First category is defined as objects,
morphisms and their properties, then we define functors,

Table. Interpretations correspond to mathematical theories

Type Theory Logic Category Theory Homotopy Theory
A type class object space
isProp A proposition (-1)-truncated object space

a:A program proof generalized element point

B(x) predicate indexed object fibration
b(x) : B(x) conditional proof ~ indexed elements section

0 1 false initial object empty space

1 T true terminal object singleton
A+B AV B disjunction coproduct coproduct space
AXB A A B conjunction product product space
A—B A=B internal hom function space
Yx:A,B(x) FraB(x) dependent sum total space
[Ix:A,B(x) Vy:aB(x) dependent product space of sections
Pathy equivalence =4 path space object path space A’
quotient equivalence class quotient quotient
W-type induction colimit complex
type of types universe object classifier universe
quantum circuit proof net string diagram

etc. In particular, as an example, according to categorical
interpretation IT and ¥ types of MLTT are presented as ad-
joint functors, and forms itself a locally closed cartesian cat-
egory, which will be given a intermediate result in Issue
VIII: Topos Theory. In some sense we include here topos-
theoretical interpretations, with presheaf model of type the-
ory as example (in this case fibrations are constructes as
functors, categorically).

1.1.3 Homotopical interpretation

In classical MLTT uniquness rule of Id type do holds strictly.
In Homotopical interpretation of MLTT we need to allow a
path space as Path type where uniqueness rule doesn’t hold.
Groupoid interpretation of Path equality that doesn’t hold
UIP generally was given in 1996 by Martin Hofmann and
Thomas Streicher[8].

When objects are defined as fibrations, or dependent
products, or indexed-objects this leds to fibrational seman-
tics and geometric sheaf interpretation. Several definition of
fiber bundles and trivial fiber bindle as direct isomorphisms
of IT types is given here as theorem. As fibrations study in
homotopical interpretation, geometric interpretation could
be treated as homotopical.

1.1.4 Set-theoretical interpretation

Set-theoretical interpretations could replace first-order
logic, but could not allow higher equalities, as long as induc-
tive types to be embedded directly. Set is modelled in type
theory according to homotopical interpretation as n-type.

1 Types

MLTT could be reduced to IT, X, Path types, as W-types
could be modeled through ¥ and Fin/Nat/List/Maybe types
could be modeled on W. In this issue I1, ¥, Path are given as
a core MLTT and W-types are given as exercise. List, Nat,
Fin types are defined in next Issue II: Inductive Types.

1.2.1 TII-type

IT is a dependent product type, the generalization of func-
tions. As a function it can serve the wide range of mathemat-
ical constructions as its domain and codomain, which are in
general: objects, types, or spaces; and could have as its in-
stance: sets, functions, polynomial functors, infinitesimals,
co-groupoids, topological co-groupoid, CW-complexes, cat-
egories, languages, etc.

At this light there could be many interpretation of IT
types from different areas of mathematics. We give here
three: 1) logical interpretation of IT as V quantifier from
higher order logic that forms a ground of type theory; ii)
geomeric intepretation of IT as fiber bundle; iii) categorical
interpretation of functions as functors.

Type-theoretical interpretation

As alogical system dependent type theory could correspond
to higher order logic. However here only type-theoretical
model is given completely.

Definition 1. (IT-Formation).

(x:A) = B(x) =ger I;[B(x)

Pi (A: U) (B: A—>U): U= (x: A) => B x

Definition 2. (IT-Introduction).

\(:A) = b=aer [T T1 anxb HB

A:U B:A—U a:A b:B(a

lambda (A B: U) (b: B): A —> B =\ (x:
lam (A:U) (B: A —> U) (a:A) (b:B a)
:A—>Ba=\ (x: A) =>0bD

A) = b

Definition 3. (IT-Elimination).

Ffa=awr [T TT I1 II f(@:

AU BASU @A fiTo4 Ba)

B(a).

apply (A B: U) (f: A —> B) (a:
app (A: U) (B: A —>U) (a: A)
(f: A—>Ba) : Ba=+fa

A) : B=f a

Theorem 1. (IT-Computation).
f(a) =p(a) (A(x:A) = f(a))(a).

Beta (A: U) (B: A —=>U) (a: A) (f: A —> B a)
Path (B a) (app AB a (lam A B a (f a)))
(f a)

Theorem 2. (IT-Uniqueness).
[=)= A :A) = f()).

Eta (A: U) (B: A—>1U) (a: A) (f: A—> B a)
Path (A —> B a) f (\(x:A) —> f x)

Categorical interpretation

The adjoints IT and ¥ is not the only adjoints could be pre-
sented in type system. Axiomatic cohesions could contain
a set of adjoint pairs as a core type checker operations.

Definition 4. (Dependent Product). The dependent product
along morphism g : B — A in category C is the right adjoint
I, : C/p — C/4 of the base change functor.

Definition 5. (Space of Sections). Let H be a (o, 1)-topos,
and let E — B: H 3 a bundle in H, object in the slice topos.
Then the space of sections I'y(E) of this bundle is the De-
pendent Product:

Iy (E)=TIx(E) € H.

Theorem 3. (HomSet). If codomain is set then space of
sections is a set.

setFun (A B : U) (_:
isSet (A —> B)

isSet B)

Theorem 4. (Contractability). If domain and codomain is
contractible then the space of sections is contractible.

pilsContr (A: U) (B: A — U) (u: isContr A)
(q: (x: A) — isContr (B x))
isContr (Pi A B)

Definition 6. (Section). A section of morphism f:A — B
in some category is the morphism g : B — A such that fog:

B&aLlp equals the identity morphism on B.

Homotopical interpretation

Geometrically, IT type is a space of sections, while the de-
pendent codomain is a space of fibrations. Lambda func-
tions are sections or points in these spaces, while the func-
tion result is a fibration. IT type also represents the cartesian
family of sets, generalizing the cartesian product of sets.

Definition 7. (Fiber). The fiber of the map p: E —+ Bina
point y : B is all points x : E such that p(x) = y.

Definition 8. (Fiber Bundle). The fiber bundle F — E 2> B
on a total space E with fiber layer F' and base B is a structure
(F,E,p,B) where p: E — B is a surjective map with follow-
ing property: for any point y : B exists a neighborhood U,
for which a homeomorphism f : p~! (U,,) — U, x F making
the following diagram commute.

p~ ' (Up) Uy x F
pl /
U,

Definition 9. (Cartesian Product of Family over B). Is a
set F' of sections of the bundle with elimination map app :
F x B — E such that

FxBXl g, p

@)
pri is a product projection, so pry, app are morphisms of
slice category Set p. The universal mapping property of F':
for all A and morphism A X B — E in Setp exists unique
map A — F' such that everything commute. So a category
with all dependent products is necessarily a category with
all pullbacks.

Definition 10. (Trivial Fiber Bundle). When total space E
is cartesian product £(B, F) and p = pr; then such bundle
is called trivial (F,X(B,F), pri,B).

Theorem 5. (Functions Preserve Paths). For a function
f:(x:A) = B(x) thereisanapy :x =4y — f(x) =p(») ().
This is called application of f to path or congruence property
(for non-dependent case — cong function). This property
behaves functoriality as if paths are groupoid morphisms
and types are objects.

Theorem 6. (Trivial Fiber equals Family of Sets). Inverse
image (fiber) of fiber bundle (F,B « F, pri,B) in point y : B
equals F ().

FiberPi (B: U) (F: B —> U) (y: B)
Path U (fiber (Sigma B F) B (pil B F) y)
(F y)

Theorem 7. (Homotopy Equivalence). If fiber space is set
for all base, and there are two functions f,g: (x: A) — B(x)
and two homotopies between them, then these homotopies
are equal.

setPi (A: U) (B: A — U)
(h: (x: A) — isSet (B x)) (f g: Pi AB)
(p q: Path (Pi AB) f g)

Path (Path (Pi AB) f g) p q

Note that we will not be able to prove this theorem until
Issue III: Homotopy Type Theory because bi-invertible
iso type will be announced there.

1.2.2 X-type

Y is a dependent sum type, the generalization of products.
¥ type is a total space of fibration. Element of total space is
formed as a pair of basepoint and fibration.

Type-theoretical interpretation
Definition 11. (X-Formation).

Sigma (A : U) (B : A —> U)
U= (x : A) * Bx

Definition 12. (X-Introduction).

dpair (A: U) (B: A —>U) (a: A) (b: B a)
Sigma A B = (a,b)

Definition 13. (X-Elimination).

prl (A: U) (B: A —> U)
(x: Sigma A B): A = x.1

pr2 (A: U) (B: A —>U)
(x: Sigma A B): B (prl AB x) = x.2

(A: U) (B: A —> 1)
(C: Sigma A B —> U)
(g: (a: A) (b: Ba) —>C (a, b))
(p: Sigma AB) : Cp =g p.l1 p.2

siglnd

Theorem 8. (X-Computation).

Betal (A: U) (B: A — U)
(a:A) (b: B a)
Equ A a (prl AB (a,b))

Beta2 (A:

(a:
Equ

U) (B: A —> 1)
A) (b: B a)
(B a) b (pr2 AB (a,b))

Theorem 9. (X-Uniqueness).

Eta2 (A: U) (B: A —> U) (p: Sigma A B)
Equ (Sigma A B) p (prl A B p,pr2 A B p)

Categorical interpretation

Definition 14. (Dependent Sum). The dependent sum
along the morphism f : A — B in category C is the left ad-
Joint Xy : C/y — Cyp of the base change functor.

Set-theoretical interpretation

Theorem 10. (Axiom of Choice). If for all x : A there is
y : B such that R(x,y), then there is a function f : A — B
such that for all x : A there is a witness of R(x, f(x)).

ac (AB: U) (R: A—> B —> U)
(p: (x:A) —> (y:B)*(R x y))
—> (f:A—=>B) * ((x:A)—>R(x)(f x))

Theorem 11. (Total). If fiber over base implies another
fiber over the same base then we can construct total space
of section over that base with another fiber.

total (A:U) (B C: A —> U)
(f:

Sigma A C = (w.1,f (w.1) (w.2))

Theorem 12. (X-Contractability). If the fiber is set then the
Y is set.

(x:A) = B x —> C x) (w: Sigma A B)

setSig (A:U) (B: A —> U) (sA: isSet A)
(sB (x:A) —> isSet (B x))
isSet (Sigma A B)

Theorem 13. (Path Between Sigmas). Path between two
sigmas 7,u : X(A, B) could be decomposed to sigma of two

paths p : 11 =4 u1) and (2 =p(pai) 12)-

pathSig (A:U) (B : A —>U) (t u : Sigma A B)
Path U (Path (Sigma A B) t u)
((p: Path A t.1 u.l)
* PathP (<i>B(p@i)) t.2 u.2)

1.2.3 Path-type

The Path identity type defines a Path space with elements
and values. Elements of that space are functions from inter-
val [0, 1] to a values of that path space. This ctt file reflects
2CCHM cubicaltt model with connections. For ABCFHL
yacctt model with variables please refer to ytt file. You may
also want to read *“BCH, > AFH. There is a °PO paper about
CCHM axiomatic in a topos.

Cubical interpretation

Cubical interpretation was first given by Simon Huber[10]
and later was written first constructive type checker in the
world by Anders Mortberg[4].

Definition 15. (Path Formation).

Hetero (A B: U)(a: A)(b: B)(P:
: U= PathP P a b

Path (A: U) (a b: A)
: U= PathP (<i> A) a b

Path U A B)

Definition 16. (Path Reflexivity). Returns an element of
reflexivity path space for a given value of the type. The in-
habitant of that path space is the lambda on the homotopy
interval [0, 1] that returns a constant value a. Written in syn-
tax as <i>a which equalsto A (i: 1) — a.

refl (A: U) (a: A) Path A a a

2Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mértberg. Cu-
bical Type Theory: a constructive interpretation of the univalence axiom.
2015. https://5ht.co/cubicaltt.pdf

3Carlo Angiuli, Brunerie, Coquand, Kuen-Bang Hou (Favonia), Robert
Harper, Dan Licata. Cartesian Cubical Type Theory. 2017. https://
5ht.co/cctt.pdf

4Marc Bezem, Thierry Coquand, Simon Huber. A model of type the-
ory in cubical sets. 2014. http://www.cse.chalmers.se/~coquand/
mod1.pdf

SCarlo Angiuli, Kuen-Bang Hou (Favonia), Robert Harper. Cartesian
Cubical Computational Type Theory: Constructive Reasoning with Paths
and Equalities. 2018.
https://www.cs.cmu.edu/~cangiuli/papers/ccctt.pdf

6 Andrew Pitts, Ian Orton. Axioms for Modelling Cubical Type Theory
in a Topos. 2016. https://arxiv.org/pdf/1712.04864.pdf

Definition 17. (Path Application). You can apply face to
path.

appl (A: U)(a b:A)(p:Path A a b):A=p@0
app2 (A: U)(a b:A)(p:Path A a b):A=p@l

Definition 18. (Path Composition). Composition operation
allows to build a new path by given to paths in a connected
point.

comp
a —— ¢
Ai I)%a[[CI
@i
a P b
composition
(A: U) (a b c: A)
(p: Path A a b) (q: Path A b ¢)

Path A a ¢
= comp (<i>Path A a (q@i)) p []

Theorem 14. (Path Inversion).

inv (A: U) (a b: A) (p: Path A a b)
Path A b a=<i>p @—i

Definition 19. (Connections). Connections allows you to
build square with given only one element of path: i) A (i, :
I)— p @min(i,j);i)) A (i,j:I) = p @ max(i,).

a _r, b
A (i I)—>a[[P
A(Gi:])—a
a —— a
AG:D)—=b

meet (A: U) (a b: A) (p: Path A a b)
PathP (<x> Path A a (p@x)) (<i>a) p
=<xy>p@(x /\vy)

join (A: U) (a b: A) (p: Path A a b)
PathP (<x> Path A (p@x) b) p (<i>b)
=<y x>p@(x \/vy)

Theorem 15. (Congruence). Is a map between values
of one type to path space of another type by an en-
code function between types. Implemented as lambda de-
fined on [0, 1] that returns application of encode function
to path application of the given path to lamda argument
A (i:1) — f (p @ i) for both cases.

ap (A B: U) (f: A —> B)
(a b: A) (p: Path A a b)
Path B (f a) (f b)

apd (A: U) (a x:A) (B: A—>U) (f: A—>B a)
(b: B a) (p: Path A a x)

Path (B a) (f a) (f x)

Theorem 16. (Transport). Transports a value of the domain
type to the value of the codomain type by a given path ele-
ment of the path space between domain and codomain types.
Defined as path composition with [] of a over a path p —
comp p a [].

trans (A B: U) (p: Path UA B) (a: A) : B

Type-theoretical interpretation
Definition 20. (Singleton).

singl (A: U) (a: A): U= (x: A) % Path A a x

Theorem 17. (Singleton Instance).

eta (A: U) (a: A): singl A a = (a,refl A a)
Theorem 18. (Singleton Contractability).
contr (A: U) (a b: A) (p: Path A a b)

Path (singl A a) (eta A a) (b,p)
=<i>(p@i,<j>p@il\j)

Theorem 19. (Path Elimination, Diagonal).

D (A: U) : U= (xy: A) = Path Axy —>U
J (A: U) (x y: A) (C: DA)

(d: C x x (refl A x))

(p: Path Axy) : Cxyp
= subst (singl A x) T (eta A x) (y, p)

(contr A x y p) d where

T (z: singl Ax) : U=C x (z.1) (z.2)
Theorem 20. (Path Elimination, Paulin-Mohring). J is for-
mulated in a form of Paulin-Mohring and implemented us-
ing two facts that singleton are contractible and dependent
function transport.

J (A: U) (a b: A)
(P: singl A a —> U)
(u: P (a,refl A a))
(p: Path A ab) : P (b,p)

Theorem 21. (Path Elimination, HoTT). J from HoTT
book.

J (A: U) (a b: A)
: (x: A) —> Path A a x —> U)
d: Ca (refl A a))

(p: Path A ab) : Cbp

Theorem 22. (Path Computation).
trans_comp (A: U) (a: A)
Path A a (trans A A (< > A) a)
= fill (<i> A) a []
subst comp (A: U) (P: A —>U) (a: A) (e: P a)
Path (P a) ¢ (subst AP a a (refl A a) e)
= trans_comp (P a) e
J comp (A: U) (a: A) (C: (x: A)
—> Path A a x —> U) (d: C a (refl A a))
Path (C a(refl A a)) d
(J AaCd a(refl A a))
= subst comp (singl A a) T (eta A a) d
where T (z:singl A a)
:U=Ca (z.1) (z.2)

Note that Path type has no Eta rule due to groupoid in-
terpretation.

Groupoid interpretation

The groupoid interpretation of type theory is well known ar-
ticle by Martin Hofmann and Thomas Streicher, more spe-
cific interpretation of identity type as infinity groupoid. The
groupoid interpretation of Path equality will be given along
with category theory library in Issue VII: Category The-
ory.

1 Universes

This introduction is a bit wild strives to be simple yet
precise. As we defined a language BNF we could define
a language AST by using inductive types which is yet to
be defined in Issue II: Inductive Types and Models. This
SAR notation is due Barendregt.

Definition 21. (Terms). Point in initial object of language
AST inductive definition is called a term. If type theory or
language is defined as an inductive type (AST) then the term
is defined as its instance.

Definition 22. (Sorts). N-indexed set of universes U,en.
Could have any number of elements which defines differ-
ent type systems. All built-in types as long as user defined
types are landed usually by default in Uy universe. Sorts
represented in type checker as a separate constructor.

Definition 23. (Axioms). The inclusion rules U; : Uj, i, j €
N, that define which universe is element of another given
universe. You may attach any rules that joins i, j in some
way. Axioms with sorts define universe hierarchy.

Definition 24. (Rules). The set of landings U; — U; :
Uj(i).ijen> Wwhere A : N x N — N. These rules define term
dependence or how we land (in which universe) formation
rules in definitions.

Definition 25. (Predicative hierarchy). If A in Rules is an
uncurried function max : N x N — N then such universe hi-
erarchy is called predicative.

Definition 26. (Impredicative hierarchy). If A in Rules is
a second projection of a tuple snd : N x N — N then such
universe hierarchy is called impredicative.

Definition 27. (Definitional Equality). For any U;,i € N
there is defined an equality between its members and be-
tween its instances. For all x,y € A, there is defined a x=y.
Definitional equality compares normalized term instances.

Definition 28. (SAR). The universum space is configured
with a triple of: i) sorts, a set of universes U,cn indexed
over set N; ii) axioms, a set of inclusions U; : Uj, i, j € N;
iii) rules of term dependence universe landing, a set of land-
ings Ui — Uj : Up(i).ijen, Where A could be function max
(predicative) or snd (impredicative).

Example 1. (CoC). SAR={{x,0},{x:0}{i—j:j;i,j€
{x,0}}. Terms live in universe *, and types live in universe
0. In CoC A = snd.

Example 2. (PTS®”, MLTT™).

Where U; is a universe of i-level or i-category in categor-
ical interpretation. The working prototype of PTS™ is given
in Addendum I: Pure Type System for Erlang[11].

1 Contexts

Speaking of type checker execution, we introduce con-
text or dictionary with types and terms, from which we can
derive typed variables. This chain could be implemented as
nested sigma types (due to R.A.G.Seely) or list types (due
to Voevodsky). Categorically dependent type theory is built
upon categories of contexts.

Definition 29. (Empty Context).

1 : U =ger *.

Definition 30. (Context Comprehension).

I';A =def ZA(’)/)
v

Definition 31. (Context Derivability).

LA =gy HA(y).
v

1 MLTT

Here is given formal model of type-theoretical interpre-
tation of Martin-Lof Type Theory. It combines 4 Path rules
(no eta), 5 IT rules, and 6 X rules (two elims). The proof is
provided by direct embedding (internalizing) the model in-
tro the model of type checker which is even more powerful.

Definition 32. (MLTT). The MLTT as a Type is defined by
taking all rules for I'l, £ and Path types into one X telescope
or context.

MLIT (A: U): U
= (Pi_Former: (A — U) —> U)
% (Pi_Intro: (B: A —>U) (a: A)
—> B a—> (A —>Ba))
% (Pi_Elim: (B: A —> U) (a: A)
—> (A —> B a) —> B a)

% (Pi_Compl: (B: A — U) (a: A)

(f: A—> B a) —> Path (B a)

(Pi_Elim B a(Pi_Intro B a(f a)))(f a))
% (Pi_Comp2: (B: A — U) (a: A)

(f: A—> B a) —>

Path (A —> B a) f (\(x:A) —> f x))

% (Sigma_Former: (A — U) — U)
% (Sigma_ Intro: (B: A —> U) (a: A)
—> (b: B a) —> Sigma A B)
% (Sigma_ Eliml: (B: A — U)
(_: Sigma A B) —> A)
% (Sigma Elim2: (B: A — U)
(x: Sigma A B) —> B (prl A B x))
% (Sigma Compl: (B: A —> U) (a: A)
(b: B a) — Path A a (Sigma Eliml B
(Sigma_Intro B a b)))
% (Sigma Comp2: (B: A —> U) (a: A)
(b: B a) —> Path (B a) b
(Sigma_Elim2 B (a,b)))
% (Sigma Comp3: (B: A — U) (p:
—> Path (Sigma A B) p
(prl AB p,pr2 AB p))
% (Id_Former: A —> A —> U)
% (Id _Intro: (a: A) —> Path A a a)
% (Id_Elim: (x: A) (C: D A)
(d: C x x (Id_Intro x))
(y: A) (p: Path Axy) =>Cxy p)
% (Id_Comp: (a:A)(C: D A)
(d: C a a (Id _Intro a)) —>
Path (C a a (Id_Intro a)) d
(Id_Elim a C d a (Id_Intro a)))

Sigma A B)

* U

Theorem 23. (Model Check). There is an instance of

MLTT.
instance (A: U): MLTT A
= (Pi A, lam A, app A,
Beta A, Eta A,
Sigma A, dpair A, prl A, pr2 A,
Betal A, Beta2 A, Eta2 A,
Path A, refl A, J A,
J comp A, A)
Cubical Model Check

The result of the work is a ml1tt. ctt file which can be
runned using cubicaltt. Note that computation rules take
a seconds to type check.

cubicaltt — 6 second.
Arend — 1 second.
Agda (cubical) — & 2 second.

Conclusions

In this issue the type-theoretical model (interpretation)
of MLTT was presented in cubical syntax and type checked
in it. This is the first constructive proof of internalization of
MLTT.

From the theoretical point of view the landspace of
possible interpretation was shown corresponding different
mathematical theories for those who are new to type theory.
The brief description of the previous attempts to internal-
ize MLTT could be found as canonical example in MLTT
works, but none of them give the constructive J elimina-
tor or its equality rule. As a selected prover for the arti-
cle wa chosen cubicaltt but this excersise was implemented
on all current cubical type checkers’: Arend®, Agda’, cu-
bicaltt'?, yacctt, redtt, RedPRL, Lean!!. Type theoretical
cubical constructions was given for the Path types along the
article for other interpretations, all of them were taken from
our Groupoing Infinity!? base library.

Table. Core Features

Lang Pi Sigma Eq Path U” Co/Fix Lazy
PTS X

Cedile, MLTT x X X

PTS” X X

MLTTe X X X X

Lean, Agda X X X X

NuPRL X X X X
System-D X X X X
cubical X X X X X

The objective of complete derivability of all elimina-
tors, computational and uniquness rules is a basic objec-
tive for constructive mathematics as mathematical reason-
ing implies verification and mechanization. Yes cubical
type system represent most compact system that make pos-
sible derivability of all theorems for core types which make
this system as a first candidate for the metacircular type
checker.

Also for programming purposes we may also want to in-
vestigate Fixpoint as a useful type in coinductive and modal
type theories and harmful type in theoretical foundation of
type systems. Elimination the possibility of uncontrolled
Fixpoint is a main objective of the correct type system for
reasoning without paradoxes. By this creatiria we could fil-
ter all the fixpoint implementations being condidered harm-
ful.

Without a doubt the core type that makes type theory
more like programming is the inductive type system that al-
lows to define type families. In the following Issue II will

https:/cubical.systems
8https://github.com/groupoid/arend
%https://github.com/groupoid/agda
10https://github.com/groupoid/cubical
Whttps://github.com/groupoid/lean
2https://groupoid.space/mltt/types/

be shown the semantics and embedding of inductive types
with several types of Inductive-Recursive encodings.

Table. Inductive Type Systems

Lang Co/Inductive HITs
System-D X
Lean

NuPRL

X
X

Arend X X X
X
X

Quot/Trunc

>

>

Agda, Coq
cubicaltt, yacctt, RedPRL

Further research of the most pure type theory on a weak
fibrations and pure Kan oprations without interval lattice
structure (connections, de Morgan algebra, connection al-
gebras) and diagonal coersions could be made on the way
of building a minimal homotopy core[12].

Table. Cubical Type Systems

Lang Interval Diagonal Kan/Coe
BCH, cubical 0—r,1—r
CCHM, cubicaltt, Agda V,A 0—1
Dedekind V,A 0—1,1—0
AFH/ABCFHL, yacctt X r—s
HTS/CMS r— s, weak

The next language after PTS® and MLTT* will be HTS*
with recursive higher inductive type system and infinite
number of universes. Along with O-CPS interpreter this
evaluators form a set of languages as a part of conceptual
model of theorem proving system with formalized virtual
machine as extraction target.

Further Research

This article opens the door to a series that will unvail the
different topics of homotopy type theory with practical em-
phasis to cubical type checkers. The Foundations volume of
articles define formal programming language with geomet-
ric foundations and show how to prove properties of such
constructions. The second volume of article is dedicated to
cover the programming and modeling of Mathematics.

Foundations I-V, Mathematics VI-X

Issue I: Intenalizing Martin-Lof Type Theory. The
first volume of definitions gathered into one article dedi-
cated to various [] and Y properties and internalization of
MLTT in the host language typechecker.

Issue II: Inductive Types and Encodings. This
episode tales a story of inductive types, their encodings, in-
duction principle and its models.

Issue III: Homotopy Type Theory. This issue is try to
present the Homotopy Type Theory without higher induc-

tive types to neglect the core and principles of homotopical
proofs.

Issue IV: Higher Inductive Types. The metamodel of
HIT is a theory of CW-complexes. The category of HIT is
a homotopy category. This volume finalizes the building of
the computational theory.

Issue V: Modalities. The constructive extensions with
additional context and adjoint transports between toposes
(cohesive toposes). This approach serves the needs of modal
logics, differential geometry, cohomology.

Issue VI: Set Theory. The set theory and mere propo-
sitions: set, prop.

Issue VII: Category Theory. The model of Category
Theory definitions.

Issue VIII: Topos Theory. Formal packaging of set the-
ory in a topos. Formal Topos and Formal Sheaf. It also in-
cludes sheaf embedding of type theory in type theory.

Issue IX: Algebraic Topology. This branch of study of
topological spaces with abstract algebra includes followin
areas: Homotopy Theory, Homological Algebra, Com-
plexes,

Issue X: Differential Geometry. This branch of study
includes infinitesimal constructions and Cartan geometry,
the chapter is slightly base on Felix Wellen dissertation.

References

[1] P. Martin-Lof and G. Sambin, “The theory of types,” in Studies in proof theory, 1972.

[2] P. Martin-Lof and G. Sambin, “Intuitionistic type theory,” in Studies in proof theory, 1984.

[3] V. Voevodsky et al., “Homotopy type theory,” in Univalent Foundations of Mathematics, 2013.

[4] A. Mortberg et al., “Cubical type theory: a constructive interpretation of the univalence axiom,” arXiv:1611.02108, 2017.

[5] E. Pfenning and C. Paulin-Mohring, “Inductively defined types in the calculus of constructions,” in Proc. 5th Int. Conf. Mathematical Founda-
tions of Programming Semantics, Tulane University, New Orleans, Louisiana, USA, March 29-April 1, 1989, pp. 209-228., pp. 209-228, 1989.
doi:10.1007/BFb0040259.

[6] P. Dybjer, “Inductive families,” in Formal aspects of computing, pp. 440-465, 1994. doi:10.1016/S0049-237X(08)71945-1.

[7] P. Martin-L6f, “An intuitionistic theory of types: Predicative part,” in Studies in Logic and the Foundations of Mathematics, vol. 80, pp. 73—118,
1975. doi:10.1016/S0049-237X(08)71945-1.

[8] M. Hofmann and T. Streicher, “The groupoid interpretation of type theory,” in In Venice Festschrift, pp. 83—111, Oxford University Press, 1996.

[9] P.-L. Curien et al., “Revisiting the categorical interpretation of dependent type theory,” in Theoretical Computer Science, vol. 546, pp. 99-119,
2014. doi:10.1016/j.tcs.2014.03.003.

[10] S. Huber, “Cubical interpretations of type theory,” in Ph.D. thesis, Dept. Comp. Sci. Eng, University of Gothenburg, 2016.

[11] M. Sokhatskyi and P. Maslianko, “The systems engineering of consistent pure language with effect type system for certified applications and higher
languages,” in Proc. 4th Int. Conf. Mathematical Models and Computational Techniques in Science and Engineering, 2018. doi:10.1063/1.5045439.

[12] E. Cavallo, A. Mértberg, and A. W. Swan, “Unifying Cubical Models of Univalent Type Theory.” Preprint, 2019.

M.E.Coxaupbkuit
BVMYCK 1: BBYAOBYBAHHA TEOPIT TUMIB MAPTIHA-NTbO®A

Mpo6nemaTuka. by NnponaeHuin AoBrMi WsX Big unctmux Tunosux cuctem AUTOMATH ge BpeliHa oo romotonivyHmx
TMNoBmMx Bepudikartopis. Lia ctatTa ctocyeTbes Tinbkv popmanbHoro sapa teopii Tunis MaprtiHa-fibodpa: IT v X Tunis (ki
BiAMNOBIAAlOTb KBAHTOPY 3aranbHOCTI V Ta KBAHTOPY iCHYBaHHA 3y KNACcWYHin Noriui) Ta TMny-piBHOCTI.

MeTta pocnigxeHHA. BU3HauuTy TMNOBY CUCTEMY SIK YaCTUHY KOHLENTyanbHOi MOAENi CUCTEMU [JOBEAEHHSI TEOPEM,
Y SAKii KOHCTPYKTMBHO BMPaxaeTbcs J enimiHaTtop Ta Moro Teopemu, Cnmparymcb Ha Binbl abCcTpakTHI NpMMITUBKY TMNa
piBHOCT. Lle cTano MoxnMBMM 3aBasiku Ky6iuHii Teopii Tunis (2016) Ta TMnoBoMy KyBiuHOMy BepudikaTopy cubicaltt'®
(2017). LUinb cTtatTi — npogeMoHcTpyBatM hopmMaribHe BOyAoOBYyBaHHsi Teopii TuniB MaprtiHa-Jlboca B BUKOHYHOYY
aBTOPCbKy KybiuHy TMnoBy cuctemy MLTT* 3 noBHuM Habopom npasun BUBOAY.

MeToauka peanisauii. Tak sk BCi Tunu B Teopii hoOpMymniolTbCs 3a JOMOMOro Mty npasun: dopmalii, iHTpo,
enimMiHau,ii, obuncneHs, piBHOCTI) WO B CYTHOCTI € KOAyBaHHAM i3oMopdiaMmamu iHianbHUXx 06’ekTiB B kaTeropis F-anrebp,
MW 3KOHCTPYIOBanu HOMiHarnbHi TUNW-CUHOHIMM ANS BUKOHYHOYOro BepudikaTopa Ta AoBenu, LWo ue € peanisauieto MLTT.
Tak sk He BCi MOXyTb OyTW 3HaliOMi 3 TEOpiEl TUMIB, Lie BUMYCK TaKoX MICTUTb iX iHTepnpeTauii 3 TOYkM 30py Pi3HMX
po3ainis MateMaTuku.

Pesynsratn gocnigxeHHs. Lls pobota Bege Ao aekinbkox pesyneratie: 1) MLTT* — cneujansHa Bepcis Teopil
TuniB MapTiHa-Jlbodba 3i 3ni4eHHoto KinbkicTio BCecBiTiB Ta Path Tnom 6e3 eta-npasuna gns HoTT 3acTtocyBaHHSA Yy Ky
mMu byaem BOygnoByBaTth knacuyHy MLTT, 2) Bnace cama iHTepHanisauis MLTT B MLTT*™ 3 CMHTakCMCOM SIKUIA O03BOSiE
BMBOAWTU noniMopdHi BcecBiTu; 3) KnacudikoBaHi pidHi iHTepnpeTauii Liei cuctemn Tunis: TEOPETUKO-TMNOBA, KaTeropHa
abo Tonoco-TeopeTuyHa, roMoTonivyHa abo ky6ivHa; 4) Ak peaynbraTt Ler BUNycK BigKpMBae cepito ctaten no popmanisauii
Pi3HMX po3ainiB MatemMaTuku, Ta NpUcBaAYeHun copmanisauii ocHoBam MaTeMaTuku B KybiuHii Teopii Tmnie, MLTT
MoentoBaHHI0 Ta KybiuHin Bepudikauii; 5) Lie moxe posrnsaatuca Sk yHiBepcanbHUI TeCT ANd iMnnemMeHTauii TMnoBoro
BepudpikaTopa, nosasik KOMneHcaus iHTpo NpaBua Ta npaBuna eniMmiHaTopa NoB’si3aHi B NpaBuni 064YMCIEHHS Ta PIBHOCTI
(6beTa Ta eTa peaykuinx). TakMm 4YMHOM, AOBOMAXKY4YM peanisauito MLTT, My 4OBOAMMO BNACTUBOCTI CAMOro BUKOHYHYOMO
BepudikaTopa; 6) 3aBadkn NO3UTUBHUM pesynbTaTtMm KybiuHa Teopis 6yna BubpaHa sk reoMeTpuyHe po3LLUMPEHHS CUCTEMN
iHOYKTUMBHUX TUMIB AN MatemMaTuyHOl Bepudikauii sIKk YaCcTMHa KOHUenTyanbHOI CMCTEMW [OBeOeHHS TeopeMm, ska
BKITOYATUMMME CEpil0 MOB sIK CepeaoBuLLEe BepudikaLlii.

BucHoBku. [Jogamo, Lo ue Tinbky BXig B TEXHiKY npsiMoro B6ynoByBaHHS i nicns MLTT moaentoBaHHsi, MU MOXeM
nigHATMCA BULLe — A0 BOyQOBYBaHHSA B CUCTEMY iHOYKTUBHUX TUNIB, i Aani, Ao BOyaoByBaHHS CW-KOMMIEKCIB Sk 3Knenok
BULLMX iHOYKTUBHWUX TWUMIB, Ta Aani 40 MoganbHuX norik. Lle o3Hayae Lmpokui cnekTp mateMaTuyHux Teopii BcepeauHi
HoTT ax go anerbpaiyHoi Tononorii. MNoganblua pednekcis Beae 4o KOMBiHaUiT Pi3HUX TUMOBUX NiACUCTEM B CNEKTPANbHUX
KaTeropist MOBHUX PiBHIB 3 MOAYNAMU-NNariHamMmu Ans CUHTaKCUYHUX pO3LLUMPEHb Ta anropuTMiB HopmManisauii nporpam B Lnx
CUHTaKcucax.

Knrouosi cnosa: Teopis Tunis MapTtiHa-JIboda, Ky6iuHa Teopis Tunis.

M.3.Coxaukui
BbIMYCK 1: BCTPAVBAHVE TEOPUM TUMNOB MAPTUHA-NE®A

Mpo6nemaTtuka. bbin nporaeH Aonrmx NyTb OT YACTbIX TUNOBbIX cuctem AUTOMATH ge BpeliHa 4o romoTonnyeckux
TUNOBBIX BepnmnkaTopoB. JTa CTaTbsl 3aTparMeaeT TOMNbKO hopmanusaumio sapa Teopumn Tunos MaptuHa-fléda: I un X
TMNOB (KOTOpble COOTBECTBYIOT KBAHTOPY BCEOOLLHOCTM V 1 KBAHTOPY CyLLECTBOBAHUA J B KNacCM4eCKON NOruKe) u Tuny-
paBeHCTBY.

Llenb uccneposanusa. OnpegenuTb TUMOBYK CUCTEMY AN KOHUENTyanbHOW MOAENU CUCTeMbl [oKasaTenbCcTBa
TeopeM, B KOTOPOW KOHCTPYKTUBHO BbIpaXeTaeTcs J SNUMMUHATOP M ero Teopemsbl, onupasicb Ha Gonee abCcTpakTHble
NPUMUTMBBLI TMNA paBeHCTBa. JTO CTano BO3MOXHbIM Gnarogaps Kybuueckow uHTepnpeTauum M ABYM CTaTbAM MO
Kybunueckon Teopum TMNOB 1 No Kybrudeckomy BepudmkaTopy. Takke ctosina 3agada uccrnefosartb pasnuyHble Kybudeckme
CMCTeMbl TUNOB AN BbIGopa cBOeN MUHMMarnbHOW NoAcMcTeMbl cnocobHom BeTponTts MLTT. Lienb ctatbn — AeMOHCTpaums
cdhopmanbHoro BcTpamBaHusa Teopum Tunos MapTtuHa-J1€da B aBTopckyto Kybudeckyto cuctemy MLTT™ ¢ nonHbiM Habopom
npasun BbIBOAA.

Metoauka peanusaumm. Tak kak BCe TWMbl B Teopun (HOPMYNUPYIOTCS C NOMOLLBIO NATU nNpaswn: dopMauuu,
WHTPO, 3NMMUHaLMN, BLIMUCTIEHNS, YHUKANBHOCTM), YTO MO CYLLECTBY €CTb KOANPOBaHWEM N30MOPU3MaMN UHULNATBHBIX
06bekToB B KaTteropusix F-anrebp, mMbl MOCTPOMNM HOMWHASHbBIE TUMbI-CUHOHWMBI A1 UCMOMHALLEro Bepudukatopa un
Aokasanu, 4to aTo senseTcsa peanusaumen MLTT. Tak kak He Bce MOryT ObiTb 3HAKOMbI C TEOPUEN TUMOB, 3TOT BbINYCK
TaKKe BKMIOYaET MHTEPNPETALIMU C TOYKM 3PEHUSA pasnMYHbIX pasfenos MaTemMaTuku.

Pe3ynbTaTbl uccnepoBaHua. 3Ta poboTa BegeT K Heckonbkum pesynbtatam: 1) MLTT® — cneumanbHas
Bepcusa Teopun Tunos MapTtuHa-Néda co cHeTHbIM KONMYEeCTBOM BCerneHHblX u Path Tunom 6e3 eta-npasuna gna HoTT
NPUMEHEHWI, B KOTOpYto OyaeT npov3BeaeHo BCTpamBaHue knaccudeckon MLTT; 2) CobcTBEHHO cama UHTepHanu3auus
MLTT B MLTT* ¢ nonumMopdHbIMK1 BceneHHbiMu; 3) KnaccmdurkoBaHbl pa3Hble MHTepnpeTauum 3TOW CUCTEMbI TWUMOB:
TEOPETUKO-TUNOBASA, KaTeropHas abo Tonoco-TeopeTmyeckas, romoTonmyeckas unu kybudeckas; 4) Kak pesynsrart atoT
BbIMYCK OTKPbIBAET CepUIo cTaTen No hopmanmaaumm pasHblx pasfgenos MaTteMaTuky, KOTopble NOCBsLLEeHb! hopmanusauum
OCHOBaM MaTeMaTuKu1 B Kybudeckon Teopum Tunos, MLTT moaentoBaHuto n kybudeckorn Bepudmkaumm; 5) 3To MOXeT Takke
paccMapTpmuBaTbCs Kak YHMBEpcanbHUA TECT ANS MMNIIEMEHTaunM TUNOBOro BepndunkaTopa, kak Kak KomneHcaums MHTPO
npaswna v Nnpasuna anNnMMUHaLUMK CBA3aHbl B Npasunax 6eta n ata peayKkumy, Takum obpa3oM Mbl fOKasbiBaeM npasuna
camoro Bepudmkatopa; 6) bnarogaps no3vTuBHbIM pesynsratam, Kyoudeckas Teopus Gbina BelbpaHa kak reomeTpudeckoe
paclmpeHne CMCTeMbl MHAYKTUBHBIX TUMOB AJIA MaMETaMTUYECKON MexaHu3vMpyemon Bepudukaumum kak 4actb Gonee
obuwen paboTbl — KOHLUENTyarnbHOW CMCTEMbl AoKa3aTeflbCcTBa TeopeM, KoTopas BKo4vaeT B cebs cepuio S3bIKOB U
A3bIKOBbIX CPEACTB Kak cpeay ANns BepuduKaumm 1 3KCTPaKUMmn AoKasaHHbIX NPOrpamMm.

BbiBoabl. 3ameTM, YTO 3TO TONBLKO BXOA4 B TEXHWKY NPSMOro BCTpamBaHus u nocne MLTT mopgenvpoBaHus Mbl
MOXeM NOAHATCS Bbllle — A0 BCTPaMBaHUS B CUCTEMY MHAOYKTUBHBLIX TUMOB, U Aanee, Ao BcTpaneaHue CW-komnnekcos
Kak CKnee BbICLUMX MHAYKTUBHBIX TUMOB, U Aanee 40 MoAanbHbIX NOrMK. OTO 03HaYaeT LWMPOKMI CMEKTP MaTteMaTuyeckmnx
Teopui BHyTpu camoin HoTT Bnnotb Ao anrebpavyeckon Tononornm u anddepeHumansHon reometpun. [anbHenwas
pednekumsa BeAeT K pacCMOTPEHUI0 KOMBUHALMI TUMOBbIX MOACUCTEM B CMEKTparbHbIX KaTeropus A3blKOBbIX YpaBHeN C
MOAYNAMU-NarMHamMy AN CUHTaKCUYEeCKNX pacLUMPEHNiA U anropuMoB HOpPManuaauum NporpaMm B 3TUX CUHTaKcucax.

KnioueBble cnosa: Teopus Tunos MaptuHa-lléda, Kybnyeckas Teopums Tunos.

