{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Exercises Chapter 3 Markov Decision Processes\n", "\n", "## p51 Ex 3.1 Devise three tasks in MDP framework\n", "\n", "\n", "## Ex 3.2 Exceptions to MDP\n", "\n", "## Ex 3.3 The problem of driving\n", "\n", "## Ex. 3.6 Pole balancing (Cartpole!)\n", "\n", "## Ex 3.7 robot in maze\n", "\n", "## Ex 3.8 calculate returns G\n", "\n", "## Ex 3.9 calculate return G\n", "\n", "## Ex 3.12 v_pi\n", "\n", "## Ex 3.14 verify bellman equation for gridworld example\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.17 bellman equation for action values\n", "\n", "## Ex 3.20 optimal state-value for golf example\n", "\n", "## Ex 3.21 optimal action-value for putting in golf example\n", "\n", "## Ex 3.22 optimal policies for MDP\n", "\n", "## Ex 3.24 compute optimal value for best state in the Gridworld\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (Spyder)", "language": "python3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 4 }