
A Gentle Introduction to Isabelle and Isabelle
HOL

Gunnar Teege

May 10, 2024



Contents

1 Isabelle System 5
1.1 Invoking Isabelle . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Installation and Configuration . . . . . . . . . . . . . . 5
1.1.2 Theories and Sessions . . . . . . . . . . . . . . . . . . 6
1.1.3 Invocation as Editor . . . . . . . . . . . . . . . . . . . 6
1.1.4 Invocation for Batch Processing . . . . . . . . . . . . . 7
1.1.5 Invocation for Document Creation . . . . . . . . . . . 8

1.2 Interactively Working with Isabelle . . . . . . . . . . . . . . . 8
1.2.1 The Text Area . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 The Sidekick Panel . . . . . . . . . . . . . . . . . . . . 9
1.2.3 The Output Panel . . . . . . . . . . . . . . . . . . . . 9
1.2.4 The State Panel . . . . . . . . . . . . . . . . . . . . . 9
1.2.5 The Symbols Panel . . . . . . . . . . . . . . . . . . . . 9
1.2.6 The Documentation Panel . . . . . . . . . . . . . . . . 10
1.2.7 The Query Panel . . . . . . . . . . . . . . . . . . . . . 10
1.2.8 The Theories Panel . . . . . . . . . . . . . . . . . . . . 10

2 Isabelle Basics 11
2.1 Isabelle Theories . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Theory Notation . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Terms and Types . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Definitions and Abbreviations . . . . . . . . . . . . . . 17
2.1.4 Overloading . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.5 Propositions . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.6 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Isabelle Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Maintaining Proof State . . . . . . . . . . . . . . . . . 30
2.2.2 Proof Procedure . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Basic Proof Structure . . . . . . . . . . . . . . . . . . 35
2.2.4 Method Application . . . . . . . . . . . . . . . . . . . 40
2.2.5 Stating Facts . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.6 Facts as Proof Input . . . . . . . . . . . . . . . . . . . 43
2.2.7 Fact Chaining . . . . . . . . . . . . . . . . . . . . . . . 45

1



2.2.8 Assuming Facts . . . . . . . . . . . . . . . . . . . . . . 48
2.2.9 Fixing Variables . . . . . . . . . . . . . . . . . . . . . 50
2.2.10 Defining Variables . . . . . . . . . . . . . . . . . . . . 52
2.2.11 Obtaining Variables . . . . . . . . . . . . . . . . . . . 53
2.2.12 Term Abbreviations . . . . . . . . . . . . . . . . . . . 55
2.2.13 Accumulating Facts . . . . . . . . . . . . . . . . . . . 58
2.2.14 Equational Reasoning . . . . . . . . . . . . . . . . . . 60

2.3 Proof Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.1 The empty Method . . . . . . . . . . . . . . . . . . . . 62
2.3.2 Terminating Proof Scripts . . . . . . . . . . . . . . . . 63
2.3.3 Basic Rule Application . . . . . . . . . . . . . . . . . . 63
2.3.4 Rule Application in Forward Reasoning . . . . . . . . 68
2.3.5 Composed Proof Methods . . . . . . . . . . . . . . . . 74
2.3.6 The Simplifier . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.7 Other Automatic Proof Methods . . . . . . . . . . . . 81

2.4 Case Based Proofs . . . . . . . . . . . . . . . . . . . . . . . . 83
2.4.1 Named Proof Contexts . . . . . . . . . . . . . . . . . . 83
2.4.2 The goal_cases Method . . . . . . . . . . . . . . . . . 85
2.4.3 Case Based Reasoning . . . . . . . . . . . . . . . . . . 86
2.4.4 Elimination . . . . . . . . . . . . . . . . . . . . . . . . 92
2.4.5 Induction . . . . . . . . . . . . . . . . . . . . . . . . . 96

3 Isabelle HOL Basics 105
3.1 Predicates and Relations . . . . . . . . . . . . . . . . . . . . . 105

3.1.1 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.1.2 Unary Predicates and Sets . . . . . . . . . . . . . . . . 106
3.1.3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.2 Equality, Orderings, and Lattices . . . . . . . . . . . . . . . . 106
3.2.1 The Equality Relation . . . . . . . . . . . . . . . . . . 106
3.2.2 The Ordering Relations . . . . . . . . . . . . . . . . . 107
3.2.3 Lattice Operations . . . . . . . . . . . . . . . . . . . . 108

3.3 Description Operators . . . . . . . . . . . . . . . . . . . . . . 109
3.3.1 The Choice Operator . . . . . . . . . . . . . . . . . . . 109
3.3.2 The Definite Description Operator . . . . . . . . . . . 109
3.3.3 The Least and Greatest Value Operators . . . . . . . . 110

3.4 Undefined Value . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.5 Let Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.6 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.6.1 Function Argument Tuples . . . . . . . . . . . . . . . 112
3.6.2 Relations as Tuple Sets . . . . . . . . . . . . . . . . . 112

3.7 Inductive Definitions . . . . . . . . . . . . . . . . . . . . . . . 112
3.7.1 The Defining Rules . . . . . . . . . . . . . . . . . . . . 113
3.7.2 Fixed Arguments . . . . . . . . . . . . . . . . . . . . . 115
3.7.3 The cases Rule . . . . . . . . . . . . . . . . . . . . . . 116

2



3.7.4 The Induction Rule . . . . . . . . . . . . . . . . . . . . 118
3.7.5 Single-Step Inductive Definitions . . . . . . . . . . . . 120
3.7.6 Mutually Inductive Definitions . . . . . . . . . . . . . 121

3.8 Well-Founded Relations . . . . . . . . . . . . . . . . . . . . . 122
3.8.1 Induction . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.8.2 The Accessible Part of a Relation . . . . . . . . . . . . 122
3.8.3 Measure Functions . . . . . . . . . . . . . . . . . . . . 123
3.8.4 The size Function . . . . . . . . . . . . . . . . . . . . . 124

3.9 The Proof Method atomize_elim . . . . . . . . . . . . . . . . 124
3.10 Recursive Functions . . . . . . . . . . . . . . . . . . . . . . . 125

3.10.1 The Defining Equations . . . . . . . . . . . . . . . . . 126
3.10.2 Covering All Arguments . . . . . . . . . . . . . . . . . 128
3.10.3 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 130
3.10.4 The Domain Predicate . . . . . . . . . . . . . . . . . . 131
3.10.5 Rules Provided by Recursive Definitions . . . . . . . . 132
3.10.6 Termination . . . . . . . . . . . . . . . . . . . . . . . . 133
3.10.7 Rules Provided by Termination Proofs . . . . . . . . . 135
3.10.8 Mutual Recursion . . . . . . . . . . . . . . . . . . . . . 136

4 Isabelle HOL Type Definitions 138
4.1 Algebraic Types . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.1.1 Definition of Algebraic Types . . . . . . . . . . . . . . 138
4.1.2 Constructors . . . . . . . . . . . . . . . . . . . . . . . 139
4.1.3 Destructors . . . . . . . . . . . . . . . . . . . . . . . . 141
4.1.4 Parameterized Algebraic Types as Bounded Natural

Functors . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.1.5 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.1.6 Recursive Functions on Algebraic Types . . . . . . . . 152

4.2 Record Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.2.1 Record Definitions . . . . . . . . . . . . . . . . . . . . 155
4.2.2 Record Constructors . . . . . . . . . . . . . . . . . . . 158
4.2.3 Record Destructors . . . . . . . . . . . . . . . . . . . . 160
4.2.4 Record Updates . . . . . . . . . . . . . . . . . . . . . . 160
4.2.5 Record Rules . . . . . . . . . . . . . . . . . . . . . . . 161

4.3 Subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.3.1 Subtype Definitions . . . . . . . . . . . . . . . . . . . 164
4.3.2 Type Copies . . . . . . . . . . . . . . . . . . . . . . . . 165
4.3.3 Subtype Rules . . . . . . . . . . . . . . . . . . . . . . 165

4.4 Quotient Types . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.5 Lifting and Transfer . . . . . . . . . . . . . . . . . . . . . . . 169

3



5 Isabelle HOL Types 170
5.1 Boolean Values . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.1.1 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.1.2 Destructors . . . . . . . . . . . . . . . . . . . . . . . . 171
5.1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.1.4 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.2 The Unit Type . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2.1 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2.2 Destructors . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.3 Natural Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3.1 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3.2 Destructors . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.3.4 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.4 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.4.1 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.4.2 Destructors . . . . . . . . . . . . . . . . . . . . . . . . 181
5.4.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.4.4 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.5 Optional Values . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.5.1 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.5.2 Destructors . . . . . . . . . . . . . . . . . . . . . . . . 187
5.5.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.5.4 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.6 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.6.1 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.6.2 Destructors . . . . . . . . . . . . . . . . . . . . . . . . 190
5.6.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.6.4 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.7 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.7.1 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.7.2 Functions on Functions . . . . . . . . . . . . . . . . . 195
5.7.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.8 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.9 The Sum Type . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4



Chapter 1

Isabelle System

Isabelle is a “proof assistant” for formal mathematical proofs. It supports a
notation for propositions and their proofs, it can check whether a proof is
correct, and it can even help to find a proof.
This introductory manual explains how to work with Isabelle to develop
mathematical models. It does not presume prior knowledge about formal
or informal proof techniques. It only assumes that the reader has a basic
understanding of mathematical logics and the task of proving mathematical
propositions.

1.1 Invoking Isabelle

After installation, Isabelle can be invoked interactively as an editor for en-
tering propositions and proofs, or it can be invoked noninteractively to check
a proof and generate a PDF document which displays the propositions and
proofs.

1.1.1 Installation and Configuration

Isabelle is freely available from https://isabelle.in.tum.de/ and other mir-
ror sites for Windows, Mac, and Linux. It is actively maintained, there is
usually one release every year. Older releases are available in a distribution
archive.
To install Isabelle, follow the instructions on

https://isabelle.in.tum.de/installation.html

Although there are many configuration options, there is no need for an ini-
tial configuration, interactive and noninteractive invocation is immediately
possible.

5



1.1.2 Theories and Sessions

The propositions and proofs in Isabelle notation are usually collected in
“theory files” with names of the form name.thy. A theory file must import at
least one other theory file to build upon its content. For theories based on
higher order logic (“HOL”), the usual starting point to import is the theory
Main.
Several theory files can be grouped in a “session”. A session is usually stored
in a directory in the file system. It consists of a file named ROOT which
contains a specification of the session, and the theory files which belong to
the session.
When Isabelle loads a session it loads and checks all its theory files. Then
it can generate a “heap file” for the session which contains the processed
session content. The heap file can be reloaded by Isabelle to avoid the time
and effort for processing and checking the theory files.
A session always has a single parent session, with the exception of the Isabelle
builtin session Pure. Thus, every session depends on a linear sequence of
ancestor sessions which begins at Pure. The ancestor sessions have separate
heap files. A session is always loaded together with all ancestor sessions.
Every session has a name of the form chap/sess where chap is an arbitrary
“chapter name”, it defaults to Unsorted. The session name and the name
of the parent session are specified in the ROOT file in the session directory.
When a session is loaded by Isabelle, its directory and the directories of all
ancestor sessions must be known by Isabelle.
The Isabelle distribution provides heap files for the session HOL/HOL and its
parent session Pure/Pure, the session directories are automatically known.
Every session may be displayed in a “session document”. This is a PDF
document generated by translating the content of the session theory files to
LATEX. A frame LATEX document must be provided which includes all content
generated from the theory files. The path of the frame document, whether
a session document shall be generated and which theories shall be included
is specified in the ROOT file.
The command

isabelle mkroot [OPTIONS] [Directory]

can be used to initialize the given directory (default is the current directory)
as session directory. It creates an initial ROOT file to be populated with
theory file names and other specification for the session, and it creates a
simple frame LATEX document.

1.1.3 Invocation as Editor

Isabelle is invoked for editing using the command

6



isabelle jedit [OPTIONS] [Files ...]

It starts an interactive editor and opens the specified theory files. If no file
is specified it opens the file Scratch.thy in the user’s home directory. If that
file does not exist, it is created as an empty file.
The editor also loads a session (together with its ancestors), the default
session to load is HOL. If a heap file exists for the loaded session it is used,
otherwise a heap file is created by processing all the session’s theories.
The default session to load can be changed by the option

-l <session name>

Moreover the editor also loads (but does not open) theories which are tran-
sitively imported by the opened theory files. If these are Isabelle standard
theories it finds them automatically. If they belong to the session in the
current directory it also finds them. If they belong to other sessions, the
option

-d <directory pathname>

must be used to make the session directory known to Isabelle. For every
used session a separate option must be specified.
If an imported theory belongs to the loaded session or an ancestor, it is
directly referenced there. Otherwise the theory file is loaded and processed.

1.1.4 Invocation for Batch Processing

Isabelle is invoked for batch processing of all theory files in one or more
sessions using the command

isabelle build [OPTIONS] [Sessions ...]

It loads all theory files of the specified sessions and checks the contained
proofs. It also loads all required ancestor sessions. If not known to Isabelle,
the corresponding session directories must be specified using option -d as
described in Section 1.1.3. Sessions required for other sessions are loaded
from heap files if existent, otherwise the corresponding theories are loaded
and a heap file is created.
If option -b is specified, heap files are also created for all sessions specified
in the command. Option -c clears the specified sessions (removes their heap
files) before processing them. Option -n omits the actual session processing,
together with option -c it can be used to simply clear the heap files.
The specified sessions are only processed if at least one of their theory files
has changed since the last processing or if the session is cleared using option

7



-c. If option -v is specified all loaded sessions and all processed theories are
listed on standard output.
If specified for a session in its ROOT file (see Section 1.1.5), also the session
document is generated when a session is processed.

1.1.5 Invocation for Document Creation

** todo **

1.2 Interactively Working with Isabelle

After invoking Isabelle as editor (see Section 1.1.3) it supports interactive
work with theories.
The user interface consists of a text area which is surrounded by docking
areas where additional panels can be displayed. Several panels can be dis-
played in the same docking area, using tabs to switch among them. Panels
may also be displayed as separate undocked windows.
A panel can be displayed by selecting it in the Plugins -> Isabelle menu.
Some of the panels are described in the following sections.

1.2.1 The Text Area

The text area displays the content of an open theory file and supports editing
it. The font (size) used for display can be configured through the menu in
Utilities -> Global Options -> jEdit -> Text Area together with many
other options for display.

Processing the Text Area Content

Moreover, in the default configuration, Isabelle automatically processes the
theory text up to the current part visible in the text area window. This
includes processing the content of all imported theory files, if the import
statement is visible.
Whenever the window is moved forward the processing is continued if “Con-
tinuous checking” has not been disabled in the Theories panel. Whenever the
content of the text area is modified the processing is set back and restarted
at the modified position.
In the default configuration the progress of the processing is shown by shad-
ing the unprocessed text in red and by a bar on the right border of the text
area which symbolizes the whole theory file and shows the unprocessed part
by red shading as well.

8



Displaying Definitions of Identifiers

Most identifiers used in Isabelle content have been defined in some theory
file, this also holds for commands and other elements of the Isabelle syntax.
The definition can be accessed by holding down CTRL (CMD on Macs) and
clicking on an identifier. This also works for identifiers displayed in most
other panels.
The definition is displayed by opening the corresponding theory file in the
text area and positioning the window on the definition text.
If an identifier’s definition has been loaded from a heap file (see Section 1.1.2)
it is still displayed by opening the theory file, however, its content is not
processed in the way described above. In particular, this is usually the case
for all identifiers defined in the sessions HOL/HOL and Pure/Pure.

1.2.2 The Sidekick Panel

The Sidekick panel displays a structured view of the content of the text area
and supports interactively expanding and collapsing substructures. It can
be used for navigation in the text area by clicking on an item displayed in
the Sidekick panel.
The structure view is not updated automatically upon changes in the the
text area, to update it the text area content must be saved to its theory file.

1.2.3 The Output Panel

The Output panel displays the result of the theory text processing when it
reaches the cursor position in the text area.
The displayed information depends on the cursor position and may be an
information about the current theorem or proof or it may be an error mes-
sage.

1.2.4 The State Panel

The State panel displays a specific result of the theory text processing if the
cursor position is in a proof. It is called the “goal state” (see Section 2.2.1),
and describes what remains to be proved by the rest of the proof.
The Output panel can be configured to include the goal state in its display
by checking the “Proof state” button.

1.2.5 The Symbols Panel

Isabelle uses a large set of mathematical symbols and other special symbols
which are usually not on the keyboard. The Symbols panel can be used to

9



input such symbols in the text area. It comprises several tabs for selecting
different symbol sets.
Alternatively, symbols not available on the keyboard may be entered by a
specific sequence of keys, called an abbreviation. As an example, the se-
quence ==> is an abbreviation for the symbol =⇒ consisting of three separate
keys. In the interactive editor Isabelle replaces some abbreviations upon
entering automatically by their symbol, others are left as they are.
If the mouse is positioned on a symbol in the Symbols panel available ab-
breviations are displayed as abbrev:... in the popup message.

1.2.6 The Documentation Panel

A comprehensive set of documentation about Isabelle can be opened through
the Documentation panel. This manual refers to some of these documenta-
tions, if applicable.
For example, more information about the use of the interactive editor can
be found in the Isabelle Reference Manual about jedit.

1.2.7 The Query Panel

The Query panel supports active searching for items in the content of all
loaded sessions. There are several tabs for searching different kinds of items.
Depending on the kind, a search specification must be entered in the tab,
the results are displayed in the window below.
Note that a simple full text search is usually not supported. More informa-
tion about supported search specifications for different kinds of items can be
found in Chapter 2.

1.2.8 The Theories Panel

The Theories panel displays the loaded session and the opened or imported
theories which do not belong to the loaded session or its ancestors. The
(parts of) theories which have not been processed are shaded in red.
If the check button next to a theory is checked, the theory file is processed
independently of the position of the text area window.

10



Chapter 2

Isabelle Basics

The basic mechanisms of Isabelle mainly support defining types, constants,
and functions and specifying and proving statements about them.

2.1 Isabelle Theories

A theory is the content of an Isabelle theory file.

2.1.1 Theory Notation

Theories are written using a notation which follows strict syntax rules, sim-
ilar to a programming language. The interactive editor helps using correct
notation by immediately signaling syntax errors upon input. However, it is
crucial to also understand the meaning of the written text. This introduction
describes both in a systematic stepwise manner.

Languages for Theory Content

Isabelle aims at two main goals: Supporting interactive work with mathe-
matical formulas and proofs, and supporting their presentation together with
explanations as nicely typeset text in the form of an article or a book. For
this purpose Isabelle combines three different languages for writing theory
content:

• a language for mathematics, called the “inner syntax”,

• a language for textual content, which is an extended form of LATEX
source code,

• a language for organizing fragments of the first two languages in a
theory, called the “outer syntax”.

11



For the inner syntax Isabelle tries to be as close as possible to the form
how mathematical content is traditionally presented in books. It supports
formulas such as ∀ x≤100 . x∈{y2 | y. y≤10} both in the interactive editor
and the textual presentation. It does not support larger two-dimensional
constructs like matrices or fractions.
The outer syntax resembles a programming language. It uses keywords to
construct larger entities like definitions and proofs. These entities usually
contain mathematical formulas written in inner syntax. To clearly separate
both languages, content in inner syntax must always be surrounded by double
quotes ". . ." or by the “cartouche delimiters” ‹. . .› available in the editor’s
Symbols panel in tab “Punctuation”. The only exception is a single isolated
identifier, for it the quotes or delimiters may be omitted.
This introduction describes only a selected part of the outer and inner syntax.
The full notation used by Isabelle is described in the Isabelle/Isar Reference
Manual and other documentation.
Additionally, text written in LATEX syntax can be embedded into the outer
syntax using the form text‹ . . . › and LATEX sections can be created us-
ing chapter‹ . . . ›, section‹ . . . ›, subsection‹ . . . ›, subsubsection‹ . . .

›, paragraph‹ . . . ›, subparagraph‹ . . . ›.
It is also possible to embed inner and outer syntax in the LATEX syntax (see
Chapter 4 in the Isabelle/Isar Reference Manual).
Moreover, comments of the form

(* ... *)

can be embedded into the outer syntax. They are only intended for the
reader of the theory file and are not displayed in the session document.
Line breaks are ignored as part of the outer and inner syntax and have the
same effect as a space.

Meta Level and Object Level

Isabelle consists of a small fixed kernel which is called “meta-logic”. It is
implemented in the session Pure/Pure (see Section 1.1.2) which is the ancestor
of all other sessions. To be useful the meta-logic must be extended by an
“object logic”. It may consist of one or more sessions, all sessions other than
Pure/Pure are parts of an object logic. There are many object logics available
for Isabelle, the most versatile is HOL. Although called a “logic” it is a full
extensible representation of mathematics.
This introduction first describes the Isabelle kernel features, followed by a
description of the object logic HOL in Chapters 3 and subsequent chapters.
Both outer and inner syntax consist of a part for the kernel (the “meta-
level” of the languages) and a part introduced by and specific for the object

12



logic (the “object-level” of the languages). While the meta-level of the inner
syntax is extremely small, mainly consisting of only four logical operators, the
meta-level of the outer syntax supports a large set of constructs for specifying
entities like axioms, definitions, proofs, and, finally, whole theories.
This introduction describes the meta-level of the inner syntax mainly in
Sections 2.1.2 and 2.1.5. The rest of the sections about the Isabelle kernel
describe the meta-level of the outer syntax. Chapter 3 describes basic parts
of the object level of the inner and outer syntax for HOL. Chapter 4 describes
a major part of the outer syntax for HOL, whereas Chapter 5 describes an
important part of the inner syntax for HOL.

Theory Structure

The content of a theory file has the outer syntax structure

theory name
imports name1 . . . namen

begin
. . .

end

where name is the theory name and name1 . . . namen are the names of the
imported theories. The theory name name must be the same which is used
for the theory file, i.e., the file name must be name.thy.

2.1.2 Terms and Types

The two main constituents of the inner syntax are terms and types. As usual
in formal logics, the basic building blocks of propositions are terms. Terms
denote arbitrary objects like numbers, sets, functions, or boolean values.
Isabelle is strongly typed, so every term must have a type which names the
type of values denoted by the term. However, in most situations Isabelle
can derive the type of a term automatically, so that it needs not be specified
explicitly.

Types

Types are usually specified by type names. In Isabelle HOL (see Chapter 3)
there are predefined types such as nat and bool for natural numbers and
boolean values. With the exception of function types, types like these with
a mathematical meaning always belong to an object logic. Chapter 5 gives
a detailed description of several important types of HOL. Due to the lack
of adequate types in the meta-logic this introduction uses a small set of
HOL types for examples to illustrate concepts on the meta-level, assuming
an intuitive understanding of the associated operations and terms.

13



New types can be defined using the outer syntax construct

typedecl name

which introduces the name for a new type for which the values are different
from the values of all existing types and the set of values is not empty. No
other information about the values is given, that must be done separately.
See Chapter 4 for ways of defining types with specifying more information
about their values.
Types can be parameterized, then the type arguments are denoted before
the type name, such as in nat set which is the HOL type of sets of natural
numbers. A type name with n parameters is declared in the form

typedecl (’name1,. . .,’namen) name

where the parentheses may be omitted if n = 1, such as in typedecl ’a set.
The type parameters are denoted by “type variables” which always have the
form ’name with a leading single quote character.
A type name with parameters is called a “type constructor” because it is not
a type on its own. Every use where the parameters are replaced by actual
types, such as in nat set, is called an “instance” of the parameterized type.
If (some of) the parameters are replaced by type variables, such as in ’a set
or (’a set) set or if a type is specified by a single type variable such as ’a
the type is called “polymorphic”. A polymorphic type can be used as a type
specification, its meaning is that an arbitrary instance can be used where
the type variables are replaced by actual types.
Alternatively a type name can be introduced as a synonym for an existing
type in the form

type_synonym name = type

such as in type_synonym natset = "nat set". Type synonyms can also be
parameterized as in

type_synonym (’name1,. . .,’namen) name = type

where type may be a polymorphic type which contains atmost the type
variables ’name1,. . .,’namen.

Constants and Variables

Terms are mainly built as syntactical structures based on constants and vari-
ables. Constants are usually denoted by names, using the same namespace
as type names. Whether a name denotes a constant or a type depends on
its position in a term. In HOL predefined constant names of type bool are
True and False.

14



Constants of number types, such as nat, may be denoted by number literals,
such as 6 or 42.
A constant can be defined by specifying its type. The outer syntax construct

consts name1 :: type1 . . . namen :: typen

introduces n constants with their names and types. No information is spec-
ified about the constant’s values, in this respect the constants are “under-
specified”. The information about the values must be specified separately.
If the constant’s type is polymorphic (see the previous subsection) the con-
stant is also called polymorphic. Thus the declaration

consts myset :: "’a set"

declares the polymorphic constant myset which may be a set of elements of
arbitrary type. Note the use of quotes because the type is specified in inner
syntax and is not a single type name.
A (term) variable has the same form as a constant name, but it has not been
introduced as a constant. Whenever a variable is used in a term it has a
specific type which is either derived from its context or is explicitly specified
in inner syntax in the form varname :: type.
Nested terms are generally written by using parentheses (. . .). There are
many priority rules how to nest terms automatically, but if in doubt, it is
always safe to use parentheses.

Functions

A constant name denotes an object, which, according to its type, may also
be a function of arbitrary order. Functions basically have a single argument.
The type of a function is written in inner syntax as argtype ⇒ restype.
This way of denoting function types belongs to the meta-level of the inner
syntax and is thus available in all object logics.
Functions in Isabelle are always total, i.e., they map every value of type
argtype to some value of type restype. However, a function may be “under-
specified” so that no information is (yet) available about the result value for
some or all argument values. A function defined by

consts mystery :: "nat ⇒ nat"

is completely underspecified: although it maps every natural number to a
unique other natural number no information about these numbers is avail-
able. Functions may also be partially specified by describing the result value
only for some argument values. This does not mean that the function is
“partial” and has no value for the remaining arguments. The information
about these values may always be provided later, this does not “modify” the
function, it only adds information about it.

15



Functions with Multiple Arguments

The result type of a function may again be a function type, then it may
be applied to another argument. This is used to represent functions with
more than one argument. Function types are right associative, thus a type
argtype1 ⇒ argtype2 ⇒ · · · ⇒ argtypen ⇒ restype describes functions which
can be applied to n arguments.
Function application terms for a function f and an argument a are denoted
in inner syntax by f a, no parentheses are required around the argument.
Function application terms are left associative, thus a function application
to n arguments is written f a1 . . . an. Note that an application f a1 . . .

am where m < n (a “partial application”) is a correct term and denotes a
function taking the remaining n-m arguments.
For every constant alternative syntax forms may be defined for application
terms. This is often used for binary functions to represent application terms
in infix notation with an operator symbol. As an example, the name for
the addition function in HOL is plus, so an application term is denoted
in the form plus 3 5. For plus the alternative name (+) is defined (the
parentheses are part of the name). For functions with such “operator names”
an application term (+) 3 5 can also be denoted in infix form 3 + 5. Infix
notation is supported for many basic functions and predicates in HOL ,
having operator names such as (-), (**), (=), (6=), (≤), or (∈).

Lambda-Terms

Functions can be denoted in inner syntax by lambda terms of the form λx.
term where x is a variable which may occur in the term. The space between
the dot and the term is often required to separate both. A function to be
applied to n arguments can be denoted by the lambda term λx1 . . . xn. term
where x1, . . ., xn are distinct variables. As usual, types may be specified
for (some of) the variables in the form λ(x1::t1) . . . (xn::tn). term. The
parentheses may be omitted if there is only one argument variable.
If a variable from the x1, . . ., xn occurs in the term of λx1 . . . xn. term
it is called a “bound” occurrence and denotes the corresponding function
argument. If an occurrence of a variable x is not a part of a lambda term
λ. . . x . . . . term the occurrence is called “free”.
A constant function has a value which does not depend on the argument,
thus the variable x does not occur in the term. Then its name is irrelevant
and it may be replaced by the “wildcard” _ (an underscore) as in λ_. term.
A lambda term is a case of “binder syntax”. It consists of a “binder” (here λ)
followed by one or more variables with optional type specifications, followed
by a dot and a term. Terms of the inner syntax nearly always have either
the form of a function application, possibly in infix notation, or the form of

16



a binder syntax.

Searching Constants

Constants may be searched using the command

find_consts criterion1 . . . criterionn

or using the Query panel (see Section 1.2.7) in the “Find Constants” tab
using the sequence criterion1 . . . criterionn as search specification in the
“Find:” input field. The criterion i are combined by conjunction.
The command find_consts may be entered in the text area between other
theory content such as type or constant declarations. It finds all named con-
stants which have been introduced before the command position. Searches
using the Query panel find all named constants which have been introduced
before the cursor position in the text area.
A criterion i may be a type, specified in inner syntax and quoted if not a
single type name. Then the search finds all constants where the type occurs
as a part of the constant’s type. For example, it finds all functions which
have the specified type as argument or result type.
A criterion i may also have the form strict: "type", then the search only
finds constants which have that type. In both cases the specified type may
be a function type, then the search finds corresponding named functions.
If the specified type is polymorphic the search will also find constants which
have an instance of it as their type or as a part of the type, respectively.
A criterion i may also have the form name: strpat where strpat is a string
pattern which may use “*” as wildcard (then the pattern must be enclosed
in double quotes). Then all constants are found where the strpat matches
a substring of their name.

2.1.3 Definitions and Abbreviations

A constant name may be introduced together with information about its
associated value by specifying a term for the value. There are two forms for
introducing constant names in this way, definitions and abbreviations. Both
are constructs of the outer syntax.

Definitions

A definition defines a new constant together with its type and value. It is
denoted in the form

definition name where "name ≡ term"

17



Note that the “defining equation” name ≡ term is specified in inner syntax
and must be delimited by quotes. The operator ≡ is the equality operator of
the meta-logic (see Section 2.1.1). The name may not occur in the term, i.e.,
this form of definition does not support recursion. Also, no free variables
may occur in the term. In the object logic HOL (see Chapter 3) also the
normal equality operator = may be used instead of ≡.
The type of the defined constant is the same as that of the term. If that
type is polymorphic (see Section 2.1.2) a more specific type may be specified
explicitly in the form

definition name :: type where "name ≡ term"

As usual the type is specified in inner syntax and must be quoted if it is not
a single type name.
If the type of the defined constant is a function type, the term may be a
lambda term. Alternatively, the definition for a function applicable to n
arguments can be written in the form

definition name where "name x1 . . . xn ≡ term"

with variable names x1 . . . xn which may occur in the term. This form is
mainly equivalent to

definition name where "name ≡ λx1 . . . xn. term"

A short form of a definition is

definition "name ≡ term"

Usually, a constant defined in this way is fully specified, i.e., all information
about its value is available. However, if the term does not provide this
information, the constant is still underspecified. Consider the definition

definition mystery2 where "mystery2 ≡ mystery"

where mystery is defined as above. Then it is only known that mystery2 has
type nat ⇒ nat and is the same total function as mystery, but nothing is
known about its values.

Abbreviations

An abbreviation definition does not define a constant, it only introduces the
name as a synonym for a term. Upon input the name is automatically ex-
panded, and upon output it is used whenever a term matches its specification
and the term is not too complex. An abbreviation definition is denoted in a
similar form as a definition:

18



abbreviation name where "name ≡ term"

As for definitions, recursion is not supported, the name may not occur in the
term and also no free variables. An explicit type may be specified for name
and the short form is also available as for definitions.
The alternative form for functions is also available. The abbreviation defini-
tion

abbreviation name where "name x1 . . . xn ≡ term"

introduces a “parameterized” abbreviation. An application term name term1

. . . termn is replaced upon input by term where all occurrences of x i have
been substituted by term i. Upon output terms are matched with the struc-
ture of term and if successful a corresponding application term is constructed
and displayed.

2.1.4 Overloading

True Overloading

One way of providing information about the value of an underspecified con-
stant is overloading. It provides the information with the help of another
constant together with a definition for it.
Overloading depends on the type. Therefore, if a constant is polymorphic,
different definitions can be associated for different type instances.
Overloading is only possible for constants which do not yet have a definition,
i.e., they must have been defined by consts (see Section 2.1.2). Such a
constant name is associated with n definitions by the following overloading
specification:

overloading
name1 ≡ name
. . .

namen ≡ name
begin
definition name1 :: type1 where . . .
. . .

definition namen :: typen where . . .
end

where all type i must be instances of the type declared for name.
The auxiliary constants name1 . . . namen are only introduced locally and can-
not be used outside of the overloading specification.

19



Adhoc Overloading

There is also a form of overloading which achieves similar effects although
it is implemented completely differently. It is only performed on the syntactic
level, like abbreviations. To use it, the theory HOL-Library.Adhoc_Overloading
must be imported by the surrounding theory:

imports "HOL-Library.Adhoc_Overloading"

(Here the theory name must be quoted because it contains a minus sign.)
Then a constant name name can be defined to be a “type dependent abbre-
viation” for n terms of different type instances by

adhoc_overloading name term1 . . . termn

Upon input the type of name is determined from the context, then it is
replaced by the corresponding term i. Upon output terms are matched with
the corresponding term i and if successful name is displayed instead.
Although name must be the name of an existing constant, only its type is
used. The constant is not affected by the adhoc overloading, however, it
becomes inaccessible because its name is now used as term abbreviation.
Several constant names can be overloaded in a common specification:

adhoc_overloading name1 term11 . . . term1n and . . . and namek . . .

2.1.5 Propositions

A proposition denotes an assertion, which can be valid or not. Valid propo-
sition are called “facts”, they are the main content of a theory. Propositions
are specific terms and are hence written in inner syntax and must be enclosed
in quotes.

Formulas

A simple form of a proposition is a single term of type bool, such as

6 * 7 = 42

The * is the infix operator for multiplication, it may not be omitted in
arithmetic terms.
Terms of type bool are also called “formulas”. Since bool belongs to the
object logic HOL, formulas are also specific for HOL or another object logic,
there are no formulas in the meta-logic. The simplest form of a proposition
on meta-level is a single variable.
A proposition may contain free variables as in

20



2 * x = x + x

A formula as proposition is valid if it evaluates to True for all possible values
substituted for the free variables.

Derivation Rules

More complex propositions on the meta-level can express “derivation rules”
used to derive propositions from other propositions. Derivation rules are
denoted using the meta-logic operator =⇒ and can thus be expressed inde-
pendent of an object logic.
Derivation rules consist of assumptions and a conclusion. They are written
in the form

A1 =⇒ · · · =⇒ An =⇒ C

where the A1 . . . An are the assumptions and C is the conclusion. Since =⇒
is right-associative the conclusion can be assumed to be a single variable or a
formula. The assumptions may be arbitrary propositions. If an assumption
contains meta-logic operators parentheses can be used to delimit them from
the rest of the derivation rule.
A derivation rule states that if the assumptions are valid, the conclusion can
be derived as also being valid. So =⇒ can be viewed as a “meta implication”
with a similar meaning as a boolean implication, but with a different use.
An example for a rule with a single assumption is

(x::nat) < c =⇒ n*x ≤ n*c

Note that type nat is explicitly specified for variable x. This is necessary,
because the constants <, *, and ≤ are overloaded and can be applied to other
types than only natural numbers. Therefore the type of x cannot be derived
automatically. However, when the type of x is known, the types of c and n
can be derived to also be nat.
An example for a rule with two assumptions is

(x::nat) < c =⇒ n > 0 =⇒ n*x < n*c

In most cases the assumptions are also formulas, as in the example. However,
they may also be again derivation rules. Then the rule is a “meta rule” which
derives a proposition from other rules.

Binding Free Variables

A proposition may contain universally bound variables, using the meta-logic
quantifier

∧
in the form

21



∧
x1 . . . xn. P

where the x1 . . . xn may occur free in the proposition P. This is another
case of binder syntax (see Section 2.1.2). As usual, types may be specified
for (some of) the variables in the form

∧
(x1::t1) . . . (xn::tn). P. An

example for a valid derivation rule with bound variables is∧
(x::nat) c n . x < c =⇒ n*x ≤ n*c

Rules with Multiple Conclusions

A derivation rule may specify several propositions to be derivable from the
same assumptions using the meta-logic operator &&& in the form

A1 =⇒ · · · =⇒ An =⇒ C1 &&& . . . &&& Ch

Here the C i may be arbitrary propositions, like the assumptions. If they
contain meta-logic operators they must be enclosed in parentheses because
&&& binds stronger than the other meta-logic operators.
The rule is equivalent to the set of rules deriving each C i separately:

A1 =⇒ · · · =⇒ An =⇒ C1

. . .
A1 =⇒ · · · =⇒ An =⇒ Ch

The rule states that if the assumptions are valid then all conclusions are
valid. So &&& can be viewed as a “meta conjunction” with a similar meaning
as a boolean conjunction, but with a different use.
An example for a rule with two conclusions is

(x::nat) < c =⇒ n*x ≤ n*c &&& n+x < n+c

Alternative Rule Syntax

An alternative, Isabelle specific syntax for derivation rules with possibly
multiple conclusions is∧

x1 . . . xm. [[A1; . . .; An]] =⇒ C1 &&& . . . &&& Ch

which is often considered as more readable, because it better separates the
assumptions from the conclusions. In the interactive editor to switch to this
form it may be necessary to set Print Mode to brackets in Plugin Options
for Isabelle General. The fat brackets are available for input in the editor’s
Symbols panel in tab “Punctuation”.
Using this syntax the two-assumption example rule from the previous section
is denoted by

22



∧
(x::nat) c n. [[x < c; n > 0 ]] =⇒ n*x < n*c

or equivalently without quantifier by

[[(x::nat) < c; n > 0 ]] =⇒ n*x < n*c

Note that in the literature a derivation rule [[P; Q ]] =⇒ P ∧ Q is often de-
noted in the form

P Q
P ∧ Q

Structured Rule Syntax

Isabelle supports another alternative syntax for derivation rules with possibly
multiple conclusions. It is called “structured” form, since the rule is not
specified by a single proposition but by several separate propositions for the
parts of the rule:

"C1" . . . "Ch" if "A1" . . . "An" for x1 . . . xm

Here the conclusions, assumptions and the variables may be grouped or sepa-
rated for better readability by the keyword and. For every group of variables
(but not for single variables in a group) a type may be specified in the form
x1 . . . xm :: "type", it applies to all variables in the group.
The keywords if, and, for belong to the outer syntax. Thus, a rule in struc-
tured form cannot occur nested in another proposition, such as an assump-
tion in another rule. Moreover, the original rule must be quoted as a whole,
whereas in the structured form only the sub-propositions C1 . . . Ch, A1, . . .,
An must be individually quoted. The x1, . . ., xm need not be quoted, but
if a type is specified for a variable group the type must be quoted, if it is not
a single type name.
If written in this form, the two-assumption example rule from the previous
section may become

"n*x < n*c" if "x < c" and "n > 0" for x::nat and n c

and the rule with two conclusions depicted earlier may become

"n*x ≤ n*c" and "n+x < n+c" if "x < c" for x::nat and n c

The assumptions and the conclusion in a rule in structured form may be
arbitrary propositions, in particular, they may be derivation rules (in un-
structured form). If a conclusion is a derivation rule the assumptions A1,
. . ., An are added to the assumptions present in the conclusion.

23



Conditional Definitions

A definition, as described in Section 2.1.3 may be conditional, then its defin-
ing equation has the form of a derivation rule

definition name where " [[A1; . . .; An]] =⇒ name ≡ term"

or in structured form:

definition name where "name ≡ term" if "A1" . . . "An"

Since no free variables are allowed in term it is not possible to bind variables
using

∧
. The meaning of a conditional definition is that the value of name

is only defined by the term if all assumptions are valid. Otherwise it is
underspecified.
For the rule conclusion also the form name x1 . . . xn ≡ term can be used
if name has a function type. Then the x1 . . . xn may occur in the A1, . . .,
An and restrict the specification of function values to specific function argu-
ments.
As for normal definitions a type may be specified for name and the short form
may be used where only the defining rule is given. For the abbreviations
described in Section 2.1.3 a conditional form is not available.

2.1.6 Theorems

A theorem specifies a proposition together with a proof, that the proposition
is valid. Thus it adds a fact to the enclosing theory.

Specifying Theorems

A simple form of a theorem is

theorem "prop" 〈proof 〉

where prop is a proposition in inner syntax and 〈proof 〉 is a proof as described
in Section 2.2. The keyword theorem can be replaced by one of the keywords
lemma, corollary, proposition to give a hint about the use of the theorem
to the reader.
The example rule from the previous sections can be stated as a fact by the
theorem

theorem "
∧

(x::nat) c n . x < c =⇒ n*x ≤ n*c" 〈proof 〉

If the proposition in a theorem contains free variables they are implicitly
universally bound. Thus the previous example theorem is equivalent to the
theorem

24



theorem "(x::nat) < c =⇒ n*x ≤ n*c" 〈proof 〉

Explicit binding of variables is only required to avoid name clashes with
constants of the same name. In the theorem

theorem "
∧

(True::nat). True < c =⇒ n*True ≤ n*c" 〈proof 〉

the name True is used locally as a variable of type nat instead of the prede-
fined constant of type bool. Of course, using well known constant names as
variables is confusing and should be avoided.
If the proposition in a theorem is a derivation rule with possibly multiple
conclusions it may also be specified in structured form (see Section 2.1.5):

theorem "C1" . . . "Ch" if "A1" . . . "An" for x1 . . . xm 〈proof 〉

with optional grouping of all components by and. Remember that the C i

may be arbitrary propositions, therefore a theorem in this form may specify
several derivation rules with additional common assumptions and common
bound variables.
A theorem with multiple conclusions adds a separate fact for every conclusion
to the enclosing theory (copying all assumptions to every such fact), as if
there had been a separate theorem for every conclusion.
In particular, if no variables are explicitly bound and no common assump-
tions are present this form allows to specify several propositions in a common
theorem of the form

theorem "C1" . . . "Ch" 〈proof 〉

where all propositions can be proved together in a single proof.
The example rules from the previous sections can be stated as facts by a
common theorem in the form

theorem "(x::nat) < c =⇒ n*x ≤ n*c"
and "(x::nat) ≤ c =⇒ x + m ≤ c + m"

〈proof 〉

Although the resulting facts are completely independent of each other, the
variables are common to both propositions. This means that it suffices to
specify the type nat for x in one of them. If different types are specified for
x in the two propositions an error is signaled.

Unknowns

Whenever a theorem turns a proposition to a fact, the free (or universally
bound) variables are replaced by “unknowns”. For a variable name the cor-
responding unknown is ?name. This is only a technical difference, it signals

25



to Isabelle that the unknowns can be consistently substituted by arbitrary
terms, as long as the types are preserved.
The result of such a substitution is always a special case of the fact and
therefore also a fact. In this way a fact with unknowns gives rise to a (usually
infinite) number of facts which are constructed by substituting unknowns by
terms.
When turned to a fact, the rule used in the example theorems becomes

?x < ?c =⇒ ?n*?x ≤ ?n*?c

with type nat associated to all unknowns.
Propositions specified in a theorem may not contain unknowns, they are only
introduced by Isabelle after proving the proposition.
Isabelle can be configured to suppress the question mark when displaying
unknowns, then this technical difference becomes invisible.

Named Facts

Facts are often used in proofs of other facts. For this purpose they can be
named so that they can be referenced by name. A named fact is specified
by a theorem of the form

theorem name: "prop" 〈proof 〉

The names used for facts have the same form as names for constants and
variables (see Section 2.1.2). The same name can be used for a variable and
a fact, they can always be distinguished by the usage context.
The example rule from the previous sections can be turned into a fact named
example1 by

theorem example1: "(x::nat) < c =⇒ n*x ≤ n*c" 〈proof 〉

It is also possible to introduce named collections of facts. A simple way to
introduce such a named collection is

lemmas name = name1 . . . namen

where name1 . . . namen are names of existing facts or fact collections.
If there is a second rule stated as a named fact by

theorem example2: "(x::nat) ≤ c =⇒ x + m ≤ c + m" 〈proof 〉

a named collection can be introduced by

lemmas examples = example1 example2

26



If a theorem with multiple conclusions is named in the form

theorem name: "C1" . . . "Ch" if "A1" . . . "An" for x1 . . . xm 〈proof 〉

it introduces the name for the collection of all resulting facts. Moreover, if
the conclusions are grouped by and, (some of) the groups may be named
separately in the form

theorem name1: "C11" . . . "C1g1" and . . . and nameh: "Ch1" . . . "Chgh"
if "A1" . . . "An" for x1 . . . xm 〈proof 〉

which introduces the names for the corresponding collections of facts accord-
ing to the groups.
In this way the two example facts may be specified and named by the com-
mon theorem

theorem example1: "(x::nat) < c =⇒ n*x ≤ n*c"
and example2: "(x::nat) ≤ c =⇒ x + m ≤ c + m"

〈proof 〉

As an alternative to introducing fact names in theorems a “dynamic fact set”
can be declared by

named_theorems name

It can be used as a “bucket” where facts can be added afterwards by specifying
the bucket name in the theorem:

theorem [name]: "prop" 〈proof 〉

or together with specifying a fixed fact name namef by

theorem namef[name]: "prop" 〈proof 〉

There are also some predefined “internal fact sets”. For them the name can
only be used to add facts as described above, the set cannot be used or
displayed by referring it by name. Examples are the internal fact sets intro
(see Section 2.3.3) and simp (see Section 2.3.6).

Alternative Theorem Syntax

If the proposition of a theorem is a derivation rule with possibly multiple
conclusions Isabelle supports an alternative structured form for it:

theorem
fixes x1 . . . xm

assumes "A1" . . . "An"
shows "C1" . . . "Ch"
〈proof 〉

27



Like for the general structured form (see Section 2.1.5) the variables, as-
sumptions, and conclusions may be grouped by and, a type may be specified
for each variable group, the keywords belong to the outer syntax and the
C i and A i must be individually quoted. Note that this structured form may
only be used if a derivation rule is specified in a theorem.
Using this syntax the two-assumption example rule from Section 2.1.5 can
be written as

theorem
fixes x::nat and c n
assumes "x < c" and "n > 0"
shows "n*x < n*c"
〈proof 〉

Like for the general structured form of a theorem (some of) the conclusion
groups may be named individually which introduces the names for the cor-
responding fact collections. A possibly additional name specified after the
theorem keyword names the collection of the resulting facts from all groups
together:

theorem name:
fixes x1 . . . xm

assumes "A1" . . . "An"
shows name1: "C11" . . . "C1g1" and . . . and nameh: "Ch1" . . . "Chgh"
〈proof 〉

Definitions as Facts

The definitions described in Section 2.1.3 also introduce facts in the enclosing
theory. Every definition introduces a new constant and specifies a defining
equation of the form name ≡ term for it. This equation is a proposition.
It is the initial information given for the new constant, thus it is valid “by
definition” and is a fact in the theory.
These facts are automatically named. If name is the name of the defined
constant, the defining equation is named name_def. Alternatively an explicit
name can be specified in the form

definition name :: type
where fact_name: "name ≡ term"

Although the auxiliary constants used in an overloading specification (see
Section 2.1.4) are not accessible outside the specification, their definitions
are. So they can be referred by their names and used as information about
the overloaded constant.

28



Displaying and Searching Named Facts

A named fact or fact set (but not a dynamic fact set) can be displayed in its
standard form as proposition using the command

thm name

and it can be displayed in its structured form with fixes, assumes, and shows
using the command

print_statement name

Named facts may be searched using the command

find_theorems criterion1 . . . criterionn

or using the Query panel (see Section 1.2.7) in the “Find Theorems” tab
using the sequence criterion1 . . . criterionn as search specification in the
“Find:” input field. The criterion i are combined by conjunction.
A criterion i may be a term containing unknowns as subterms (called a
“term pattern”). Then all facts are found which contain a matching subterm
in their proposition. A term pattern matches a subterm if the unknowns
in the pattern can be consistently replaced by terms so that the result is
syntactically equal to the subterm. The term pattern is specified in inner
syntax and must be quoted. Only named facts can be found in this way.
The example theorems example1 and example2 can be found using the term
pattern "?t1 ≤ ?t2", whereas the pattern "?t1 + ?c ≤ ?t2 + ?c" will only
find example2.
A criterion i may also have the form name: strpat where strpat is a string
pattern which may use “*” as wildcard (then the pattern must be enclosed
in double quotes). Then all facts are found where the strpat matches a
substring of the fact name. After naming the example theorems as above
the criterion name: example will display the theorems example1 and example2
with their names and propositions.
The commands for display and search may be entered in the text area outside
of theorems and at most positions in a proof. The found facts are displayed
with their names in the Output panel (see Section 1.2.3).

2.2 Isabelle Proofs

Every proposition stated as a fact in an Isabelle theory must be proved im-
mediately by specifying a proof for it. A proof may have a complex structure
of several steps and nested subproofs, its structure is part of the outer syntax.

29



2.2.1 Maintaining Proof State

Usually it is necessary during a proof to collect information for later use in
the proof. For every proof such state is maintained in two structures: the
“proof context” and the “goal state”. At the end of a proof all proof state is
disposed, only the proved fact remains in the enclosing environment.

Proof Context

The proof context is similar to a temporary theory which collects facts and
other proof elements. It may contain

• Facts: as usual, facts are valid propositions. However, they need not
be globally valid, they can be assumed to be only valid locally during
the proof. Like in a theory facts and fact sets may be named in a proof
context.

• Fixed variables: fixed variables are used to denote the “arbitrary but
fixed” objects often used in a proof. They can be used in all facts in the
same proof context. They can be roughly compared to the constants
in a theory.

• Term abbreviations: these are names introduced locally for terms. They
can be roughly compared to abbreviations defined in a theory. Using
such names for terms occurring in propositions it is often possible to
denote propositions in a more concise form.

Like in a theory the names for facts and fixed variables have the same form,
they can always be distinguished by their usage context. The names for term
abbreviations have the form of unknowns (see Section 2.1.6) and are thus
always different from variable names.
Since the proof context is usually populated by explicitly specifying its el-
ements it is visible in the proof text and also in the session document. In
the interactive editor a list of all elements of the proof context at the cursor
position can be obtained in the Query panel (see Section 1.2.7) in tab “Print
Context” by checking “terms” (for term abbreviations) and/or “theorems”
(for facts).

Goal State

The goal state is used to collect propositions which have not yet been proved.
It is used in the form of a “to-do list”. It is the duty of a proof to prove all
goals in its goal state. During the proof goals may be removed from the goal
state or may be added. A proof may be terminated when its goal state is
empty.

30



The content of the goal state is not maintained by explicit specifications of
the proof writer, it is updated implicitly by the Isabelle proof mechanism.
As a consequence it is usually not visible in the session document. In the
interactive editor it is displayed in the State panel (see Section 1.2.4) or in
the Output panel (see Section 1.2.3).
If a subproof is nested in another proof the goal state of the inner proof hides
the goal state of the outer proof until the inner proof is complete.

Initial Proof State

The initial proof state in a theorem of the form

theorem "
∧

x1 . . . xm. [[A1; . . .; An]] =⇒ C1 &&& . . . &&& Ch" 〈proof 〉

has the proposition
∧

x1 . . . xm. [[A1; . . .; An]] =⇒ C1 &&& . . . &&& Ch as
the only goal in the goal state and an empty proof context.
If the proposition of a theorem is specified in structured form

theorem "C" if "A1" . . . "An" for x1 . . . xm 〈proof 〉

or

theorem
fixes x1 . . . xm assumes "A1" . . . "An" shows "C" 〈proof 〉

the initial goal state only contains the conclusion C, whereas the initial proof
context contains the assumptions A1, . . ., An as (assumed) facts and the
variables x1 . . . xm as fixed variables.
If the theorem has multiple conclusions such as

theorem "C1" . . . "Ch" if "A1" . . . "An" for x1 . . . xm 〈proof 〉

the initial goal state contains the single conclusion C1 &&& . . . &&& Ch, i.e.,
the “meta conjunction” of the separate conclusions. This will be split into
separate goals for the individual conclusions upon the first application of a
proof method (see Section 2.3).
Both structured forms support naming the assumptions in the proof context.
Every assumption group separated by and may be given a name, i.e., the
assumptions may be specified in the form

if name1: "A11" . . . "A1m1" and . . . and namen: "An1" . . . "Anmn"

or

assumes name1: "A11" . . . "A1m1" and . . . and namen: "An1" . . . "Anmn"

31



respectively, in the same way as the conclusion groups may be named. How-
ever, the assumption names are only valid in the proof context, whereas the
conclusion names are only valid outside of the proof context after the proof
is complete.
Additionally, Isabelle always automatically names the assumptions in all
groups together. For the structured form beginning with if it uses the name
that, for the structured form beginning with assumes it uses the name assms.
Since the assumption names are only defined in the proof context they can
only be used locally in the proof of the theorem. Therefore, if the general
structured form of a proposition beginning with if is used in a context where
no proof is required, such as in an assume statement (see Section 2.2.8), it
is not possible to specify names for the assumption groups.

2.2.2 Proof Procedure

Assume you want to prove a derivation rule A =⇒ C with a single assumption
A and a single conclusion C. The basic procedure to build a proof for it is
to construct a sequence of the form F1 =⇒ F2, F2 =⇒ F3, F3 =⇒ · · · =⇒
Fn−1, Fn−1 =⇒ Fn from rules RA i =⇒ RC i for i=1 . . .n-1 which are already
known to be valid (i.e., facts) where F1 matches with A and RA1, Fn matches
with C and RCn−1, and every other F i matches with RA i and RC i−1.
The sequence can be constructed from left to right (called “forward reason-
ing”) or from right to left (called “backward reasoning”) or by a combination
of both.
Consider the rule (x::nat) < 5 =⇒ 2*x+3 ≤ 2*5+3. A proof can be con-
structed from the two example rules example1 and example2 from the previ-
ous sections as the sequence (x::nat) < 5 =⇒ 2*x ≤ 2*5, 2*x ≤ 2*5 =⇒
2*x+3 ≤ 2*5+3 consisting of three facts.
Forward reasoning starts by assuming A to be the local fact F1 and incre-
mentally constructs the sequence from it. An intermediate result is a part
A, F2, . . ., F i of the sequence, here F i is the “current fact”. A forward rea-
soning step consists of stating a proposition F i+1 and proving it to be a new
local fact from the current fact F i using a valid rule RA i =⇒ RC i. The step
results in the extended sequence A, F2, . . ., F i, F i+1 with new current fact
F i+1. When a step successfully proves a current fact Fn which matches the
conclusion C the proof is complete.
Backward reasoning starts at the conclusion C and incrementally constructs
the sequence from it backwards. An intermediate result is a part F i, . . .,
Fn−1, C of the sequence, here F i is the “current goal”. A backward reason-
ing step consists of constructing a new current goal F i−1 and the extended
sequence F i−1, F i, . . ., Fn−1, C using a valid rule RA i−1 =⇒ RC i−1. When
a step produces a new current goal F1, which matches the assumption A, the
proof is complete.

32



Unification

The matching at the beginning and end of the sequence and when joining
the used rules is done by “unification”. Two propositions P and Q are unified
by substituting terms for unknowns in P and Q so that the results become
syntactically equal.
Since usually only the RA i =⇒ RC i are facts containing unknowns, only they
are modified by the unification, A and C remain unchanged.
Note that when an unknown is substituted by a term in RA i, the same un-
known must be substituted by the same term in RC i and vice versa, to pre-
serve the validness of the rule RA i =⇒ RC i. In other words, the sequence is
usually constructed from specializations of the facts RA i =⇒ RC i where every
conclusion is syntactically equal to the assumption of the next rule.
In the example the assumption ?x < ?c of rule example1 is unified with
(x::nat) < 5 by substituting the term 5 for the unknown ?c, and the vari-
able x for the unknown ?x resulting in the specialized rule (x::nat) < 5 =⇒
n*x ≤ n*5. The conclusion ?x + ?m ≤ ?c + ?m of rule example2 is unified
with 2*x+3 ≤ 2*5+3 by substituting the term 2*x for the unknown ?x, the
term 2*5 for the unknown ?c, and the term 3 for the unknown ?m resulting
in the specialized rule 2*x ≤ 2*5 =⇒ 2*x+3 ≤ 2*5+3. Now the two spe-
cialized rules can be joined by substituting the term 2 for the unknown ?n
in the first, resulting in the sequence which constitutes the proof.

Storing Facts During a Proof

In a proof for a derivation rule A =⇒ C the assumption A, the conclusion C
and the intermediate facts F1, F2, . . ., Fn constructed by the proof steps
must be stored. There are mainly two ways how this can be done in an
Isabelle proof.
The first way is to store the facts at the beginning of the sequence in the
proof context and the facts at the end of the sequence in the goal state.
Initially, A is the only fact in the proof context and C is the only goal in
the goal state. A forward reasoning step consists of adding fact F i+1 to the
proof context and proving its validness using rule RA i =⇒ RC i. The goal
state remains unchanged. A backward reasoning step consists of replacing
the current goal F i by the new current goal F i−1 in the goal state and proving
that the new goal implies the previous one using rule RA i−1 =⇒ RC i−1. The
proof context remains unchanged. The proof is complete when the current
goal matches (unifies with) a fact in the proof context.
Note that the facts in the proof context and in the goal state are treated
differently. A backward step replaces the goal since the old goal needs not
be handled again in the proof. Whenever the new goal has been proved
the old goal is known to be valid as well. Since the goal state is used to

33



determine when the proof is complete, it is crucial to remove all unnecessary
goals from it. A forward step, instead, adds a fact to the proof context.
It could remove the previous facts, since they are not needed in the special
case described here, however, there are proofs where facts are used more than
once, therefore it is usually useful to keep them in the proof context, and it
is irrelevant for detecting whether a proof is complete.
The second way is to store all facts in the goal state by using a current goal of
the form [[F1; . . .; F i]] =⇒ F i+j, i.e., a derivation rule. The proof context is
not used at all. Initially, the goal state contains the goal A =⇒ C. A forward
reasoning step consists of adding fact F i+1 as assumption to the current goal
and proving its validness as above. A backward reasoning step consists of
replacing the conclusion F i+j of the current goal by F i+j−1 and proving that
it implies F i+j as above. The proof is complete when the conclusion of the
current goal unifies with one of its assumptions.
Note that these two ways correspond to the initial proof states prepared by
the different forms of theorems. The basic form theorem "A =⇒ C" puts A
=⇒ C into the goal state and leaves the proof context empty, as required for
the second way. The structured forms, such as theorem "C" if "A" put A
into the proof context and C into the goal state, as required for the first way.

Multiple Assumptions

If the rule to be proved has more than one assumption A the sequence to
be constructed becomes a tree where the branches start at (copies of) the
assumptions A1,. . .,An and merge to finally lead to the conclusion C. Two
branches which end in facts F1n and F2m are joined by a step [[F1n;F2m]] =⇒
F1 to a common branch which continues from fact F1.
A proof which constructs this tree may again do this by forward reason-
ing (beginning at the branches), by backward reasoning (beginning at the
common conclusion) or a mixture of both. It may use the proof context to
store facts or it may use rules in the goal state, as described in the previous
sections.
A forward reasoning step at a position where several branches join uses
several current facts to prove a new current fact. Every forward reasoning
step selects a subset of the stored local facts as the current facts and uses
them to prove a new local fact from them.
A backward reasoning step may now produce several new current goals,
which belong to different branches in the tree. A step always produces the
goals for all branches which join at the current position in the tree. In this
situation a single goal in the goal state is replaced by several goals. If rules
are used as goals the assumptions from the old goal must be copied to all
new goals. Facts stored in the proof context need not be copied since they
are available for all goals. A proof is complete when it is complete for all

34



goals in the goal state.

Proving from External Facts

The branches in the fact tree need not always start at an assumption A i,
they may also start at an “external” fact which is not part of the local proof
context. In such cases the used external facts are referenced by their names.
In that way a proof can use facts from the enclosing theory and a subproof
can use facts from the enclosing proof(s) and the enclosing toplevel theory.
In particular, if the proposition of a theorem has no assumptions, i.e., the
proposition is a formula and consists only of the conclusion C, every proof
must start at one or more external facts (if C is no tautology which is valid
by itself).

2.2.3 Basic Proof Structure

A proof is written in outer syntax and mainly describes how the fact tree
is constructed which leads from the assumptions or external facts to the
conclusion.

Statements and Methods

There are two possible operations for modifying the proof state: statements
and method applications.
A statement adds one or more elements to the proof context. In particular, a
statement may “state a fact”, i.e., add a fact to the proof context, this is the
reason for its name. A statement normally does not modify the goal state,
there is one specific statement which may remove a goal from the goal state.
A method application modifies the goal state but normally leaves the proof
context unchanged. The goal state is always modified so that, if all goals
in the new state can be proved, then also all goals in the old state can be
proved. This kind of goal state modification is also called a “refinement step”.
When writing a proof the “proof mode” determines the kind of operation
which may be written next: whether a statement (mode: proof(state)) or a
method application (mode: proof(prove)) is admissible.
At the beginning of a proof the mode is always proof(prove), i.e., a method
application is expected. In the course of the proof it is possible to switch
to mode proof(state) for entering statements, but not back again. After
switching to statement mode the proof must be completed without further
modifications to the goal state other than removing goals, only at the end a
last method may be applied.
However, for every statement that states a fact a (sub-)proof must be spec-
ified, which again starts in mode proof(prove). This way it is possible to

35



freely switch between both modes in the course of a proof with nested sub-
proofs.
A backward reasoning step always modifies the goal state, therefore it must
be expressed by a method application. A forward reasoning step may be
expressed by a statement, if intermediate facts are stored in the proof context.
If intermediate facts are stored as assumptions in rules in the goal state,
forward reasoning steps must also be expressed by method applications.
This implies that a sequence of statements can only represent a proof by
forward reasoning where intermediate facts are stored in the proof context,
whereas a sequence of method applications can represent an arbitrary proof
where all facts are stored using rules in the goal state.
As described in Section 2.2.1 statements have the advantage that the facts
added to the proof context are explicitly specified by the proof writer and
are visible in the session document. That makes it easier to write and read a
proof which consists only of statements. Method applications specify an op-
eration on the goal state by name, the resulting new goal state is determined
by Isabelle. It is visible for the proof writer in the interactive editor, but it
is not visible in the session document for a reader of the proof. Therefore
proofs consisting of method applications are difficult to understand and the
proof writer must anticipate the effect of a method on the goal state when
writing a proof step.

Proof Syntax

If MA i denote method applications and ST i denote statements, the general
form of a proof is

MA1 . . . MAn

proof MAn+1

ST1 . . . STm

qed MAn+2

The last step MAn+2 may be omitted if it is not needed.
The part proof MAn+1 switches from method application mode proof(prove)
to statement mode proof(state).
The part proof . . . qed can be omitted and replaced by done, then the
proof only consists of method applications and has the form MA1 . . . MAn

done. Such proofs are called “proof scripts”.
Since a proof script does not contain statements it cannot use the proof
context to store facts. Proof scripts are intended to store facts as assumptions
in the goal state or to apply only backward reasoning, where no intermediate
facts need to be stored in addition to the goals (see Section 2.2.2).
If the method applications MA1 . . . MAn are omitted the proof only consists
of the statements part and has the form

36



proof MA1

ST1 . . . STm

qed MA2

where MA2 can also be omitted. Such proofs are called “structured proofs” and
the syntactic elements used to write them are denoted as “Isar sublanguage”
of the Isabelle outer syntax.
Since structured proofs consist nearly completely of statements, they are
intended to use forward reasoning and store all assumptions and intermediate
facts in the proof context.
A structured proof can be so simple, that it has no statements. For this case
the syntax

by MA1 MA2

abbreviates the form proof MA1 qed MA2. Again, MA2 can be omitted which
leads to the form

by MA1

In this form the proof consists of a single method application which directly
leads from the assumptions and used external facts to the conclusion C.
As described in the previous section, a structured proof is usually easier to
read and write than a proof script, since in the former case the sequence
of the facts F i is explicitly specified in the proof text, whereas in the latter
case the sequence of the facts F i is implicitly constructed and the proof text
specifies only the methods.
However, since every statement for a forward reasoning step again requires
a proof as its part (a “subproof” for the stated fact), no proof can be written
using statements alone. The main idea of writing “good” proofs is to use
nested structured proofs until every subproof is simple enough to be done
in a single method application, i.e., the applied method directly goes from
the assumptions to the conclusion of the subproof. Such a simple proof can
always be written in the form by MA.

Fake Proofs

A proof can also be specified as

sorry

This is a “fake proof” which turns the proposition to a fact without actually
proving it.
A fake proof can be specified at any point in method application mode, so
it can be used to abort a proof script in the form MA1 . . . MAn sorry.

37



A structured proof in statement mode cannot be aborted in this way, how-
ever, subproofs can be specified as fake proofs. This makes it possible to
interactively develop a structured proof in a top-down way, by first stating
all required facts for the sequence from the assumptions to the goal with fake
subproofs and then replacing the fake proofs by actual subproofs.
Fake proofs are dangerous. Isabelle blindly registers the proposition as valid,
so that it can be used for other proofs. If it is not valid, everything can be
proved from it. That sounds nicely but is not what you really want.
There is a second way to abort a proof script by specifying a proof as

oops

Other than by using sorry Isabelle will not turn the proposition to a fact,
instead, it ignores it. This can be used to document in a theory that you
have tried to prove a proposition but you did not succeed.

Nested Proof Contexts

Instead of a single proof context a proof may use a set of nested proof
contexts, starting with an outermost proof context. In a nested context
the content of the enclosing contexts is available together with the local
content. When a nested context is ended, it is removed together with all its
local content.
A nested proof context is created syntactically by enclosing statements in
braces:

ST1 . . . STm { STm+1 . . . STn } STn+1 . . .

Note that according to the description until now the nested context is useless,
because the facts introduced by its statements are removed at its end and
cannot contribute to the proof. How the content of a nested context can be
“exported” and preserved for later use will be explained further below.
For names (of fixed variables, facts and term abbreviations), nested contexts
behave like a usual block structure: A name can be redefined in a nested
context, then the named object in the outer context becomes inaccessible
(“shadowed”) in the inner context, but becomes accessible again when the
inner context ends.
When two nested contexts follow each other immediately, this has the effect
of “clearing” the content of the inner contexts: the content of the first context
is removed and the second context starts being empty. This can be denoted
by the keyword

next

38



which can be thought of being equivalent to a pair } { of adjacent braces.
Moreover the syntax proof method1 ST1 . . . STn qed method2 automatically
wraps the statements ST1 . . . STn in a nested context. Therefore it is possi-
ble to denote a structured proof which only consists of a sequence of nested
contexts without braces as

proof method1

ST11 . . . ST1m1 next ST21 . . . ST2m2 next . . . next STn1 . . . STnmn

qed methodn+2

where each occurrence of next clears the content of the inner context.
Another consequence of this wrapping is that no statement can add elements
directly to the outermost proof context. The outermost proof context can
only be filled by the initializations done by the structured theorem forms
as described in Section 2.2.1. The resulting content of the context is not
affected by clearing nested contexts and remains present until the end of the
proof.
Also the goal state of a proof is not affected by the begin or end of a nested
context. The goal state can be considered to be in the scope of the outermost
context, it may use fixed variables from it. However, it is outside of all nested
contexts and cannot contain elements from them.

Subproofs

A subproof takes a single goal and solves it as part of another proof. It has
its own goal state which hides the goal state of the enclosing proof until the
subproof is complete.
The outermost proof context used by the subproof is nested in the context
of the enclosing proof, therefore all content of the enclosing proof context is
available there and can be referenced by name, as long as the name is not
shadowed by a redefinition in the subproof.
There are mainly two kinds of subproofs: proving a goal which is already in
the goal state of the enclosing proof or specifying a new goal which becomes
a fact in the proof context after proving it.
The first kind of subproof has the form

subgoal 〈proof 〉

and may be specified in method application mode proof(prove) in place of
a single method application. Its initial goal state contains a copy of the first
goal from the goal state of the enclosing proof. If the subproof is successfully
terminated it removes that goal from the goal state of the enclosing proof.
There is also the “structured form”

subgoal premises name 〈proof 〉

39



If the goal processed by the subproof is a derivation rule [[A1; . . .; An]] =⇒
C it takes the assumptions A1, . . ., An, and adds them as assumed facts into
the outermost proof context of the subproof, like the structured forms of
theorems do for their assumptions (see Section 2.2.1). If name is specified it
is used for naming the set of assumptions, if it is omitted the default name
prems is used.
Using this form a subproof can be written as a structured proof which stores
its facts in its proof context, although the enclosing proof is a proof script
and stores its facts as rule assumptions in the goal state.
The second kind of subproof occurs as part of some statements, as described
in Section 2.2.5.

2.2.4 Method Application

A method application mainly specifies a proof method to be applied.

Proof Methods

Proof methods are basically denoted by method names, such as standard,
simp, or rule. A proof method name can also be a symbol, such as -.
A method may have arguments, then it usually must be delimited by paren-
theses such as in (rule example1) or (simp add: example2), where example1
and example2 are fact names.
Isabelle supports a large number of proof methods. A selection of proof
methods used in this manual is described in Section 2.3.

Method Application

A standalone method application step is denoted as

apply method

where method denotes the proof method to be applied, together with its
arguments.
The method applications which follow proof and qed in a structured proof
are simply denoted by the applied method. Hence the general form of a
proof is

apply method1 . . . apply methodn

proof methodn+1

ST1 . . . STm

qed methodn+2

where ST1 . . . STm are statements. The method methodn+1 is called the
“initial method” of the structured proof part.

40



2.2.5 Stating Facts

The most basic kind of statements is used to add a fact to the proof context.

Adding a Fact to the Proof Context

A fact is added to the (innermost enclosing) proof context by a statement of
the form

have "prop" 〈proof 〉

where prop is a proposition in inner syntax and 〈proof 〉 is a (sub-) proof for
it. This form is similar to the specification of a theorem in a theory and has
a similar effect in the local proof context.
As for a theorem the fact can be named:

have name: "prop" 〈proof 〉

The scope of the name is the innermost proof context enclosing the state-
ment. In their scope named facts can be displayed and searched as described
for theorems in Section 2.1.6.
As for a theorem, if the fact is a derivation rule with possibly multiple con-
clusions it may also be specified in structured form:

have "C1" . . . "Ch" if "A1" . . . "An" for x1 . . . xm 〈proof 〉

where the conclusions, assumptions and variables may be grouped by and,
conclusion and assumption groups may be named, and a type may be spec-
ified for each variable group.
Note, however, that the structured form using fixes, assumes, and shows
(see Section 2.1.6) is not available for stating facts in a proof.
The have statement is called a “goal statement”, because it states the propo-
sition prop as a (local) goal which is then proved by the subproof 〈proof 〉.
Note that the names given to facts by naming conclusion groups cannot be
used to access them in the subproof, because they are only assigned after
the proof has been finished, whereas names given to assumption groups can
only be used in the subproof because their scope is the proof context of the
subproof.

Proving a Goal

A proof using only forward reasoning ends, if the last stated fact Fn unifies
with the conclusion C. If the facts are stored in the proof context, Fn will
be added by a statement. Therefore a special form of stating a fact exists,
which, after proving the fact, tries to unify it with a goal in the goal state of

41



the enclosing proof, and, if successful, removes the goal from that goal state.
This is done by the statement

show "prop" 〈proof 〉

which is the only statement which may affect the goal state of the enclosing
proof. Its syntax is the same as for have, including naming and structured
form. Like have it is also called a “goal statement”.
As described in Section 2.2.3, statements are always wrapped by a nested
proof context. When the show statement tries to unify its fact with a goal
from the goal state it replaces all variables fixed in an enclosing nested proof
context by unknowns (which is called “exporting the fact” from the proof
context) so that they can match arbitrary subterms (of the correct type) in
the goal.
If the unification of the exported fact with some goal is not successful the
step is erroneous and the proof cannot be continued, in the interactive editor
an error message is displayed.
If a goal has the form of a derivation rule, the exported fact is only unified
with the conclusion of the goal. If also the exported fact is a derivation rule,
additionally each of its assumptions must unify with an assumption of the
goal.
This is a special case of a refinement step in the sense of Section 2.2.3. When-
ever the exported fact can be proved, also the matching goal can be proved.
Since the exported fact has just been proved by the subproof, the matching
goal has been proved as well and may be removed from the enclosing goal
state. So the condition for a successful show statement can be stated as “the
exported fact must refine a goal” (this term is used in error messages).
Note that in a proof using only forward reasoning the proposition prop in
a show statement is the same proposition which has been specified as con-
clusion C in the proposition [[A1;. . .;An]] =⇒ C which shall be proved by the
proof. To avoid repeating it, Isabelle automatically provides the term ab-
breviation ?thesis for it in the outermost proof context. So in the simplest
case the last step of a structured proof by forward reasoning can be written
as

show ?thesis 〈proof 〉

The abbreviation ?thesis is a single identifier, therefore it needs not be
quoted. If the proposition has multiple conclusions the abbreviation ?thesis
is not introduced.
If, however, the application of the initial method method in a structured
proof proof method . . . modifies the original goal, this modification is not
reflected in ?thesis. So a statement show ?thesis 〈proof 〉 will usually not
work, because ?thesis no more refines the modified goal. Instead, the proof

42



writer must know the modified goal and specify it explicitly as proposition
in the show statement. If the method splits the goal into several new goals,
several show statements may be needed to remove them.
To test whether a proposition refines a goal in the enclosing goal state, a
show statement can be specified with a fake proof:

show "prop" sorry

If that statement is accepted, the proposition refines a goal and removes it.
Do not forget to replace the fake proof by a genuine proof to make sure that
the proposition is actually valid.

2.2.6 Facts as Proof Input

If a linear fact sequence F1, . . ., Fn where every fact implies the next one
is constructed in statement mode in the form

have "F1" 〈proof 〉1
. . .
have "Fn" 〈proof 〉n

every fact F i needs to refer to the previous fact F i−1 in its proof 〈proof 〉i.
This can be done by naming all facts

have name1: "F1" 〈proof 〉1
. . .
have namen: "Fn" 〈proof 〉n

and refer to F i−1 in proof i by name i−1.
Isabelle supports an alternative way by passing facts as input to a proof.

Using Input Facts in a Proof

The input facts are passed as input to the first method applied in the proof.
In a proof script it is the method applied in the first apply step, in a struc-
tured proof proof method . . . it is the initial method method.
Every proof method accepts a set of facts as input. Whether it processes
them and how it uses them depends on the kind of method. Therefore input
facts for a proof only work in the desired way, if a corresponding method
is used at the beginning of the proof. See Section 2.3 for descriptions how
methods process input facts.

43



Inputting Facts into a Proof

In method application mode proof(prove) facts can be input to the remain-
ing proof 〈proof 〉 by

using name1 . . . namen 〈proof 〉

where the name i are names of facts or fact sets. The sequence of all referred
facts is input to the proof following the using specification. In a proof script
it is input to the next apply step. If a structured proof follows, it is input
to its initial method. Since in method application mode no local facts are
stated by previous steps, the facts can only be initial facts in the outermost
proof context (see Section 2.2.1), or they may be external facts from the
enclosing theory, or, if in a subproof, they may be facts from contexts of
enclosing proofs.
In statement mode proof(state) fact input is supported with the help of the
special fact set name this. The statement

then

inputs the facts named this to the proof of the following goal statement.
The statement then must be immediately followed by a goal statement (have
or show). This is enforced by a special third proof mode proof(chain). In
it only a goal statement is allowed, then switches to this mode, the goal
statement switches back to mode proof(state) after its proof.
Note that then is allowed in statement mode, although it does not state
a fact. There are several other such auxiliary statements allowed in mode
proof(state) in addition to the goal statements have and show.
The fact set this can be set by the statement

note name1 . . . namen

Therefore the statement sequence

note name1 . . . namen

then have "prop" 〈proof 〉

inputs the sequence of all facts referred by name1 . . . namen to the 〈proof 〉,
in the same way as using inputs them to the remaining proof following it.
The statement sequence

note name1 . . . namen then

can be abbreviated by the statement

from name1 . . . namen

Like then it switches to mode proof(chain) and it inputs the sequence of the
facts referred by name1 . . . namen to the proof of the following goal statement.

44



2.2.7 Fact Chaining

In both cases described for fact input until now, the facts still have been
referred by names. This can be avoided by automatically using a stated fact
as input to the proof of the next stated fact. That is called “fact chaining”.

Automatic Update of the Current Facts

Fact chaining is achieved, because Isabelle automatically updates the fact
set this. Whenever a new fact is added to the proof context, the set this is
redefined to contain (only) this fact. In particular, after every goal statement
this names the new proved fact. Therefore the fact set this is also called
the “current facts”.
Thus a linear sequence of facts where each fact implies the next one can be
constructed by

have "F1" 〈proof 〉1
then have "F2" 〈proof 〉2
. . .
then have "Fn" 〈proof 〉n

Now in every proof i the fact F i−1 is available as input and can be used to
prove F i.
In this way a structured proof for a rule A =⇒ C can be written which uses
a fact sequence A, F2, . . . Fn−1, C. If the theorem is specified in the struc-
tured form theorem "C" if "A" which adds the assumption to the proof
context and names it that (see Section 2.2.1) the proof consists of the state-
ment sequence

from that have "F2" 〈proof 〉1
then have "F3" 〈proof 〉2
. . .
then have "Fn−1" 〈proof 〉2
then show ?thesis 〈proof 〉n

For the structured form theorem assumes "A" shows "C" the assumption
name assms must be used instead of that.
Chaining can be combined with explicit fact referral by a statement of the
form

note this name1 . . . namen

It sets this to the sequence of this and the name1 . . . namen, i.e., it adds
the name1 . . . namen to this. In this way the current facts can be extended
with other facts and then chained to the proof of the next stated fact.
The statement sequence

45



note this name1 . . . namen then

can be abbreviated by the statement

with name1 . . . namen

Like then it switches to mode proof(chain) and it inputs the sequence of
the facts referred by name1 . . . namen together with the current facts to the
proof of the following goal statement.
If a proof consists of a fact tree with several branches, every branch can be
constructed this way. Before switching to the next branch the last fact must
be named, so that it can later be used to prove the fact where the branches
join. A corresponding proof pattern for two branches which join at fact F is

have "F11" 〈proof 〉11
then have "F12" 〈proof 〉12
. . .
then have name1: "F1m" 〈proof 〉1m
have "F21" 〈proof 〉21
then have "F22" 〈proof 〉22
. . .
then have "F2n" 〈proof 〉2n
with name1 have "F" 〈proof 〉

If the theorem has been specified in structured form theorem "C" if "A1"
. . . "An" every branch can be started in the form

from that have "F11"
. . .

which will input all assumptions to every branch. This works since unneeded
assumptions usually do not harm in a proof, but it is often clearer for the
reader to explicitly name the assumptions

theorem "C" if a1: "A1" and . . . and an: "An"

and specify only the relevant assumption by name in the proof:

from a1 have "F11"
. . .

Naming and Grouping Current Facts

Since the fact set built by a note statement is overwritten by the next stated
fact, it is possible to give it an explicit name in addition to the name this
in the form

46



note name = name1 . . . namen

The name can be used later to refer to the same fact set again, when this
has already been updated. Defining such names is only possible in the note
statement, not in the abbreviated forms from and with.
The facts specified in note, from, with, and using can be grouped by sepa-
rating them by and. Thus it is possible to write

from name1 and . . . and namen have "prop" 〈proof 〉

In the case of a note statement every group can be given an additional
explicit name as in

note name1 = name11 . . . name1m1 and . . . and namen = namen1 . . . namenmn

Accessing Input Facts in a Proof

At the beginning of a proof the set name this is undefined, the name cannot
be used to refer to the input facts (which are the current facts in the enclosing
proof). To access the input facts other than by the first proof method they
must be named before they are chained to the goal statement, then they can
be referenced in the subproof by that name. For example in

note input = this
then have "prop" 〈proof 〉

the input facts can be referenced by the name input in 〈proof 〉.

Exporting the Current Facts of a Nested Context

At the end of a nested context (see Section 2.2.3) the current facts are auto-
matically exported to the enclosing context, i.e. they become available there
as the fact set named this, replacing the current facts existing before the
nested context. This is another way how facts from a nested context can
contribute to the overall proof.
Basically, only the last fact is current at the end of a context. Arbitrary facts
can be exported from the nested context by explicitly making them current
at its end, typically using a note statement:

. . . {
have f1: "prop1" 〈proof 〉1
. . .
have fn: "propn" 〈proof 〉n
note f1 . . . fn

} . . .

47



Here all facts are named and the note statement makes them current by
referring them by their names. Note, that the names are only valid in the
nested context and cannot be used to refer to the exported facts in the outer
context.
The exported facts can be used in the outer context like all other current
facts by directly chaining them to the next stated fact:

. . . { . . . } then have "prop" 〈proof 〉 . . .

or by naming them for later use, with the help of a note statement:

. . . { . . . } note name = this . . .

2.2.8 Assuming Facts

Facts can be added to the proof context without proving them, then they
are only assumed.

Introducing Assumed Facts

A proposition is inserted as assumption in the proof context by a statement
of the form

assume "prop"

Assumed facts may be derivation rules with possibly multiple conclusions,
then they may be specified directly as proposition or in structured form

assume "C1" . . . "Ch" if "A1" . . . "An" for x1 . . . xm

The conclusions C1, . . ., Ch and the rule assumptions A1, . . ., An may be
grouped by and, however, names may only be specified for the conclusion
groups in the usual way to name the assumed facts resulting from the state-
ment. The rule assumptions cannot be named since there is no subproof
where the names could be used. Note that variables occurring in the propo-
sitions C1, . . . Ch, A1, . . ., An are only turned to unknowns if they are ex-
plicitly bound in the for part, otherwise they refer to variables bound in an
enclosing proof context or remain free in the assumed rule (which is usually
an error).
In their scope named facts introduced by an assume statement can be dis-
played and searched like other named facts (see Section 2.1.6).
Like goal statements an assume statement makes the assumed facts current,
i.e. it updates the set this to contain the specified propositions as facts, so
that they can be chained to a following goal statement:

48



assume "C"
then have "prop" 〈proof 〉
. . .

Exporting Facts with Assumptions

Assumed facts may be used to prove other local facts, so that arbitrary lo-
cal facts may depend on the validness of the assumed facts. This is taken
into account when local facts are exported from a proof context (see Sec-
tion 2.2.5). Whenever a local fact F is exported it is combined with copies
of all locally assumed facts AF1,. . .,AFn to the derivation rule [[AF1;. . .;AFn]]

=⇒ F, so that F still depends on the assumptions after leaving the context.
If the fact F is itself a derivation rule [[A1;. . .;An]] =⇒ C then the locally as-
sumed facts are prepended, resulting in the exported rule [[AF1;. . .;AFn;A1;. . .;An]]

=⇒ C.
If the fact F has been proved in a show statement it is also exported in
this way, resulting in a derivation rule with all local assumptions added.
Therefore it will only refine a goal if every local assumption unifies with an
assumption present in the goal, (see Section 2.2.5).
If in a previous part of a proof facts have been stored as rule assumptions in
the goal state (see Section 2.2.2), they can be “copied” to the proof context
with the help of assume statements and will be “matched back” by the show
statements used to remove the goals.
In particular, if a theorem specifies a rule A =⇒ C directly as proposition it
will become the initial goal, as described in Section 2.2.1. Then a structured
proof using the fact sequence A, F2, . . ., Fn−1, C can be written

assume "A"
then have "F2" 〈proof 〉
. . .
then have "Fn−1" 〈proof 〉
then show ?thesis 〈proof 〉

The show statement will export the rule A =⇒ C which matches and removes
the goal.

Presuming Facts

It is also possible to use a proposition as assumed fact which does not unify
with an assumption in a goal, but can be proved from them. In other words,
the proof is started somewhere in the middle of the fact tree, works by for-
ward reasoning, and when it reaches the conclusion the assumed fact remains
to be proved. The statement

49



presume "prop"

inserts such a presumed fact into the proof context. Like for assume the
structured form with if and for is supported.
When a fact is exported from a context with presumed facts, they do not
become a part of the exported rule. Instead, at the end of the context for
each presumed fact Fp a new goal [[A1;. . .;An]] =⇒ Fp is added to the goal
state of the enclosing proof where A1,. . .,An are the facts assumed in the
ended context. So the proof has to continue after proving all original goals
and is only finished when all such goals for presumed facts have been proved
as well.

2.2.9 Fixing Variables

Variables which have not been declared or defined as a constant in the en-
closing theory are called “free” if they occur in the proposition of a theorem.
Such variables are automatically added as fixed variables to the outermost
proof context, thus they can be used everywhere in the proof where they are
not shadowed. If, instead, they are explicitly bound in the proposition (see
Section 2.1.5), their use is restricted to the proposition itself. Thus in

theorem "
∧
x::nat. x < 3 =⇒ x < 5" 〈proof 〉

the variable x is restricted to the proposition and is not accessible in 〈proof 〉,
whereas in

theorem "(x::nat) < 3 =⇒ x < 5" 〈proof 〉

the variable x is accessible in 〈proof 〉. If the theorem is specified in structured
form, variables may be explicitly specified to be fixed in the outermost proof
context using for or fixes, respectively (see Section 2.2.1). Therefore the
forms

theorem "x < 3 =⇒ x < 5" for x::nat 〈proof 〉

and

theorem fixes x::nat shows "x < 3 =⇒ x < 5" 〈proof 〉

are completely equivalent to the previous form. Thus explicitly fixing vari-
ables is optional for theorems, however it usually improves readability and
provides a place where types can be specified for them in a systematic way.

50



Local Variables

Additional variables can be added as fixed to the innermost enclosing proof
context by the statement

fix x1 . . . xn

As usual the variables can be grouped by and and types can be specified for
(some of) the groups.
A fixed variable in a proof context denotes a specific value of its type. How-
ever, if the variable has been introduced by fix, for or fixes it is underspecified
in the same way as a constant introduced by consts in a theory (see Sec-
tion 2.1.2): no information is given about its value. In this sense it denotes
an “arbitrary but fixed value”.
If a variable name is used in a proof context without explicitly fixing it, it
either refers to a variable in an enclosing context or it is free. If it is explicitly
fixed it names a variable which is different from all variables with the same
name in enclosing contexts.
If a variable is free in the proof for a theorem its value cannot be proved to
be related in any way to values used in the theorem. Therefore it is useless
for the proof and its occurrence should be considered to be an error. In the
interactive editor Isabelle marks free variables by a light red background as
an alert for the proof writer.
A fixed local variable is common to the whole local context. If it occurs in
several local facts it always is the same variable and denotes the same value,
it is not automatically restricted to every fact, as for toplevel theorems.
Hence in

fix x::nat
assume a: "x < 3"
have "x < 5" 〈proof 〉

the 〈proof 〉 may refer to fact a because the x is the same variable in both
propositions.

Exporting Facts with Local Variables

Explicitly fixing variables in a proof context is not only important for avoid-
ing name clashes. If a fact is exported from a proof context, all fixed local
variables are replaced by unknowns, other variables remain unchanged. Since
unification only works for unknowns, it makes a difference whether a fact uses
a local variable or a variable which origins from an enclosing context or is
free.
The proposition x < 3 =⇒ x < 5 can be proved by the statements

51



fix y::nat
assume "y < 3"
then show "y < 5" 〈proof 〉

because when the fact y < 5 is exported, the assumption is added (as de-
scribed in Section 2.2.8) and then variable y is replaced by the unknown ?y
because y has been locally fixed. The result is the rule ?y<3 =⇒ ?y<5 which
unifies with the proposition.
If, instead, y is not fixed, the sequence

assume "(y::nat) < 3"
then have "y < 5" 〈proof 〉

still works and the local fact y < 5 can be proved, but it cannot be used with
the show statement to prove the proposition x < 3 =⇒ x < 5, because the
exported rule is now y<3 =⇒ y<5 which does not unify with the proposition,
it contains a different variable instead of an unknown.
If variables are explicitly bound in the proposition of a theorem they are not
accessible in the proof. Instead, corresponding new local variables (which
may have the same names) must be fixed in the proof context and used
for the proof. Upon export by a show statement these variables will be
replaced by unknowns which then are unified with the variables in the goal.
A corresponding proof for the proposition

∧
x::nat. x < 3 =⇒ x < 5 is

fix y::nat
assume "y < 3"
then show "y < 5" 〈proof 〉

2.2.10 Defining Variables

Local variables may also be introduced together with specifying a value for
them. This is done using a statement of the form

define x1 . . . xm where "x1≡term1" . . . "xm≡termm"

which specifies a defining equation for every defined variable. As usual, the
variables and equations may be grouped by and, equation groups may be
named, and types may be specified for (some of) the variable groups. In the
object logic HOL (see Chapter 3) also the normal equality operator = may
be used instead of ≡.
The variable x i may not occur free in term i, otherwise an error is signaled.
However, the other variables are allowed in term i. This may lead to cyclic
definitions which is not checked by Isabelle, but then the definition cannot
be used to determine the defined value for the corresponding variables, it is
underspecified.

52



Defining Equations as Local Facts

If there is already a previous definition for an x i in the same proof context
the former x i is shadowed and becomes inaccessible and a new local variable
x i is introduced.
Thus a defining equation can never contradict any existing fact in the proof
context and Isabelle safely adds all defining equations as facts to the proof
context enclosing the define statement. The collection of all these facts is
automatically named x1_. . ._xm_def, replacing this name if it already exists
in the local proof context. Explicit names specified for equation groups are
used to name the corresponding facts.

Exporting Facts after Defining Variables

Unlike facts assumed by an assume statement (see Section 2.2.8) the facts
created by a define statement are not added as assumptions when a fact F
is exported from the local context. Instead, if a locally defined variable x i

occurs in F it is replaced by the term i according to its defining equation.
If the definition of x i is cyclic the occurrences of x i in F are not replaced
and become an unknown during export, however, then the fact F usually is
invalid and cannot be proved.

2.2.11 Obtaining Variables

Local variables may also be introduced together with an arbitrary proposition
which allows to specify additional information about their values. This is
done using a statement of the form

obtain x1 . . . xm where "prop" 〈proof 〉

where prop is a proposition in inner syntax which contains the variables x1

. . . xm. Like for variables introduced by fix or define the variables may be
grouped by and and types may be specified for (some of) the groups.
If the proposition prop is a derivation rule with possibly multiple conclu-
sions it may be specified in structured form (see Section 2.1.5) using several
separate propositions:

obtain x1 . . . xm where "C1" . . . "Ch" if "A1" . . . "An" for y1 . . . yp 〈proof 〉

As usual, the conclusions, assumptions, and bound variables may be grouped
by and, the assumption and conclusion groups may be named and types may
be specified for (some of) the groups of bound variables.
The proposition(s) usually relate the values of the new variables to values
of existing variables (which may be local or come from enclosing contexts).

53



In the simplest case the proposition(s) directly specify terms for the new
variables, like a define statement (see Section 2.2.10) such as in

fix x::nat
obtain y z where "y = x + 3" and "z = x + 5" 〈proof 〉

But it is also possible to specify the values indirectly:

fix x::nat
obtain y z where "x = y - 3" and "y + z = 2*x +8" 〈proof 〉

Here the propositions may be considered to be additional facts which are
added to the proof context.

Proving obtain Statements

An obtain statement has a similar meaning as the statements

fix x1 . . . xm

assume "prop"

but there is one important difference: the proposition in an obtain statement
must be redundant in the local proof context.
That is the reason why an obtain statement is a goal statement and includes
a proof. The proof must prove the redundancy of the proposition, which may
be stated in the following way: if any other proposition can be derived from
it in the local proof context it must be possible to also derive it without the
proposition. This can be stated formally as

(
∧
x1 . . . xm. prop =⇒ P) =⇒ P

which is exactly the goal to be proved for the obtain statement.
Consider the statements

fix x::nat
obtain y where "x = 2*y" 〈proof 〉

This proposition is not redundant, because it implies that x must be even.
Therefore no proof exists.
Note that after a successful proof of an obtain statement the current fact is
the proposition specified in the statement, not the proved redundancy goal.
If the proposition is specified in structured form with multiple conclusions
the current facts are the collection of facts corresponding to the conclusions
and if names are specified for conclusion groups they are used to name the
resulting facts.
Input facts may be passed to obtain statements. Like for the other goal
statements, they are input to the 〈proof 〉.

54



Exporting Facts after Obtaining Variables

Unlike facts assumed by an assume statement (see Section 2.2.8) the propo-
sitions in an obtain statement are not added as assumptions when a fact
F is exported from the local context. This is correct, since they have been
proved to be redundant, therefore they can be omitted. Also, unlike vari-
ables introduced by a define statement (see Section 2.2.10) occurrences of
obtained variables in F are not replaced by defining terms, since such terms
are not available in the general case.
That implies that an exported fact F may not refer to variables introduced by
an obtain statement, because the information provided by the proposition
about them gets lost during the export. Otherwise an error is signaled.

2.2.12 Term Abbreviations

A term abbreviation is a name for a proposition or a term in it.

Defining Term Abbreviations

A term abbreviation can be defined by a statement of the form

let ?name = "term"

Afterwards the name is “bound” to the term and can be used in place of the
term in propositions and other terms, as in:

let ?lhs = "2*x+3"
let ?rhs = "2*5+3"
assume "x < 5"
have "?lhs ≤ ?rhs" 〈proof 〉

The name ?thesis (see Section 2.2.5) is a term abbreviation of this kind. It
is defined automatically for every proof in the outermost proof context.
A let statement can define several term abbreviations in the form

let ?name1 = "term1" and . . . and ?namen = "termn"

A let statement can occur everywhere in mode proof(state). However, it
does not preserve the current facts, the fact set this becomes undefined by
it.

Pattern Matching

Note that term abbreviations have the form of “unknowns” (see Section 2.1.6),
although they are defined (“bound”). The reason is that they are actually
defined by unification.
The more general form of a let statement is

55



let "pattern" = "term"

where pattern is a term which may contain unbound unknowns. As usual,
if the pattern consists of a single unknown, the quotes may be omitted. The
let statement unifies pattern and term, i.e., it determines terms to substitute
for the unknowns, so that the pattern becomes syntactically equal to term. If
that is not possible, an error is signaled, otherwise the unknowns are bound
to the substituting terms. Note that the equals sign belongs to the outer
syntax, therefore both the pattern and the term must be quoted separately.
The let statement

let "?lhs ≤ ?rhs" = "2*x+3 ≤ 2*5+3"

binds the unknowns to the same terms as the two let statements above.
Pattern matching can be used to define parameterized abbreviations. If
the pattern has the form of a function application where the unknown is
the function, it will be bound to a function which, after substituting the
arguments, will be equal to the term. So it can be applied to other arguments
to yield terms where the corresponding parts have been replaced. This kind
of pattern matching is called “higher order unification” and only succeeds if
the pattern and term are not too complex.
The let statement

let "?lhs x ≤ ?rhs 5" = "2*x+3 ≤ 2*5+3"

binds both unknowns to the lambda term λa. 2 * a + 3. Thus afterwards
the use ?lhs 7 results in the term 2 * 7 + 3.
The term may contain unknowns which are already bound. They are substi-
tuted by their bound terms before the pattern matching is performed. Thus
the term can be constructed with the help of abbreviation which have been
defined previously. A useful example is matching a pattern with ?thesis :

theorem "x < 5 =⇒ 2*x+3 ≤ 2*5+3"
proof method
let "?lhs ≤ ?rhs" = ?thesis
. . .

to reuse parts of the conclusion in the proof without specifying them explic-
itly.
Note that the unknowns are only bound at the end of the whole let statement.
In the form

let "pattern1" = "term1" and . . . and "patternn" = "termn"

the unknowns in pattern i cannot be used to build term i+1 because they are
not yet bound. In contrast, in the sequence of let statements

56



let "pattern1" = "term1"
. . .
let "patternn" = "termn"

the unknowns in pattern i can be used to build term i+1 because they are
already bound.
If a bound unknown occurs in the pattern its bound term is ignored and
the unknown is rebound according to the pattern matching. In particular,
it does not imply that the old and new bound terms must be equal, they are
completely independent.
If a part of the term is irrelevant and need not be bound the dummy unknown
“_” (underscore) can be used to match it in the pattern without binding an
unknown to it:

let "_ ≤ ?rhs" = "2*x+3 ≤ 2*5+3"

will only bind ?rhs to the term on the righthand side.
If the term internally binds variables which are used in a subterm, the sub-
term cannot be matched separately by an unknown because then the variable
bindings would be lost. Thus the statement

let "λx. ?t" = "λx. x+1"

will fail to bind ?t to x+1 whereas

let "λx. x+?t" = "λx. x+1"

will successfully bind ?t to 1 since the bound variable x does not occur in
it.

Casual Term Abbreviations

Term abbreviations may also be defined in a “casual way” by appending a
pattern to a proposition which is used for some other purpose in the form

"prop" (is "pattern")

The pattern is matched with the proposition prop and if successful the un-
knowns in the pattern are bound as term abbreviations.
This is possible for all propositions used in a theorem (see Section 2.1.6),
such as in

theorem "prop" (is ?p) 〈proof 〉
theorem fixes x::nat and c and n
assumes asm1: "x < c" (is ?a1) and "n > 0" (is ?a2)
shows "n*x < n*c" (is "?lhs < ?rhs")
〈proof 〉

57



and also in the structured form using if (see Section 2.1.5). The unknowns
will be bound as term abbreviations in the outermost proof context in the
proof of the theorem.
Note the difference between the fact name asm1 and the term abbreviation
name ?a1 in the example. The fact name refers to the proposition x < c as
a valid fact, it can only be used to work with the proposition as a logical
entity. The abbreviation name ?a1, instead, refers to the proposition as a
syntactic term of type bool, it can be used to construct larger terms such as
in ?a1 ∧ ?a2 which is equivalent to the term x < c ∧ n > 0.
Casual term abbreviations may also be defined for propositions used in goal
statements (see Sections 2.2.5 and 2.2.11) and in assume, presume, and
define statements (see Sections 2.2.8 and 2.2.10). Then the unknowns will
be bound as term abbreviations in the enclosing proof context, so that they
are available after the statement (and also in the nested subproof of the goal
statements).

2.2.13 Accumulating Facts

Instead of giving individual names to facts in the proof context, facts can be
collected in named fact sets. Isabelle supports the specific fact set named
calculation and provides statements for managing it.
The fact set calculation is intended to accumulate current facts for later
use. Therefore it is typically initialized by the statement

note calculation = this

and afterwards it is extended by several statements

note calculation = calculation this

After the last extension the facts in the set are chained to the next proof:

note calculation = calculation this then have . . .

Support for Fact Accumulation

Isabelle supports this management of calculation with two specific state-
ments. The statement

moreover

is equivalent to note calculation = this when it occurs the first time in
a context, afterwards it behaves like note calculation = calculation this
but without making calculation current, instead, it leaves the current fact(s)
unchanged. The statement

58



ultimately

is equivalent to note calculation = calculation this then, i.e., it adds
the current facts to the set, makes the set current, and chains it to the next
goal statement.
Due to the block structure of nested proof contexts, the calculation set
can be reused in nested contexts without affecting the set in the enclosing
context. The first occurrence of moreover in the nested context initializes a
fresh local calculation set. Therefore fact accumulation is always local to
the current proof context.

Accumulating Facts in a Nested Context

Fact accumulation can be used for collecting the facts in a nested context
for export (see Section 2.2.7) without using explicit names for them:

. . . {
have "prop1" 〈proof 〉1
moreover have "prop2" 〈proof 〉2
. . .
moreover have "propn" 〈proof 〉n
moreover note calculation
} . . .

Accumulating Facts for Joining Branches

Fact accumulation can also be used for collecting the facts at the end of
joined fact branches in a proof and inputting them to the joining step. A
corresponding proof pattern for two branches which join at fact F is

have "F11" 〈proof 〉11
then have "F12" 〈proof 〉12
. . .
then have "F1m" 〈proof 〉1m
moreover have "F21" 〈proof 〉21
then have "F22" 〈proof 〉22
. . .
then have "F2n" 〈proof 〉2n
ultimately have "F" 〈proof 〉

The moreover statement starts the second branch and saves the fact F1m

to calculation. The ultimately statement adds the fact F2n to calculation
and then inputs the set to the proof of F.
Note that moreover does not chain the current facts to the following goal
statement.

59



Using nested contexts sub-branches can be constructed and joined in the
same way.

2.2.14 Equational Reasoning

Often informal proofs on paper are written in the style

2*(x+3) = 2*x+6 ≤ 3*x+6 < 3*x+9 = 3*(x+3)

to derive the fact 2*(x+3) < 3*(x+3). Note that the formula shown above is
not a wellformed proposition because of several occurrences of the toplevel
relation symbols =, ≤ and <. Instead, the formula is meant as an abbreviated
notation of the fact sequence

2*(x+3) = 2*x+6, 2*x+6 ≤ 3*x+6, 3*x+6 < 3*x+9, 3*x+9 = 3*(x+3)

which sketches a proof for 2*(x+3) < 3*(x+3). This way of constructing a
proof is called “equational reasoning” which is a specific form of forward
reasoning.

Transitivity Rules

The full example proof needs additional facts which must be inserted into the
sequence. From the first two facts the fact 2*(x+3) ≤ 3*x+6 is derived, then
with the third fact the fact 2*(x+3) < 3*x+9 is derived, and finally with the
fourth fact the conclusion 2*(x+3) < 3*(x+3) is reached. The general pattern
of these additional derivations can be stated as the derivation rules [[a = b;
b ≤ c ]] =⇒ a ≤ c, [[a ≤ b; b < c ]] =⇒ a < c, and [[a < b; b = c ]] =⇒ a
< c.
Rules of this form are called “transitivity rules”. They are valid for relations
such as equality, equivalence, orderings, and combinations thereof.
This leads to the general form of a proof constructed by equational reasoning:
every forward reasoning step starts at a fact F i of the form a r b where r is
a relation symbol. It proves an intermediate fact H i of the form b r c where
r is the same or another relation symbol and uses a transitivity rule to prove
the fact F i+1 which is a r c. In this way it constructs a linear sequence of
facts which leads to the conclusion.
The intermediate facts H i are usually proved from assumptions or external
facts, or they may have a more complex proof which forms an own fact
branch which ends at H i and is joined with the main branch at F i+1 with the
help of the transitivity rule.

60



Support for Equational Reasoning

Isabelle supports equational reasoning in the following form. It provides the
statement

also

which expects that the set calculation contains the fact F i and the current
fact this is the fact H i. It automatically selects an adequate transitivity
rule, uses it to derive the fact F i+1 and replaces F i in calculation by it.
Upon its first use in a proof context also simply stores the current fact this
in calculation. The statement

finally

behaves in the same way but additionally makes the resulting fact F i+1 cur-
rent, i.e., puts it into the set this, and chains it into the next goal statement.
In other words, finally is equivalent to also from calculation.
Note that also behaves like moreover and finally behaves like ultimately,
both with additional application of the transitivity rule.
Additionally, Isabelle automatically maintains the term abbreviation . . . (which
is the three-dot-symbol available for input in the Symbols panel (see Sec-
tion 1.2.5) of the interactive editor in tab “Punctuation”) for the term on
the right hand side of the current fact. Together, the example equational
reasoning proof from above can be written

have "2*(x+3) = 2*x+6" 〈proof 〉
also have " . . . ≤ 3*x+6" 〈proof 〉
also have " . . . < 3*x+9" 〈proof 〉
also have " . . . = 3*(x+3)" 〈proof 〉
finally show ?thesis 〈proof 〉

where ?thesis abbreviates the conclusion 2*(x+3) < 3*(x+3). This form is
quite close to the informal paper style of the proof.

Determining Transitivity Rules

To automatically determine the transitivity rule used by also or finally,
Isabelle maintains the dynamic fact set (see Section 2.1.6) named trans. It
selects a rule from that set according to the relation symbols used in the
facts in calculation and this.
A transitivity rule which is not in trans can be explicitly specified by name
in the form

also (name)
finally (name)

61



2.3 Proof Methods

The basic building blocks of Isabelle proofs are the proof methods which
modify the goal state. If there are several goals in the goal state it depends
on the specific method which goals are affected by it. In most cases only the
first goal is affected.

2.3.1 The empty Method

The empty method is denoted by a single minus sign

-

If no input facts are passed to it, it does nothing, it does not alter the goal
state. An exception is a goal of the form C1 &&& . . . &&& Ch which is always
split to separate goals C i whenever a method is applied (see section 2.2.1).
The empty method is useful at the beginning of a structured proof of the
form

proof method ST1 . . . STn qed

If the statements ST1 . . . STn shall process the unmodified original goal the
empty method must be specified for method, thus the structured proof be-
comes

proof - ST1 . . . STn qed

Note that it is possible to syntactically omit the method completely, but then
it defaults to the method named standard which alters the goal state (see
Section 2.3.3).
If input facts are passed to the empty method, it affects all goals by inserting
the input facts as assumptions after the existing assumptions. If the input
facts are F1,. . .,Fm a goal of the form [[A1;. . .;An]] =⇒ C is replaced by the
goal [[A1;. . .;An;F1,. . .,Fm]] =⇒ C.
This makes it possible to transfer facts stored in the proof context to the goal
state where they are stored as rule assumptions (see Section 2.2.2). Since
this way of storing facts is not useful for structured proofs it is normally
useless to input facts into a structured proof with the empty method as
initial method.
If a goal statement instead uses a proof script as subproof the script can be
started by applying the empty method to transfer input facts into the goal
state for use by further method applications:

. . . then have "C" apply - MA1 . . . MAn done

62



If the current facts are F1,. . .,Fm before the then statement the goal state in
the subproof contains the goal [[F1,. . .,Fm]] =⇒ C before method application
MA1, so the facts are available for use in the proof script.

2.3.2 Terminating Proof Scripts

As described in Section 2.2.1 a proof is complete when its goal state is empty.
In a structured proof goals are removed from the goal state by successful
show statements. Therefore a structured proof is usually terminated by a
show statement which removes the last goal in the goal state.
Proof scripts, instead, are intended to store facts as rule assumptions in the
goal state (see Section 2.2.3). Then the proof of a goal is complete when
the conclusion of the current goal unifies with one of its assumptions (see
Section 2.2.2).

The assumption Method

Such goals are removed from the goal state by the method

assumption

The method only affects the first goal. If that goal has the form [[A1;. . .;An]]

=⇒ C and one assumption A i unifies with C the method removes the goal,
otherwise an error is signaled.
The assumption method is automatically applied by a proof part of the form

qed method

after applying the specified method. The application of the assumption method
is repeated as long as it is applicable, thus qed removes all goals from the goal
state where the conclusion matches an assumption. The same holds for the
abbreviated forms by method and by method1 method2 (see Section 2.2.3).
Therefore a proof script consisting of method applications MA1 . . . MAn can
be terminated by by - if the method applications refine all goals to the form
where the conclusion unifies with an assumption. Note that done does not
remove such goals, when it is used to terminate a proof it expects that the
goal state is already empty.

2.3.3 Basic Rule Application

As described in Section 2.2.2 the basic step in the construction of a proof
is to establish the connection between a fact F i and a fact F i+1 in the fact
sequence. Assume that there is already a valid derivation rule RA i =⇒ RC i

named r i where RA i unifies with F i and RC i unifies with F i+1. Then the
connection can be established by applying that rule.

63



The rule Method

A rule is applied by the method

rule name

where name is the name of a valid rule. The method only affects the first
goal. If that goal has the form [[A1;. . .;An]] =⇒ C and the rule referred by
name has the form [[RA1;. . .;RAm]] =⇒ RC the method first unifies RC with
the goal conclusion C. That yields the specialized rule [[RA1’;. . .;RAm’]] =⇒
RC’ where RC’ is syntactically equal to C and every RA j’ results from RA j

by substituting unknowns by the same terms as in RC’. If the goal does
not contain unknowns (which is the normal case) C is not modified by the
unification. If the unification fails the method cannot be executed on the
goal state and an error is signaled. Otherwise the method replaces the goal
by the m new goals [[A1;. . .;An]] =⇒ RA j’.
If the rule has the form RA =⇒ RC with only one assumption the method
replaces the goal by the single new goal [[A1;. . .;An]] =⇒ RA’. If the rule is a
formula RC without any assumptions the method removes the goal without
introducing a new goal.
Note that if facts are stored as rule assumptions in the goal state (see Sec-
tion 2.2.2) an application of method rule preserves these facts and copies
them to every new goal.
If an assumption RA j is again a rule (i.e., the applied rule is a meta rule)
and has the form [[B1;. . .;Bk]] =⇒ B the jth new goal becomes [[A1;. . .;An]]

=⇒ ([[B1’;. . .;Bk’]] =⇒ B’) which by definition of the [[. . .;. . . ]] syntax (see
Section 2.1.5) is equivalent to [[A1;. . .;An;B1’;. . .;Bk’]] =⇒ B’). In this way
the rule can introduce additional assumptions in the resulting goals, which
are inserted after the existing assumptions.

Using the rule Method for Backward Reasoning Steps

Assume that during a proof for A =⇒ C as described in Section 2.2.2 the
intermediate fact sequence F i+1, . . . Fn−1, C has already been constructed
by backward reasoning, i.e., the current goal is F i+1. If r i names a rule RA i

=⇒ RC i, the successful method application

apply (rule r i)

will replace the current goal by F i and thus extend the fact sequence to F i,
. . ., Fn−1, C. The fact F i is the specialized assumption RA i’ constructed by
the method from the assumption RA i of rule r i. Together, this application
of the rule method implements the backwards reasoning step from F i+1 to
F i.

64



Therefore the fact sequence F1, . . ., Fn−1, C of the complete proof can be
constructed by the proof script consisting of the backward reasoning steps

apply (rule rn−1)
. . .
apply(rule r1)
apply(assumption)
done

Note that we used the assumption method to remove the goal A =⇒ F1 by
unifying F1 with A. Alternatively we can use the form

apply (rule rn−1)
. . .
apply(rule r1)
by -

where the assumption method is applied implicitly, as described in Sec-
tion 2.3.2, or even shorter

apply (rule rn−1)
. . .
by (rule r1)

If the example from Section 2.2.2 is proved this way the theorem is written
together with its proof as

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
apply (rule example2)
by (rule example1)

Note that the assumption A of the initial goal must be reached exactly by
the sequence of rule applications. If it is replaced in the example by the
stronger assumption x < 3 the rule applications will lead to the goal x < 3
=⇒ x < 5 which is trivial for the human reader but not applicable to the
assumption method.

Automatic Rule Selection

The rule method can be specified in the form

rule

without naming the rule to be applied. Then it selects a rule automatically.
It uses the first rule from the internal fact set intro for which the conclusion
unifies with the goal conclusion. If there is no such rule in the set an error
is signaled.
If the rules example1 and example2 would be in the intro set, the example
proof could be written as

65



theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
apply rule
by rule

Introduction Rules

The set intro is intended by Isabelle for a specific kind of rules called “in-
troduction rules”. In such a rule a specific function f (perhaps written using
an operator name) occurs only in the conclusion, but not in any assumption,
hence it is “introduced” by the rule.
When an introduction rule for f is applied to a goal by the rule method, it
works “backwards” and removes f from the goal. If the set intro only con-
tains introduction rules and no rule adds a function which has been removed
by another rule in the set, an iterated application of the rule method with
automatic rule selection will “deconstruct” the goal: every step removes a
function from the goal. The iteration stops when no rule in intro is applica-
ble. In some sense the resulting goals are simpler because the set of functions
used in them has been reduced. Some proofs can be written using this tech-
nique, however, they depend on the careful selection of the introduction rule
in intro.
This proof technique can also be applied by the method

intro name1 . . . namen

where name1 . . . namen refer to valid rules. It iterates applying rules from the
given set to a goal in the goal state as long as this is possible. It is intended
to be used with introduction rules. Then it automatically deconstructs the
goals as much as possible with the given rules. Note that the method does
not use the intro set.
A rule is also called an introduction rule for a function f if f occurs in some
assumption(s) but in a different form (usually applied to other arguments).
Then an application by the rule method will replace a term containing f by
a different term containing f. The idea is to replace terms in several steps
using one or more introduction rules until finally removing f completely.
The rule example1 from Section 2.1.6 is an introduction rule for both func-
tions (≤) and (*), but it is only applicable to special uses of them and it
replaces them by the function (<) which also is only useful for some specific
proofs. In the rule example2 the function (≤) also occurs in the assumption,
however applied to other arguments, therefore it can also be considered as
an introduction rule for (≤).
Using the intro method the example proof can be written as

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
by (intro example1 example2)

66



The rules usually present in intro in Isabelle are carefully selected to be
as generally applicable and useful for a large number of proofs as possible.
Besides by the rule method the intro set is also used internally by some of
the automatic methods described in Section 2.3.7.
If the cursor in the text area is positioned in a proof, introduction rules
applicable to the first goal in the goal state of the enclosing proof can be
searched using the keyword intro as criterion for a search by find_theorems
or in the Query panel, as described in Section 2.1.6. It finds all named facts
which can be applied by the rule method to the first goal, i.e., the conclusions
can be unified.

The standard Method

The method

standard

is a method alias which can be varied for different Isabelle applications.
Usually it is mainly an alias for the rule method.
The standard method is the default, if no method is specified as the initial
step in a structured proof. Thus

proof ST1 . . . STn qed

is an abbreviation for

proof standard ST1 . . . STn qed

Note that the standard method as initial method in a structured proof will
usually affect the goal by applying a rule from the set intro to it. That may
be useful in some cases, but it has to be taken into account when writing
the statements of the proof. If the rules example1 and example2 are again
considered to be in the set intro, the example proof could be written as

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
proof
show "x < 5 =⇒ 2*x ≤ 2*5" by (rule example1)

qed

because proof (without the empty method -) already applies the rule example2
by applying the standard method. It replaces the original goal by x < 5 =⇒
2*x ≤ 2*5, so only this goal remains to be proved. However, this goal re-
placement is often not apparent to the reader of the proof. Therefore this
form of structured proof should be used with care, it is only intended for
some standard cases where the goal replacement is clearly expected by the

67



proof reader and writer. Also note that ?thesis still abbreviates the original
goal conclusion and thus cannot be used in the proof anymore.
In the abbreviated form by method of a structured proof the method cannot
be omitted, but the proof by standard can be abbreviated to

..

(two dots). It can be used as complete proof for a proposition which can be
proved by a single automatic rule application. Since in the example proof
also rule example1 could be automatically selected by the standard method,
it could be further abbreviated as

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
proof
show "x < 5 =⇒ 2*x ≤ 2*5" ..

qed

2.3.4 Rule Application in Forward Reasoning

Assume that during a proof for A =⇒ C as described in Section 2.2.2 the
intermediate fact sequence A, F2, . . ., F i has already been constructed by
forward reasoning and has been stored in the proof context. Then the next
step is to state fact F i+1 and prove it using a rule RA i =⇒ RC i named r i.

Using the rule Method for Forward Reasoning Steps

Using method rule the step can be started by the statement

have "F i+1" proof (rule r i)

The goal of this subproof is simply F i+1, so applying the rule method with
r i will result in the new goal RA i’ which unifies with F i. The subproof is
not finished, since its goal state is not empty. But the goal unifies with an
already known fact. The proof method

fact name

can be used to remove that goal. The method only affects the first goal. If
the fact referred by name unifies with it, the goal is removed, otherwise an
error is signaled.
Using this method the forward reasoning step can be completed as

have "F i+1" proof (rule r i) qed (fact f i)

if F i has been named f i. This can be abbreviated (see Section 2.2.3) to

68



have "F i+1" by (rule r i) (fact f i)

Therefore the fact sequence A, F2, . . ., Fn−1, C of the complete proof for
the goal A =⇒ C can be constructed by the structured proof of the form

proof -
assume a: "A"
have f2: "F2" by (rule r1) (fact a)
. . .
have fn−1: "Fn−1" by (rule rn−2) (fact fn−2)
show "?thesis" by (rule rn−1) (fact fn−1)
qed

where ?thesis abbreviates the conclusion C, as usual.
If the example from Section 2.2.2 is proved this way the theorem is written
together with its proof as

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
proof -
assume a: "x < 5"
have f2: "2*x ≤ 2*5" by (rule example1) (fact a)
show ?thesis by (rule example2) (fact f2)

qed

The fact method can be specified in the form

fact

without naming the fact to be used. Then it selects a fact automatically.
It uses the first fact from the proof context which unifies with the goal. If
there is no such fact in the proof context an error is signaled.
Thus the example can be written without naming the facts as

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
proof -
assume "x < 5"
have "2*x ≤ 2*5" by (rule example1) fact
show ?thesis by (rule example2) fact

qed

Input Facts for the rule Method

If input facts F1, . . ., Fn are passed to the rule method, they are used
to remove assumptions from the rule applied by the method. If the rule
has the form [[RA1;. . .;RAn+m]] =⇒ RC and every fact F i unifies with as-
sumption RA i the first n assumptions are removed and the rule becomes

69



[[RAn+1’;. . .;RAn+m’]] =⇒ RC’, specialized according to the term substitu-
tions performed by the unifications. Then it is applied to the first goal in
the usual way. If there are more input facts than assumptions or if a fact
does not unify, an error is signaled.
This behavior of the rule method can be explained as follows: as described
above, for every assumption in the applied rule the method creates a goal
which has the assumption as conclusion. As usual, the goal is considered
solved, if the conclusion unifies with a fact in the proof context. By unifying
the input facts with the rule assumptions the method determines the goals
which would immediately be solved and thus can be omitted, then it removes
the assumptions from the rule so that the corresponding goals are never
created.
This allows to establish the connection from a fact F i to F i+1 in a fact chain
by a forward reasoning step of the form

from f i have "F i+1" by (rule r i)

where f i names the fact F i. When it is input to the goal statement it is
passed to the rule method and removes the assumption from the applied
rule RA i =⇒ RC i, resulting in the assumption-less “rule” RC i. When it is
applied to the goal F i+1 it unifies and removes the goal, thus the subproof is
complete.
For the fact sequence chaining can be used to write a structured proof with-
out naming the facts:

proof -
assume "F1"
then have "F2" by (rule r1)
. . .
then have "Fn−1" by (rule rn−2)
then show "Fn" by (rule rn−1)
qed

As described in Section 2.3.3 the subproof by (rule r i) can be abbreviated
as .. if the rule r i is in the intro rule set.
If the example from Section 2.2.2 is proved this way the theorem is written
together with its proof as

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
proof -
assume "x < 5"
then have "2*x ≤ 2*5" by (rule example1)
then show ?thesis by (rule example2)

qed

70



The Method this

Rule application can also be done by the method

this

Instead of applying a named method, it applies the input fact as rule to the
first goal.
If several input facts are given, the method applies them exactly in the given
order. Therefore the fact sequence can also be constructed by a structured
proof of the form:

proof -
assume "F1"
with r1 have "F2" by this
. . .
with rn−2 have "Fn−1" by this
with rn−1 show "Fn" by this
qed

The with statement inserts the explicitly specified facts before the current
facts. Therefore every goal statement for F i gets as input the rule r i−1

followed by the chained fact F i−1. The method this first applies the rule
which replaces the goal by F i−1. Then it applies the fact F i−1 as rule to this
goal which removes it and finishes the subproof.
The proof

by this

can be abbreviated by . (a single dot).
Therefore the example from Section 2.2.2 can also be proved in the form

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
proof -
assume "x < 5"
with example1 have "2*x ≤ 2*5" .
with example2 show ?thesis .

qed

The Methods frule and drule

Instead of storing facts in the proof context and using a structured proof for
a forward reasoning proof the facts may be stored as rule assumptions in the
goal state and the forward reasoning proof may be written as a proof script
(see Section 2.2.3).
To construct a proof for the goal A =⇒ C as fact sequence A, F2 . . . Fn by
forward reasoning as described in Section 2.2.2 in this way, the intermediate

71



fact sequence A, F2, . . ., F i is stored in the extended goal [[A; F2; . . .; F i]]

=⇒ C where the last assumption is the current fact F i. Then the next forward
reasoning step consists of adding the fact F i+1 as new assumption to the goal
and prove it using a rule RA i =⇒ RC i named r i. When the fact sequence is
complete the goal is [[A; F2; . . .; Fn]] =⇒ C and Fn unifies with C, thus an
application of method assumption will remove the goal and terminate the
proof (see Section 2.3.2).
A rule is applied for forward reasoning by the method

frule name

where name is the name of a valid rule. The method only affects the first goal.
If that goal has the form [[A1;. . .;An]] =⇒ C and the rule referred by name has
the form [[RA1;. . .;RAm]] =⇒ RC the method first unifies the first assumption
RA1 in the rule with the first assumption Ak of the A1 . . . An which can
be unified with RA1. That yields the specialized rule [[RA1’;. . .;RAm’]] =⇒
RC’ where RA1’ is syntactically equal to Ak and every RA j’ with j > 1 and
RC’ results from RA j or RC, respectively, by substituting unknowns by the
same terms as in RA1’. If the goal does not contain unknowns (which is the
normal case) Ak is not modified by the unification. If no A i unifies with RA1

the method cannot be executed on the goal state and an error is signaled.
Otherwise the method replaces the goal by the m-1 new goals [[A1;. . .;An]]

=⇒ RA j’ for j > 1 and the goal [[A1;. . .;An;RC’]] =⇒ C.
If the rule has the form RA =⇒ RC with only one assumption the method
replaces the goal by the single new goal [[A1;. . .;An;RC’]] =⇒ C, i.e., it adds
the conclusion of the rule as assumption in the goal. If the rule is a formula
RC without any assumptions the method is not applicable and signals an
error.
Since the first assumption RA1 in the rule plays a special role in this context,
it is also called the “major premise” of the rule.
Together, a forward reasoning step as described above can be implemented
by the method application

apply (frule r i)

and the full proof script for a forward reasoning proof has the form

apply(frule r1)
. . .
apply (frule rn−1)
apply(assumption)
done

or shorter

apply (frule r1)

72



. . .
by (frule rn−1)

If the example from Section 2.2.2 is proved this way the theorem is written
together with its proof as

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
apply (frule example1)
by (frule example2)

However, this form of forward reasoning proof has several drawbacks. First,
as always in proof scripts, the facts F i are not specified explicitly, they are
constructed implicitly by the frule method and can only be seen by inter-
actively inspecting the goal state. Next, since the current fact is the last
assumption in the goal, it is not guaranteed that the rule r i is applied to it.
If a previous assumption also unifies with the major premise of r i the rule is
not applied in the intended way. Finally, it is not possible to generalize this
approach to proofs with several branches. The branches cannot be joined,
because frule always takes only one assumption into account.
The second drawback can be compensated for by using another method for
applying the rule. This is done by the method

drule name

where name is the name of a valid rule. The method works like frule, but
instead of adding RC’ to the assumptions it replaces Ak by it. Thus the
method replaces the goal by the m-1 new goals [[A1;. . .;Ak−1; Ak+1;. . .;An]]

=⇒ RA j’ for j > 1 and the goal [[A1;. . .;Ak−1;Ak+1;. . .;An;RC’]] =⇒ C.
When using drule for constructing a proof in the way described above, it
always replaces the current fact by the next one in the fact sequence. The
intermediate fact sequence is represented by the goal F i =⇒ C. Since the
current fact is the only assumption present in the goal, the step apply (drule
r i) is always applied to it and replaces the goal by F i+1 =⇒ C, as intended.
The methods frule and drule do not support input facts.

Destruction Rules

Not all rules can always usefully be applied by frule and drule. Since
both methods only unify their first assumption (the major premise) of the
rule with a term in the goal and then replace it by the conclusion, the first
assumption should have some effect on the conclusion. In particular, the
conclusion should not be a single unknown which does not occur in the first
assumption.
If additionally a specific function f (perhaps written using an operator name)
occurs only in the first assumption and neither in the conclusion, nor in other

73



assumptions, the rule is called a “destruction rule” for f. If it is applied in
forward direction, such as with frule and drule, f will be removed from the
goal, it will be “destructed”.
Similar to introduction rules (see Section 2.3.3) f may occur in the conclusion
if it has a different form, so that it may be removed by several steps through
intermediate forms.
Analogous to the intro set for introduction rules there is an internal fact set
dest for destruction rules. It is used by some automatic methods, however,
it is not used for automatically selecting rules for frule and drule.
If the cursor in the text area is positioned in a proof, destruction rules appli-
cable to the first goal in the goal state of the enclosing proof can be searched
using the keyword dest as criterion for a search by find_theorems or in the
Query panel, as described in Section 2.1.6. It finds all named facts which
can be applied by the frule or drule method to the first goal, i.e., the major
premise unifies with a goal assumption.
The rule example1 from Section 2.1.6 is a destruction rule for function (<),
but it is also only applicable to special uses of it and it replaces it by the
functions (≤), (*), and (+) which does not help for most proofs. In the rule
example2 the operator (≤) also occurs in the conclusion, but in different
form. Therefore it can be considered as destruction rule for (≤), although
the form in the conclusion is more complex which also does not help for most
proofs.

2.3.5 Composed Proof Methods

Proof methods can be composed from simpler methods with the help of
“method expressions”. A method expression has one of the following forms:

• m1, . . ., mn : a sequence of methods which are applied in their order,

• m1; . . .; mn : a sequence of methods where each is applied to the goals
created by the previous method,

• m1| . . .| mn : a sequence of methods where only the first applicable
method is applied,

• m[n] : the method m is applied to the first n goals,

• m? : the method m is applied if it is applicable,

• m+ : the method m is applied once and then repeated as long as it is
applicable.

Parentheses are used to structure and nest composed methods.

74



Composed methods can be used to combine method applications to a single
step. Using composed methods the example backward reasoning proof script
from Section 2.3.3 can be written as

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
apply(rule example2,rule example1,assumption)
done

In particular, it is also possible to apply an arbitrarily complex composed
method as initial method in a structured proof. Using composed methods
the first example forward reasoning proof in Section 2.3.4 can be written as

theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3"
proof -
assume a: "x < 5"
have f2: "2*x ≤ 2*5" by (rule example1,fact a)
show ?thesis by (rule example2,fact f2)

qed

2.3.6 The Simplifier

A common proof technique is “rewriting”. If it is known that a term a is
equal to a term b, some occurrences of a in a proposition can be replaced by
b without changing the validity of the proposition.
Equality of two terms a and b can be expressed by the proposition a = b.
If that proposition has been proved to be valid, i.e., is a fact, a can be
substituted by b and vice versa in goals during a proof.

The subst Method

Rewriting is performed by the method

subst name

where name references an equality fact. The method only affects the first
goal. If the referenced fact has the form a = b the method replaces the first
occurrence of a in the goal conclusion by b. The order of the terms in the
equality fact matters, the method always substitutes the term on the left by
that on the right.
If the equality contains unknowns unification is used: a is unified with every
sub-term of the goal conclusion, the first match is replaced by b’ which is b
after substituting unknowns in the same way as in a. If there is no match of
a in the goal conclusion an error is signaled.
For a goal [[A1; . . .; An]] =⇒ C the method only rewrites in the conclusion
C. The first match in the assumptions A1 . . . An can be substituted by the
form

75



subst (asm) name

If not only the first match shall be substituted, a number of the match or a
range of numbers may be specified in both forms as in

subst (asm) (i ..j) name

The equality fact can also be a meta equality of the form a ≡ b. Therefore
the method can be used to expand constant definitions. After the definition

definition "inc x ≡ x + 1"

the method subst inc_def will rewrite the first occurrence of a function
application (inc t) in the goal conclusion to (t + 1). Remember from Sec-
tion 2.1.3 that the defining equation is automatically named inc_def. Note
the use of unification to handle the actual argument term t.
The equality fact may be conditional, i.e., it may be a derivation rule with as-
sumptions of the form [[RA1; . . .; RAm]] =⇒ a = b. When the subst method
applies a conditional equation of this form to a goal [[A1; . . .; An]] =⇒ C,
it adds the goals [[A1; . . .; An]] =⇒ RA i’ to the goal state after rewriting,
where RA i’ result from RA i by the unification of a in C. These goals are in-
serted before the original goal, so the next method application will usually
process the goal [[A1; . . .; An]] =⇒ RA1’.
As an example if there are theorems

theorem eq1: "n = 10 =⇒ n+3 = 13" for n::nat 〈proof 〉
theorem eq2: "n = 5 =⇒ 2*n = 10" for n::nat 〈proof 〉

the method subst (2) eq2 replaces the goal (x::nat) < 5 =⇒ 2*x+3 ≤ 2*5
+ 3 by the goals

x < 5 =⇒ 5 = 5
x < 5 =⇒ 2 * x + 3 ≤ 10 + 3

where the first is trivial (but still must be removed by applying a rule). The
second goal is replaced by the method subst (2) eq1 by

x < 5 =⇒ 10 = 10
x < 5 =⇒ 2 * x + 3 ≤ 13

Note that the method subst eq2 would unify 2*n with the first match 2*x
in the original goal and replace it by

x < 5 =⇒ x = 5
x < 5 =⇒ 10 + 3 ≤ 2 * 5 + 3

where the first goal cannot be proved because it is invalid.

76



Simplification

If the term b in an equation a = b is in some sense “simpler” than a, the goal
will also become simpler by successful rewriting with the equation. If there
are several such equations a goal can be replaced by successively simpler
goals by rewriting with these equations. This technique can contribute to
the goal’s proof and is called “simplification”.
Basically, simplification uses a set of equations and searches an equation in
the set where the left hand side unifies with a sub-term in the goal, then
substitutes it. This step is repeated until no sub-term in the goal unifies
with a left hand side in an equation in the set.
It is apparent that great care must be taken when populating the set of
equations, otherwise simplification may not terminate. If two equations a
= b and b = a are in the set simplification will exchange matching terms
forever. If an equation a = a+0 is in the set, a term matching a will be
replaced by an ever growing sum with zeroes.
Simplification with a set of definitional equations from constant definitions
(see Section 2.1.3) always terminates. Since constant definitions cannot be
recursive, every substitution removes one occurrence of a defined constant
from the goal. Simplification terminates if no defined constant from the set
remains in the goal. Although the resulting goal usually is larger than the
original goal, it is simpler in the sense that it uses fewer defined constants.
If the set contains conditional equations, simplification may produce addi-
tional goals. Then simplification is applied to these goals as well. Together,
simplification may turn a single complex goal into a large number of simple
goals, but it cannot reduce the number of goals. Therefore simplification is
usually complemented by methods which remove trivial goals like x = x, A
=⇒ A, and True. Such an extended simplification may completely solve and
remove the goal to which it is applied.

The simp Method

Isabelle supports simplification by the method

simp

which is also called “the simplifier”. It uses the dynamic fact set simp as the
set of equations, which is also called “the simpset”. The method only affects
the first goal. If no equation in the simpset is applicable to it or it is not
modified by the applicable equations an error is signaled.
The simp method simplifies the whole goal, i.e., it applies rewriting to the
conclusion and to all assumptions.
The simpset may contain facts which are not directly equations, but can
be converted to an equation. In particular, an arbitrary derivation rule [[A1;

77



. . .; An]] =⇒ C can always be converted to the conditional equation [[A1; . . .;
An]] =⇒ C = True. The simplifier (and also the subst method) performs this
conversion if no other conversion technique applies, therefore the simpset may
actually contain arbitrary facts.
The simp method also detects several forms of trivial goals and removes
them. Thus a complete proof may be performed by a single application of
the simplifier in the form

by simp

In Isabelle HOL (see Section 3) the simpset is populated with a large num-
ber of facts which make the simplifier a very useful proof tool. Actually
all examples of facts used in the previous sections can be proved by the
simplifier:

theorem example1: "(x::nat) < c =⇒ n*x ≤ n*c" by simp
theorem example2: "(x::nat) ≤ c =⇒ x + m ≤ c + m" by simp
theorem "(x::nat) < 5 =⇒ 2*x+3 ≤ 2*5 + 3" by simp
theorem eq1: "n = 10 =⇒ n+3 = 13" for n::nat by simp
theorem eq2: "n = 5 =⇒ 2*n = 10" for n::nat by simp

Configuring the Simplifier

The simplifier can be configured by modifying the equations it uses. The
form

simp add: name1 . . . namen

uses the facts name1, . . ., namen in addition to the facts in the simpset for
its rewriting steps. The form

simp del: name1 . . . namen

uses only the facts from the simpset without the facts name1, . . ., namen,
and the form

simp only: name1 . . . namen

uses only the facts name1, . . ., namen. The three forms can be arbitrarily
combined.
As usual, a theorem may be added permanently to the simpset as described
in Section 2.1.6 by specifying it as

theorem [simp]: "prop" 〈proof 〉

and the defining equation of a definition can be added by

78



definition name::type where [simp]: "name ≡ term"

Adding own constant definitions to the simplifier is a common technique to
expand the definition during simplification. However, this may also have a
negative effect: If an equation has been specified using the defined constant,
it is no more applicable for rewriting after expanding the definition. Note
that the facts in the simpset and the facts provided by add:, del:, and only:
are not simplified themselves, the defined constant will not be expanded
there.
Therefore it is usually not recommended to add defining equations to the
simpset permanently. Instead, they can be specified by add: when they
really shall be expanded during simplification.

Splitting Terms

There are certain terms in which the simplifier will not apply its simpset
rules. A typical example are terms with an internal case distinction (see
Section 4.1.3). To process such terms in a goal conclusion the terms must
be split. Splitting a term usually results in several new goals with simpler
terms which are then further processed by the simplifier.
Term splitting is done by applying specific rules to the goal. These rules are
called “split rules”. Usually split rules are not automatically determined and
applied by the simplifier, this must be configured explicitly in the form

simp split: name1 . . . namen

where the name i are the names of the split rules to use. This configuration
can be arbitrarily combined with the other simplifier configuration options.
The usual form of a split rule is a proposition

"?P(term) = ((Q1 −→ ?P(term1)) ∧ . . . ∧ (Qn −→ ?P(termn)))"

where the term i are subterms of term and every Q i represents a condition
for which term can be reduced to term i. The simplifier applies such a split
rule to a goal [[A1;. . .;Am]] =⇒ C by first unifying the left hand side with
the conclusion C (which succeeds if term occurs in C), then replacing it by
the conjunction on the right, then splitting the goal into a separate goal for
every conjunct, and finally moving every Q i to the assumptions of their goal.
Thus the resulting goals have the form

[[A1;. . .;Am;Q1]] =⇒ C1

. . .
[[A1;. . .;Am;Qn]] =⇒ Cn

where C i is constructed from C by mainly replacing term by term i.

79



Note that this form of a split rule can only be applied for splitting terms
in the conclusion of a goal. See the Isabelle documentation for other forms
which split terms in assumptions of a goal.

Searching Simplifier Equations

Named facts applicable for simplification may be searched using the com-
mand find_theorems or in the Query panel, as described in Section 2.1.6,
using a criterion i of the form simp: termpat where termpat is a term pat-
tern (a term which may contain unknowns) specified in inner syntax.
Such a search finds named facts where the conclusion is an equation (using
either the operator = or the meta equality ≡) and the left side unifies with the
specified term pattern. It also finds facts where the conclusion unifies with
the term pattern, if the term pattern has type bool, because such facts are
equivalent to an equation with True (see above). Facts are found independent
of whether they are in the simpset or not.
A found fact may be used by specifying it for the subst method or, if not
yet in the simpset, by configuring the simp method to use it with the help
of add: or only:.

Input Facts for the simp Method

As usual, facts may be input to the simp method. Like the empty method
(see Section 2.3.1) it inserts these facts as assumptions into the goal, before it
starts simplification. Since simplification is also applied to the assumptions,
the input facts will be simplified as well.
As a possible effect of this behavior, after simplifying an input fact and the
goal conclusion the results may unify, leading to the situation where the goal
is removed by the assumption method (see Section 2.3.2). This is also done
by the simplifier, hence in this way the input fact may contribute to prove
the goal.

The simp_all Method

The method

simp_all

behaves like the simp method but processes all goals. It inserts input facts
to all goals in the goal state and simplifies them. If it fails for all goals an
error is signaled. Otherwise it simplifies only the goals for which it does not
fail. If it achieves to remove all goals the proof is finished.
The simp_all method can be configured by add:, del:, only:, and split: in
the same way as the simp method.

80



The simp_all method is useful, if first a method m is applied to the goal which
splits it into several subgoals which all can be solved by simplification. Then
the complete proof can be written as

by m simp_all

Debugging the Simplifier

If the simplifier fails, it may be difficult to find out the reason. There are
several debugging techniques which may help.
The content of the simpset can be displayed by the command

print_simpset

which may be specified in the proof text in modes proof(prove) and proof(state)
and outside of proofs. In the interactive editor the result is displayed in the
Output panel (see Section 1.2.3).
There is also a simplifier trace which displays the successful rewrite steps. It
is activated by the command

declare [[simp_trace_new depth=n]]

outside a theorem or definition. The number n should be atleast 2. When
the cursor is positioned on an application of the simp method the button
“Show trace” can be used in the Simplifier Trace panel to display the trace
in a separate window. See the documentation for more information about
how to use the trace.
Another technique is to replace the simp method by a sequence of subst
method applications and explicitly specify the equations which should have
been used. To do this for a structured proof, replace it by a proof script for
the subst method applications.

2.3.7 Other Automatic Proof Methods

Isabelle provides several other proof methods which internally perform sev-
eral steps, like the simplifier.

Automatic Methods

The following list contains automatic methods other than simp :

• blast mainly applies logical rules and can be used to solve complex
logical formulas.

81



• clarify is similar but does not split goals and does not follow unsafe
paths. It can be used to show the problem if blast fails.

• auto combines logical rule application with simplification. It processes
all goals and leaves those it cannot solve.

• clarsimp combines clarify with simplification. It processes only the
first goal and usually does not split goals.

• fastforce uses more techniques than auto, but processes only the first
goal.

• force uses even more techniques and tries to solve the first goal.

• linarith solves linear arithmetic problems (on integer and real num-
bers) for the first goal. It is automatically included by the simplifier.

• arith uses more techniques than linarith but may be slower.

The methods which do simplification can be configured like the simplifier
by adding specifications simp add:, simp del:, simp only:, and split:. For
example, additional simplification rules can be specified for the auto method
in the form

auto simp add: name1 . . . namen

For more information about these methods see the Isabelle documentation.

Trying Methods

Instead of manually trying several automatic methods it is possible to specify
the command

try

anywhere in mode proof(prove), i.e. at the beginning of a proof or in a proof
script. It will try many automatic proof methods and describe the result in
the Output window. It may take some time until results are displayed, in
particular, if the goal is invalid and cannot be proved.
If try finds a proof for one or more goals it displays it as a single (composed)
proof method, which, by clicking on it can be copied to the cursor position
in the text area. The try command must be removed manually.
If try tells you that the goal can be “directly solved” by some fact, you
can usually prove it by the fact method, but that also means that there is
already a fact of the same form and your theorem is redundant.
It may also be the case that try finds a counterexample, meaning that the
goal is invalid and cannot be proved.

82



2.4 Case Based Proofs

If during a proof the goal state contains several goals they are often proved
sequentially. Although there are proof methods which process several goals
at once (see examples in Section 2.3.7) most methods only process the first
goal. In a proof script, when a method has solved and removed the first
goal, the next goal will become the first and will be processed by the next
method application steps. In a structured proof (see Section 2.2.3) it is not
so simple. To prove a goal which is in the goal state its bound variables
and assumptions have to be inserted into the local proof context (by fix and
assume statements) and its conclusion must be stated by a show statement
and must be proved. Isabelle provides some support for simplifying these
tasks for working on a sequence of goals.

2.4.1 Named Proof Contexts

Isabelle supports some methods which are able to create “cases” for goals.
A case contains bound variables and assumptions from a goal and it may
contain other context elements, such as names for assumptions or assumption
groups and an abbreviation for the conclusion of a goal. The cases are named.
Using these names a proof context can be populated with all content of a
case in a single step.
Since a case contains context elements it can be seen as a named context
which has been prepared by a method for later use, but has not been “ac-
tivated” yet. Usually a named context is used to initialize a new nested
proof context immediately after its beginning by inserting the content of the
named context into the new context.

The case Statement

The content of a case may be inserted into the current proof context by the
statement

case name

where name is the case name. It mainly has the effect of the sequence

fix x1 . . . xk

let ?a1 = t1 and . . . ?am = tm

assume name: "A1" . . . "An"

where x1 . . . xk are the local variables, ?a1, . . ., ?am are the term abbre-
viations, and A1, . . ., An are the facts in the named context of the case.
The facts are inserted as assumptions and the set of these assumptions is

83



named using the case name. Moreover, like the assume statement, the case
statement makes the assumed facts current.
Instead of using the case name for naming the assumptions an explicit as-
sumption name aname may be specified:

case aname: name

If defined in the case, other names for single assumptions or assumption
groups may be automatically introduced.
The local variables x1 . . . xk are fixed by the case statement but are hidden,
they cannot be used in the subsequent proof text. If they should be used,
explicit names must be specified for them in the form

case (name y1 . . . y j)

Then the names y1 . . . y j can be used to reference the fixed variables in the
current proof context. If fewer names are specified only the first variables
are named, if more names are specified than there are local variables in the
case an error is signaled.
When methods create a named context for a goal they usually only define
the term abbreviation ?case for the conclusion of the goal.

Proof Structure with Cases

The usual proof structure using cases consists of an initial method which
creates cases and of a sequence of nested contexts (see Section 2.2.3). At its
beginning each context is initialized by a case statement naming one of the
created cases, at its end it uses a show statement to remove the corresponding
goal:

proof method
case name1

. . .
show ?case 〈proof 〉
next
case name2

. . .
show ?case 〈proof 〉
next
. . .
next
case namen

. . .
show ?case 〈proof 〉
qed

84



Every show statement uses the local term abbreviation ?case to refer to the
conclusion of the corresponding goal.
To find out which cases have been introduced by a method application, the
command

print_cases

can be used at arbitrary places in the following proof to display the cases in
the Output panel.
In the interactive editor also the Query panel (see Section 1.2.7) can be used
to display the cases available at the cursor position by selecting the tab “Print
Context” and checking “cases”.
Also in the interactive editor, when the cursor is positioned on proof method
where the method supports cases, a skeleton of a proof using the specific
cases provided by the method is displayed in the Output panel. By clicking
on it it may be copied into the text area immediately after the method
specification.

2.4.2 The goal_cases Method

The simplest method with support for cases is

goal_cases

Without modifying the goal state it creates a named case for every existing
goal. Input facts are ignored.
For a goal

∧
x1 . . . xm. [[A1; . . .; An]] =⇒ C the created named context

contains the local variables x1 . . . xm, the facts A1, . . ., An, and the term
abbreviation ?case bound to C. If the goal contains variables which are not
explicitly bound by

∧
these variables are not added to the context.

The effect is that if no other variables are fixed and no other facts are assumed
a statement show ?case after the corresponding case statement will refine
the goal and remove it from the goal state.
The cases are named by numbers starting with 1. If other names should be
used they may be specified as arguments to the method:

goal_cases name1 . . . namen

If fewer names are specified than goals are present, only for the first n goals
cases are created. If more names are specified an error is signaled.
When goal_cases is used in a composed proof method it can provide cases
for the goals produced by arbitrary other methods:

proof (method, goal_cases)

85



provides cases for all goals existing after method has been applied. If method
does not split the goal there will be only one case. This can be useful to
work with a goal produced by method. In particular, the conclusion of that
goal is available as ?case.
Note that the proof state(s) resulting from goal_cases are not visible for the
reader of the proof. Therefore it should only be applied if the goals produced
by method are apparent. In a case the goal conclusion can be shown partially
or fully by defining a possibly abbreviated form of it by

let "pattern" = ?case

where the pattern may contain unknowns which abbreviate sub terms of the
conclusion.
A better way to use cases is together with a method which combines both:
creating new goals in a simple and expected way, and immediately creating
cases only for these goals.

2.4.3 Case Based Reasoning

Case based proofs are especially convenient for implementing case based
reasoning. The technique of “case based reasoning” uses a specific kind of
forward reasoning steps (see Section 2.2.2). It adds a new fact F i+1 to the
proof context “out of the blue” without proving it from the existing facts.
For the proof to stay correct, this must be done for “all possible cases” of
F i+1, and the proof must be completed separately for each of them.
In its simplest form this can be done by adding an arbitrary fact F i+1 and its
negation ¬ F i+1, this covers all possibilities, since F i+1 may be either True
or False.
Consider the derivation rule (x::nat) < c =⇒ n*x ≤ n*c named example1
in Section 2.1.5. To prove it using case based reasoning the additional as-
sumption that n is zero can be used. Then there are the two cases n = 0
and n 6= 0 and clearly these cover all possibilities. Using the first case as as-
sumption implies that n*x and n*c are both zero and thus n*x = n*c. Using
the second case as assumption together with the original assumption implies
that n*x < n*c. Together the conclusion n*x ≤ n*c follows.
Since the proof must be completed separately for every such case, a separate
goal is required for each of them. This cannot be achieved by statements,
the old goal must be replaced by several new goals which is only possible by
applying a proof method.
More specific, if Q1 . . . Qk are propositions for the different cases which to-
gether cover all possibilities, a goal

∧
x1 . . . xm. [[A1; . . .; An]] =⇒ C must

be replaced by the k goals∧
x1 . . . xm. [[A1; . . .; An; Q1]] =⇒ C

86



. . .∧
x1 . . . xm. [[A1; . . .; An; Qk]] =⇒ C

where every goal has one of the propositions Q i as additional assumption.
Note that this technique extends the proof procedure described in Sec-
tion 2.2.2. There a proof consisted of a single tree of facts which started
at the assumptions and all branches joined to finally reach the conclusion.
With case based reasoning at any position the remaining tree may be split
into several “copies” with additional assumptions which then must all be
completed separately.

Case Rules

This splitting of a goal into goals for different cases can be done by applying
a single meta rule of the specific form

[[Q1 =⇒ ?P; . . .; Qk =⇒ ?P ]] =⇒ ?P

where Q1 . . . Qk are all cases of the additional assumption. Such rules are
called “case rules”.
When this case rule is applied to the goal

∧
x1 . . . xm. [[A1; . . .; An]] =⇒ C

as described in Section 2.3.3, it unifies ?P with the conclusion C and replaces
the goal in the way described above.
A case rule is only valid, if the Q i together cover all possibilities, i.e., if Q1

∨ . . . ∨ Qk holds. If this has been proved the case rule is available as a fact
which can be applied. Since the whole conclusion is the single unknown ?P
it unifies with every proposition used as conclusion in a goal, hence a case
rule can always be applied to arbitrary goals. It depends on the Q i whether
splitting a specific goal with the case rule is useful for proving the goal.
A case rule for testing a natural number for being zero would be

[[?n = 0 =⇒ ?P; ?n 6= 0 =⇒ ?P ]] =⇒ ?P

It contains the number to be tested as the unknown ?n, so that an arbitrary
term can be substituted for it. This is not automatically done by unifying ?P
with the goal’s conclusion, thus the rule must be “prepared” for application
to a specific goal. To apply it to the goal (x::nat) < c =⇒ n*x ≤ n*c in
the intended way the unknown ?n must be substituted by the variable n
from the goal conclusion. If the prepared rule is then applied to the goal it
splits it into the goals

[[(x::nat) < c; n = 0 ]] =⇒ n*x ≤ n*c
[[(x::nat) < c; n 6= 0 ]] =⇒ n*x ≤ n*c

which can now be proved separately.
Actually, the much more general case rule

87



[[?Q =⇒ ?P; ¬ ?Q =⇒ ?P ]] =⇒ ?P

is used for this purpose. Here the unknown ?Q represents the complete
proposition to be used as additional assumption, therefore the rule can be
used for arbitrary propositions. By substituting the term n = 0 for ?Q the
rule is prepared to be applied in the same way as above.
Case rules may even be more general than shown above. Instead of a single
proposition Q i every case may have locally bound variables and an arbitrary
number of assumptions, resulting in a meta rule of the form

[[P1; . . .; Pk]] =⇒ ?P

where every P i is a rule of the form∧
x i1. . .x ipi. [[Q i1;. . .;Q iqi]] =⇒ ?P

That means, the P i may be arbitrary rules but they must all have as con-
clusion the unknown ?P which is also the conclusion of the overall case rule.
When such a case rule is applied to a goal it splits the goal into k cases and
adds the variables x i1 . . . x ipi and the assumptions Q i1 . . . Q iqi to the ith
case.
Note that the goal which must be proved for an obtain statement (see Sec-
tion 2.2.11) has the form of a case rule with only one case of the form

∧
x1

. . . xm. prop =⇒ P. Thus a proof for this goal shows that prop covers all
cases, i.e., it is redundant.
Remember that to write your own case rule you have to specify a theorem
which uses variables in place of the unknowns, such as

theorem mycaserule: " [[n = 0 =⇒ P; n 6= 0 =⇒ P ]] =⇒ P" 〈proof 〉

which will be converted to unknowns upon turning the proposition to a fact
after the proof.

The cases Method

Case based reasoning can be performed in a structured proof using the
method cases in the form

cases "term" rule: name

where name is the name of a valid case rule. The method prepares the rule
by substituting the specified term for the first unknown in the assumptions,
and applies the rule to the first goal in the goal state.
Additionally, the method creates a named context for every goal resulting
from the rule application. The context contains (only) the variables and

88



assumptions specified in the corresponding case in the case rule. For the
most general form depicted above the context for the ith case contains the
variables x i1 . . . x ipi and the assumptions Q i1 . . . Q iqi. No term abbrevia-
tion ?case is defined, because the conclusion of every new goal is the same
as that of the original goal, thus the existing abbreviation ?thesis can be
used instead.
The names used for the contexts created by the cases method can be speci-
fied by attributing the case rule. Therefore, predefined case rules often create
cases with names which are easy to understand by a proof writer.
In Isabelle HOL (see Section 5) the rule [[?Q =⇒ ?P; ¬ ?Q =⇒ ?P ]] =⇒ ?P
is available under the name case_split. It is attributed to use the case
names True and False. Note that these are names, not the constants for the
values of type bool.
Together, a structured proof for the goal (x::nat) < c =⇒ n*x ≤ n*c with
case splitting may have the form

proof (cases "n = 0" rule: case_split)
case True
. . .
show ?thesis 〈proof 〉
next
case False
. . .
show ?thesis 〈proof 〉
qed

The cases method adds the assumptions n=0 and n 6=0 respectively to the
goals of the cases, the case statements add them as assumed facts to the local
context, so that they are part of the rule exported by the show statement
and match the assumption in the corresponding goal.
Note that the case statement adds only the assumptions originating from
the case rule. The other assumptions in the original goal (here x < c) must
be added to the context in the usual ways (see Section 2.2.8) if needed for
the proof.
Often a case rule has only one unknown in the case assumptions. If there
are more, several terms may be specified in the cases method for preparing
the rule. If less terms are specified than there are unknowns in the case
assumptions the resulting goals will contain unbound unknowns which must
be instantiated in the rest of the proof (e.g., by method drule). If more
terms are specified an error is signaled.
The cases method treats input facts like the empty method (see Section 2.3.1)
by inserting them as assumptions into the original goal before splitting it.
Therefore it can be used both in proof scripts, where facts are stored as rule
assumptions in the goal state, and in structured proofs where facts are stored
in the proof context and are input to the initial methods of subproofs.

89



However, if the cases method is specified in the form

cases "term"

without explicitly naming a case rule and the first input fact has the form
of a case rule, it is used as case rule to split the goal and create the named
cases. Therefore in a proof the example goal can be proved as local fact by
inputting (see Section 2.2.6) the case rule in the form

from case_split
have "(x::nat) < c =⇒ n*x ≤ n*c"
proof (cases "n = 0")
. . .

Like the rule method (see Section 2.3.3) the cases method supports auto-
matic rule selection for the case rule, if no case rule is specified or input to
the method. Normally the rule is selected according to the type of the spec-
ified term. In Isabelle HOL (see Section 3) most types have an associated
case rule. Only case rules with a single unknown in the case assumptions
can be automatically selected in this way.
The rule case_split is associated with type bool. Therefore the example
sub proof shown above also works without inputting the method to the have
statement, because then it is selected automatically because the term n = 0
has type bool.
The proof writer may not know the case names specified by an automatically
selected case rule. However, they can be determined using the command
print_cases or from the proof skeleton which is displayed in the interactive
editor when the cursor is positioned on the cases method (see Section 2.4.1).

Alternative Syntax for Case Rules

A case rule as described above always uses an unknown ?P (or with any
other name) as conclusion and as conclusion in all assumptions. It is used
technically to preserve the original conclusion when a goal is split by applying
the rule. Therefore Isabelle supports an alternative syntax for specifying case
rules as theorems which omits the variable for this unknown and specifies
only the information which becomes the content of the named cases.
In a theorem in specified in structured form using shows (see Section 2.1.6)
the part of the form shows "C" may alternatively be specified in the form

obtains C1 | . . . | Ck

where every case C i has the form

x i1 . . . x ipi where "Q i1" . . . "Q iqi"

90



As usual, the variables x i1 . . . x ipi and the propositions Q i1 . . . Q iqi may
be grouped by and, for every variable group a type may be specified and
the proposition groups may be named. The keywords and the | separators
belong to the outer syntax, the propositions must be individually quoted.
This form is mainly equivalent to

shows " [[P1; . . .; Pk]] =⇒ thesis"

where every P i is a rule∧
x i1. . .x ipi. [[Q i1;. . .;Q iqi]] =⇒ thesis

which is exactly the general form of a case rule stated by the shows clause,
using, after proof, the unknown ?thesis for all conclusions.
For its own proof the obtains form creates the same goal as the shows form,
but additionally it adds all P i as assumed facts to the outermost proof context
and names this set that.
When the theorem is applied as case rule by the cases method the named
context created for case C i is simply named i. An explicit name may be
specified for it by using the extended form

(name i) x i1 . . . x ipi where "Q i1" . . . "Q iqi"

For its own proof the obtains form uses name i, if present, as additional name
for P i in its proof context.
If a case C i has no bound variables it has simply the form

"Q i1" . . . "Q iqi"

which omits the keyword where, also if an explicit name is specified.
As an example, the rule case_split may be defined and proved as

theorem case_split:
obtains (True) "Q" | (False) "¬ Q"
by blast

using the case names True and False, as described above, and using the
blast method (see Section 2.3.7) for the proof.
There is also a statement for stating a case rule on the fly in a structured
proof. It has the form

consider C1 | . . . | Ck 〈proof 〉

where the cases C i are as above. It is mainly equivalent to the statement

have " [[P1; . . .; Pk]] =⇒ thesis" 〈proof 〉

91



with P i as above and is thus also a goal statement.
However, it is not possible to introduce additional unknowns in the P i in a
consider statement. All variables occurring free in the P i are assumed to be
bound in the context and are not converted to unknowns at the end of the
statement. Therefore the statement cannot be used to define general case
rules like case_split which contains the additional unknown ?Q. It can only
be used to state that specific propositions cover all (remaining) possibilities
in the local proof context. They need not cover all globally possible cases,
if some cases have already been excluded using locally assumed or proved
facts, only the remaining possibilities need to be covered.
Since case rules can be input as fact to a proof by case based reasoning, fact
chaining can be used to immediately apply a locally defined case rule in a
subsequent subproof. This yields the pattern

consider C1 | . . . | Ck 〈proof 〉
then have "prop"
proof cases
case 1 . . . show ?thesis 〈proof 〉

next
. . .
case k . . . show ?thesis 〈proof 〉

qed

using the default case names. The first 〈proof 〉 proves that the cases cover
all local possibilities, the other 〈proof 〉s prove the stated proposition, each
using one of the cases C i as additional assumption. The cases method is
always applied without arguments, since there are no additional unknowns
in the C i which can be instantiated.
If the example goal (x::nat) < c =⇒ n*x ≤ n*c should be stated for lo-
cally fixed variables, the cases n=0 and n 6=0 can be proved to cover all pos-
sibilities and then used as cases by the statements

fix x c n::nat
consider (Zero) "n = 0" | (Notzero) "n 6= 0" by blast
then have "(x::nat) < c =⇒ n*x ≤ n*c"
proof cases
case Zero . . . show ?thesis 〈proof 〉

next
case Notzero . . . show ?thesis 〈proof 〉

qed

2.4.4 Elimination

The proof technique of “(generalized) elimination” can be seen as a combina-
tion of applying a destruction rule (see Section 2.3.4) and an optional case

92



split. It removes an assumption with a function application from a goal and
splits the rest into cases with additional assumptions.

The Method erule

Like destruction rule application and case splitting such a step can be im-
plemented by applying a rule in a specific way to a goal. This is done by the
method

erule name

where name is the name of a valid rule. The method only affects the first
goal. If that goal has the form [[A1;. . .;An]] =⇒ C and the rule referred by
name has the form [[RA1;. . .;RAm]] =⇒ RC the method first unifies the first
assumption RA1 in the rule with the first assumption Ak of the A1 . . . An

which can be unified with RA1 and it unifies the rule conclusion RC with
the goal conclusion C. That yields the specialized rule [[RA1’;. . .;RAm’]] =⇒
RC’ where RA1’ is syntactically equal to Ak, RC’ is syntactically equal to C
and every RA j’ with j > 1 results from RA j by substituting unknowns by
the same terms as in RA1’ and RC’. If the goal does not contain unknowns
(which is the normal case), Ak and C are not modified by the unifications.
If no A i unifies with RA1 or C does not unify with RC the method cannot be
executed on the goal state and an error is signaled. Otherwise the method
replaces the goal by the m-1 new goals [[A1;. . .;An]] =⇒ RA j’ for j > 1.
If the rule has the form RA =⇒ RC with only one assumption a successful
application with erule removes the goal from the goal state. If the rule
is a formula RC without any assumptions the method cannot be applied to
the goal state and an error is signaled. If an assumption RA j is a rule with
own assumptions, these assumptions are appended to the assumptions in the
resulting goal, as described for the rule method in Section 2.3.3.
As for rules applied by frule or drule (see Section 2.3.4) the first assumption
RA1 in the rule is called the “major premise” in this context.
The method erule does not support input facts.

Elimination Rules

An elimination rule is a generalized combination of a destruction rule and a
case rule. It has the specific form

[[RA1; . . .; RAn]] =⇒ ?P

where the first assumption contains the application of a specific function f
(perhaps written using an operator name) which may only occur in different
form in the other assumptions. The conclusion is a single unknown which

93



must not occur in the first assumption and may only occur as conclusion in
other assumption (like in an assumption in a case rule).
When an elimination rule is applied to a goal by the erule method, it re-
moves (“eliminates”) the function application from an assumption in the goal
or it replaces it by a different form, so that it may be removed in several
steps. Depending on the form of the other assumptions the resulting goals
have either the same conclusion as the original goal or are unrelated to it.
Therefore such an application of an elimination rule can be seen as a forward
reasoning step, possibly with case splitting.
Since the order of the assumptions after the major premise is irrelevant for
the rule application the general form of an elimination rule can be considered
to be

theorem " [[RA1;. . .;RAm; P1; . . .; Pk]] =⇒ P" 〈proof 〉

where every P i is a rule of the form∧
x i1. . .x ipi. [[Q i1;. . .;Q iqi]] =⇒ P

and the variable P does not occur in the RA1 . . . RAm.
As an example consider the elimination rule specified as

theorem elimexmp: " [[(x::nat) ≤ c; x < c =⇒ P; x = c =⇒ P ]] =⇒ P"

It replaces an assumption x ≤ c by two cases with assumptions x < c and
x = c. If applied to the goal (x::nat) ≤ 5 =⇒ C by

apply (erule elimexmp)

it replaces the goal by the two goals

x < 5 =⇒ C
x = 5 =⇒ C

Analogous to the intro set for introduction rules there is an internal fact set
elim for elimination rules. It is used by some automatic methods, however,
it is not used for automatically selecting rules for erule.
If the cursor in the text area is positioned in a proof, elimination rules appli-
cable to the first goal in the goal state of the enclosing proof can be searched
using the keyword elim as criterion for a search by find_theorems or in the
Query panel, as described in Section 2.1.6. It finds all named facts which
can be applied by the erule method to the first goal, i.e., the major premise
unifies with a goal assumption and the conclusions unify as well.
Elimination rule application can be iterated by the method

elim name1 . . . namen

94



where name1 . . . namen refer to valid rules. It iterates applying rules by erule
from the given set to a goal in the goal state as long as this is possible. It is
intended to be used with elimination rules. Then it automatically eliminates
functions from assumptions in the goals as much as possible with the given
rules. Note that the method does not use the elim set.
Every destruction rule [[RA1;. . .;RAn]] =⇒ C can be re-stated as the elimina-
tion rule [[RA1;. . .;RAn;C=⇒?P ]] =⇒ ?P. If that is applied by erule it has the
same effect as if the original rule is applied by method drule.

Alternative Syntax for Elimination Rules

The alternative syntax available for case rules described in Section 2.4.3 can
be extended for elimination rules. An elimination rule

theorem " [[RA1;. . .;RAm; P1; . . .; Pk]] =⇒ P" 〈proof 〉

where every P i is a rule of the form∧
x i1. . .x ipi. [[Q i1;. . .;Q iqi]] =⇒ P

can be specified using the alternative syntax

theorem
assumes "RA1" . . . "RAm"
obtains C1 | . . . | Ck

〈proof 〉

where every C i is

x i1 . . . x ipi where "Q i1" . . . "Q iqi"

The major premise and possibly other additional assumptions are specified
using assumes, then the assumptions for the cases are specified using ob-
tains. As usual, the set RA1, . . ., RAm is automatically named assms and
the set of the P i is automatically named that in the outermost proof context
of the theorem, additional names may be specified explicitly.
The example rule elimexmp from the previous section can alternatively be
specified as

theorem
assumes "(x::nat) ≤ c"
obtains "x < c" | "x = c"
〈proof 〉

95



Elimination in Structured Proofs

The method erule is intended to be used in proof scripts, therefore it does
not process input facts and does not create named cases. In structured proofs
elimination can be done using the cases method.
The cases method applies a rule by elimination, if the rule is attributed
by [consumes 1]. This means the rule will “consume” one assumption by
unifying it with its major premise and removing it. A rule may be attributed
upon definition in the form

theorem [consumes 1]: "prop" 〈proof 〉

or it may be attributed on the fly when it is applied by the cases method:

cases "term" rule: name[consumes 1]

Since the cases method is intended to be used in structured proofs where
facts are stored in the proof context it does not unify the rule’s major premise
with an assumption in the goal, it unifies it with the first input fact (possibly
after the rule itself if not specified as method argument).
Now the rule elimexmp from the previous sections can be defined in the form

theorem elimexmp[consumes 1]:
assumes "(x::nat) ≤ c"
obtains (lower) "x < c" | (equal) "x = c"
〈proof 〉

naming the cases by lower and equal. Then an example for an application
in a structured proof with cases is

theorem "C" if "(x::nat) ≤ 5"
using that

proof (cases rule: elimexmp)
case lower . . . show ?thesis 〈proof 〉

next
case equal . . . show ?thesis 〈proof 〉

qed

Note the use of the structured theorem form which puts the assumption
(x::nat) ≤ 5 into the proof context and names it that so that it can be
input by using that into the structured proof and into its initial method
cases which consumes it.

2.4.5 Induction

With induction a goal is proved by processing “all possible cases” for certain
values which occur in it. If the goal can be proved for all these cases and the

96



cases cover all possibilities, the goal holds generally. A specific technique is
to assume the goal for some values and then prove it for other values. In
this way it is possible to cover infinite value sets by proofs for only a finite
number of values and steps from values to other values.
Perhaps the best known example of induction is a proposition which is proved
for the natural number 0 and the step from a number n to its successor n+1,
which together covers the whole infinite set of natural numbers.
As a (trivial) example consider the proposition 0≤n. To prove that it is valid
for all natural numbers n we prove the “base case” where n is 0, which is true
because 0≤0. Then we prove the “induction step”, by assuming that 0≤n
(the “induction hypothesis”) and proving that 0≤n+1 follows, which is true
because addition increases the value.

Induction Rules

Like for case based reasoning (see Section 2.4.3) a goal is split into these
cases by applying a meta rule. For induction the splitting can be done by a
meta rule of the form

[[P1 ; ...; Pn ]] =⇒ ?P ?a

where every P i is a rule of the form∧
y i1 . . . y ipi. [[Q i1; . . .; Q iqi]] =⇒ ?P term i

where the assumptions Q ij may contain the unknown ?P but no other un-
knowns, in particular not ?a. A rule for a base case usually has no bound
variables y ij and no assumptions Q ij, at least the Q ij do not contain ?P. The
remaining rules mostly have only a single assumption Q ij which contains ?P.
Note that the unknown ?a only occurs once in the conclusion of the meta
rule and nowhere else. Like the case rules induction rules must be “prepared”
for use, this is done by replacing ?a by a specific term term. This is the term
for which all possible cases shall be processed in the goal. It must have the
same type as all term i in the P i.
Usually, “all possible cases” means all values of the type of term, then term
consists of a single variable which may adopt any values of its type. There are
also other forms of induction where more complex terms are used, but they
are not presented in this introduction, refer to other Isabelle documentations
for them. In the following the unknown ?a will always be replaced by a
variable x.
When a prepared induction rule is applied to a goal C without bound vari-
ables and assumptions as described in Section 2.3.3, it unifies ?P x with the
conclusion C. This has the effect of abstracting C to a (boolean) function PC
by identifying all places where x occurs in C and replacing it by the function

97



argument. The function PC is then bound to the unknown ?P, so that apply-
ing ?P to the argument x again yields C. The function PC is the property to
be proved for all possible argument values. Therefore the cases of the proof
can be described by applying ?P to the terms term i for the specific values in
the rules P i for the cases.
The application of the prepared rule results in the n goals∧

y11 . . . y1p1. [[Q11; . . .; Q1q1]] =⇒ PC term1

. . .∧
yn1 . . . ynpn. [[Qn1; . . .; Qnqn]] =⇒ PC termn

The induction rule is only valid if the terms term i cover all possible values
of their associated type. If this has been proved the induction rule is avail-
able as a fact which can be applied. After preparing the induction rule for
application, its conclusion ?P x matches all propositions which contain the
variable x in one or more copies. It depends on the P i in the rule whether
splitting a specific goal with the induction rule is useful for proving the goal.
The real power of induction rules emerges, when a Q ij contains the unknown
?P. Due to the type associated with ?P it must be applied to an argument
term ij of the same type as x and the term i. Then the goal resulting from P i

states the property that if Q ij holds when specialized to PC term ij, PC holds
for term i (an “induction step”). Thus, for covering the possible values of x,
the step from term ij to term i can be repeated arbitrarily often which allows
to cover some types with infinite value sets.
An induction rule for the natural numbers is

[[?P 0;
∧
y. ?P y =⇒ ?P (y+1)]] =⇒ ?P ?a

P1 is the base case, it has no variables and assumptions and only consists of
the conclusion ?P 0. P2 binds the variable y, has one assumption ?P y and
the conclusion ?P (y+1). P1 covers the value 0, P2 covers the step from a
value y to its successor y+1, together they cover all possible values of type
nat.
To apply the rule to the goal 0≤n, it must be prepared by substituting the
variable n for the unknown ?a. Then the rule conclusion ?P n is unified
with the goal which abstracts the goal to the boolean function PC = (λi.
0≤i) and substitutes it for all occurrences of ?P. This results in the rule in-
stance [[(λi. 0≤i) 0;

∧
y. (λi. 0≤i) y =⇒ (λi. 0≤i) (y+1)]] =⇒ (λi.

0≤i) n. By substituting the arguments in the function applications its as-
sumption part yields the two goals

0≤0∧
y. 0≤y =⇒ 0≤(y+1)

which correspond to the base case and induction step as described above.

98



Induction rules may even be more general than shown above. Instead of
applying ?P to a single argument it may have several arguments and the
conclusion becomes ?P ?a1 . . . ?a r. Also in the P i every occurrence of ?P
then has r terms as arguments. Such an induction rule is valid if it covers
all possible cases for all combinations of the r argument values. Finally,
in addition to the assumptions P i an induction rule may have assumptions
about the argument ?a or the arguments ?a1 . . . ?a r.
Note, however, that there is no alternative syntax for induction rules, such
as the obtains form for case rules.

The induction Method

Induction can be performed in a structured proof using the method induction
in the form

induction x rule: name

where name is the name of a valid induction rule. The method prepares the
rule by substituting the specified variable x for the unknown ?a and applies
the rule to the first goal in the goal state.
Additionally, the method creates a named context for every goal resulting
from the rule application. The context contains the variables and assump-
tions specified in the corresponding case in the induction rule. For the general
form depicted above the context for the ith case contains the variables y i1

. . . y ipi and the assumptions Q i1; . . .; Q iqi. The term abbreviation ?case is
defined for the case conclusion PC term i which is to be proved for the case.
The induction method treats input facts like the empty method (see Sec-
tion 2.3.1) and the cases method (see Section 2.4.3) by inserting them as
assumptions into the original goal before splitting it.
Also like the cases method the induction method supports automatic rule
selection for the induction rule. This is only possible if ?P is applied to
a single argument, which means that only one variable is specified in the
method:

induction x

Then the rule is selected according to the type of x. In Isabelle HOL (see
Section 3) most types have an associated induction rule.
The rule [[?P True; ?P False ]] =⇒ ?P ?a is associated with type bool. There-
fore induction can be applied to every proposition which contains a variable
of type bool, such as the goal b ∧ False = False. Applying the method

induction b

will split the goal into the goals

99



False ∧ False = False
True ∧ False = False

which cover all possible cases for b. Here, the type has only two values,
therefore induction is not really needed.
Like for the cases method (see Section 2.4.3) the names used for the contexts
created by the induction method can be specified by attributing the induc-
tion rule. They can be determined from the proof skeleton which is displayed
in the interactive editor when the cursor is positioned on the induction
method (see Section 2.4.1).
If the induction rule [[?P 0;

∧
y. ?P y =⇒ ?P (y+1)]] =⇒ ?P ?a for the nat-

ural numbers has been proved and named induct_nat with case names Start
and Step, a structured proof for the goal 0≤n may have the form

proof (induction n rule: induct_nat)
case Start
. . .
show ?case 〈proof 〉
next
case Step
. . .
show ?case 〈proof 〉
qed

The induction method creates the named contexts Start and Step. The
former has no local variables and assumptions and binds ?case to the propo-
sition 0≤0, the latter has the local variable y, the assumption 0≤y named
Step and binds ?case to the proposition 0 ≤ y + 1.
If the rule induct_nat has been associated with type nat the rule specification
may be omitted in the method:

proof (induction n)
. . .

Case Assumption Naming and the induct Method

As usual, the case statement uses the case name as name for the assumptions
Q i1 . . . Q iqi in the ith case or an explicit name may be specified for them
(see Section 2.4.1). Additionally, the induction method arranges the named
context for a case so that the set of assumptions is split into those which
in the rule contain the unknown ?P and those which do not. These sets are
separately named, so that they can be referenced individually.
The set of assumptions which originally contained ?P now contain an appli-
cation of PC to a value term ij and allow the step from this value to value
term i by induction. These assumptions are called “induction hypotheses” and

100



are named "cname.IH" where cname is the case name or the explicit name
for the case assumptions. The other assumptions are independent from PC,
they are additional hypotheses and are named "cname.hyps". Both forms
of names must be enclosed in quotes because the dot is not a normal name
constituent.
For an example consider the induction rule [[?P 0; ?P 1;

∧
y. [[y≥1; ?P y ]]

=⇒ ?P (y+1)]] =⇒ ?P ?a with an additional base case for the value 1 and
a step which always starts at value 1 or greater. If applied to the goal 0≤n
the induction method produces the three goals

0≤0
0≤1∧
y. [[y≥1; 0≤y ]] =⇒ 0≤(y+1)

If the default case name 3 is used for the third case, the induction hypothesis
0≤y is named "3.IH" and the additional hypothesis y≥1 is named "3.hyps".
There is a method induct which behaves like induction with the only differ-
ence that it does not introduce the name "cname.IH", it uses "cname.hyps"
for all assumptions Q i1 . . . Q iqi, whether they contain ?P or not.

Goals with Assumptions

If the induction method would apply the prepared induction rule in the same
way as the rule method to a goal [[A1; . . .; Am]] =⇒ C with assumptions it
would unify ?P x only with the conclusion C and copy the assumptions A1,
. . ., Am to all resulting goals unchanged. However, if x also occurs in one
or more of the A l this connection with C is lost after applying the prepared
induction rule.
Consider the goal

4 < n =⇒ 5 ≤ n

which is of the form

A =⇒ C

When applying the prepared induction rule for the natural numbers [[?P
0;

∧
y. ?P y =⇒ ?P (y+1)]] =⇒ ?P n in the way of the rule method the

conclusion will be matched which leads to the abstracted function PC ≡
(λi. 5≤i) and the resulting goals are

4 < n =⇒ 5 ≤ 0∧
y. [[4 < n; 5 ≤ y ]] =⇒ 5 ≤ (y+1)

where the first goal is invalid. Although the second goal is valid, it shows
that the relation between the variable n in the assumption and the variable
y used in the induction rule has been lost.

101



For a goal with assumptions every occurrence of ?P in the rule, applied to
a specific term must be replaced by PC applied to the term together with
all assumptions which must also be adapted to the same term. Therefore
the induction and induct methods work in a different way. They unify ?P
x with the conclusion C and separately with every assumption A l and thus
additionally determine an abstracted function PA l for every A l. Then they
replace every ?P term in a P i or in a Q ij in the rule by an application PC
term together with assumptions PA1 term; . . .; PAm term.
The assumptions for a direct occurrence of ?P term i as conclusion in a P i are
added after all Q ij, so that the ith goal created by the induction method
now has the form∧

y i1 . . . y ipi. [[Q i1; . . .; Q iqi; PA1 term i; . . .; PAm term i]] =⇒ PC term i

Additionally, the assumptions for occurrences of a ?P term in a Q ij must be
added which usually can be done by replacing Q ij by the rule Q ij’ of the form
[[PA1 term; . . .; PAm term ]] =⇒ Q ij’’ where Q ij’’ results by substituting ?P
term in Q ij by PC term. If ?P is applied to several different terms in Q ij,
several sets of corresponding assumptions are added in Q ij’.
Moreover, the induction method (and also the induct method) arranges the
named contexts in a way that the assumptions PA1 term i; . . .; PAm term i

which originate from the goal are named by "cname.prems" and can thus
be referenced separate from the Q ij’ which are named "cname.hyps" and
possibly "cname.IH" as described above.
In the example above the induction method additionally unifies ?P n with
the assumption 4 < n which yields the abstracted function PA ≡ (λi. 4<i)
and produces the goals

4 < 0 =⇒ 5 ≤ 0∧
y. [[4 < y =⇒ 5 ≤ y; 4 < (y+1)]] =⇒ 5 ≤ (y+1)

Here 4 < (y+1) results from applying PA to (y+1) and 4 < y results from
adding PA applied to y as assumption to the assumption ?P y from the rule.
If the default case name 2 is used for the second case, the case assumption
4 < y =⇒ 5 ≤ y will be named "2.IH" and the case assumption 4 < (y+1)
will be named "2.prems" by the case statement.
Like the cases method the methods induction and induct insert input facts
as assumptions into the goal before they process the goal assumptions in the
described way. Therefore both methods can be used both in proof scripts,
where facts are stored as rule assumptions in the goal state, and in structured
proofs where facts are stored in the proof context and are input to the initial
methods of subproofs.
Other than for the cases method it is not possible to pass the induction rule
as input fact to the methods induction and induct.

102



Induction with Elimination

Like case rules, induction rules can be extended to include elimination (see
Section 2.4.4). Such induction rules have an additional first assumption
which is used as major premise to unify with a goal assumption and eliminate
it, before processing the remaining goal assumptions and splitting the goal
into cases.
Like case rules such extended induction rules must be attributed by [consumes
1], then the methods induction and induct apply elimination before doing
the rest of processing.
As example consider the rule [[?a ≥ 42; ?P 42;

∧
y. ?P y =⇒ ?P (y+1)]]

=⇒ ?P ?a. It uses 42 as its base case and can thus only prove a property
for numbers equal to or greater than 42. The major premise restricts ?a to
these cases. If this rule has been proved and named induct_nat42 it may be
applied with elimination as initial method of a structured proof for the goal
4 < n =⇒ 5 ≤ n by

proof (induction n rule: induct_nat42[consumes 1])

If the fact n ≥ 42 is available as first input fact the application will be
successful, consume that fact, and split the goal into the goals

4 < 42 =⇒ 5 ≤ 42∧
y. [[4 < y =⇒ 5 ≤ y; 4 < (y+1)]] =⇒ 5 ≤ (y+1)

In contrast to the cases method the methods induction and induct will
also consume the first assumption present in the goal, if it unifies with the
major premise of the induction rule and no input facts are present.

Arbitrary Variables

If the goal contains bound variables, i.e., is of the form
∧

x1 . . . xk. [[A1;
. . .; Am]] =⇒ C these variables may occur in the assumptions A1, . . ., Am

and the conclusion C. When these are instantiated for the occurrences of ?P
in the rule as described above, every such instance needs its own separate
copy of bound variables x1 . . . xk.
Consider the goal∧
c. n<c =⇒ 2*n < 2*c

When applying the prepared induction rule for the natural numbers [[?P 0;∧
y. ?P y =⇒ ?P (y+1)]] =⇒ ?P n in the way described above, the variable

c must be bound separately for the occurrences ?P y and ?P (y+1) because it
need not denote the same value in both positions. This can be accomplished
by creating the goals

103



∧
c. 0<c =⇒ 2*0 < 2*c∧
y c. [[

∧
c. y<c =⇒ 2*y < 2*c; y+1 < c ]] =⇒ 2*(y + 1) < 2*c

with two nested bindings of c.
The methods induction and induct treat explicit bindings of variables in the
goal in this way. However, if variables are not bound explicitly in the goal
(i.e., they are free in the goal), there are two possible meanings: in a theorem
all variables are implicitly bound and therefore need a separate binding for
every occurrence of ?P, whereas in a local goal statement variables may have
been fixed in the enclosing context, then they must denote the same value for
every occurrence of ?P and must not be bound separately. Since it is difficult
for Isabelle to determine the correct treatment of free variables automatically,
it may be specified explicitly by the proof writer. The free variables which
do not denote a fixed value from the context but an “arbitrary” value used
only locally in the goal can be specified to the induction method in the form

induction x arbitrary: x1 . . . xk rule: name

and in the same form for the induct method.
In particular, if a theorem or goal statement is specified in structured form
the free variables are not bound in the goal but in the outermost proof
context (see Section 2.2.1) and the goal only consists of the conclusion C. To
apply induction as initial proof method the assumptions must be input to it
and the variables must be specified as arbitrary:

theorem
fixes x1 . . . xk

assumes "A1" . . . "Am"
shows "C"

using assms
proof (induction . . . arbitrary: x1 . . . xk . . .) . . . qed

104



Chapter 3

Isabelle HOL Basics

The basic mechanisms described in Chapter 2 can be used for working with
different “object logics”. An object logic defines the types of objects available,
constants of these types, and facts about them. An object logic may also
extend the syntax, both inner and outer syntax.
The standard object logic for Isabelle is the “Higher Order Logic” HOL, it
covers a large part of standards mathematics and is flexibly extensible. This
chapter introduces some basic mechanisms which are available in HOL for
arbitrary types.
The abbreviation “HOL” is used in the logics community to denote the gen-
eral concept of higher order logics. In this document we use it specifically
to denote the implementation as object logic in Isabelle which is also named
HOL.

3.1 Predicates and Relations

Basically HOL uses the type ’a ⇒ ’b of functions provided by Isabelle (see
Section 2.1.2) to represent predicates and relations in the usual way.

3.1.1 Predicates

A predicate on values of arbitrary types t1, . . ., tn is a function of type
t1 ⇒ . . . ⇒ tn ⇒ bool. It may be denoted by a lambda term λx1 . . . xn.
bterm where bterm is a term of type bool which may contain free occurrences
of the variables x1, . . ., xn. Note that also a predicate defined as a named
constant P can always be specified by the lambda term λx1 . . . xn. P x1 . . .

xn.
Note that the concept of predicates actually depends on the specific HOL
type bool, which is introduced in Section 5.1.

105



3.1.2 Unary Predicates and Sets

Unary predicates of type t ⇒ bool are equivalent to sets of type t set.
There is a 1-1 correspondence between a predicate and the set of values for
which the predicate value is True. Actually, the HOL type constructor set
described in Section 5.4 is defined based on this correspondence. See that
section for more information about denoting and using sets.
As a convention HOL often provides a predicate and rules about it in both
forms as a set named name and as a predicate named namep or nameP. Then
usually every fact F containing such predicates in set form can be converted
to the corresponding fact containing them in predicate form by applying the
attribute to_pred as in F[to_pred] and vice versa by applying the attribute
to_set.

3.1.3 Relations

A binary relation between values of arbitrary types t1 and t2 is a binary
predicate of type t1 ⇒ t2 ⇒ bool. As binary functions the relations in
HOL often have an alternative operator name of the form (op) which sup-
ports specifying applications in infix form x op y (see Section 2.1.2)..
By partial application (see Section 2.1.2) the first argument of a relation R
can be fixed to yield the unary predicate (R x) on the second argument. For
operators this must be done using the operator name in the form ((op) x),
partial application cannot be written by omitting an argument on one side
of the infix operator.
Since the unary predicate (R x) is equivalent to a set, every binary relation
of type t1 ⇒ t2 ⇒ bool is equivalent to a set-valued function of type t1

⇒ (t2 set). It maps every value of type t1 to the set of related values of
type t2. HOL extends the convention described above and often provides
relations named namep or nameP also as set-valued functions named name.
Note that HOL introduces the specific type constructor rel (see Section 5.8),
where the values are equivalent to binary relations.
More generally, n -ary relations for n > 2 are directly represented by n -ary
predicates. Every n -ary relation is equivalent to an (n-1)-ary set-valued
function.

3.2 Equality, Orderings, and Lattices

3.2.1 The Equality Relation

HOL introduces the equality relation as a function

HOL.eq :: ’a ⇒ ’a ⇒ bool

106



with the alternative operator name (=) for infix notation.
Inequality can be denoted by

not_equal :: ’a ⇒ ’a ⇒ bool

with the alternative operator name ( 6=) for infix notation.
Both functions are polymorphic and can be applied to terms of arbitrary
type, however, they can only be used to compare two terms which have the
same type. Therefore the proposition

True 6= 1

is syntactically wrong and Isabelle will signal an error for it.
Moreover, in a term such as term1 = term2 or term1 6= term2 no type in-
formation can be derived for term1 and term2 other than that they must
have the same type. There may be relations with the same semantics but for
operands of a specific type, then it is possible to derive the operand types.
An example is the relation iff with operator name (←→) which is equal to
(=) but only defined for operands of type bool. Therefore for the term term1

←→ term2 HOL automatically derives that term1 and term2 have type bool.

3.2.2 The Ordering Relations

HOL also introduces two ordering relations as functions

less :: ’a ⇒ ’a ⇒ bool
less_eq :: ’a ⇒ ’a ⇒ bool

with the alternative operator names (<) and (≤) for infix notation and the
abbreviations greater and greater_eq for reversed arguments with operator
names (>) and (≥).
Based on these relations HOL also introduces the functions

min :: ’a ⇒ ’a ⇒ ’a
max :: ’a ⇒ ’a ⇒ ’a

in the usual way, i.e. if a≤b then min a b is a, otherwise b. HOL also
introduces the functions

Min :: ’a set ⇒ ’a
Max :: ’a set ⇒ ’a

for the minimum or maximum of all values in a set.
All these functions are polymorphic and can be applied to terms of arbitrary
type. Even if the values of a type are not ordered, an application of an
ordering relation or minimum/maximum function to them is a correct term.

107



However, in that case the resulting value is underspecified, no information is
available about it. Also, the value of Min and Max is underspecified if applied
to an empty or infinite set.
Moreover, these are only syntactic definitions, no rules about orderings are
implied by them. For some of its predefined types, such as type nat, HOL
provides more specific specifications by overloading.
Like for (=) the type of term1 and term2 cannot be derived in a term such
as term1 < term2. There are relations with the same semantics but specific
operand types such as (⊆) for the relation (≤) on sets (see Section 5.4).

3.2.3 Lattice Operations

HOL introduces the two lattice operations

inf :: ’a ⇒ ’a ⇒ ’a
sup :: ’a ⇒ ’a ⇒ ’a

with the alternative operator names (u) and (t) for infix notation together
with the lattice constants

top :: ’a
bot :: ’a

with the alternative names (>) and (⊥) (in the interactive editor available
in the Symbols panel in the Logic tab).
Additionally there are the lattice operations for all values in a set (see Sec-
tion 5.4)

Inf :: ’a set ⇒ ’a
Sup :: ’a set ⇒ ’a

with the alternative operator names (
d
) and (

⊔
) for prefix notation.

HOL does not provide the six alternative names automatically. To make
them available, the command

unbundle lattice_syntax

must be used on theory level. It is available after importing the theory Main
(see Section 1.1.2).
The lattice operations and constants are polymorphic but are not available
for arbitrary types. They are overloaded only for those types which have a
corresponding structure. For example, type nat has the bot value (which is
equal to 0), but no top value. If a lattice operation or constant is used for a
type for which it is not available an error message of the form “No type arity
...” is signaled.

108



Like for equality and ordering relations, because the lattice operations and
constants are overloaded it is not possible to derive the type for valid operands.
Again, there are operations and constants with more specific operand types,
such as (∩) for (u) on sets where HOL automatically derives the operand
types.

3.3 Description Operators

A description operator selects a value from all values which satisfy a given
unary predicate.
Description operators use the binder syntax of the form OP x. term (see
Section 2.1.2). Like a lambda term it locally binds a variable x which may
occur in term.

3.3.1 The Choice Operator

An arbitrary value satisfying the given predicate λx. bterm can be denoted
by

SOME x. bterm

Only a single variable may be specified after SOME, however, like in a lambda
term a type may be specified for it.
The value denoted by the term is underspecified in the sense of Section 2.1.2.
The only information which can be derived for it is that it satisfies the
predicate λx. bterm. If there is no value which satisfies the predicate not
even this property may be derived.
The operator SOME is equivalent to the famous Hilbert choice operator. HOL
includes the axiom of choice and provides the operator on this basis.

3.3.2 The Definite Description Operator

If only one value satisfies the given predicate λx. bterm this value can be
denoted by

THE x. bterm

Like for SOME only a single variable may be specified with an optional type
specification.
The value denoted by the term is also underspecified. However, after proving
that there exists a value v which satisfies the predicate λx. bterm and that
all values satisfying the predicate are equal it is possible to prove that THE
x.bterm = v.

109



3.3.3 The Least and Greatest Value Operators

If the values satisfying a predicate λx. bterm are ordered, the least or great-
est of these values can be denoted by the terms

LEAST x. bterm
GREATEST x. bterm

Only a single variable with an optional type specification is useful to be
specified.
If the values satisfying the predicate are not ordered the value denoted by
such a term is underspecified. The operators use the ordering relations (≤)
and (≥) (see Section 3.2.2) which are applicable to values of arbitrary type.
The operators are defined using THE to return the value x which satisfies the
predicate and x ≤ y or x ≥ y holds, respectively, for all values y which also
satisfy the predicate.
Also, if the values are ordered but there is no single least or greatest value
among them the resulting value is underspecified. For example, the term
GREATEST n::nat. n > 0 is correct and denotes a value of type nat, although
no information is available about it.

3.4 Undefined Value

HOL introduces the undefined value

undefined :: ’a

which is overloaded for arbitrary types. It is completely underspecified as
described in Section 2.1.2, i.e., no further information is given about it.
Despite its name it is a well defined value for every type ’a. It is typically
used for values which are irrelevant, such as in the definition

definition f :: "nat ⇒ nat" where "f x ≡ undefined"

Although the function f looks like a completely undefined function, it is not
possible to define true partial functions this way. Functions in Isabelle are
always total. Function f maps every natural number to the (same) value
undefined, which is of type nat, but it cannot be proved to be equal to a
specific natural number such as 1 or 5. However, since it is a single value
the equality f x = f y holds for arbitrary x and y of type nat.

3.5 Let Terms

HOL extends the inner syntax for terms described in Section 2.1.2 by terms
of the following form

110



let x1 = term1; . . .; xn = termn in term

where x1, . . ., xn are variables. The variable bindings are sequential, i.e., if
i<j variable x i may occur in term j and denotes term i there. In other words,
the scope of x i are the terms term j with i<j and the term. If x i and x j are
the same variable, the binding of its second occurrence shadows the binding
of the first and ends the scope of the first occurrence.
Let terms are useful to introduce local variables as abbreviations for sub-
terms.
Don’t confuse the let term with the let statement described in Section 2.2.12.
Although they are used for a similar purpose there are several differences:
A let term belongs to the inner syntax of the object logic HOL, the let
statement belongs to the meta-level of the outer syntax. Moreover, the let
statement uses unification to bind sub-terms to unknowns in a term pattern,
a let term only binds explicitly specified terms to single variables.
The let term specified above is an alternative syntax for the nested let terms

let x1 = term1 in (. . . (let xn = termn in term) . . .)

and a single let term

let x = term’ in term

is an alternative syntax for the function application term

Let term’ (λx. term)

Here Let is the polymorphic function

Let :: ’a ⇒ (’a ⇒ ’b) ⇒ ’b ≡ λx f. f x

which simply applies its second argument to its first argument.
Occurrences of let terms are usually not automatically resolved by substitut-
ing the bound term for the variable. Therefore a proposition like (let x =
a+b in (x*x)) = ((a+b)*(a+b)) cannot be proved by the simplifier (or other
methods including simplification like auto, see Sections 2.3.6 and 2.3.7). To
resolve it, the simplifier must be configured by adding the definitional equa-
tion of Let as simp add: Let_def.

3.6 Tuples

HOL supports type expressions of the form t1 × . . . × tn for arbitrary
types t1, . . ., tn. They denote the type of n -tuples where the ith com-
ponent has type t i. Here the × is the “times operator” available in the
interactive editor in the Symbols panel in the Operator tab. An alternative

111



syntax is t1 * . . . * tn using the ASCII star character. As an example the
type nat × bool is the type of pairs of natural numbers and boolean values.
The type nat × ’a × bool is the polymorphic type of triples of a natural
number, a value of the arbitrary type denoted by the type parameter ’a, and
a boolean value. As usual, all these type expressions are part of the inner
syntax.
Values for n -tuples of type t1 × . . . × tn are denoted in inner syntax as
terms of the form (term1, . . ., termn) where term i is a term of type t i and
the parentheses and the comma belong to the syntax.

3.6.1 Function Argument Tuples

Every n -ary function of type t1 ⇒ . . . ⇒ tn ⇒ t (see Section 2.1.2) is
equivalent to a function of type (t1 × . . . × tn) ⇒ t with n -tuples as ar-
gument values, which is the common way in mathematics to represent a
function with n arguments. There is a 1-1 correspondence between func-
tions of these two forms. The first form is called the “curried” form and the
second form with tuples as arguments is called the “uncurried” form (named
after Haskell Curry who introduced the first form for n -ary functions). Note
that for unary functions both forms are the same.
Section 5.7 describes means to convert between both forms and other ways
how to work with them.

3.6.2 Relations as Tuple Sets

For an n -ary relation of type t1 ⇒ . . . ⇒ tn ⇒ bool (see Section3.1.3) the
uncurried form is a predicate of type (t1 × . . . × tn) ⇒ bool. Since all
arguments together are represented by a single tuple, this predicate is equiv-
alent to a set of type (t1 × . . . × tn) set (see Section3.1.2) where the el-
ements in the set are tuples. This is the usual form of representing relations
in mathematics.
HOL extends the convention described in Section 3.1.2 of providing relations
named namep or nameP also as set-valued functions named name by alterna-
tively using a tuple set named name.

3.7 Inductive Definitions

HOL supports inductive definitions of predicates as content in theories. An
inductive definition defines a predicate by derivation rules which allow to
derive the predicate values for some arguments from the values for other
arguments. An inductive definition for a k-ary predicate has the form

inductive name :: "t1 ⇒ . . . ⇒ tk ⇒ bool"

112



where P1 | . . . | Pn

with derivation rules P i. The type specification for the predicate may be
omitted if it can be derived from the use of the defined predicate in the rules
P i.

3.7.1 The Defining Rules

The P i are derivation rules which may be specified in inner syntax of the
form∧

x i1 . . . x ipi. [[Q i1; . . .; Q iqi]] =⇒ name term i1 . . . term ik

where the conclusion is always an application of the defined predicate to k
argument terms. The defined predicate name may occur in arbitrary ways in
the rule assumptions Q ij, but not in the argument terms term ij. The rule
separators | belong to the outer syntax, thus every rule must be separately
quoted.
An example is the following inductive definition for an evenness predicate:

inductive evn :: "nat ⇒ bool" where
"evn(0)" | "

∧
n. evn(n) =⇒ evn(n+2)"

Alternative Rule Forms

As for other derivation rules on theory level (see Section 2.1.5) the explicit
bindings of the variables x i1, . . ., x ipi are optional, variables occurring free
in the assumptions or the conclusion are always automatically bound. As
usual, types may be specified for (some of) the variables, so explicit bind-
ings can be used as a central place for specifying types for the variables, if
necessary. The equivalent example with omitted binding is

inductive evn :: "nat ⇒ bool" where
"evn(0)" | "evn(n) =⇒ evn(n+2)"

Alternatively a rule P i may be specified in the structured form described in
Section 2.1.5:

"name term i1 . . . term ik" if "Q i1" . . . "Q iqi" for x i1 . . . x ipi

where the assumptions and variables may be grouped by and and types may
be specified for (some of) the variable groups, however, no names may be
specified for assumption groups, because no proof is specified for the rules.
In this form the example is written

113



inductive evn :: "nat ⇒ bool" where
"evn(0)" | "evn(n+2)" if "evn(n)"

The rules P i are introduction rules (see Section 2.3.3) for the defined pred-
icate name in the sense that they introduce a specific application of name,
possibly depending on other applications of name. An inductive definition
turns the rules P i to valid facts “by definition” under the fact set name
name.intros. Explicit names for (some of) the rules may be specified in the
form

inductive name :: "t1 ⇒ . . . ⇒ tk ⇒ bool"
where rname1: P1 | . . . | rnamen: Pn

Using this form the example can be written as

inductive evn :: "nat ⇒ bool" where
zero: "evn(0)" | step: "evn(n) =⇒ evn(n+2)"

Note that the syntax of the defining rules only allows to specify when the
defined predicate is True, not when it is False. In particular, a rule conclusion
may not have the form of a negated application ¬ name term i1 . . . term ik.

Semantics of an Inductive Definition

To determine whether an application of the predicate to argument values
yields the value True the defining rules P i can be applied as introduction
rules in backward reasoning steps (see Section 2.3.3) until the predicate is
not present anymore. However, depending on the rules, this may not succeed.
If the defining rules P i would be the only information available about the
defined predicate, it would be underspecified for such cases. The specific
property of an inductive definition is the additional regulation that in all
such cases the predicate value is False. In other words, if it is not possible
to prove that the predicate value is True by using the defining rules it is
defined to be False. This can happen in two ways.
In the first case there is no rule for which the conclusion unifies with the
predicate application term. Consider the trivial inductive definition

inductive uspec1 :: "nat ⇒ bool" where "uspec1 3" | "uspec1 4"

The rules only unify with applications of uspec1 to the argument values 3
and 4, for them it can be derived that the predicate value is True. For all
other arguments the value is False.
In the example the value of (evn 3) is False because an application of the
defining rule step as backwards reasoning step leads to (evn 1) which does
not unify with the conclusion of either rule.

114



In the second case there are rule conclusions which unify with the predicate
application term, but there is no finite sequence of backward rule application
steps which removes all occurrences of the predicate. Consider the inductive
definition

inductive uspec2 :: "nat ⇒ bool" where "uspec2 i =⇒ uspec2 i"

Although the rule is trivially valid it cannot be used to prove that uspec2 is
True for any argument value. Therefore its value is False for all arguments.

Monotonicity Properties

Actually, this way of implicit specification when the predicate value is False
is only possible if all assumptions Q ij used in the rules satisfy a “monotonic-
ity” property for the defined predicate. HOL is able to prove these properties
for most forms of the assumptions Q ij automatically and then prove the rules
themselves and additional rules to be facts. In the interactive editor these
proof activities are displayed in the Output panel.
A common case where a rule assumption Q ij does not satisfy the monotonic-
ity property is if it contains an application of the defined predicate name in
negated form. Consider the inductive definition

inductive uspec3 :: "nat ⇒ bool" where "¬ uspec3 i =⇒ uspec3 i"

Although if uspec3 is defined as λi. True it would satisfy the defining rule,
the rule cannot be used to prove that uspec3 is True for any argument by
applying the rule in backward reasoning steps. Isabelle will signal an error
for the inductive definition, stating that the monotonicity proof failed for
the assumption ¬ uspec3 i. Note that negation may also occur in other
syntactic forms like uspec3 i = False or uspec3 i =⇒ i > 0.

3.7.2 Fixed Arguments

It may be the case that one or more arguments of the defined predicate
are “fixed”, i.e. in all defining rules the values of these arguments in the
conclusion are the same as in all assumptions. If this is the case for the first
m arguments the inductive definition can be specified in the form

inductive name :: "t1 ⇒ . . . ⇒ tk ⇒ bool"
for y1 . . . ym

where P1 | . . . | Pn

The variables y i may be grouped by and and types may be specified for
(some of) the groups.
Then the defining rules P i must have the form

115



∧
x i1 . . . x ipi. [[Q i1; . . .; Q iqi]] =⇒ name y1 . . . ym term i(m+1) . . . term ik

and every occurrence of name in the Q ij must also have y1 . . . ym as its first
m arguments.
Specifying fixed arguments is optional, it does not have any effect on the
defined predicate, however it makes the rules provided by HOL about the
predicate simpler (see below).
As an example consider the inductive definition of a divides predicate

inductive divides :: "nat ⇒ nat ⇒ bool"
for m
where "divides m 0" | "divides m n =⇒ divides m (n+m)"

3.7.3 The cases Rule

The general form of inductive definition constructs and automatically proves
the additional rule

[[name ?a1 . . . ?ak; RA1; . . .; RAn]] =⇒ ?P

where every RA i has the form∧
x i1 . . . x ipi. [[?a1=term i1; . . .; ?ak=term ik; Q i1; . . .; Q iqi]] =⇒ ?P

and names it name.cases.
This rule has the form of an elimination rule for the predicate as described
in Section 2.4.4. The major premise is the application name ?a1 . . . ?ak of
the defined predicate to arbitrary arguments. When the rule is applied by
the methods erule or cases to a goal it removes a predicate application
from the goal assumptions or the input facts, respectively, and splits the
goal into cases according to the defining rules of the predicate. The named
cases created by the cases method are named by numbers starting with 1.
The cases rule for the evenness example is evn.cases :

[[evn ?a; ?a = 0 =⇒ ?P;
∧
n. [[?a = n + 2; evn n ]] =⇒ ?P ]] =⇒ ?P

Since it is a case rule it can be displayed by print_statement in the alter-
native form (see Section 2.4.3):

fixes a1 . . . ak

assumes "name a1 . . . ak"
obtains C1 | . . . | Cn

where every case C i has the form

x i1 . . . x ipi where "a1=term i1" . . . "ak=term ik" "Q i1" . . . "Q iqi"

116



Together with name.cases the similar rule name.simps is provided. It is an
equation which substitutes an arbitrary application of name by a disjunction
of the cases according to the defining P i and may be used by the simplifier
(see Section 2.3.6). It is not added to the simpset automatically, because its
application may not terminate (e.g., for uspec2 as below).

Effect of Fixed Arguments

If the first m predicate arguments are fixed by for y1 . . . ym as above,
name.cases has the simpler form

[[name ?y1 . . . ?ym ?a1 . . . ?a (k−m); RA1; . . .; RAn]] =⇒ ?P

where every RA i has the form∧
x i1 . . . x ipi.

[[?a1=term i(m+1); . . .; ?a (k−m)=term ik; Q i1’; . . .; Q iqi’]] =⇒ ?P

and in the Q ij’ all applications of name have the unknowns ?y1 . . . ?ym

as their first arguments. In other words, the unknowns from the major
premise are directly used in place of the first m arguments in all predicate
applications without the need of corresponding equations. Therefore the rule
divides.cases for the divides predicate above is

[[dvds ?m ?a; ?a = 0 =⇒ ?P;
∧
n. [[?a = n + ?m; dvds ?m n ]] =⇒ ?P ]]

=⇒ ?P

Using the cases Rule

Due to its form the rule name.cases includes information about the implicit
definition of False predicate values. If a predicate application does not unify
with the conclusion of any P i there will be atleast one assumption ?a j=term ij

in every RA i which is false and thus makes RA i solved as a goal. Together that
proves that the predicate application implies arbitrary propositions which
means that it is False.
Consider the predicate uspec1 defined as above. The rule uspec1.cases is

[[uspec1 ?a; ?a=3 =⇒ ?P; ?a=4 =⇒ ?P ]] =⇒ ?P

The proposition uspec1 0 = False is equivalent to uspec1 0 =⇒ False (be-
cause the other direction is trivially valid) which can be proved as follows:

theorem "uspec1 0 =⇒ False"
apply (erule uspec1.cases)
by simp_all

117



The application of uspec1.cases creates the goals 0=3 =⇒ False and 0=4
=⇒ False which are solved by the simplifier.
Note that this does not work for the predicate uspec2. For it uspec2.cases
is

[[uspec2 ?a;
∧
i. [[?a = i; uspec2 i ]] =⇒ ?P ]] =⇒ ?P

and the application by erule to uspec2 0 =⇒ False yields the goal
∧
i. [[0

= i; uspec2 i ]] =⇒ False which is equivalent to the original goal. There-
fore even an iterated application by erule will not solve the goal in a finite
number of steps.

The cases Rule in Structured Proofs

The rule name.cases is attributed by [consumes 1], so that it can be applied
by the cases method in structured proofs (see Section 2.4.4). The example
above can be written

theorem "False" if "uspec1 0"
using that

proof (cases rule: uspec1.cases) qed simp_all

Note the use of the structured theorem form to put uspec1 0 into the proof
context with name that so that it is input by using that into the structured
proof and its initial method cases which consumes it.
Moreover, the rule name.cases is associated to the defined predicate name in
the following way: if the first input fact to the cases method has an induc-
tively defined predicate name as its outermost function, the rule name.cases
is the default rule applied by the method if no rule is explicitly specified. So
the proof for "False" if "uspec1 0" above can be abbreviated to

proof cases qed simp_all

or even shorter (see Section 2.2.3):

by cases simp_all

Note that this only works if the consumed predicate application is taken as
input fact, not if it is a goal assumption as in the proof script above.

3.7.4 The Induction Rule

The general form of inductive definition also constructs and automatically
proves the additional rule

[[name ?a1 . . . ?ak; RA1; . . .; RAn]] =⇒ ?P ?a1 . . . ?ak

118



where every RA i has the form∧
x i1 . . . x ipi. [[Q i1’; . . .; Q iqi’]] =⇒ ?P term i1 . . . term ik

and in the Q ij’ every application name t1 . . . tk of the predicate to argument
terms is replaced by the conjunction name t1 . . . tk ∧ ?P t1 . . . tk. The
rule is named name.induct.
This rule has the form of an induction rule extended by elimination for the
predicate as described in Section 2.4.5. The major premise is the application
name ?a1 . . . ?ak of the defined predicate to arbitrary arguments. The rule
is attributed by [consumes 1]. When it is applied by the methods induct
or induction to a goal it consumes a predicate application from the input
facts or the goal assumptions and splits the goal into cases according to the
defining rules of the predicate. The named cases created by the induction
methods are named by numbers starting with 1.
The induction rule for the evenness example is evn.induct :

[[evn ?a; ?P 0;
∧
n. [[evn n; ?P n ]] =⇒ ?P (n + 2)]] =⇒ ?P ?a

Using the Induction Rule

The induction rule can be used to prove properties about the defined pred-
icate name which may involve an iterated application of the defining rules.
It abstracts the goal conclusion to a function with the same arguments as
name and then splits it together with the predicate according to the predi-
cate’s defining rules. See the Isabelle documentation for corresponding proof
techniques.
Like name.cases the rule name.induct includes information about the im-
plicit definition of False predicate values. It covers the cases where a pred-
icate application unifies with the conclusion of a P i but cannot be reduced
in a finite number of backwards reasoning steps.
Consider the predicate uspec2 defined as above. The rule uspec2.induct is

[[uspec2 ?x;
∧
i. [[uspec2 i; ?P i ]] =⇒ ?P i ]] =⇒ ?P ?x

The proposition uspec2 0 =⇒ False can be proved as follows:

theorem "uspec2 0 =⇒ False"
apply (induction rule: uspec2.induct)
by simp

The application of uspec2.induct creates the goal
∧
i. [[uspec2 i; False ]]

=⇒ False which is solved by the simplifier. Actually, this works also for the
proposition uspec2 i =⇒ False because the conclusion does not depend on
the argument of uspec2

119



Note that this does not work for the predicate uspec1. For it uspec1.induct
is

[[uspec1 ?x; ?P 3; ?P 4 ]] =⇒ ?P ?x

and the application by induction to uspec1 0 =⇒ False yields two goals
False which cannot be proved.

The Induction Rule in Structured Proofs

Like name.cases the rule name.induct can also be applied in structured
proofs (see Section 2.4.5). The example above can be written

theorem "False" if "uspec2 0"
using that

proof (induct rule: uspec2.induct) qed simp

Moreover, the rule name.induct is associated to the defined predicate name in
the following way: if the first input fact to the induction or induct method
has an inductively defined predicate name as its outermost function, the rule
name.induct is the default rule applied by the methods if no rule is explicitly
specified. So the proof for "False" if "uspec2 0" above can be abbreviated
to

proof induction qed simp

or even shorter:

by induction simp

3.7.5 Single-Step Inductive Definitions

A simple case is an inductive definition where no rule assumption Q ij contains
an application of the defined predicate name. Then for every defining rule
a single backward reasoning step will remove the predicate and determine
its value. The rule name.cases contains the complete information about the
defined predicate and is sufficient for proving arbitrary properties about it.
Every predicate defined by an Isabelle definition (see Section 2.1.3)

definition name :: "t1 ⇒ . . . ⇒ tk ⇒ bool"
where "name x1 . . . xn ≡ term"

is equivalent to the predicate defined by the inductive definition

inductive name :: "t1 ⇒ . . . ⇒ tk ⇒ bool"
where "term =⇒ name x1 . . . xn"

120



Thus inductive definitions are a generalization of the basic Isabelle definitions
for predicates.
Here name cannot occur in term because Isabelle definitions do not support
recursion, therefore it is a single-step inductive definition with only one rule.
Vice versa, everey single-step inductive definition can be converted to an
Isabelle definition, where the term is mainly a disjunction of the left sides of
all defining rules. Actually, for this case the rule name.simps (see above) is
equivalent to the defining equation of the corresponding Isabelle definition.
For such predicates it is often simpler to use an Isabelle definition. However,
if there are a lot of alternative cases in term it may be easier to use the form
of an inductive definition. Note also, that there are predicates which cannot
be defined by an Isabelle definition but can be defined by a (non-single-step)
inductive definition.

3.7.6 Mutually Inductive Definitions

Inductively defined predicates may depend on each other. Then they must
be defined by a common inductive definition of the extended form

inductive name1 . . . namem

where P1 | . . . | Pn

The name i may be grouped by and and types may be specified for (some of)
the groups.
The defining rules P i have the same form as described above, however, every
conclusion may be an application of one of the defined predicates name i (with
arbitrary ordering of the rules) and every rule assumption Q ij may contain
applications of all defined predicates.
The following example defines predicates for even and odd numbers in a
mutually inductive way:

inductive evn odd :: "nat ⇒ bool" where
"evn(0)" | "odd(n) =⇒ evn(n+1)" | "evn(n) =⇒ odd(n+1)"

The set of defining rules is named name1_. . ._namem.intros. For every name i

separate rules name i.cases and name i.simps are created which cover only
the defining rules with name i in the conclusion. As induction rules the set
name1_. . ._namem.inducts is created containing for every name i an induction
rule with an application of name i as major premise. Additionally, a rule
name1_. . ._namem.induct is generated without elimination where the conclu-
sion is an explicit case distinction for all defined predicates.
For the example the rule evn_odd.induct is

[[?P1 0;
∧
n. [[odd n; ?P2 n ]] =⇒ ?P1 (n + 1);∧

n. [[evn n; ?P1 n ]] =⇒ ?P2 (n + 1)]]
=⇒ (evn ?x1 −→ ?P1 ?x1) ∧ (odd ?x2 −→ ?P2 ?x2)

121



3.8 Well-Founded Relations

A binary relation r of type t ⇒ t ⇒ bool (i.e., the related values are of
the same type) is called “well-founded” if every non-empty set of values of
type t has a “leftmost” element x for r which means that there is no y so
that r y x. If the relation (<) (see Section 3.2.2) is well-founded for a type
t this is usually described by “every non-empty set has a minimal element”.
HOL provides the predicate

wfP :: (’a ⇒ ’a ⇒ bool) ⇒ bool

which tests an arbitrary binary relation for being well-founded. The predi-
cate

wf :: (’a × ’a) set ⇒ bool

does the same for a binary relation in tuple set form (see Section 3.6.2).
For a well-founded relation of type t ⇒ t ⇒ bool also the universal set UNIV
:: t set (see Section 5.4.1) has a leftmost element, which is the leftmost
value of type t. Moreover, from that value all other values of type t can be
reached in a finite number of steps to a related value, or, if the relation is
transitive, even by a single step.
The best-known well-founded relation is the strict less-order (<) on the nat-
ural numbers. Note that (≤) is not well-founded because for every number
n there is n itself so that n ≤ n.

3.8.1 Induction

For every well-founded relation r the following principle of (transfinite) in-
duction is valid: If a property holds for a value whenever it holds for all
values “left” to it, the property holds for all values.
HOL provides the induction rules with elimination (see Section 2.4.5)
wfP_induct_rule:

[[wfP ?r;
∧
x. (

∧
y. ?r y x =⇒ ?P y) =⇒ ?P x ]] =⇒ ?P ?a

wf_induct_rule:
[[wf ?r;

∧
x. (

∧
y. (y, x) ∈ ?r =⇒ ?P y) =⇒ ?P x ]] =⇒ ?P ?a

Their major premise is well-foundedness of the relation ?r. The single case
corresponds to the induction principle.

3.8.2 The Accessible Part of a Relation

For an arbitrary binary relation r of type t ⇒ t ⇒ bool generally not
all values of t can be reached in a finite number of relation steps from

122



a leftmost element. HOL defines the predicate Wellfounded.accp by the
inductive definition (see Section 3.7)

inductive accp :: "(’a ⇒ ’a ⇒ bool) ⇒ ’a ⇒ bool"
for r :: "(’a ⇒ ’a ⇒ bool)"
where "(

∧
y. r y x =⇒ accp r y) =⇒ accp r x"

Its partial application accp r to a binary relation r is the predicate which
is True for all values of t which can be reached in a finite number of relation
steps from a leftmost element. These values are called the “accessible part”
of relation r.
HOL also defines the equivalent set-valued function (see Section 3.1.2) for
relations represented as tuple sets (see Section 3.6.2)

acc :: "(’a × ’a) set ⇒ ’a set"

which returns the accessible part of a relation as a set.
A binary relation r of type t ⇒ t ⇒ bool is well-founded if and only if its
accessible part accp r covers all values of t. If r is not well-founded there
may be several leftmost values in t or no such value (in the latter case the
accessible part is empty).
For arbitrary binary relations the induction principle can be used on the
accessible part. The corresponding induction rules provided by HOL are
accp_induct_rule:
[[Wellfounded.accp ?r ?a;∧

x. [[Wellfounded.accp ?r x;
∧
y. ?r y x =⇒ ?P y ]] =⇒ ?P x ]]

=⇒ ?P ?a

acc_induct_rule:
[[?a ∈ Wellfounded.acc ?r;∧

x. [[x ∈ Wellfounded.acc ?r;
∧
y. (y, x) ∈ ?r =⇒ ?P y ]] =⇒ ?P x ]]

=⇒ ?P ?a

Here the major premise is that the value ?a for which the property shall be
proved belongs to the accessible part of the relation. Also the induction step
is only done for values in the accessible part (if a value is in the accessible
part then also all values “left” to it).

3.8.3 Measure Functions

A binary relation r of type t ⇒ t ⇒ bool is well-founded if it is mapped
by a function f :: t ⇒ u into a well-founded relation s on type u. This is
the case if r x y =⇒ s (f x) (f y) for all values x and y of type t.
This property is often used to prove well-foundedness for a binary relation
r by specifically mapping it into the well-founded order (<) on type nat.

123



In this context the mapping function f :: t ⇒ nat is called a “measure
function”.
HOL provides the polymorphic function

measure :: (’a ⇒ nat) ⇒ (’a × ’a) set

which turns a measure function for values of an arbitrary type ’a to a relation
on ’a in tuple set form. The relation measure f relates values x and y if (f
x) < (f y).
The usual way to prove that a relation r of type t ⇒ t ⇒ bool is well-
founded is to design a measure function f :: t ⇒ nat and prove that r x
y =⇒ (measure f) x y.

3.8.4 The size Function

HOL introduces the polymorphic function

size :: ’a ⇒ nat

which is overloaded for many HOL types. If it is not supported for a type an
application to a value of that type will result in an error message “No type
arity ...”.
The size function is intended as a standard measure function for prov-
ing well-foundedness of relations on type ’a with the help of the function
measure. However, there may be relations where this does not work and a
different measure function is required.
Note that the concept of size and measure actually depends on the specific
HOL type nat, which is introduced in Section 5.3.

3.9 The Proof Method atomize_elim

As a useful method for proving elimination rules (see Section 2.4.4) includ-
ing the more specific case rules (see Section 2.4.3) and the goals of obtain
statements (see Section 2.2.11) HOL introduces the proof method

atomize_elim

It only affects the first goal. Assume that this goal has the form of an
elimination rule

theorem " [[RA1;. . .;RAm; P1; . . .; Pk]] =⇒ P" 〈proof 〉

where every P i is a rule of the form∧
x i1. . .x ipi. [[Q i1;. . .;Q iqi]] =⇒ P

124



(see Section 2.4.4). The method converts the goal to the form

[[RA1; . . .; RAm]] =⇒ D1 ∨ . . . ∨ Dp

where every D i has the form ∃ x i1. . .x ipi. Q i1 ∧ . . . ∧ Q iqi. For the quantifier
∃ and the boolean operators ∨ and ∧ see Section 5.1.3. Because the converted
goal does not contain the technical variable P any more and uses the boolean
operators it is sometimes easier to prove it.
If the method is applied to the initial goal of the example elimination rule
theorem

theorem elimexmp: " [[(x::nat) ≤ c; x < c =⇒ P; x = c =⇒ P ]] =⇒ P"

in Section 2.4.4 it converts the goal to

x ≤ c =⇒ x < c ∨ x = c

which can be solved by method auto.
If atomize_elim is applied to the initial goal of the example case rule theorem

theorem mycaserule: " [[n = 0 =⇒ P; n 6= 0 =⇒ P ]] =⇒ P"

in Section 2.4.3 it converts the goal to

n = 0 ∨ n 6= 0

which can be solved by method simp.
If atomize_elim is applied to the initial goal of the example obtain statement

obtain y z where "x = y - 3" and "y + z = 2*x +8"

in Section 2.2.11 it converts the goal to

∃ y z. x = y - 3 ∧ y + z = 2 * x + 8

which can be solved by method arith (see Section 2.3.7).

3.10 Recursive Functions

HOL supports the definition of recursive functions in the form

function name :: "t1 ⇒ . . . ⇒ tk ⇒ type"
where eq1 | . . . | eqn 〈proof 〉

The type specification for the function may be omitted if it can be derived
from the use of the function in the eq i.

125



The definition resembles an Isabelle definition as described in Section 2.1.3,
but instead of a single defining equation there may be arbitrary many defin-
ing equations eq i followed by a proof. Also other than for an Isabelle defini-
tion the part name . . . where cannot be omitted, because the name must be
known to check whether the equations have the correct form.
Compared with the inductive definitions in Section 3.7 recursive functions
can not only be predicates but may have an arbitrary result type and equa-
tions are used instead of defining rules.

3.10.1 The Defining Equations

Each of the defining equations eq i has the general form of a derivation rule
(see Section 2.1.5) with an equation as its conclusion:∧

x i1 . . . x ipi. [[Q i1; . . .; Q iqi]] =⇒ name term i1 . . . term ik = term i

It is specified in inner syntax. The separating bars | belong to the outer
syntax, therefore each equation must be separately quoted. Note that the
conclusion must be an equation using the symbol = instead of ≡. The left
side of the equation is restricted to the form of a (non-partial) application
of the defined function to argument terms, i.e., if the defined function has k
arguments according to its type, in every equation it must be applied to k
terms. If the conclusion is no equation or if the left side has a different form
an error is signaled.
Other than in an Isabelle definition the equations may be recursive, i.e. the
defined function name may be used in term i on the right side of the equation
(but not in the Q ij or term ij). It may be used in arbitrary ways, also by
partial application or by passing it as argument to other functions.
The familiar example of the faculty function can be defined using two defining
equations in the form

function fac :: "nat ⇒ nat" where
"fac 0 = 1"

| "
∧
n. n > 0 =⇒ fac n = n * fac (n-1)"

〈proof 〉

The bound variables x1, . . ., x ipi may occur in the assumptions and in the
conclusion. However, if a bound variable occurs in term i on the right side it
must also occur in one or more of the term ij on the left side, otherwise an
error is signaled.
After termination has been proved (see the subsection on termination below)
for the recursive function definition the defining equations are available as
the fact set name.simps. Note that no defining equation name_def (see Sec-
tion 2.1.6) exists for recursively defined functions, instead the set name.simps
plays the corresponding role.

126



Alternative Rule Forms

As for other derivation rules on theory level (see Section 2.1.5) the explicit
bindings are optional, variables occurring free in the assumptions or the
conclusion are always automatically bound. As usual, types may be specified
for (some of) the variables, so explicit bindings can be used as a central place
for specifying types for the variables, if necessary. An equivalent definition
for the faculty is

function fac :: "nat ⇒ nat" where
"fac 0 = 1"

| "n > 0 =⇒ fac n = n * fac (n-1)"
〈proof 〉

where the binding of n is omitted.
Alternatively an equation eq i may be specified in the structured form de-
scribed for derivation rules in Section 2.1.5:

"name term i1 . . . term ik = term i" if "Q i1" . . . "Q iqi" for x i1 . . . x ipi

where the assumptions and variables may be grouped by and and types may
be specified for (some of) the variable groups, however, no names may be
specified for assumption groups.
In this form the faculty definition becomes

function fac :: "nat ⇒ nat" where
"fac 0 = 1"

| "fac n = n * fac (n-1)" if "n > 0"
〈proof 〉

Note that on the left side of the equations the arguments may be specified
by arbitrary terms, not only by variables. Therefore the faculty function can
also be defined in the form

function fac2 :: "nat ⇒ nat" where
"fac2 0 = 1"

| "fac2 (n+1) = (n+1) * fac2 n"
〈proof 〉

where the assumption is not required anymore for the second equation.
It is also possible to explicitly name (some of) the single equations by spec-
ifying the recursive definition in the form

function name :: "t1 ⇒ . . . ⇒ tk ⇒ type" where
eqname1: eq1 | . . . | eqnamen: eqn 〈proof 〉

Every function name defined by the Isabelle definition (see Section 2.1.3)

127



definition name :: "t1 ⇒ . . . ⇒ tk ⇒ type"
where "name x1 . . . xn ≡ term"

is equivalent to the function defined by the recursive definition

function name :: "t1 ⇒ . . . ⇒ tk ⇒ type"
where name_def: "name x1 . . . xn = term" 〈proof 〉

which actually does not use recursion.

3.10.2 Covering All Arguments

As described in Section 2.1.2 functions in Isabelle must be total, they must be
defined for all possible arguments. It is easy to fail doing so when specifying
the defining equations for a recursive function definition. Consider

function nototal :: "nat ⇒ nat" where
"nototal 5 = 6" 〈proof 〉

The function is only defined for the value 5, no definition is given for the
other natural numbers.
Therefore HOL expects a proof that the equations are complete in the sense
that they cover all possible cases for the function arguments. In the general
case it creates a goal of the form∧
P x.
[[
∧
x11 . . . x1p1. [[Q11; . . .; Q1q1; x = (term11, . . ., term1k)]] =⇒ P;
. . .∧
xn1 . . . xnpn. [[Qn1; . . .; Qnqn; x = (termn1, . . ., termnk)]] =⇒ P ]]

=⇒ P

which must be proved in the recursive function definition’s 〈proof 〉. This goal
has the form of a case rule (see Section 2.4.3) before replacing the variable
P by an unknown upon turning it to a fact. It specifies that x covers all
possible cases. The variable x is set to the tuples of all the argument terms
used on the left side of all equations.
Using tuples here depends on the specific HOL type constructor prod, which
is introduced in Section 5.6. The goal could also be constructed without
using tuples, however, it is more compact like that.
Note that the goal does not mention the defined function name at all. It is
only about the groups of the argument terms in the equations.
For the faculty function defined as above the goal is∧
P (x::nat). [[x = 0 =⇒ P;

∧
n. [[0 < n; x = n ]] =⇒ P ]] =⇒ P

128



It can be proved by method auto (see Section 2.3.7).
After the proof of the recursive function definition the goal is available as
a case rule named name.cases. If applied by the proof method cases (see
Section 2.4.3) it splits a goal and introduces named cases (named by numbers
starting at 1) according to the argument regions in the defining equations of
function name.
If the function name has only one argument name.cases is a usual case rule
for the argument type, otherwise it is a case rule for the type of the argument
tuples.

Using Proof Method atomize_elim

Since the goal has the form of a case rule the method atomize_elim (see
Section 3.9) can be applied to it. It converts the general form of the goal to
the form∧
x.

(∃ x11 . . . x1p1. Q11 ∧ . . . ∧ Q1q1 ∧ x = (term11, . . ., term1k)
∨ . . .
∨ (∃ xn1 . . . xnpn. Qn1 ∧ . . . ∧ Qnqn ∧ x = (termn1, . . ., termnk)

which directly expresses that the cases together cover all possibilities and
may be easier to prove. In many simple cases of recursive function definitions,
however, the method is not necessary and the goal can be proved by an
automatic method like auto or blast (see Section 2.3.7).
For the faculty function defined as above the converted goal is∧
x::nat. x = 0 ∨ (∃ n. n > 0 ∧ x = n)

which can also be proved by method auto, so the method atomize_elim is
not necessary here.

Recursive Definitions vs. Inductive Definitions

In principle an inductively defined predicate name (see Section 3.7) could be
defined recursively by adding the cases where it has the value False, so that
all arguments are covered. The evenness predicate from Section 3.7.1 can be
defined by

function evn :: "nat ⇒ bool" where
"evn 0 = True" | "evn 1 = False" | "evn (n+2) = evn n"
〈proof 〉

because the cases 0, 1, and n+2 cover all natural numbers.

129



However, this is not always possible. It may not be possible to give an
explicit specification for the arguments where the predicate value is False or
the termination proof (see Section 3.10.6) may fail.
Generally, an inductive definition is simpler because it only specifies the
positive cases and only these must be proved in proofs of properties of the
defined predicate. On the other hand, if the negative cases are of interest
they are directly provided by a recursive definition and the defining equations
of a recursive definition can be used for rewriting (see Section 2.3.6).

3.10.3 Uniqueness

As usual, a function must be unique, mapping every argument to only one
value. It is easy to fail doing so, consider

function nounique :: "nat ⇒ nat" where
"nounique 5 = 6"

| "nounique 5 = 7"
〈proof 〉

The function maps the value 5 to two different values 6 and 7 (and thus is
no function anymore).
Therefore HOL expects a proof that the equations are compatible in the sense
that they cover disjoint arguments spaces or, if the spaces of two equations
overlap, the equations specify the same function values on the overlapping
regions. In the general case HOL creates (after the goal for equation com-
pleteness) for every pair of equations eq i and eq j where i ≤ j a goal of the
form∧
x i1 . . . x ipi x j1’ . . . x jpj’.
(term i1, . . ., term ik) = (term j1, . . ., term jk) =⇒ term i = term j

Here x jb’ is a renamed x jb to avoid a name clash with an x ia if necessary.
The renamed variables are consistently replaced in all terms. Moreover, all
occurrences of the defined function name in term i and term j are replaced by
name_sumC which is the uncurried (see Section 5.6.3) form of name where the
arguments are specified as a tuple.
Together these are

∑n
i=1 i = (n + 1) ∗ n/2 goals where n is the number of

equations. The proof of these goals depends on the types and functions used
in the equations, for many simple cases it can be done by method auto which
solves all goals together.
For the faculty function defined as above these are the three goals

0 = 0 =⇒ 1 = 1∧
n. [[0 < n; 0 = n ]] =⇒ 1 = n * fac_sumC (n - 1)∧
n na. [[0 < n; 0 < na; n = na ]]
=⇒ n * fac_sumC (n - 1) = na * fac_sumC (na - 1)

130



where the first and third are trivial and the second is valid because the two
assumptions are a contradiction (because the argument spaces are disjoint).
All three goals are solved together by a single application of method auto
(see Section 2.3.7).

3.10.4 The Domain Predicate

Even if the defining equations cover all possible arguments and define the
function values in a unique way the function value may still be underspecified
for some arguments. Consider the recursive definition

function uspec :: "nat ⇒ nat" where
"uspec i = uspec i"
by auto

The proof of equation completeness and compatibility is successfully done
by the auto method and the definition introduces the total function uspec,
however, no information is available about its result values.
Information about result values must either be specified directly on the right
side of a non-recursive equation eq i or it must be derivable by a finite number
of substitutions using the equations. Such a substitution mainly replaces the
function arguments specified on the left side of the equation by the arguments
used in the recursive calls on the right side.
Therefore HOL creates for every recursive definition of a function name the
relation name_rel which relates for all defining equations the arguments of
every recursive call on the right side to the arguments on the left side. Ac-
tually, name_rel relates argument tuples, like the arguments of name_sumC as
described above. It is defined inductively (see Section 3.7) using defining
rules of the form∧

x i1 . . . x ipi. [[Q i1; . . .; Q iqi]] =⇒
name_rel (term ij1, . . ., term ijk) (term i1, . . ., term ik)

where term ij l is the l -th argument in the j -th recursive call of name in term i.
There is one such rule for every recursive call occurring in the defining equa-
tions eq i. The defined relation name_rel never occurs in the Q ij, therefore it
is a single-step inductive definition (see Section 3.7.5) which could also have
been specified as an Isabelle definition.
For the faculty function defined as above the corresponding definition of the
relation fac_rel is

inductive fac_rel :: "nat ⇒ nat ⇒ bool"
where "0 < n =⇒ fac_rel (n - 1) n"

with only one rule because there is only one recursive call in the definition.
This relation relates every natural number with its immediate successor.

131



Now it is possible to characterize the arguments for which the function
value is fully specified by the accessible part Wellfounded.accp name_rel of
name_rel (see Section3.8.2). Every substitution by an equation eq i corre-
sponds to an application of name_rel from right to left, every chain of such
applications is finite on its accessible part.
For every recursive definition of a function name :: t1 ⇒ . . . ⇒ tk ⇒ type
HOL defines the abbreviation

abbreviation name_dom :: "(t1 × . . . × tk) ⇒ bool" where
"name_dom ≡ Wellfounded.accp name_rel"

called the “domain predicate” for the argument tuples for which name is fully
specified.
For the faculty function the domain predicate is defined by

abbreviation fac_dom :: "nat ⇒ bool" where
"fac_dom ≡ Wellfounded.accp fac_rel"

Since every natural number can be reached by a finite number of steps start-
ing at 0 this predicate is True for all natural numbers.

3.10.5 Rules Provided by Recursive Definitions

HOL automatically creates and proves some additional rules from a recursive
definition and its proof. The domain predicate is used in these rules to
exclude underspecified cases.

Simplification Rules

HOL automatically creates and proves simplification rules which directly
correspond to the defining equations eq i. Every such rule is guarded by the
domain predicate for the arguments of the substituted function application.
For the equation eq i in the general form as given above the rule is

[[Q i1; . . .; Q iqi; name_dom (term i1, . . ., term ik)]] =⇒
name term i1 . . . term ik = term i

where all occurrences of the bound variables x i1, . . ., x ipi have been re-
placed by corresponding unknowns. The set of all these simplification rules
is named name.psimps. The rules are not added to the simpset automatically,
they can be explicitly used for “unfolding” the recursive definition in one or
more steps. If individual names have been specified for (some of) the eq i

these names denote the corresponding facts in name.psimps.

132



Elimination Rule

HOL also creates an elimination rule (see Section 2.4.4) name.pelims where
the major premise has the form name ?x1 . . . ?xk = ?y and the rule replaces
it mainly by case assumptions according to the defining equations.

Induction Rule

HOL also creates and proves a single induction rule name.pinduct of the form

[[name_dom (?a1, . . ., ?ak); RA1; . . .; RAn]] =⇒ ?P ?a1 . . . ?ak

where every RA i has the form∧
x i1 . . . x ipi.
[[name_dom (term i1, . . ., term ik); Q i1; . . .; Q iqi; R i1; . . .; R iri]]
=⇒ ?P term i1 . . . term ik

and every R ij has the form ?P term ij1 . . . term ijk where term ij l is the l -th
argument in the j -th recursive call of name in term i.
It can be used for induction with elimination (see Section 2.4.5) where the
major premise is the domain predicate for the arguments of the proved prop-
erty ?P which is usually a property of the defined function name applied to
these arguments. The cases correspond to the defining equations and are
named by numbers starting with 1. The induction step in every case goes
from the arguments of the recursive calls in term i to the arguments on the
left side of eq i. This form of induction is also called “computation induction”.
For the faculty function defined as above the induction rule fac.pinduct is

[[fac_dom ?a; fac_dom 0 =⇒ ?P 0;∧
n. [[fac_dom n; 0 < n; ?P (n - 1)]] =⇒ ?P n ]] =⇒ ?P ?a

3.10.6 Termination

In programming languages a recursively defined function name is only con-
sidered correct if its value can be determined for every argument by simpli-
fication using name.psimps in a finite number of steps (i.e., its computation
terminates). This is only the case if the argument (tuple) satisfies the do-
main predicate. Therefore it is often of interest to prove that this is the case
for all possible argument (tuple)s. HOL provides specific support for proving
this property.
The corresponding theorem for a recursively defined function name :: t1 ⇒
. . . ⇒ tk ⇒ type is

theorem "∀ x :: (t1 × . . . × tk). name_dom x" 〈proof 〉

133



stating that all possible argument tuples satisfy the domain predicate name_dom
(for the quantifier ∀ see Section 5.1.3). HOL provides the equivalent abbre-
viated form

termination name 〈proof 〉

which is called a “termination proof” for the recursive function name. If name
is omitted it refers to the last previously defined recursive function.

The Proof Method relation

Note that this theorem is equivalent to the property that the relation name_rel
is well-founded. As described in Section 3.8.3 it can be proved by proving
that name_rel x y =⇒ (measure f) x y holds for a measure function f ::
(t1 × . . . × tk) ⇒ nat. HOL provides the proof method

relation "M"

which replaces the original goal of a termination proof for name by the goals

wf M
R1

. . .
R r

where every Rh corresponds to a defining rule for name_rel (see Section 3.10.4)
in name_rel.intros (see Section 3.7.1) and has the form∧

x i1 . . . x ipi. [[Q i1; . . .; Q iqi]] =⇒
((term ij1, . . ., term ijk), (term i1, . . ., term ik)) ∈ M

where term ij l is the l -th argument in the j -th recursive call of name in term i.
The goals R1, . . ., R r together are equivalent to the goal name_rel x y =⇒
M x y.
The proof method is usually applied in the form

relation "measure f"

for an appropriate measure function f as above. It must be constructed
so that for every tuple (term ij1, . . ., term ijk) of arguments for a recursive
call the value is strictly lower than for the argument tuple (term i1, . . .,
term ik) in the defining equations eq i. The resulting goals wf (measure f)
and R1, . . ., R r are often solved by method auto (see Section 2.3.7). Then
the termination proof has the form

termination name by (relation "measure f") auto

134



For the faculty function defined as above the goal of the termination proof
is

∀ x :: nat. fac_dom x

which is true as argued above. To prove it, the identity function λn. n is
an applicable measure function because n > 0 =⇒ n-1 < n. Applying the
relation method with it yields the two goals

wf (measure (λn. n))∧
n. 0 < n =⇒ (n - 1, n) ∈ measure (λn. n)

They can be solved together by method auto, therefore a termination proof
for the faculty definition can be specified as

termination fac by (relation "measure (λn. n)") auto

The Proof Methods lexicographic_order and size_change

HOL also provides the proof method

lexicographic_order

and the stronger method

size_change

for termination proofs. They try to automatically construct a measure func-
tion from the size function (see Section 3.8.4) combined in a lexicographic
way for argument tuples. They are applied to the original goal and if they
are successful they solve it completely, otherwise an error is signaled. Using
the first method a termination proof has the form

termination name by lexicographic_order

Since for type nat the size function is the identity the termination proof for
the faculty function may also be specified as

termination fac by lexicographic_order

3.10.7 Rules Provided by Termination Proofs

A termination proof for a function name using the command termination
provides the additional rules name.simps, name.elims, and name.induct. They
result from the corresponding rules provided by the recursive definition by

135



removing all applications of the domain predicate name_dom. This is valid
because the termination proof has shown that it is always True.
Specifically, the resulting simplification rules exactly correspond to the defin-
ing equations and can be used for unfolding the definition for a function
application in one or more steps.
If individual names have been specified for (some of) the eq i the termi-
nation proof replaces the associated facts from name.psimps by those from
name.simps.
The resulting induction rule is a plain induction rule without elimination of
the form

[[RA1; . . .; RAn]] =⇒ ?P ?a1 . . . ?ak

where every RA i has the form∧
x i1 . . . x ipi. [[Q i1; . . .; Q iqi; R i1; . . .; R iri]]
=⇒ ?P term i1 . . . term ik

and every R ij has the form ?P term ij1 . . . term ijk where term ij l is the l -th
argument in the j -th recursive call of name in term i.
For the faculty function defined as above the induction rule fac.induct is

[[?P 0;
∧
n. [[0 < n; ?P (n - 1)]] =⇒ ?P n ]] =⇒ ?P ?a

To use the rule with the proof methods induct and induction (see Sec-
tion 2.4.5) it must always be specified explicitly in the form

induct . . . rule: name.induct

3.10.8 Mutual Recursion

If several recursive functions are defined depending on each other they must
be defined together in a single recursive definition of the form

function name1 . . . namem

where eq1 | . . . | eqn 〈proof 〉

The name i may be grouped by and and types may be specified for (some of)
the groups.
The defining equations eq i have the same form as described above, however,
every left side may be an application of one of the defined functions name i

(with arbitrary ordering of the rules) and every right side term i may contain
applications of all defined functions.
A mutual recursive definition of the predicates evn and odd (see Section 3.7.6)
is

136



function evn odd :: "nat ⇒ bool"
where "evn 0 = True" | "odd 0 = False"
| "evn (n+1) = odd n" | "odd (n+1) = evn n"
〈proof 〉

The simplification and elimination rules are provided for every defined func-
tion as name i.psimps, name i.pelims, name i.simps, and name i.elims. The in-
duction rules are provided for all defined functions together in the sets named
name1_. . ._namem.pinduct and name1_. . ._namem.induct.
The domain predicate and the corresponding relation are common for all de-
fined functions and are named name1_. . ._namem_dom and name1_. . ._namem_rel.
They are defined on values of the sum type (see Section 5.9) of the argu-
ment tuples of all defined functions, this is also the case for the function
name1_. . ._namem_sumC used in the goals for the uniqueness proof. Also a
measure function used in a termination proof must be defined on this sum
type.
A termination proof can use the name of either defined function to refer to
the mutual recursive definition.

137



Chapter 4

Isabelle HOL Type Definitions

This chapter introduces mechanisms defined by HOL which are used to pop-
ulate HOL with many of its mathematical objects and functions and which
can also be used to extend HOL to additional kinds of objects. Basically
these mechanisms support the definition of new types in outer syntax.

4.1 Algebraic Types

Roughly an algebraic type is equivalent to a union of tuples with support for
recursion, which allows nested tuples. In this way most data types used in
programming languages can be covered, such as records, unions, enumera-
tions, and pointer structures. Therefore HOL also uses the notion “datatype”
for algebraic types.

4.1.1 Definition of Algebraic Types

Basically, an algebraic type is defined in the form

datatype name = alt1 | . . . | altn

where name is the name of the new algebraic type and every alternative alt i

is a “constructor specification” of the form

cname i "type i1" . . . "type iki"

The cname i are names and the type ij are types. The types are specified in
inner syntax and must be quoted, if they are not a single type name. All
other parts belong to the outer syntax.
Recursion is supported for the types, i.e., the name name of the defined type
may occur in the type specifications type ij. However, there must be atleast
one constructor specification which is not recursive, otherwise the definition

138



does not “terminate”. Isabelle checks this condition and signals an error if it
is not satisfied.
As a convention, capitalized names are used in HOL for the cname i.
An example for a datatype definition with two constructor specifications is

datatype coord =
Dim2 nat nat

| Dim3 nat nat nat

Its value set is equivalent to the union of pairs and triples of natural numbers.
An example for a recursive datatype definition with two constructor specifi-
cations is

datatype tree =
Leaf nat

| Tree nat tree tree

Its value set is equivalent to the set of all binary trees with a natural number
in every node.
Like declared types algebraic types may be parameterized (see Section 2.1.2):

datatype (’name1,. . .,’namem) name = alt1 | . . . | altn

where the ’name i are the type parameters. They may occur in the type
specifications type ij, i.e., the type ij may be polymorphic (see Section 2.1.2).
As usual, the parentheses may be omitted if there is only one type parameter.
An example for a parameterized datatype definition with one type parameter
is

datatype ’a coordx =
Dim2 ’a ’a

| Dim3 ’a ’a ’a

Its value set is equivalent to the union of pairs and triples of values of the
type parameter. The type coord is equivalent to the type nat coordx. The
type real coordx is equivalent to the union of pairs and triples of values of
type real of the real numbers.

4.1.2 Constructors

Every cname i is used by the definition to introduce a “(value) constructor
function”, i.e., a constant

cname i :: "type i1 ⇒ . . . ⇒ type iki ⇒ name"

139



which is a function with ki arguments mapping their arguments to values of
the new type name.
Every datatype definition constitutes a separate namespace for the functions
it introduces. Therefore the same names may be used in constructor specifi-
cations of different datatype definitions. If used directly, a name refers to the
constructor function of the nearest preceding datatype definition. To refer
to constructor functions with the same name of other datatypes the name
may be qualified by prefixing it with the type name in the form name.cname i.
The definition of type coord above introduces the two constructor functions
Dim2 :: nat ⇒ nat ⇒ coord and Dim3 :: nat ⇒ nat ⇒ nat ⇒ coord. Their
qualified names are coord.Dim2 and coord.Dim3.

Constructing Values

These constructor functions are assumed to be injective, thus their result
values differ if atleast one argument value differs. This implies that the set
of all values of the constructor function cname i is equivalent to the tuples of
the value sets of type i1 . . . type iki: for every tuple of arguments there is a
constructed value and vice versa. Note, however, that as usual the values of
the new type are distinct from the values of all other types, in particular,
they are distinct from the argument tuples.
Moreover the result values of different constructor functions are also assumed
to be different. Together the set of all values of the defined type is equivalent
to the (disjoint) union of the cartesian products of all constructor argument
types. Moreover, every value of the type may be denoted by a term

cname i term1 . . . termki

where each term j is of type type ij and specifies an argument for the con-
structor function application.
Together, datatypes have what is called “free constructors” in Isabelle: the
constructors are injective, disjoint, and exhaustive (they cover all values of
the type).
Values of type coord as defined above are denoted by terms such as Dim2 0
1 and Dim3 10 5 21.

Constant Constructors and Enumeration Types

A constructor specification may consist of a single constructor name cname i,
then the constructor function has no arguments and always constructs the
same single value. The constructor is equivalent to a constant of type name.
As a consequence an “enumeration type” can be defined in the form

datatype three = Zero | One | Two

140



This type three has three values denoted by Zero, One, and Two.

Types with a Single Constructor

If a datatype definition consists of a single constructor specification its value
set is equivalent to the constructor argument tuples. The corresponding
tuples have a separate component for every constructor argument type. As
a consequence a “record type” can be defined in the form

datatype recrd = MkRecrd nat "nat set" bool

Its values are equivalent to triples where the first component is a natural
number, the second component is a set of natural numbers, and the third
component is a boolean value. An example value is denoted by MkRecrd 5
{1,2,3} True.
Since there must be atleast one nonrecursive constructor specification, defi-
nitions with a single constructor specification cannot be recursive.

4.1.3 Destructors

Since constructor functions are injective it is possible to determine for every
value of the defined type the value of each constructor argument used to
construct it. Corresponding mechanisms are called “destructors”, there are
three different types of them.

Selectors

The most immediate form of a destructor is a selector function. For the
constructor argument specified by type ij the selector function is a function
of type name ⇒ type ij. For every value constructed by cname i term1 . . .

termki it returns the value denoted by term j.
The names of selector functions must be specified explicitly. This is done
using the extended form of a constructor specification

cname i (sname i1 : "type i1") . . . (sname iki : "type iki")

where the sname ij are the names used for the corresponding selector func-
tions. Selector names may be specified for all or only for some constructor
arguments. As for constructors, selector names belong to the namespace of
the defined type and may be qualified by prefixing the type name.
An example datatype definition with selectors is

datatype recrd = MkRecrd (n:nat) (s:"nat set") (b:bool)

141



It shows that the selector functions correspond to the field names used in
programming languages in record types to access the components. For every
term r of type recrd the selector term s r denotes the set component of r.
An example for a datatype with multiple constructor specifications is

datatype coord =
Dim2 (x:nat) (y:nat)

| Dim3 (x:nat) (y:nat) (z:nat)

Note that the selectors x and y are specified in both alternatives. Therefore
a single selector function x :: coord ⇒ nat is defined which yields the first
component both for a two-dimensional and a three-dimensional coordinate
and analogously for y. If instead the definition is specified as

datatype coord =
Dim2 (x2:nat) (y:nat)

| Dim3 (x3:nat) (y:nat) (z:nat)

two separate selector functions x2 and x3 are defined where the first one is
only applicable to two-dimensional coordinates and the second one only to
three-dimensional coordinates.
If a selector name does not occur in all constructor specifications, the selector
function is still total, like all functions in Isabelle, but it is underspecified (see
Section 2.1.2). It maps values constructed by other constructors to a unique
value of its result type, even if that other constructor has no argument of
this type. However, no information is available about that value.
For the type coord the selector function z :: coord ⇒ nat is also applicable
to two-dimensional coordinates, however, the values it returns for them is not
specified.
Such selector values are called “default selector values”. They may be speci-
fied in the extended form of a datatype definition

datatype name = alt1 | . . . | altn

where "prop1" | . . . | "propm"

where every propp is a proposition of the form

sname ij (cname q var1 . . . varkq) = termp

and specifies termp as the default value of selector sname ij for values con-
structed by cname q.
The definition

datatype coord =
Dim2 (x:nat) (y:nat)

| Dim3 (x:nat) (y:nat) (z:nat)
where "z (Dim2 a b) = 0"

142



specifies 0 as default value for selector z if applied to a two-dimensional
coordinate.

Discriminators

If an underspecified selector is applied to a datatype value it may be useful
to determine which constructor has been used to construct the value. This is
supported by discriminator functions. For every constructor specification for
cname i the discriminator function has type name ⇒ bool and returns true for
all values constructed by cname i. Like selector names, discriminator names
must be explicitly specified using the extended form of a datatype definition

datatype name = dname1: alt1 | . . . | dnamen: altn

Discriminator names may be specified for all alternatives or only for some
of them. Note that for a datatype with a single constructor the discrim-
inator returns always True and for a datatype with two constructors one
discriminator is the negation of the other.
An example datatype definition with discriminators is

datatype coord =
is_2dim: Dim2 nat nat

| is_3dim: Dim3 nat nat nat

In a datatype definition both discriminators and selectors may be specified.

The case Term

Additionally to using discriminators and selectors HOL supports case terms.
A case term specifies depending on a datatype value a separate term variant
for every constructor of the datatype. In these variants the constructor
arguments are available as bound variables.
A case term for a datatype name defined as in Section 4.1.1 has the form

case term of
cname1 var11 . . . var1k1 ⇒ term1

| . . .
| cnamen varn1 . . . varnkn ⇒ termn

where term is of type name and the term i have an arbitrary but common type
which is also the type of the case term. In the alternative for constructor
cname i the var11 . . . var1k1 must be distinct variables, they are bound to
the constructor arguments and may be used in term i to access them. The
value of var ij is the same as the value selected by sname ij term.
Actually, a case term is only an alternative syntax for the function applica-
tion term

143



case_name
(λ var11 . . . var1k1. term1)
. . .
(λ varn1 . . . varnkn. termn)
term

Here case_name is the “case combinator” function for the datatype name. It
takes as arguments n functions which map the corresponding constructor
arguments to the term variant (or the term variant itself if the constructor
has no arguments) and the term of type name as final argument. Note that the
constructor names cname i do not occur here, the constructor corresponding
to a term variant is only determined by the argument position i compared
with the position of the constructor in the datatype definition.
If cv is a variable or constant of type coord an example case term for it is

case cv of
Dim2 a b ⇒ a + b

| Dim3 a b c ⇒ a + b + c

It denotes the sum of the coordinates of cv, irrespective whether cv is two-
dimensional or three-dimensional. The corresponding case combinator ap-
plication term is

case_coord (λ a b. a+b) (λ a b c. a+b+c) cv

A case term is useful even for a datatype with a single constructor. If rv is
of type recrd as defined in Section 4.1.3 the case term

case rv of MkRecrd nv sv bv ⇒ term

makes the components of rv locally available in term as nv, sv, bv. It is
equivalent to term where nv, sv, and bv have been substituted by the selector
applications (n rv), (s rv), and (b rv).
The variant terms in a case term cannot be matched directly by a let state-
ment in a proof (see Section 2.2.12). The statement

let "case rv of MkRecrd nv sv bv ⇒ ?t"
= "case rv of MkRecrd nv sv bv ⇒ term"

will fail to bind ?t to term because then the variables nv, sv, and bv would
occur free in it and the relation to the constructor arguments would be lost.
Instead, the statement

let "case rv of MkRecrd nv sv bv ⇒ ?t nv sv bv"
= "case rv of MkRecrd nv sv bv ⇒ term"

successfully binds ?t to the lambda term λnv sv bv. term which denotes the
function which results in term when applied to the constructor arguments
and occurs as argument of the case combinator function.

144



4.1.4 Parameterized Algebraic Types as Bounded Natural
Functors

As described in Section 4.1.2 every datatype value can be thought of being
equivalent to a tuple of constructor argument values, so in some sense the
constructor argument values are “contained” in the datatype value. If an
algebraic type has type parameters, these may occur as constructor argument
types or as parts thereof. In this sense every datatype value is a “container”
of a certain number of values of every type parameter.
As an example, every value of the polymorphic datatype ’a coordx defined
in Section 4.1.1 contains two or three values of the type parameter ’a.

Retrieving Contained Values

More generally, a type constructor name is called a “bounded natural functor”
(BNF), if it has for every type parameter ’p i a function (’p1,. . .,’pm) name
⇒ ’p i set which returns for every value of type (’p1,. . .,’pm) name the
set of contained values of type ’p i, and if all these sets are “bounded”, i.e.
their maximal size is only determined by name and not by the actual types
substituted for the type parameters.
As an example, values of type ’a coordx contain maximally 3 values of type
’a, irrespective whether ’a is substituted by type bool, where there are only
two possible values, or by type nat, where there are infinitely many possible
values. For a recursive datatype the set of contained values is often not
bound by a number, instead it is bound to be finite, even if the actual type
argument has inifinitely many values.
Every definition

datatype (’p1,. . .,’pm) name = alt1 | . . . | altn

of a parameterized datatype with type parameters ’p1,. . .,’pm introduces
for every type parameter ’p i this “set function” as

seti_name :: "(’p1,. . .,’pm) name ⇒ ’p i set"

If m = 1 the single set function is named set_name, if m = 2 the two set
functions are named set1_name and set2_name.
For the datatype coordx the only set function is set_coordx. It maps every
value of a type t coordx to the set of either two or three coordinate values
of type t.

Replacing Contained Values

Moreover, for a bounded natural functor it must be possible to replace the
contained values “in-place” without modifying any other parts of the con-
tainer value. Contained values are replaced by applying a function to them.

145



This property can be modeled by a single function called a “map function”. It
takes as arguments one function f i for every type parameter ’p i and returns
a function on the container values which replaces every contained value x of
type ’p i by f i x.
Every datatype definition as above introduces the map function as

map_name :: "(’p1 ⇒ ’q1) ⇒ . . . ⇒ (’pm ⇒ ’qm)
⇒ (’p1,. . .,’pm) name ⇒ (’q1,. . .,’qm) name"

It takes as arguments m functions f1, . . ., fm and a datatype value. Every
f i may map its arguments of type ’p i to values of the same type or of a
different type ’q i. In the latter case also the resulting datatype value is of a
different type (a different instance of the same parameterized datatype).
An alternative way of understanding map_name is that the partial application
(see Section 2.1.2) map_name f1 . . . fm “lifts” the m functions to a function
between instances of type (’p1,. . .,’pm) name and (’q1,. . .,’qm) name. In
particular, if m=1 then map_name lifts every function f :: t1 ⇒ t2 to the
function (map_name f) :: t1 name ⇒ t2 name.
The function map_coordx has type (’p ⇒ ’q) ⇒ ’p coordx ⇒ ’q coordx.
For instance, if f :: real ⇒ nat is the function that rounds every real num-
ber to the next natural number, the application map_coordx f cv replaces the
real coordinates in cv of type real coordx by rounded natural coordinates,
resulting in a value of type nat coordx.
In general a type constructor with such a map function is called a “functor”.
It does not only support constructing values from values of the parameter
types, but also functions from functions on the parameter types.

Constructing Predicates and Relations

A bounded natural functor can use the sets of contained values returned
by the set functions to lift predicates and relations (see Section 3.1) in a
similar way from contained values to container values. This is modeled by a
“predicator function” and a “relator function”.
For a datatype definition as above the predicator function is provided as

pred_name :: "(’p1 ⇒ bool) ⇒ . . . ⇒ (’pm ⇒ bool)
⇒ (’p1,. . .,’pm) name ⇒ bool"

It takes as arguments m unary predicates p1, . . ., pm and a datatype value x
and tests whether all values in seti_name x satisfy the corresponding predi-
cate p i.
The partial application pred_name p1 . . . pm lifts the predicates p1, . . ., pm

to a predicate on the corresponding instance of type (’p1,. . .,’pm) name.

146



The function pred_coordx has type (’p ⇒ bool) ⇒ ’p coordx ⇒ bool. For
instance, if cv is of type nat coordx the term pred_coordx (λn. n=0) cv
tests whether all coordinates of cv are 0.
The relator function is provided as

rel_name :: "(’p1 ⇒ ’q1 ⇒ bool) ⇒ . . . ⇒ (’pm ⇒ ’qm ⇒ bool)
⇒ (’p1,. . .,’pm) name ⇒ (’q1,. . .,’qm) name ⇒ bool"

It takes as arguments m binary relations r1, . . ., rm and two datatype val-
ues x, y and tests whether all pairs of values contained at the same position
in x and y are related by the corresponding r i. This is done by construct-
ing a container of type (’p1×’q1, . . ., ’pm×’qm) name where all contained
values are pairs (see Section 3.6) which can be retrieved by the set functions
and tested whether they are related. Using the map function every contained
pair can be replaced by its first or second component, respectively, resulting
in the containers to be tested for being related.
The partial application rel_name r1 . . . rm lifts the relations r1, . . ., rm

to a relation between the corresponding instances of the types (’p1,. . .,’pm)
name and (’q1,. . .,’qm) name.
The function rel_coordx has type (’p ⇒ ’q ⇒ bool) ⇒ ’p coordx ⇒ ’q
coordx ⇒ bool. For instance, if cv1 and cv2 are of type nat coordx the term
rel_coordx (≤) cv1 cv2 tests whether cv1 and cv2 have the same dimension
and every coordinate in cv1 is lower or equal to the corresponding coordinate
in cv2.

Specifying Names for the BNF Functions

The form

datatype (sname1: ’p1,. . ., snamem: ’pm) name = alt1 | . . . | altn

for map: mname pred: pname rel: rname

of a datatype definition allows to define alternate names sname i, mname, pname,
rname for (some of) the set, map, predicator, and relator functions.

4.1.5 Rules

A datatype definition also introduces a large number of named facts about
the constructors and destructors of the defined type. All fact names belong
to the namespace of the datatype definition. Since the fact names cannot be
specified explicitly, all datatype definitions use the same fact names, therefore
the fact names must always be qualified by prefixing the type name.
Several rules are configured for automatic application, e.g., they are added
to the simpset for automatic application by the simplifier (see Section 2.3.6).
Other rules must be explicitly used by referring them by their name.

147



Only some basic rules are described here, for more information refer to the
Isabelle documentation about datatypes.

Simplifier Rules

The rules added by a definition for a datatype name to the simpset (see
Section 2.3.6) support many ways for the simplifier to process terms with
constructors and destructors.
The rule set name.inject states that every non-constant constructor is in-
jective, the rules are of the form

((cname i ?x1 . . . ?xki) = (cname i ?y1 . . . ?yki)) =
(?x1 = ?y1 ∧ . . . ∧ ?xki = ?yki)

The rule set name.distinct states that values constructed by different con-
structors are different, the rules are of the form

(cname i ?x1 . . . ?xki) 6= (cname j ?y1 . . . ?ykj)

where i 6= j.
The rule set name.sel provides “defining equations” for the selectors of the
form

sname ij (cname i ?x1 . . . ?xki) = ?x j

The rule set name.case provides equations for simplifying case terms where
the discriminating term is directly specified by a constructor application.
They have the form

(case (cname i ?x1 . . . ?xki) of
cname1 var11 . . . var1k1 ⇒ ?f1 var11 . . . var1k1

| . . .
| cnamen varn1 . . . varnkn ⇒ ?fn varn1 . . . varnkn)

= ?f i ?x1 . . . ?xki

Note that each branch is specified as an application of a function ?f i so that
the variables bound in the branch can be substituted by the arguments of
the constructor application.
Depending on the datatype definition there may be additional simplifier
rules. In particular, if the datatype is parameterized, simplifier rules are
generated for the functions described in Section 4.1.4. The set of all rules
added to the simpset is named name.simps. By displaying it using the thm
command (see Section 2.1.6) it can be inspected to get an idea how the
simplifier processes terms for a specific datatype.

148



Case Rule

Every definition for a datatype name introduces a rule corresponding to the
exhaustiveness of the free constructors (see Section 4.1.2). It has the form

name.exhaust:
[[
∧
x1 . . . xk1. ?y = cname1 x1 . . . xk1 =⇒ ?P;

. . . ;∧
x1 . . . xkn. ?y = cnamen x1 . . . xkn =⇒ ?P ]] =⇒ ?P

According to Section 2.4.3 this rule is a case rule. It is automatically as-
sociated with the datatype for use by the cases method. Therefore the
application of the method

cases "term"

where term is of type name splits an arbitrary goal into n subgoals where
every subgoal uses a different constructor to construct the term.
The names for the named contexts created by the cases method are simply
the constructor names cname i. Therefore a structured proof using case based
reasoning for a term of datatype name has the form

proof (cases "term")
case (cname1 x1 . . . xk1) . . . show ?thesis 〈proof 〉

next
. . .
next
case (cnamen x1 . . . xkn) . . . show ?thesis 〈proof 〉

qed

The names x i of the locally fixed variables can be freely selected, they denote
the constructor arguments of the corresponding constructor. Therefore the
case specification (cname i x1 . . . xki) looks like a constructor application to
variable arguments, although it is actually a context name together with
locally fixed variables.

Split Rule

A case term (see Section 4.1.3) is only processed automatically be the simpli-
fier, if the discriminating term is a constructor application (see the name.case
rule set above). Otherwise it is only processed if a corresponding split rule
is configured for it (see Section 2.3.6). Every definition for a datatype name
introduces such a split rule. It has the form

name.split:
?P(case ?t of

cname1 x11 . . . x1k1 ⇒ ?t1 x11 . . . x1k1

149



| . . .
| cnamen xn1 . . . xnkn ⇒ ?tn xn1 . . . xnkn) =

( (?t = cname1 x11 . . . x1k1 −→ ?P(?t1 x11 . . . x1k1))
∧ . . .
∧ (?t = cnamen xn1 . . . xnkn −→ ?P(?tn xn1 . . . xnkn)))

As described in Section 2.3.6 the rule splits a goal with a case term for type
name in the conclusion into goals where the case term is replaced by the
terms in the cases. Note that the sub-terms of the case term are specified
by unknowns, so the rule unifies with arbitrary case terms for type name.
Also note, that the ?t i are specified with arguments, so that they will be
matched by functions depending on the constructor arguments x i1,. . .,x iki,
as described in Section 4.1.3.
As an example, let cv be a variable or constant of type coord, as above.
Then the goal

sum = (case cv of Dim2 a b ⇒ a + b | Dim3 a b c ⇒ a + b + c)

is split by the split rule coord.split into the goals

cv = Dim2 a b =⇒ sum = a + b
cv = Dim3 a b c =⇒ sum = a + b + c

Induction Rule

Every definition for a datatype name introduces an induction rule (see Sec-
tion 2.4.5) of the form

name.induct:
[[
∧
x1 . . . xk1. [[?P x l1; . . . ?P x lm1]] =⇒ ?P (cname1 x1 . . . xk1);

. . . ;∧
x1 . . . xkn. [[?P x ln; . . . ?P x lmn]] =⇒ ?P (cnamen x1 . . . xkn)]]

=⇒ ?P ?a

where the x l1 . . . x lmi are those x1 . . . xki which have type name (i.e., the
recursive occurrences of the type name). Like the case rule it is valid because
the constructor applications cover all possibilities of constructing a value ?a
of the datatype.
If the datatype name is not recursive there are no x l1 . . . x lmi and the as-
sumptions of all inner rules are empty, then the induction rule is simply
a specialization of the case rule and is redundant. However, for a recur-
sive datatype name induction using rule name.induct is the standard way of
proving a property to hold for all values.
The rule name.induct is associated with datatype name for use by the meth-
ods induction and induct (see Section 2.4.5). Therefore the application of
the method

150



induction x

where x is a variable of type name splits a goal into n subgoals where every
subgoal uses a different constructor term in the place of x.
As for the case rule and the cases method, the names for the named contexts
created by the methods induction and induct are simply the constructor
names cname i. Therefore a structured proof using induction for a variable x
of datatype name has the form

proof (induction x)
case (cname1 x1 . . . xk1) . . . show ?case 〈proof 〉

next
. . .
next
case (cnamen x1 . . . xkn) . . . show ?case 〈proof 〉

qed

In the rule name.induct all inner assumptions are of the form ?P x li, i.e.,
they are induction hypotheses and are named "cname i.IH" by the induction
method, the assumption set "cname i.hyps" is always empty. The induct
method instead names all inner assumptions by "cname i.hyps".
As an example, the induction rule for the recursive datatype tree defined in
Section 4.1.1 is

tree.induct:
[[
∧
x. ?P (Leaf x);∧
x1 x2 x3. [[?P x2; ?P x3]] =⇒ ?P (Tree x1 x2 x3)]]

=⇒ ?P ?a

If p :: tree ⇒ bool is a predicate for values of type tree the goal p x which
states that p holds for all values is split by applying the method (induction
x) into the goals∧
x. p (Leaf x)∧
x1 x2 x3. [[p x2; p x3]] =⇒ p (Tree x1 x2 x3)

A structured proof for goal p x has the form

proof (induction x)
case (Leaf x) . . . show ?case 〈proof 〉

next
case (Tree x1 x2 x3) . . . show ?case 〈proof 〉

qed

and in the second case the assumptions p x2, p x3 are named Tree.IH.

151



4.1.6 Recursive Functions on Algebraic Types

A term is called a “constructor pattern” if it only consists of variables and
constructor function applications. Note that this includes terms consisting
of a single variable. More generally, a constructor pattern may be a sequence
of such terms used as arguments in a function application. A constructor
pattern is called “linear” if every variable occurs only once.
HOL provides specific support for recursive definitions (see Section 3.10) of
functions name :: t1 ⇒ . . . ⇒ tk ⇒ type where every defining equation
eq i has the form∧

x i1 . . . x ipi. name term i1 . . . term ik = term i

without assumptions Q ij and the sequence term i1 . . . term ik on the left side
is a linear constructor pattern.
Since the type of a constructor application term is always an algebraic type,
an argument type t j may only be a non-algebraic type if the corresponding
term ij is a single variable in all eq i.

The Proof Method pat_completeness

For recursive definitions where all eq i are without assumptions and using a
linear constructor pattern on their left side HOL provides the proof method

pat_completeness

for the proof of equation completeness (see Section 3.10.2), i.e. for solving
the first goal created by the recursive definition. The remaining goals for
uniqueness can be solved by using the injectivity of the constructor functions
which is usually done by the proof method auto. Therefore if a recursive
definition uses only linear patterns its proof can be specified as

by pat_completeness auto

Automatic Uniqueness by Sequential Equations

A constructor pattern a is more specific than a constructor pattern b if
a can be constructed from b by replacing some variables by constructor
applications (and renaming variables). If corresponding function arguments
term ij are specified by such patterns a and b in two defining equations, the
spaces of both equations overlap and the defined value must be the same for
uniqueness. Alternatively, uniqueness can be guaranteed by replacing the
equation with the more general pattern b by equations with more specific
patterns using the remaining constructors, so that the argument spaces do
not overlap anymore.

152



This can be done automatically for a recursive definition where all eq i are
without assumptions and using a linear constructor pattern on their left side
by specifying it in the form

function (sequential) name :: "t1 ⇒ . . . ⇒ tk ⇒ type"
where eq1 | . . . | eqn 〈proof 〉

Here the defining equations must be ordered such that equations with more
specific patterns precede those with more general patterns. HOL automati-
cally replaces the latter equations so that the argument spaces of all equa-
tions are pairwise disjoint. Note that the resulting equations are used for
the completeness and compatibility proofs and also in the rules provided for
the recursive definition such as name.cases or name.psimps.
If the equations do not cover all possile arguments because some constructors
are omitted, additional equations are added with patterns using the omitted
constructors. These equations use undefined (see Section 3.4) as term i on
the right side.
The completeness and compatibility proof must still be specified explicitly,
although it always works in the form by pat_completeness auto.

The fun Command

HOL supports the abbreviation

fun name :: "t1 ⇒ . . . ⇒ tk ⇒ type"
where eq1 | . . . | eqn

for the recursive definition

function (sequential) name :: "t1 ⇒ . . . ⇒ tk ⇒ type"
where eq1 | . . . | eqn

by pat_completeness auto
termination by lexicographic_order

which includes the completeness and compatibility proof and a termina-
tion proof. If the termination proof cannot be done by the proof method
lexicographic_order (see Section 3.10.6) an error is signaled, then the long
form must be used to specify another termination proof.
The faculty function definitions in Section 3.10.1 are not of the required
form: the definition(s) of fac use an assumption in their second equation,
the definition of fac2 uses the argument term n+1 on the left side which is no
constructor pattern because the function (+) is not a constructor. However,
type nat is actually defined in a way equivalent to an algebraic type with
constructors 0 and Suc (see Section 5.3) where the term Suc n is equivalent
to n+1. Therefore the faculty function can be defined as

153



fun fac3 :: "nat ⇒ nat" where
"fac3 0 = 1"

| "fac3 (Suc n) = (Suc n) * fac3 n"

because 0 and (Suc n) are linear constructor patterns.

Primitive Recursion

A linear constructor pattern consisting of a sequence of terms is called “prim-
itive” if exactly one term is a constructor application and all constructor
arguments in this term are single variables. Thus a primitive constructor
pattern has the general form

x1 . . . x (i−1) (cname x i1 . . . x in) x (i+1) . . . xk

where all x i and x ij are variables. In particular, if a linear constructor
pattern consists of a single term it is always primitive.
A recursive function definition

fun name :: "t1 ⇒ . . . ⇒ tk ⇒ type"
where eq1 | . . . | eqn

is called primitive if all defining equations eq i use a primitive constructor
pattern on their left side and all arguments of recursive calls in term i on the
right side are single variables.
Note that since the equations must be ordered so that equations with more
specific patterns precede equations with more general patterns all constructor
application terms must occur at the same argument position in the patterns.
Therefore only one argument type t i must be an algebraic type, all others
may be arbitrary types because the corresponding arguments are denoted by
single variables in all patterns.
For primitive recursive function definitions HOL provides the alternative
syntax

primrec name :: "t1 ⇒ . . . ⇒ tk ⇒ type"
where eq1 | . . . | eqn

Its difference to the form using the fun command is that it only provides
the rule set name.simps and none of the other rules. The reason is that the
cases and induct rules are mainly equivalent to the case and induction rules
provided for the algebraic type of the used constructors (see Section 4.1.5).
Since every such definition can also be written using the fun command the
use of primrec is mainly a documentation that the definition is primitive
recursive.
Since the faculty function has only one argument the constructor patterns
in the definition of fac3 above are both primitive. Moreover, since fac3 is

154



only applied to the plain variable n on the right side of the second equation
it is a primitive recursive function definition and may be written

primrec fac3 :: "nat ⇒ nat" where
"fac3 0 = 1"

| "fac3 (Suc n) = (Suc n) * fac3 n"

4.2 Record Types

Record types resemble algebraic types in that they are roughly equivalent to
tuple types, however, they are defined in a completely different way. They
do not support recursion, instead they support a simple form of inheritance.
They can be used to model “record types” in programming languages and
object data in object oriented programming languages.

4.2.1 Record Definitions

A record type is defined in the form

record rname = fname1 :: "ftype1" . . . fnamen :: "ftypen"

where rname is the name of the new type, the fname i are the pairwise distinct
names of the record components (also called “fields”) and the ftype i are the
corresponding component types. Atleast one component must be specified.
The resulting type rname is mainly equivalent to the tuple type ftype1 × . . .

× ftypen (see Section 3.6), however, every record type definition introduces
a new type, even if the component names and types are the same.
The record type defined as above can either be denoted by its rname or by
its “record type expression” (in inner syntax)

(|fname1 :: ftype1, . . ., fnamen :: ftypen|)

Note that a record type expression may only be used after a corresponding
record type definition. If there are several record type definitions with the
same field names and types the record type expression refers to the syntac-
tically latest previous matching record type definition.
If a field name fname i occurs in several record type definitions it may be
referred uniquely as a qualified name by prepending the record type name
in the form rname.fname i.
An example record definition is

record recrd =
num :: nat
nums :: "nat set"
nice :: bool

155



It has an equivalent structure as the datatype recrd with the single con-
structor defined in Section 4.1.2. The record type expression for it is

(|num :: nat, nums :: nat set, nice :: bool |)

Alternatively the field names may be qualified:

(|recrd.num :: nat, recrd.nums :: nat set, recrd.nice :: bool |)

Record Type Schemes

To be able to extend a record type by additional fields, a record type defini-
tion record rname = fname1 :: "ftype1" . . . fnamen :: "ftypen" actually
defines a type constructor rname_scheme with a single type parameter and
an additional component of that type which is called the “more part”. Every
instantiation of (’a rname_scheme) is called a record type scheme, the most
general one is (’a rname_scheme) where the more part has an arbitrary type
’a. For the defined record type the more part has type unit (see Section 5.2),
i.e., type rname is the same as (unit rname_scheme).
Like record types, record type schemes may be denoted by record type ex-
pressions. They have the same form, the more part is denoted by the pseudo
field name . . . (three-dot symbol). Therefore the polymorphic type scheme
(’a rname_scheme) can be denoted by the record type expression

(|fname1 :: ftype1, . . ., fnamen :: ftypen, . . . :: ’a |)

and the record type expression (|fname1 :: ftype1, . . ., fnamen :: ftypen|)
is simply an abbreviation for (|fname1 :: ftype1, . . ., fnamen :: ftypen,
. . . :: unit |).
The polymorphic record type scheme for the record type recrd defined above
is denoted by ’a recrd_scheme or by the record type expression (|num :: nat,
nums :: nat set, nice :: bool, . . . :: ’a |).
Record type schemes may be used to define functions which are applicable
to a record and all its extensions, similar to methods in object oriented
programming.

Extending Record Types

A record type is extended by instantiating the more part to a “record frag-
ment type”. Like a record type it consists of a sequence of one or more fields,
however it cannot be used on its own, it must always be embedded as more
part in another record.
A record type is extended by the definition:

156



record rname = "rtype"
+ efname1 :: "eftype1" . . . efnamem :: "eftypem"

where rtype is a previously defined record type. The fields specified by the
efname i and eftype i comprise the record fragment which is appended after
the fields of rtype, even if (some of) the same field names have already been
used for rtype. Type rtype is called the “parent type” of type rname. A
record type which does not extend another record type (has no parent type)
is called a “root record type”.
If necessary, the field names efname i must be qualified by rname, whereas the
field names of the parent type rtype must be qualified by the name of rtype,
even if they occur in an extension of rtype.
The record fragment type defined by the extension above may be denoted by
the record type expression (|efname1::eftype1, . . ., efnamem::eftypem|). If
(|fname1::ftype1, . . ., fnamen::ftypen|) is an expression for the parent type,
the extended record type may be denoted by the type scheme expression

(|fname1::ftype1, . . ., fnamen::ftypen,
. . . ::(|efname1::eftype1, . . ., efnamem::eftypem|)|)

or by the type expression

(|fname1::ftype1, . . ., fnamen::ftypen,
efname1::eftype1, . . ., efnamem::eftypem|)

The example record type defined above can be extended by

record recrd2 = recrd + full :: bool num :: nat

Note that the resulting record type has two fields with name num and type
nat, they must always be referred by the qualified field names recrd.num and
recrd2.num. A record type expression for recrd2 is

(|recrd.num :: nat, nums :: nat set, nice :: bool,
full :: bool, recrd2.num :: nat |)

Parameterized Record Types

Like declared types record types may be parameterized (see Section 2.1.2):

record (’name1,. . .,’namen) rname = fname1 :: "ftype1" . . .
fnamen :: "ftypen"

where the ’name i are the type parameters. They may occur in the component
types ftype i, i.e., the ftype i may be polymorphic (see Section 2.1.2). As
usual, the parentheses may be omitted if there is only one type parameter.

157



For a parameterized record type a record type expression may be specified
for every possible instance. As usual, a record type expression with type
variables denotes a polymorphic type.
In the record type scheme the parameter for the more part follows all other
type parameters.
As an example, a parameterized record type with two type parameters is
defined by

record (’a, ’b) recrdp = f1 :: ’a f2:: "’a set" f3 :: ’b

The most general record type scheme is (’a, ’b, ’c) recrdp_scheme where
’c is the parameter for the more part.
After this definition valid record type expressions are (|f1::nat, f2::nat
set, f3::bool |) which is equivalent to (nat, bool) recrdp, and (|f1::bool,
f2::bool set, f3::’a |) which is equivalent to (bool, ’a) recrdp, but not
(|f1::nat, f2::bool set, f3::bool |), because here the type parameter ’a
has been substituted by the two different types nat and bool.

4.2.2 Record Constructors

Every record type definition record rname = fname1 :: "ftype1" . . . fnamen

:: "ftypen" defines the record constructor function

make :: ftype1 ⇒ . . . ⇒ ftypen ⇒ rname

which constructs values of the record type from values to be used for all fields.
If more than one record type has been defined the name of the constructor
function must be qualified by the record type name as rname.make.
For an extended record type defined by record rname2 = rname + efname1

:: "eftype1" . . . efnamem :: "eftypem" the constructor function is

make :: ftype1 ⇒ . . . ⇒ ftypen ⇒ eftype1 ⇒ . . . ⇒ eftypem ⇒ rname2

It takes values for all fields and constructs a full record of type rname2.
Every definition for a (root or extended) record type rname also defines the
constructor function

extend :: rname ⇒ ’a ⇒ (’a rname_scheme)

It replaces the more part of a record of type rname (which is the unit value)
by a value of an arbitrary type ’a. The result will only be a proper record if
’a is a record fragment type for a defined extension of rname.
Additionally the definition of the extended record type rname2 defines the
constructor function

158



fields :: ftypen+1 ⇒ . . . ⇒ ftypem ⇒
(|fnamen+1::ftypen+1, . . ., fnamem :: ftypem|)

for the record fragment used as the more part of rname. For a root record
type fields is the same function as make.

Constructing Values

Like for a datatype every record constructor function is assumed to be injec-
tive, thus their result values differ if atleast one argument value differs. This
implies that the set of all values of the constructor function make is equiva-
lent to the set of all tuples of values of the field types, which is equivalent to
the set of all possible values of the record type rname. Thus every value of
rname may be denoted by a term

rname.make term1 . . . termn

where each term i is of type ftype i and specifies the value for field i.
There is an alternative Syntax for applications of record constructors. The
record expression

(|fname1 = term1, . . ., fnamen = termn|)

denotes the same record value as the constructor application above. If the
name fname1 of the first field has been used in more than one record type it
must be qualified. The record schema expression

(|fname1 = term1, . . ., fnamen = termn, . . .= mterm |)

denotes a value for the record type scheme where mterm denotes the value
for the more part.
Values of the record fragment type defined for rname2 are constructed by the
application

rname2.fields term1 . . . termm

or equivalently by the record fragment expression (|efname1= term1, . . .,
efnamem = termm|).
Values of the extended record type rname2 itself can be constructed from a
value r of type rname by rname.extend r (rname2.fields term1 . . . termm)
or rname.extend r (|rname2.efname1= term1, . . ., efnamem = termm|).
Values of type recrd as defined above are denoted by terms such as recrd.make
2 {5,7} True or the equivalent record expression (|num = 2, nums = {5,7},
nice = True |) or the record scheme expression (|num = 2, nums = {5,7}, nice
= True, . . . = ()|). Values of the extension recrd2 as defined above are de-
noted by terms such as recrd2.make 2 {5,7} True True 42 or (|recrd.num =
2, nums = {5,7}, nice = True, full= True, recrd2.num= 42 |) or (|recrd.num
= 2, nums = {5,7}, nice = True, . . .= (|full= True, recrd2.num= 42 |)|).

159



4.2.3 Record Destructors

The only record destructors available are selectors which correspond to the
field names. Every record type definition record rname = fname1 :: "ftype1"
. . . fnamen :: "ftypen" defines the record selector functions

fname1 :: ’a rname_scheme ⇒ ftype1

. . .
fnamen :: ’a rname_scheme ⇒ ftypen

Note that instead of rname their argument type is the record type scheme
’a rname_scheme. Thus a record selector function for a field is polymorphic
and may also be applied to every extended record to return the field value.
However, to make a field name unique, it must be qualified by the name of
the record type where it has been introduced.
If r is a variable of type recrd as defined above, the term nums r selects the
value of the second field. The same works if r has the extended type recrd2.
A field selector cannot be applied directly to a record fragment. The fields
of the fragment can only be selected if the fragment is embedded in the
extended record.

4.2.4 Record Updates

In addition to the constructor and selector functions a record type definition
record rname = fname1 :: "ftype1" . . . fnamen :: "ftypen" defines the record
update functions

fname1_update :: (ftype1 ⇒ ftype1) ⇒ ’a rname_scheme ⇒ ’a rname_scheme
. . .

fnamen_update :: (ftypen ⇒ ftypen) ⇒ ’a rname_scheme ⇒ ’a rname_scheme

Each record update function fname i_update takes as argument an update
function for values of type ftype i (which maps an old value to a new value)
and a record value. It returns the record where the value of field fname i is
the result of applying the update function to its old value and the values of
all other fields are unchanged.
Like the selector functions the update functions are defined for the poly-
morphic record type scheme and can thus be also applied to all extended
records.
A field may be set to a specific value term without regarding the old value
by using the term fname i_update (λ_.term) r where a constant function
(see Section 2.1.2) is used as update function for the field value. For record
update applications of this form the alternative syntax

r(| fname i := term |)

160



is available. Further notation for repeated updates is also available: r(|x :=
a |)(|y := b |)(|z := c |) may be written

r(|x := a, y := b, z := c |)

Note that the former term is equivalent to z_update (λ_.c) (y_update (λ_.b)
(x_update (λ_.a) r)), so the fields are actually set in the order in which they
occur in the alternative notation from left to right.

4.2.5 Record Rules

A record type definition also introduces a number of named facts about the
constructors, selectors and update functions. All fact names belong to the
namespace of the record definition. The facts are named automatically in
the same way for all record types, therefore the fact names must always be
qualified by prefixing the record type name.
Several rules are configured for automatic application, e.g., they are added
to the simpset for automatic application by the simplifier (see Section 2.3.6).
Other rules must be explicitly used by referring them by their name.
Only some basic rules are described here, for more information refer to the
Isabelle documentation about records.

Simplifier Rules

The rules for injectivity of the record constructor have the form

((|fname1 = ?x1, . . ., fnamen = ?xn, . . .= ?x |) =
(|fname1 = ?y1, . . ., fnamen = ?yn, . . .= ?y |))

= (?x1 = ?y1 ∧ . . . ∧ ?xn = ?yn ∧ ?x = ?y)

are named rname.iffs for the record type rname.
Other rules added by a record definition to the simpset process terms where
selectors or update functions are applied to constructed record values. They
have the form of equations

fname i (|fname1 = ?x1, . . ., fnamen = ?xn|) = ?x i

fname i_update ?f (|fname1 = ?x1, . . ., fnamen = ?xn|) =
(|fname1 = ?x1, . . ., fname i = ?f ?x i, . . ., fnamen = ?xn|)

The set of all these rules is named rname.simps for the record type rname.
Additional internal simplifier rules process selectors applied to updated records
such as

fname i (fname i_update ?f ?r) = ?f (fname i ?r)
fname i (fname j_update ?f ?r) = fname i ?r

where i 6=j.

161



Constructor Rules

Additional rules provide definitional equations for the constructors of the
defined record type, such as

rname.make x1 . . . xn = (|fname1 = x1, . . ., fnamen = xn|)

Every rule provides a representation of a constructor application as a record
expression. The set of these rules is named rname.defs for the record type
rname. It is not added to the simpset, the rules must be explicitly applied
by adding them to the simplifier method when needed (as described in Sec-
tion 2.3.6).
The simplifier rules are mainly defined for record expressions. To apply them
to record terms specified by the constructor functions the constructor rules
must be used to convert the terms to record expressions.

Case Rules

Every definition for a record type rname introduces case rules (see Sec-
tion 2.4.3) of the form

rname.cases:
[[
∧
x1 . . . xn. ?y = (|fname1=x1, . . ., fnamen=xn|) =⇒ ?P ]] =⇒ ?P

rname.cases_scheme:
[[
∧
x1 . . . xn m. ?y = (|fname1=x1, . . ., fnamen=xn, . . .=m |) =⇒ ?P ]]

=⇒ ?P

They are valid because the record expressions cover all possibilities of con-
structing a value ?y of the record type or record scheme type, respectively.
Both rules are associated with the record type for use by the cases method
(see Section 2.4.3), the method automatically selects the most sensible of
them. Therefore the application of the method

cases "term"

where term is a record of type rname replaces an arbitrary goal by a goal
where term is set equal to a record constructed from explicit field values x1,
. . ., xn and possibly a more part.
The name used for the named context created by the cases method is “fields”.
Therefore a structured proof using case based reasoning for a term of a record
type rname has the form

proof (cases "term")
case (fields x1 . . . xn) . . . show ?thesis 〈proof 〉

qed

162



The names x i of the locally fixed variables can be freely selected, they denote
the field values of the record.
The main purpose of applying the case rules is to provide a record expression
for a record term which is not specified as such or by a constructor function,
such as a variable of a record type. Providing the record expression makes
the simplifier rules applicable, therefore a proof for a record often consists of
an application of the cases method followed by an application of the simp
method.

Induction Rule

Every definition for a record type rname introduces induction rules (see Sec-
tion 2.4.5) of the form

rname.induct:
(
∧
x1 . . . xn. ?P (|fname1=x1, . . ., fnamen=xn|)) =⇒ ?P ?a

rname.induct_scheme:
(
∧
x1 . . . xn m. ?P (|fname1=x1, . . ., fnamen=xn, . . .=m |)) =⇒ ?P ?a

Like the case rule it is valid because the record expressions cover all possi-
bilities of constructing a value ?a of the record type rname.
The rules are associated with the record type for use by the methods induction
and induct (see Section 2.4.5), the methods automatically select the most
sensible of them. Therefore the application of the method

induction x

where x is a variable of type rname replaces a goal by a goal which uses a
record expression in the place of x.
As for the case rule and the cases method, the names used for the named
contexts created by the methods induction and induct are “fields”. There-
fore a structured proof using induction for a variable x of record type rname
has the form

proof (induction x)
case (fields x1 . . . xn) . . . show ?case 〈proof 〉

qed

As an example, the induction rules for the record type recrd defined in
Section 4.2.1 are

recrd_induct:
(
∧
x1 x2 x3. ?P (|num=x1, nums=x2, nice=x3|)) =⇒ ?P ?a

recrd_induct_scheme:
(
∧
x1 x2 x3 m. ?P (|num=x1, nums=x2, nice=x3, . . .=m |)) =⇒ ?P ?a

163



By applying the method (induction x) the goal (num x) = y is replaced by
the goal

∧
x1 x2 x3. (num (|num = x1, nums = x2, nice = x3|)) = y.

Like the cases methods a transformation of this kind may enable the appli-
cation of the simplifier methods.

4.3 Subtypes

A subtype specifies the values of a type by a set of values of an existing type.
However, since the values of different types are always disjoint, the values
in the set are not directly the values of the new type, instead, there is a 1-1
relation between them, they are isomorphic. The values in the set are called
“representations”, the values in the new type are called “abstractions”.

4.3.1 Subtype Definitions

A subtype is defined in the form

typedef name = "term" 〈proof 〉

where name is the name of the new type and term is a term for the represent-
ing set. The 〈proof 〉 must prove that the representing set is not empty. A
subtype definition implies that for every value in the representing set there
is a unique value in the defined subtype.
Note that the concept of subtypes actually depends on the specific HOL type
set for specifying the representing set. See Section 5.4 for how to denote
terms for this set. Also note that the set is always of a type t’ set where t’
is the common type of all set elements. This implies that the representing
set is always a subset of the set of all values of a type t’ which explains the
designation as “subtype”.
A simple example is the type

typedef three = "{1::nat,2,3}" by auto

which has three values. The representations are natural numbers. As usual,
the type nat must be specified because the constants 1, 2, 3 may also
denote values of other types. However, they do not denote the values of the
new type three, the type definition does not introduce constants for them.
Instead, a subtype definition typedef t = rset 〈proof 〉 introduces two func-
tions Abs_t and Rep_t. These are morphisms between rset and the new type,
Abs_t maps from rset to type t, Rep_t is its inverse. Both functions are
injective, together they provide the 1-1 mapping between the subtype and
the representing set. The function Abs_t can be used to denote the values of
the subtype. Thus, Abs_t plays the role of a constructor for type t, whereas
Rep_t can be thought of being a destructor for t.

164



Actually, if the representing set rset is of type t’ set, the morphism Abs_t
is a function of type t’ ⇒ t, since it must be total like all functions in
Isabelle. However, Abs_t is underspecified as described in Section 2.1.2, no
information is given about its result values if applied to values which are not
in rset.
In the example the morphisms are Abs_three :: nat ⇒ three and Rep_three
:: three ⇒ nat. The values of type three may be denoted as (Abs_three
1), (Abs_three 2), and (Abs_three 3). The term (Abs_three 42) is a valid
term of type three, however, no information about its value is available.
Alternative names may be specified for the morphisms in the form

typedef t = "term" morphisms rname aname 〈proof 〉

where rname replaces Rep_t and aname replaces Abs_t.
Like declared types subtypes may be parameterized (see Section 2.1.2):

typedef (’name1,. . .,’namen) name = "term" 〈proof 〉

where the ’name i are the type parameters. They may occur in the type of
the term, i.e., the term may be polymorphic (see Section 2.1.2).

4.3.2 Type Copies

A type copy is the special case of a subtype definition where the representing
set is the universal set (see Section 5.4.1) of another type t’:

typedef t = "UNIV :: t’ set" by auto

The non-emptiness proof can always be performed by the auto method, since
the universal set covers all values in type t’ and types are always non-empty.
The result is a type t which is distinct from t’ but is “isomorphic” to it. The
values are in 1-1 relation, although, as usual for distinct types, the value sets
are disjoint.

4.3.3 Subtype Rules

A subtype definition only introduces a small number of rules, no rules are
added to the simpset.

Basic Morphism Rules

The two morphisms of a subtype definition typedef t = rset 〈proof 〉 are
characterized to be inverses of each other by two rules of the form

165



Abs_t_inverse:
?y ∈ rset =⇒ Rep_t (Abs_t ?y) = ?y

Rep_t_inverse:
Abs_t (Rep_t ?x) = ?x

This implies that both morphisms are injective which is stated explicitly by
two rules of the form

Abs_t_inject:
[[?y1 ∈ rset; ?y2 ∈ rset ]] =⇒ (Abs_t ?y1 = Abs_t ?y2) = (?y1 = ?y2)

Rep_t_inject:
(Rep_t ?x1 = Rep_t ?x2) = (?x1 = ?x2)

Since all values of type t can be denoted as Abs_t y for some y in the
representing set rset, the rule Abs_t_inject can be used to prove equality
or inequality for values of type t based on the equality for values in rset.

Case Rules

Every subtype definition typedef t = rset 〈proof 〉 introduces a case rule
(see Section 2.4.3) of the form

Abs_t_cases:
(
∧
y. [[?x = Abs_t y; y ∈ rset ]] =⇒ ?P) =⇒ ?P

It is valid because the Abs_t application covers all possibilities of constructing
a value ?x of the subtype.
The rule Abs_t_cases is associated with the new subtype t for use by the
cases method (see Section 2.4.3). Therefore the application of the method

cases "term"

where term is of type t applies Abs_t_cases to replace the current goal.
Since the rule has only one case, it does not split the goal. Applying it to a
goal

∧
x1 . . . xm. [[A1; . . .; An]] =⇒ C as described in Section 2.4.3 results

in the single new goal∧
x1 . . . xm y. [[A1; . . .; An; term = Abs_t y; y ∈ rset ]] =⇒ C

where the variable y and the two assumptions from the case rule have been
added. Together the new goal provides a representation of term by applying
Abs_t to a value y from the representing set rset. This may allow to use
facts about y to prove the goal.
The name for the named context created by the cases method is simply
the morphism name Abs_t. Therefore a structured proof using case based
reasoning for a term of subtype t has the form

166



proof (cases "term")
case (Abs_t y) . . . show ?thesis 〈proof 〉

qed

The name y of the locally fixed variable can be freely selected, it denotes the
morphism argument, i.e., the representation value for term.
Every subtype definition typedef t = rset 〈proof 〉 also introduces an elim-
ination rule (see Section 2.4.4) of the form

Rep_t_cases:
[[?y ∈ rset;

∧
x. ?y = Rep_t x =⇒ ?P ]] =⇒ ?P

It is valid because the Rep_t application covers all possibilities to determine
a representation value ?y in rset.
With the help of this rule it is possible to introduce an abstraction value
x corresponding to a representation value ?y, consuming an assumption or
input fact that ?y is in rset. For application by the method cases the rule
is annotated by [consumes 1] and the name for the created named context is
the morphism name Rep_t. As described in Section 2.4.4 a pattern for using
the rule in a structured proof is

theorem "C" if "y ∈ rset"
using that

proof (cases rule: Rep_t_cases)
case (Rep_t x) . . . show ?thesis 〈proof 〉

qed

Induction Rules

Every subtype definition typedef t = rset 〈proof 〉 introduces two induction
rules (see Section 2.4.5) of the form

Abs_t_induct:
(
∧
y. y ∈ rset =⇒ ?P (Abs_t y)) =⇒ ?P ?a

Rep_t_induct:
[[?a ∈ rset;

∧
x. ?P (Rep_t x)]] =⇒ ?P ?a

The former rule is a plain induction rule, the latter is an induction rule
with elimination where the major premise states that the value ?a is in
rset. Both rules only contain a “base case” and no “induction step” with a
recursive occurrence of values of the defined type t. Like for the case rules
they are valid because the morphism applications cover all possibilities of
constructing values of t or values in rset, respectively.
Since the rules only consist of a base case they are mainly equivalent to the
case rules. However, when applied by the induct method, they not only

167



provide a representation by a morphism for a specified variable, they also
substitute every occurrence of the variable by the morphism representation.
The rule Abs_t_induct is associated with subtype t for use by the methods
induction and induct (see Section 2.4.5). Therefore the application of the
method

induction x

where x is a variable of type t replaces a goal by a goal where every occur-
rence of x is substituted by the term Abs_t y and y is a new bound variable
with the additional assumption y ∈ rset named Abs_t.hyps. As usual for
the induction methods, x is substituted in the goal conclusion and also in
all goal assumptions.
As for the case rule and the cases method, the name for the named con-
text created by the methods induction and induct is simply the morphism
name Abs_t. Therefore a structured proof using induction for a variable x of
subtype t has the form

proof (induction x)
case (Abs_t y) . . . show ?case 〈proof 〉

qed

As an example, the induction rule for the subtype three defined in Sec-
tion 4.3.1 is

Abs_three_induct:
"
∧
y. y ∈ {1, 2, 3} =⇒ ?P (Abs_three y)) =⇒ ?P ?a

By applying the method (induction x) the goal x = Abs_three 0 =⇒ x 6=
Abs_three 1 is replaced by the goal

∧
y. [[y ∈ {1, 2, 3}; Abs_three y =

Abs_three 0 ]] =⇒ Abs_three y 6= Abs_three 1 (which does not help for the
proof, but shows the effect of the induction rule).
The rule Rep_t_induct is annotated by [consumes 1] for application by the
methods induction and induct and the name for the created named context
is the morphism name Rep_t. As described in Section ?? a pattern for using
the rule in a structured proof is

theorem "C" if "y ∈ rset"
using that

proof (induction rule: Rep_t_induct)
case (Rep_t x) . . . show ?case 〈proof 〉

qed

As an example, the induction rule with elimination for the subtype three
defined in Section 4.3.1 is

Rep_three_induct:
[[?a ∈ {1, 2, 3};

∧
x. ?P (Rep_three x)]] =⇒ ?P ?a

168



4.4 Quotient Types

**todo**

4.5 Lifting and Transfer

**todo**

169



Chapter 5

Isabelle HOL Types

This chapter introduces a small basic part of the types available in HOL.
Most of the types are algebraic types (see Section 4.1). Although some of
them are defined differently for technical reasons, they are configured after-
wards to behave as if they have been defined as algebraic types. Therefore
they are described here using the corresponding datatype definition.
A type basically provides the type name or type constructor, if the type is
parametric. Together with a type, HOL introduces functions on the values of
the type, either implicitly by using type definition mechanisms described in
Section 4, or explicitly by using definitions (see Sections 2.1.3, 3.7, and 3.10).
In this way HOL populates the object level of the inner syntax with a rich
language for expressing mathematical content. Additionally, HOL provides
facts (usually derivation rules) about these functions which can be used in
proofs. For every type this introduction describes its mathematical meaning,
it gives a short description of (most of) the defined functions, and it lists some
exemplary rules with explanations.
If applicable, the functions described for a type include the specific forms of
ordering relations and lattice operations (see Section 3.2) and functions for
binder syntax (see Section 3.3).
The semantics of the described functions is either given informally for well-
known functions or by a description of the form name :: type ≡ lambda-term.
The latter is often not the actual definition used by HOL for the function,
it is only used here for documentation purpose.

5.1 Boolean Values

The type of boolean values is specified equivalent to an algebraic type of the
form of the enumeration type (see Section 4.1.2)

datatype bool = True | False

170



The type bool plays a special role in HOL since it is the type of all terms
which are used as formulas (see Section 2.1.5) in Isabelle. Every object logic
used in Isabelle must define a type which plays this role.

5.1.1 Values

Values of type bool can directly be denoted by the parameterless construc-
tors True and False.
The lattice constants top and bot (see Section 3.2.3) are available for type
bool and denote the values True and False, respectively.

5.1.2 Destructors

Since both constructors are constant no selectors can be defined. Discrimi-
nators are not required since the constants are already boolean values.
A case term for type bool has the form

case term of True ⇒ term1 | False ⇒ term2

where term is a term of type bool.
As an alternative syntax HOL provides the usual form

if term then term1 else term2

5.1.3 Functions

The usual logical functions are defined for type bool : conj, disj, implies,
iff of type bool ⇒ bool ⇒ bool with operator names (∧), (∨), (−→),
(←→) and the unary negation Not of type bool ⇒ bool and operator name
(¬). The function (←→) is the specific instance of (=) for type bool (see
Section 3.2.1).

Functions for Orderings and Lattices

The ordering relations (see Section 3.2.2) and the lattice operations (see Sec-
tion 3.2.3) are defined for type bool so that False < True. This implies that
(≤) is equivalent to (−→) and (u), (t) and also min, max are equivalent
to (∧), (∨).
The lattice operators (

d
) and (

⊔
) on sets are provided for bool by defi-

nitions
d
A ≡ (False /∈ A) and

⊔
A ≡ (True ∈ A), so they correspond to

conjunction and disjunction over sets, respectively. Note that the meta-logic
quantifier

∧
(see Section 2.1.5) does not denote a conjunction operation

on sets of boolean values. For nonempty finite sets of boolean values the
functions Min and Max are equivalent to (

d
) and (

⊔
).

171



Functions for Binder Syntax

The quantifiers are defined as “predicates on predicates”:

All :: (’a ⇒ bool) ⇒ bool ≡ λP. (P = (λx. True))
Ex :: (’a ⇒ bool) ⇒ bool ≡ λP. (¬ All (λx. ¬ P x))
Uniq :: (’a ⇒ bool) ⇒ bool ≡
λP. (All (λx. (All (λy. P x −→ P y −→ y = x))))

Ex1 :: (’a ⇒ bool) ⇒ bool ≡
λP. (Ex (λx. P x ∧ (All (λy. P y −→ y = x))))

with the alternative binder syntax ∀ x. bterm for the application All (λx.
bterm), ∃ x. bterm for Ex (λx. bterm), ∃≤1x. bterm for Uniq (λx. bterm),
and ∃ !x. bterm for Ex1 (λx. bterm). The Uniq quantifier states that there
is atmost one value satisfying the predicate, the Ex1 quantifier states that
there is exactly one such value.
An iterated application for an n-ary predicate λx1 . . . xn. bterm can be
written in the form ∀ x1 . . . xn. bterm for all quantifiers. Like for lambda
terms (see Section 2.1.2) types may be specified for (some of) the variables
as in ∀ (x1 :: type1) . . . (xn :: typen). bterm.
HOL also provides several functions which support binder syntax where a sin-
gle bound variable is restricted (“bounded”) by an ordering (see Section 3.2.2)
or inequality (see Section 3.2.1) relation to some value.
HOL provides functions similar to All and Ex to support the syntax of the
bounded quantifiers

∀ x<y. bterm ≡ ∀ x. x < y −→ bterm
∃ x<y. bterm ≡ ∃ x. x < y ∧ bterm
∀ x≤y. bterm ≡ ∀ x. x ≤ y −→ bterm
∃ x≤y. bterm ≡ ∃ x. x ≤ y ∧ bterm
∀ x>y. bterm ≡ ∀ x. x > y −→ bterm
∃ x>y. bterm ≡ ∃ x. x > y ∧ bterm
∀ x≥y. bterm ≡ ∀ x. x ≥ y −→ bterm
∃ x≥y. bterm ≡ ∃ x. x ≥ y ∧ bterm
∀ x 6=y. bterm ≡ ∀ x. x 6= y −→ bterm
∃ x 6=y. bterm ≡ ∃ x. x 6= y ∧ bterm

5.1.4 Rules

The rules described here are the usual rules for an algebraic type and intro-
duction / elimination / destruction rules for the functions, and some specific
rules for negation. HOL provides many additional rules, see the Isabelle
documentation for how to use them in proofs.
Complex proofs using these rules can often be done automatically by the
proof method blast (see Section 2.3.7).

172



Algebraic Type Rules

Since there are no selectors for bool and all constructors are constant the
main simplifier rules are the rule sets bool.distinct and bool.case (see
Section 4.1.5):

True 6= False
False 6= True
(case True of True ⇒ ?t1 | False ⇒ ?t2) = ?t1

(case False of True ⇒ ?t1 | False ⇒ ?t2) = ?t2

The case, split, and induction rules are

bool.exhaust:
[[?y = True =⇒ ?P; ?y = False =⇒ ?P ]] =⇒ ?P

bool.split:
?P (case ?t of True ⇒ ?t1 | False ⇒ ?t2) =
((?t = True −→ ?P ?t1) ∧ (?t = False −→ ?P ?t2))

bool.induct:
[[?P True; ?P False ]] =⇒ ?P ?a

Actually, as automatic case rule for type bool instead of bool.exhaust the
slightly different rule

case_split:
[[?Q =⇒ ?P; ¬ ?Q =⇒ ?P ]] =⇒ ?P

is used, as described in Section 2.4.3.
For the alternate case term form described in Section 5.1.2 there is also a
split rule:

if_split:
?P (if ?t then ?t1 else ?t2) =
((?t −→ ?P ?t1) ∧ (¬ ?t −→ ?P ?t2))

Other than bool.split this rule is automatically applied by the simplifier
(see Section 2.3.6) for splitting if -terms.

Rules About Boolean Functions

For the functions described in Section 5.1.3 corresponding introduction rules
(see Section 2.3.3), destruction rules (see Section 2.3.4), and elimination rules
(see Section 2.4.4) are available. They are present in the rule sets intro, dest,
or elim, respectively.
The introduction rules are:
conjI: [[?P; ?Q ]] =⇒ ?P ∧ ?Q
disjI1: ?P =⇒ ?P ∨ ?Q

173



disjI2: ?Q =⇒ ?P ∨ ?Q
notI: (?P =⇒ False) =⇒ ¬ ?P
impI: (?P =⇒ ?Q) =⇒ ?P −→ ?Q
iffI: [[?P =⇒ ?Q; ?Q =⇒ ?P ]] =⇒ ?P = ?Q
allI: (

∧
x. ?P x) =⇒ ∀ x. ?P x

exI: ?P ?x =⇒ ∃ x. ?P x

The destruction rules are:
conjunct1: ?P ∧ ?Q =⇒ ?P
conjunct2: ?P ∧ ?Q =⇒ ?Q
mp: [[?P −→ ?Q; ?P ]] =⇒ ?Q
spec: ∀ x. ?P x =⇒ ?P ?x
iffD1: [[?Q = ?P; ?Q ]] =⇒ ?P
iffD2: [[?P = ?Q; ?Q ]] =⇒ ?P

The rule mp is the well known logic rule “modus ponens”.
The elimination rules are:
conjE: [[?P ∧ ?Q; [[?P; ?Q ]] =⇒ ?R ]] =⇒ ?R
disjE: [[?P ∨ ?Q; ?P =⇒ ?R; ?Q =⇒ ?R ]] =⇒ ?R
notE: [[¬ ?P; ?P ]] =⇒ ?R
impE: [[?P −→ ?Q; ?P; ?Q =⇒ ?R ]] =⇒ ?R
iffE: [[?P = ?Q; [[?P −→ ?Q; ?Q −→ ?P ]] =⇒ ?R ]] =⇒ ?R
allE: [[∀ x. ?P x; ?P ?x =⇒ ?R ]] =⇒ ?R
exE: [[∃ x. ?P x;

∧
x. ?P x =⇒ ?Q ]] =⇒ ?Q

Additionally, the following four rules can be used for “proofs by contradic-
tion”:
contrapos_pn: [[?Q; ?P =⇒ ¬ ?Q ]] =⇒ ¬ ?P
contrapos_pp: [[?Q; ¬ ?P =⇒ ¬ ?Q ]] =⇒ ?P
contrapos_nn: [[¬ ?Q; ?P =⇒ ?Q ]] =⇒ ¬ ?P
contrapos_np: [[¬ ?Q; ¬ ?P =⇒ ?Q ]] =⇒ ?P

Equivalence of Derivation Rules and Boolean Terms

Using these rules together with the rules about the meta-logic operators
atomize_all: (

∧
x. ?P x) ≡ ∀ x. ?P x

atomize_imp: (?A =⇒ ?B) ≡ ?A −→ ?B
atomize_conjL: ([[?A; ?B ]] =⇒ ?C) ≡ (?A ∧ ?B =⇒ ?C)
atomize_conj: (?A &&& ?B) ≡ ?A ∧ ?B

every meta-logic derivation rule with possibly multiple conclusions (see Sec-
tion 2.1.5)∧

x1 . . . xm. [[A1; . . .; An]] =⇒ C1 &&& . . . &&& Ch

can be converted to the boolean term

∀ x1 . . . xm. (A1’ ∧ . . . ∧ An’) −→ C1’ ∧ . . . ∧ Ch’

174



(where each A i’ and C i’ is converted in the same way if it is again a derivation
rule), and vice versa.
In principle every theorem may be specified in either of both forms. However,
its application by proof methods in other proofs is usually only possible if
it is specified in derivation rule form. Therefore it is usually preferable to
specify theorems in this form.

5.2 The Unit Type

The unit type has only one value. It is specified equivalent to an algebraic
type of the form of the enumeration type (see Section 4.1.2)

datatype unit = Unity

A typical use of the unit type is for instantiating a parameter of a parame-
terized type when you actually don’t care about it. For example, if you have
to use binary predicates of type ’a ⇒ ’b ⇒ bool but do not care about the
second argument you can use the type ’a ⇒ unit ⇒ bool. Syntactically
its values are still binary predicates, however, since there is only one possible
value for the second argument, it cannot affect the result, so semantically
they are unary predicates. Another use of the unit type is for the more part
in unextended record types (see Section 4.2.1).
So the unit type plays the role of an “empty type” (which does not exist for
formal reasons).

5.2.1 Values

Values of type unit can directly be denoted by the parameterless constructor
Unity. The usual way of denoting it is by its alternative form (), which has
been chosen because the unit type is also used to represent empty tuples (see
Section 5.6).

5.2.2 Destructors

A case term for type unit has the form

case term of () ⇒ term1

where term is a term of type unit. It is equivalent to term1.

5.2.3 Rules

The usual rules for an algebraic type are also defined for unit. They are of
no much use, but here they are shown for the interested reader:

175



unit.exhaust: (?y = () =⇒ ?P) =⇒ ?P
unit.split: ?P (case ?t of () ⇒ ?t1) = (?t = () −→ ?P ?t1)
unit.induct: ?P () =⇒ ?P ?a

The split rule is required if during a proof a case term for type unit (see
Section 5.2.2) occurs for some reason. Although it is trivially equivalent
to its subterm term1, the simplifier will not use that equivalence since it
never splits case terms automatically. It must be configured as simp split:
unit.split to do so.
Since there are no functions for unit there are no introduction / destruction
/ elimination rules.

5.3 Natural Numbers

The type of natural numbers is specified equivalent to a recursive algebraic
type (see Section 4.1) of the form

datatype nat = 0 | Suc nat

It is not really defined in this way, because 0 is syntactically not a construc-
tor, but it can mainly be used in the same way.
The type nat denotes the mathematical concept of natural numbers, it has
infinitely many values, there is no upper limit.

5.3.1 Values

Values of type nat can be denoted in the usual way using constructor ex-
pressions such as Suc 0, Suc (Suc 0), . . ..
Alternatively they can be denoted by decimal number literals such as 0, 1,
2, . . . of arbitrary size.
However, the decimal number literals are overloaded and may also denote
values of other numerical types, such as type int for the integer numbers.
Therefore the type of an isolated decimal number literal is not determined,
which may cause unexpected effects. To denote a value of type nat its type
may be explicitly specified as described in Section 2.1.2, such as 1::nat.
The lattice constant bot (see Section 3.2.3) is available for type nat and
denotes the value 0. The constant top is not available for type nat.

5.3.2 Destructors

Since Suc plays the role of a constructor, corresponding destructors can be
defined. The selector function which inverts Suc is defined as nat.pred where
nat.pred x is equivalent to x - 1 and nat.pred 0 = 0. This selector is not

176



intended to be used directly, use the subtraction function described below
instead. There are no discriminators, instead the equality terms x = 0 and
x 6= 0 can be used.
A case term for type nat has the form

case term of 0 ⇒ term1 | Suc n ⇒ term2

where term is a term of type nat.

5.3.3 Functions

The usual basic arithmetic functions are defined for type nat : plus, minus,
times, divide, modulo of type nat ⇒ nat ⇒ nat with operator names (+),
(-), (*), (div), (mod) and alternate operator name (/) for (div). Sub-
traction is truncated at 0, e.g. 4 - 7 evaluates to 0. Also defined is the
binary “divides” relation dvd_class.dvd with operator name (dvd).
Like decimal number literals all these functions are overloaded and not re-
stricted to natural numbers. As a consequence, a proposition such as

4 - 7 = 0

is not valid and cannot be proved. To become a provable fact it must be
specified in a form like

(4::nat) - 7 = 0

which can be proved by method simp. Note that it is sufficient to specify
the type for a single literal, because then the type of the function (-) is
derived to be nat ⇒ nat ⇒ nat (there are no “mixed-typed” arithmetic
functions) from which the type of the second literal is derived and similar
for the equality.
For type nat HOL defines the size function (see Section 3.8.4) to be the
identity function.

Functions for Orderings and Lattices

The ordering relation (<) (see Section 3.2.2) is defined to be the usual or-
dering on natural numbers. This implies that also min and max have their
usual meaning. The lattice operations (see Section 3.2.3) are overloaded for
type nat so that (u), (t) are equivalent to min, max.
The functions Min and Max on sets are also defined as expected on finite
nonempty sets of natural numbers, otherwise their result is underspecified.
The lattice operators (

d
) and (

⊔
) are equivalent to Min and Max, addition-

ally
⊔
{} is specified to be 0 and (

d
) is also specified to return the minimal

value for infinite sets of natural numbers.

177



5.3.4 Rules

HOL provides a large number of rules applicable for proofs about values of
type nat. Here we only show rules for an algebraic type and introduction /
elimination / destruction rules for the functions, like for other types. They
are usually not sufficient for proofs about natural numbers and should only
give an impression about the type nat in comparison with other types.
Proofs for linear arithmetic properties of nat values using these and other
rules can often be done automatically by the proof methods linarith or
arith (see Section 2.3.7).

Algebraic Type Rules

The simplifier rules for the constructors of type nat are the rule sets nat.inject,
nat.distinct and nat.case (see Section 4.1.5):

(Suc ?x = Suc ?y) = (?x = ?y)
0 6= Suc ?x
Suc ?x 6= 0
(case 0 of 0 ⇒ ?t1 | Suc x ⇒ ?t2 x) = ?t1

(case Suc ?x of 0 ⇒ ?t1 | Suc x ⇒ ?t2 x) = ?t2 ?x

Note the difference between the unknown ?x and the locally bound x in the
last rule.
The case, split, and induction rules are

nat.exhaust:
[[?y = 0 =⇒ ?P;

∧
x. ?y = Suc x =⇒ ?P ]] =⇒ ?P

nat.split:
?P (case ?t of 0 ⇒ ?t1 | Suc x ⇒ ?t2 x) =
((?t = 0 −→ ?P ?t1) ∧ (∀ x. ?t = Suc x −→ ?P (?t2 x)))

nat.induct:
[[?P 0;

∧
i. ?P i =⇒ ?P (Suc i)]] =⇒ ?P ?n

For the case and induction rule the cases are named 0 and Suc.

Other Induction Rules

The rule nat.induct is the induction rule associated with type nat. Addi-
tionally, there are several other induction rules for values of type nat which
may be used for other types of induction by specifying them explicitly to the
induction or induct method:

nat_less_induct:
[[
∧
i. ∀ j<i. ?P j =⇒ ?P i ]] =⇒ ?P ?n

infinite_descent0:

178



[[?P 0;
∧
i. [[0 < i; ¬ ?P i ]] =⇒ ∃ j<i. ¬ ?P j ]] =⇒ ?P ?n

diff_induct:
[[
∧
i. ?P i 0;

∧
j. ?P 0 (Suc j);

∧
i j. ?P i j =⇒ ?P (Suc i) (Suc j)]]

=⇒ ?P ?m ?n
less_Suc_induct [consumes 1]:

[[?m < ?n;
∧
i. ?P i (Suc i);∧

i j k. [[i < j; j < k; ?P i j; ?P j k ]] =⇒ ?P i k ]]
=⇒ ?P ?m ?n

nat_induct_at_least [consumes 1]:
[[?m ≤ ?n; ?P ?m;

∧
i. [[?m ≤ i; ?P i ]] =⇒ ?P (Suc i)]] =⇒ ?P ?n

nat_induct_non_zero [consumes 1]:
[[0 < ?n; ?P 1;

∧
i. [[0 < i; ?P i ]] =⇒ ?P (Suc i)]] =⇒ ?P ?n

inc_induct [consumes 1]:
[[?n ≤ ?m; ?P ?m;

∧
i. [[?n ≤ i; i < ?m; ?P (Suc i)]] =⇒ ?P i ]]

=⇒ ?P ?n
strict_inc_induct [consumes 1]:

[[?n < ?m;
∧
i. ?m = Suc i =⇒ ?P i;∧

i. [[i < ?m; ?P (Suc i)]] =⇒ ?P i ]]
=⇒ ?P ?n

dec_induct [consumes 1]:
[[?m ≤ ?n; ?P ?m;

∧
i. [[?m ≤ i; i < ?n; ?P i ]] =⇒ ?P (Suc i)]]

=⇒ ?P ?n

Note that the last six rules combine induction with elimination, as described
in Section 2.4.5, and are therefore attributed by [consumes 1].

Rules About Functions

The constructor function Suc has result type nat and therefore cannot occur
as outermost operator in a proposition. Therefore introduction, destruction,
and elimination rules for Suc must embed the application term in a propo-
sition with the help of a predicate. The ordering relations are used for this
purpose, thus only ordering properties can be proved using these rules.
Introduction rules (see Section 2.3.3) for Suc are
le_SucI: ?m ≤ ?n =⇒ ?m ≤ Suc ?n
less_SucI: ?m < ?n =⇒ ?m < Suc ?n
Suc_leI: ?m < ?n =⇒ Suc ?m ≤ ?n
Suc_lessI: [[?m < ?n; Suc ?m 6= ?n ]] =⇒ Suc ?m < ?n

Destruction rules (see Section 2.3.4) for Suc are
Suc_leD: Suc ?m ≤ ?n =⇒ ?m ≤ ?n
Suc_lessD: Suc ?m < ?n =⇒ ?m < ?n
Suc_less_SucD: Suc ?m < Suc ?n =⇒ ?m < ?n
Suc_le_lessD: Suc ?m ≤ ?n =⇒ ?m < ?n

An elimination rule (see Section 2.4.4) for Suc is
less_SucE:
[[?m < Suc ?n; ?m < ?n =⇒ ?P; ?m = ?n =⇒ ?P ]] =⇒ ?P

179



For the arithmetic functions described in Section 5.3.3 most properties are
specified by equations such as
add_Suc_right: ?m + Suc ?n = Suc (?m + ?n)
mult_Suc_right: ?m * Suc ?n = ?m + ?m * ?n
diff_Suc_1: Suc ?n - 1 = ?n
min_Suc_Suc: min (Suc ?m) (Suc ?n) = Suc (min ?m ?n)
max_Suc_Suc: min (Suc ?m) (Suc ?n) = Suc (min ?m ?n)
dvd_diff_nat: [[?k dvd ?m; ?k dvd ?n ]] =⇒ ?k dvd ?m - ?n

Many of these equations are members of the simpset, therefore many simple
arithmetic properties can be proved by the simplifier. More complex proper-
ties may need the methods linarith or arith, or can be proved by induction
or a combination thereof.

5.4 Sets

You may think of the type constructor set as being specified equivalent to
the parameterized algebraic type

datatype ’a set = Collect (contains: ’a ⇒ bool)

Thus a set is simply a wrapper for a unary predicate of type ’a ⇒ bool (see
Section 3.1.1).
The selector contains is not intended for general use and can only be spec-
ified in qualified form as Predicate_Compile.contains.

5.4.1 Values

Basically, values of type ’a set are denoted by constructor application terms
of the form Collect (λx. bterm) where (λx. bterm) is a unary predicate (see
Section 3.1.1).
For such a term HOL provides the alternative “set comprehension” syntax
(which is a special form of binder syntax)

{x. bterm}

HOL also provides two standard abbreviations:

• {} for the empty set, which is written {x. False} in comprehension
syntax, and

• UNIV for the universal set {x. True}.

Both abbreviations are available for arbitrary types ’a set. The universal
set is the set of all values of the type ’a. Examples are UNIV :: bool set

180



which is the set {True, False} and UNIV :: nat set which is the set of all
natural numbers.
The lattice constants top and bot (see Section 3.2.3) are available for sets
and denote the universal set UNIV and the empty set {}, respectively.
For a set comprehension of the form

{x. ∃ x1 . . . xn. x = term ∧ bterm}

HOL provides the alternative syntax

{term | x1 . . . xn. bterm}

Note that the bindings of the variables x1 . . . xn follow the | although the
scope of the bindings includes the term before the |.
An example for this syntax is the set

{2*x | x::nat. x < 5}

which contains the numbers 0, 2, 4, 6, 8. Note that types may be specified
in the bindings in the same way as for the ∃ quantifier.

5.4.2 Destructors

For use instead of the selector

Predicate_Compile.contains :: ’a set ⇒ ’a ⇒ bool

HOL provides the function with reversed arguments

Set.member :: ’a ⇒ ’a set ⇒ bool

with alternate operator name (∈). It combines unwrapping and applying
the predicate and corresponds to the usual member test predicate for sets.
Since there is only one constructor, discriminators and case terms are not
available for sets.

5.4.3 Functions

In addition to the basic function Set.member and its negation Set.not_member
with operator name (/∈) HOL provides the other usual functions on sets: the
relations subset, subset_eq, supset, supset_eq with operator names (⊂),
(⊆), (⊃), (⊇) and the operations inter, union, minus with operator names
(∩), (∪), (-). The function minus is set difference, there is also the unary
set complement (relative to the universal set UNIV, see Section 5.4.1) uminus
which also has the operator name (-) for prefix application. The functions
minus and uminus are overloaded for other types as well, therefore Isabelle
will not automatically derive that their arguments are sets.
Intersection and union of a family of sets is supported by the functions

181



Inter :: ’a set set ⇒ ’a set
Union :: ’a set set ⇒ ’a set

with operator names (
⋂
) and (

⋃
) for prefix notation.

HOL also provides the function

insert :: ’a ⇒ ’a set ⇒ ’a set ≡ λa B. {x. x = a ∨ x ∈ B}

which inserts a value into a set. HOL uses it to introduce the set enumeration
notation

{x1, . . ., xn}

as abbreviation for insert x1 (. . . (insert xn {}) . . .).
Moreover HOL provides the functions

Pow :: ’a set ⇒ ’a set set ≡ λA. {B. B⊆A}
image :: (’a ⇒ ’b) ⇒ ’a set ⇒ ’b set ≡ λf A. {y. ∃ x∈A. y = f x}
range :: (’a ⇒ ’b) ⇒ ’b set ≡ λf. image f UNIV
vimage :: ’a ⇒ ’b) ⇒ ’b set ⇒ ’a set ≡ λf A. {x. f x ∈ A}
is_singleton :: ’a set ⇒ bool ≡ λA. (∃ x. A = {x})
the_elem :: ’a set ⇒ ’a ≡ λA. (THE x. A = {x})
pairwise :: (’a ⇒ ’a ⇒ bool) ⇒ ’a set ⇒ bool ≡
λf A. (∀ x∈A. ∀ y∈A. x 6= y −→ f x y)

disjnt :: ’a set ⇒ ’a set ⇒ bool ≡ λA B. A ∩ B = {}

with operator name (‘) for image and (-‘) for vimage. Pow is the powerset
operator, image and vimage are the image / reverse image of a function.
range is the set of all result values of a function (note that the set of all
argument values of a function is always UNIV because functions are total
in Isabelle). As usual, the result of the_elem A is underspecified (see Sec-
tion 3.3.2) if A is not known to be a singleton set. The relation application
pairwise f A is satisfied if f is satisfied for all pairs of different elements of
A. The relation disjnt tests two sets for being disjoint.
As a convention, variables for sets are usually denoted by uppercase letters.

Functions for Orderings and Lattices

The ordering relations (see Section 3.2.2) are defined for sets so that (<) is
equivalent to the subset relation (⊂) and analogously for (≤), (>), (≥).
The lattice operations (u), (t), (

d
), and (

⊔
) (see Section 3.2.3) are over-

loaded to be equivalent to (∩), (∪), (
⋂
), and (

⋃
).

Since (⊂) is not a total ordering the functions min and max are not equivalent
to (∩) and (∪) and the functions Min and Max are not available for sets of
sets.

182



Functions for Binder Syntax

HOL provides many functions which support binder syntax where a single
bound variable is restricted (“bounded”) by a member or subset relation to
some set.
HOL provides functions similar to All and Ex (see Section 5.1.3) to support
the syntax of bounded quantifiers

∀ x∈sterm. bterm ≡ ∀ x. x ∈ sterm −→ bterm
∃ x∈sterm. bterm ≡ ∃ x. x ∈ sterm ∧ bterm
∃ !x∈sterm. bterm ≡ ∃ !x. x ∈ sterm ∧ bterm
∀ x⊂sterm. bterm ≡ ∀ x. x ⊂ sterm −→ bterm
∃ x⊂sterm. bterm ≡ ∃ x. x ⊂ sterm ∧ bterm
∀ x⊆sterm. bterm ≡ ∀ x. x ⊆ sterm −→ bterm
∃ x⊆sterm. bterm ≡ ∃ x. x ⊆ sterm ∧ bterm
∃ !x⊆sterm. bterm ≡ ∃ !x. x ⊆ sterm ∧ bterm

and the bounded descriptors (see Section 3.3.3)

LEAST x∈sterm. bterm ≡ LEAST x. x ∈ sterm ∧ bterm
GREATEST x∈sterm. bterm ≡ GREATEST x. x ∈ sterm ∧ bterm

Unlike for the plain quantifiers only one bounded variable may be specified
for these forms. If there are more, the quantifiers must be nested as in
∀ x∈sterm1. ∀ y∈sterm2. bterm.
As set comprehension syntax for the special case of a predicate which includes
a member test HOL provides the syntax

{x∈sterm. bterm}

for a term of the form {x. x∈sterm ∧ bterm}.
For the operations (

⋂
), (

⋃
), (

d
), (

⊔
), Min, Max on sets (see Section 3.2)

HOL provides the alternative syntax of the form⋂
x∈term1. term2

where both terms must have a set type and x may occur free in term2. This
form is equivalent to

⋂
{term2 | x. x∈term1} which is the intersection over

all sets returned by term2 when x adopts all values in the set term1. For Min
the syntax is

MIN x∈term1. term2

and analogously for Max.
For all these operators HOL also provides the abbreviated syntax of the form⋂
x. term2

183



for
⋂
x∈UNIV. term2 and the further abbreviation⋂

x1 . . . xn. term2

for
⋂
x1. . . .

⋂
xn. term2 (which is not available for the form with ∈).

Note that MIN x::nat. x < 5 is not the minimum of the numbers which are
less than 5, instead it is the minimum of the boolean values which occur as
the result of x < 5 if x adopts all possible values of type nat, i.e. it is equal
to the value False. The minimum of the numbers which are less than 5 is
denoted by LEAST x::nat. x < 5 which is equal to the value 0.

Functions for Finite Sets

HOL defines the predicate finite by the inductive definition (see Section 3.7)

inductive finite :: "’a set ⇒ bool" where
"finite {}"

| "finite A =⇒ finite (insert a A)"

So a set is finite if it can be constructed from the empty set by a finite
sequence of inserting single elements.
For iterating through the elements of a finite set HOL introduces the function

Finite_Set.fold :: (’a ⇒ ’b ⇒ ’b) ⇒ ’b ⇒ ’a set ⇒ ’b

where fold f z {x1, . . ., xn} = f x1 (. . . (f xn z). . .) if the resulting value
is independent of the order of the x i, i.e., the function f must be “left-
commutative” on the values in the set. If it is not, its result is underspecified.
If the set is not finite the result is always the starting value z.
The function Finite_Set.fold is not intended for direct use, it is used by
HOL to provide other functions. The most basic is

card :: ’a set ⇒ nat ≡ λA. Finite_Set.fold (λ_ n. Suc n) 0 A

for the cardinality of sets. For finite sets it is the number of elements, for
infinite sets, due to the way fold is defined, it is always 0.

5.4.4 Rules

Algebraic Type Rules

Since HOL does not define the type ’a set as an algebraic type it does not
provide the standard rules and rule sets. However, the relevant properties
are available in slightly different form.
Injectivity of the constructor is not specified as a simplifier equation, instead
there is the rule

184



Collect_inj: Collect ?P = Collect ?Q =⇒ ?P = ?Q

Note that the other direction is always satisfied for arbitrary functions (see
Section 5.7.3). It is provided in the form where the predicates are applied to
arguments:
Collect_eqI: (

∧
x. ?P x = ?Q x) =⇒ Collect ?P = Collect ?Q

where its name reflects that it has the form of an introduction rule (see
Section 2.3.3) for the equality relation (=) (see Section 3.2.1) on type ’a
set.
Equivalent to a “defining equation” for the selector there is the rule

mem_Collect_eq: Set.member ?a (Collect ?P) = ?P ?a

which is

(?a ∈ {x. ?P x}) = ?P ?a

in alternative syntax. This rule is also provided in the form of two separate
rules for both dirctions:

CollectI: ?P ?a =⇒ ?a ∈ {x. ?P x}
CollectD: ?a ∈ {x. ?P x} =⇒ ?P ?a

having the form of an introduction and a destruction rule (see Section 2.3.4).
Due to the simple wrapper structure of type ’a set no other algebraic type
rules apply.

Rules About Functions

Using the rules described above and the definitions of the functions on sets
described in Section 5.4.3 it is possible to convert every proposition about
sets to an equivalent proposition about predicates and boolean operations
(see Section 5.1.3) and prove it in this form. Most automatic proof methods
described in Section 2.3.7 use this conversion and can thus prove many goals
which involve sets and set operations, in particular the method blast.
Additionally HOL provides rules which directly work for functions on sets
such as the introduction rules (see Section 2.3.3)
subsetI: (

∧
x. x ∈ ?A =⇒ x ∈ ?B) =⇒ ?A ⊆ ?B

IntI: [[?c ∈ ?A; ?c ∈ ?B ]] =⇒ ?c ∈ ?A ∩ ?B
UnI1: ?c ∈ ?A =⇒ ?c ∈ ?A ∪ ?B
PowI: ?A ⊆ ?B =⇒ ?A ∈ Pow ?B

the destruction (see Section 2.3.4) and elimination (see Section 2.4.4) rules
subsetD: [[?A ⊆ ?B; ?c ∈ ?A ]] =⇒ ?c ∈ ?B
IntD1: ?c ∈ ?A ∩ ?B =⇒ ?c ∈ ?A

185



UnE: [[?c ∈ ?A ∪ ?B; ?c ∈ ?A =⇒ ?P; ?c ∈ ?B =⇒ ?P ]] =⇒ ?P
PowD: ?A ∈ Pow ?B =⇒ ?A ⊆ ?B

and the simplifier rules (see Section 2.3.6)
subset_eq: (?A ⊆ ?B) = (∀ x∈?A. x ∈ ?B)
Int_def: ?A ∩ ?B = {x. x ∈ ?A ∧ x ∈ ?B}
Un_def: ?A ∪ ?B = {x. x ∈ ?A ∨ x ∈ ?B}
Pow_def: Pow ?A = {B. B ⊆ ?A}

where, despite their names, (∩) and (∪) are not really defined in this way.
There are also many rules about finite and card such as
finite_subset: [[?A ⊆ ?B; finite ?B ]] =⇒ finite ?A
finite_Un: finite (?F ∪ ?G) = (finite ?F ∧ finite ?G)
finite_Int: finite ?F ∨ finite ?G =⇒ finite (?F ∩ ?G)
card_mono: [[finite ?B; ?A ⊆ ?B ]] =⇒ card ?A ≤ card ?B
card_Diff_subset_Int:

finite (?A ∩ ?B) =⇒ card (?A - ?B) = card ?A - card (?A ∩ ?B)
card_Un_Int:

[[finite ?A; finite ?B ]]
=⇒ card ?A + card ?B = card (?A ∪ ?B) + card (?A ∩ ?B)

Many rules about finite are known by the automatic proof methods (see
Section 2.3.7). Rules about card must often be specified explicitly.

5.5 Optional Values

A function argument is optional if it can be omitted. In Isabelle, however,
every function has a fixed number of arguments, it is not possible to omit
one or more of them. Instead, the idea is to have a special value with the
meaning of “no value”. The presence of such a value is no more a property
of the function, it is a property of the function argument’s type.
Normally, types do not include a “no value” value, it must be introduced
separately and it must be different from all existing values. For a type t this
can be done by defining a new type which has one more value. However,
since the values of the new type are always different from those of t (see
Section 2.1.2), the new type has to include the values of t in a “wrapped”
form.
All this is done by the algebraic type

datatype ’a option =
None

| Some (the: ’a)

It is polymorphic with one type parameter ’a (see Section 2.1.2), for every
type t it provides the new type t option.

186



In this way the type nat option can be used to add a “no value” to the
natural numbers.
The type constructor option can also be used to emulate partial functions
(which do not exist in Isabelle) by functions with a result type t option.

5.5.1 Values

Type option provides two constructors. The parameterless constructor None
denotes the “no value” value. The unary constructor Some provides the value
Some v for every value v of the type parameter ’a. In this way the type t
option includes all values v of t wrapped as Some v. Since constructors of
algebraic types are injective (see Section 4.1.2) different values stay different
when wrapped. Since different constructors denote different values the value
None is different from all wrapped values. Note also, that for different types
t1 and t2 the None values in t1 option and t2 option are different, because
they belong to different types.
The type nat option provides the value None and wrapped natural numbers
of the form Some 5.

5.5.2 Destructors

The selector the is used to “unwrap” the wrapped values: the (Some v) = v.
As described in Section 4.1.3 the selector can also be applied to None, but
the result is underspecified. The term the None denotes a unique value of
the parameter type ’a, but no information is available about that value.
Although not introduced by the type definition, the function Option.is_none
plays the role of a discriminator and tests values for being None. Alternatively
the equality terms x = None and x 6= None can be used.
A case term for type t option has the form

case term of None ⇒ term1 | Some v ⇒ term2

where term is a term of type t option and v is a variable of type t which
may occur in term2. Such case terms can be used to process a term for an
optional value. It is tested whether a (wrapped) value is present, if not term1

specifies a default, otherwise term2 specifies a use of the unwrapped value v.
The same effect can be achieved by the term

if term = None then term1 else term2’

where term2’ uses (the term) instead of v. However, proofs may differ de-
pending on which of both forms is used.

187



5.5.3 Functions

The function

Option.these :: ’a option set ⇒ ’a set ≡
λA. image the {x∈A. x 6=None}

extends the selector the to sets. It returns the set of unwrapped values from
a set of optional values, ignoring None if present in the set.
No orderings or lattice functions (see Section 3.2) are specified for values of
type ’a option.

BNF Functions

The type constructor option is a bounded natural functor as described in
Section 4.1.4. Values of type ’a option can be viewed as containers of a
single value of type ’a.
The corresponding BNF functions are generated as:

set_option :: ’p option ⇒ ’p set ≡
λx. case x of None ⇒ {} | Some x’ ⇒ {x’}

map_option :: (’p ⇒ ’q) ⇒ ’p option ⇒ ’q option ≡
λf x. case x of None ⇒ None | Some x’ ⇒ Some (f x’)

pred_option :: (’p ⇒ bool) ⇒ ’p option ⇒ bool ≡
λp x. case x of None ⇒ True | Some x’ ⇒ p x’

rel_option :: (’p ⇒ ’q ⇒ bool) ⇒ ’p option ⇒ ’q option ⇒ bool ≡
λr x y. case x of None ⇒ y = None | Some x’ ⇒

(case y of None ⇒ False | Some y’ ⇒ r x’ y’)

Additionally there is the function

combine_options ::
(’p ⇒ ’p ⇒ ’p) ⇒ ’p option ⇒ ’p option ⇒ ’p option ≡
λf x y. case x of None ⇒ y | Some x’ ⇒

(case y of None ⇒ x | Some y’ ⇒ Some (f x’ y’))

which extends map_option to binary functions. It applies its first argument
(a binary function) to two wrapped values without unwrapping them. If one
argument is None the result is the other argument.

5.5.4 Rules

Algebraic Type Rules

The simplifier rules for the constructors of type ’a option are the rule sets
option.inject, option.distinct and option.case (see Section 4.1.5):

188



(Some ?x = Some ?y) = (?x = ?y)
None 6= Some ?x
Some ?x 6= None
(case None of None ⇒ ?t1 | Some x ⇒ ?t2 x) = ?t1

(case Some ?x of None ⇒ ?t1 | Some x ⇒ ?t2 x) = ?t2 ?x

The case, split, and induction rules are

option.exhaust:
[[?y = None =⇒ ?P;

∧
x. ?y = Some x =⇒ ?P ]] =⇒ ?P

option.split:
?P (case ?t of None ⇒ ?t1 | Some x ⇒ ?t2 x) =
((?t = None −→ ?P ?t1) ∧ (∀ x. ?t = Some x −→ ?P (?t2 x)))

option.induct:
[[?P None;

∧
x. ?P (Some x)]] =⇒ ?P ?a

For the case and induction rule the cases are named None and Some.

Rules About Functions

For the functions described in Section 5.5.3 most properties are specified by
equations such as
elem_set: (?x ∈ set_option ?xo) = (?xo = Some ?x)
map_option_case:

map_option ?f ?y = (case ?y of None ⇒ None | Some x ⇒ Some (?f x))
Option.is_none_def: Option.is_none ?x = (?x = None)
rel_option_unfold:

rel_option ?R ?x ?y =
(Option.is_none ?x = Option.is_none ?y ∧
(¬ Option.is_none ?x −→
¬ Option.is_none ?y −→ ?R (the ?x) (the ?y)))

Many of these equations are members of the simpset, therefore many prop-
erties about optional values can be proved by the simplifier. Remember
to configure it with split: option.split if case terms occur for type ’a
option.

5.6 Tuples

Tuples are represented by HOL as nested pairs. The type of pairs is specified
equivalent to an algebraic type (see Section 4.1) of the form

datatype (’a, ’b) prod = Pair (fst: ’a) (snd: ’b)

As described in Section 4.1, this type is equivalent to the type of pairs of
values of the type parameters ’a and ’b. It is also called the “product type”
of the types ’a and ’b.

189



HOL supports an alternative syntax for instances of type (’a, ’b) prod.
The type instance (t1, t2) prod where t1 and t2 are arbitrary types may
be denoted by the type expression t1 × t2 or t1 * t2 (see Section 3.6).
A tuple with more than two components is represented in HOL by a pair
where the second component is again a pair or tuple. Hence the type of
4-tuples with component types t1, t2, t3, t4 can be denoted by the type
expression t1 × (t2 × (t3 × t4)). Since × is right associative the paren-
theses may be omitted as in the equivalent type expression t1 × t2 × t3

× t4.
As an example the type (bool × nat × nat) option is the type of optional
triples of one boolean value and two natural numbers.
Note that the type unit (see Section 5.2) can be used to represent a “0-tuple”,
as the alternative form () of its single value suggests.

5.6.1 Values

All values of type (’a, ’b) prod are denoted using the single constructor
Pair. HOL supports an alternative syntax for these constructor application
terms: the term Pair term1 term2 may also be specified in the form (term1,
term2) (see Section 3.6).
Iterating this syntax a 4-tuple value may be specified as (term1, (term2,
(term3, term3))). Since the (. . .,. . .) is also right associative the inner
parentheses may be omitted resulting in the equivalent term (term1, term2,
term3, term3).
Thus an example value of type (bool × nat × nat) option can be specified
by the term Some (True, 5, 42).

5.6.2 Destructors

The selectors fst and snd can be used to access the first or second component
in a pair, respectively.
Note that in a tuple of more than two components fst still selects the first
component, whereas snd selects the nested tuple with all other components.
To access the third component in a 4-tuple x the selectors must be combined
accordingly: fst (snd (snd x)). The third component in a triple x must
be accessed by snd (snd (snd x)). Therefore there is no general way of
accessing the ith component in an arbitrary tuple. An “easier” way for it is
to use a case term.
A case term for type t1 × t2 (which is equivalent to (t1, t2) prod) has
the form

case term of Pair x1 x2 ⇒ term1

190



where term is a term of type t1 × t2 and x1, x2 are variables of type t1

and t2, respectively, which may occur in term1. Using the alternative syntax
for pair values the case term may also be specified as

case term of (x1, x2) ⇒ term1

Such case terms can be used to “take apart” a term for a pair where the
components are not explicitly specified, such as in the application of a func-
tion which returns a pair. The components are bound to the variables x1,
x2 and can be used separately in term1. An example is the case term

case coordinate of (x, y) ⇒ x + y

where coordinate is a single variable of type nat × nat.
As usual, this also works for tuples with more than two components. The
general form of a case term for an n-tuple is

case term of (x1, . . ., xn) ⇒ term1

where the variables x1, . . ., xn may occur in term1.
HOL provides an alternative form for such case terms for tuples:

let (x1, . . ., xn) = term in term1

Although this form looks like a generalized let term (see Section 3.5) this
does not imply that let terms support arbitrary patterns on the left side of
the = sign, like the let statement (see Section 2.2.12). As “patterns” only
nested tuples of variables may be used, such let terms are always equivalent
to a case term for a tuple.
The same variable tuple patterns can also be used in other kinds of terms
where variables are bound such as in lambda terms (e.g., λ(a,b) c. a+b+c),
in logic quantifiers (e.g., ∀ (a,b) c. a+b=c), and in set comprehensions (e.g.,
{(a,b). a=b*b}). Note that the last example is equivalent to {(a,b) | a b.
a=b*b}, only in this form an arbitrary term may be used instead of (a,b).

5.6.3 Functions

As described in Section 4.1.3 a case term for a pair is only an alternative
syntax for the function application term case_prod (λ x1 x2. term1) term.
The polymorphic function case_prod is provided as

case_prod :: (’a ⇒ ’b ⇒ ’t) ⇒ ’a × ’b ⇒ ’t ≡
λf (x,y). f x y

where ’t is the type of term1 and thus of the whole case term.

191



This function is of interest on its own. It converts a binary function f
specified in the style described in Section 2.1.2 to a function which takes
the two arguments in the form of a single pair. This conversion is generally
called “uncurrying” (see Section 3.6.1). Tuple patterns in variable bindings,
as described in Section 5.6.2, are implemented in this way: The term λ(a,b).
term is just an alternative syntax for case_prod (λa b. term).
HOL provides the reverse conversion as the function

curry :: (’a × ’b ⇒ ’t) ⇒ ’a ⇒ ’b ⇒ ’t ≡
λf x y. f (x,y)

Additionally there are the functions

apfst :: (’a ⇒ ’c) ⇒ ’a × ’b ⇒ ’c × ’b ≡ λf (x,y). (f x,y)
apsnd :: (’b ⇒ ’c) ⇒ ’a × ’b ⇒ ’a × ’c ≡ λf (x,y). (x,f y)

which apply their first argument to the first or second component of the
second argument, respectively, and the function

prod.swap :: ’a × ’b ⇒ ’b × ’a ≡ λ(x,y). (y,x)

which interchanges the components of its argument.
The function

Product_Type.Times :: ’a set ⇒ ’b set ⇒ (’a × ’b) set ≡
λA B. {(x, y). x∈A ∧ y∈B}

with operator name (×) constructs the cartesian product of two sets.
No orderings or lattice functions (see Section 3.2) are specified for values of
type (’a, ’b) prod.

BNF Functions

The type constructor prod is a bounded natural functor as described in
Section 4.1.4. Values of type (’a, ’b) prod can be viewed as containers of
a single value of type ’a and a single value of type ’b.
The corresponding BNF functions are generated as:

map_prod ::
(’a1 ⇒ ’a2) ⇒ (’b1 ⇒ ’b2) ⇒ (’a1 × ’b1) ⇒ (’a2 × ’b2) ≡
λf g (x,y). (f x, g y)

pred_prod ::
(’a ⇒ bool) ⇒ (’b ⇒ bool) ⇒ (’a × ’b) ⇒ bool ≡
λf g (x,y). f x ∧ g y

rel_prod ::
(’a1 ⇒ ’a2 ⇒ bool) ⇒ (’b1 ⇒ ’b2 ⇒ bool)
⇒ (’a1 × ’b1) ⇒ (’a2 × ’b2) ⇒ bool ≡

λf g (x1,y1) (x2,y2). f x1 x2 ∧ g y1 y2

192



No set functions are generated, they are trivial, returning the corresponding
singleton set.

5.6.4 Rules

Algebraic Type Rules

Since there is only one constructor there are no distinctness rules. The
simplifier rules for the constructor of type (’a, ’b) prod are the rule sets
prod.inject, prod.sel and prod.case (see Section 4.1.5):

((?x1, ?x2) = (?y1, ?y2)) = (?x1 = ?y1 ∧ ?x2 = ?y2)
fst (?x1, ?x2) = ?x1
snd (?x1, ?x2) = ?x2
(case (?x1, ?x2) of (x, y) ⇒ ?f x y) = ?f ?x1 ?x2

The case, split, and induction rules are

prod.exhaust:
(
∧
x1 x2. ?y = (x1, x2) =⇒ ?P) =⇒ ?P

prod.split:
?P (case ?t of (x, y) ⇒ ?f x y) =
(∀ x1 x2. ?t = (x1, x2) −→ ?P (?f x1 x2))

prod.induct:
(
∧
x1 x2. ?P (x1, x2)) =⇒ ?P ?a

For the case and induction rule the single case is named Pair.
The case and induction rules are also provided for tuples of size 3 to 7 in the
form

prod_cases3:
(
∧
x1 x2 x3. ?y = (x1, x2, x3) =⇒ ?P) =⇒ ?P

prod_induct3:
(
∧
x1 x2 x3. ?P (x1, x2, x3)) =⇒ ?P ?a

In all of them the single case is named fields.
Since all these case and induction rules are associated with the corresponding
tuple types a proof of the form

proof (cases x)
case (fields x1 x2 x3)
. . .
show ?thesis 〈proof 〉
qed

replaces the variable x of type t1 × t2 × t3 by tuple terms (x1, x2, x3)
and allows to reason about the components of x.

193



Rules About Functions

As described in Section 5.6.2 components of a tuple are easiest accessed by
using a tuple pattern which is equivalent to applying the function case_prod
(see Section 5.6.3). In proofs it is often necessary to convert a proposition
involving case_prod to a proposition for the components. The simplifier rule

split_def: case_prod = (λc p. c (fst p) (snd p))

allows to directly replace occurrences of case_prod by rewriting. It is not
part of the simpset (see Section 2.3.6), its use by the simplifier must be
explicitly configured.
If tuples are not specified with the help of tuple patterns but by single
variables of a tuple type the case, split, and induction rules described above
can be used to convert such variables to explicit tuples where variables denote
the components. Alternatively HOL provides the rule

split_paired_all: (
∧
x. ?P x) ≡ (

∧
a b. ?P (a, b))

Rewriting by this rule replaces all bound variables of a type t1 × t2 by
two variables for the components. Since tuples are nested pairs an iterated
rewriting does the same for arbitrary tuples. Again, this rule is not part of
the simpset and it should be added with care, an iterated rewriting is best
done by the method (simp only: split_paired_all) without combining it
with other simplifier rules.
Instead, the rules

split_paired_All: (∀ x. ?P x) = (∀ a b. ?P (a, b))
split_paired_Ex: (∃ x. ?P x) = (∃ a b. ?P (a, b))

are in the simpset and are thus automatically applied by the simplifier to
replace variables of tuple type bound by logic quantifiers (see Section 5.1.3).
If that is not intended these rules must be deactivated in the form (simp
del: split_paired_Ex).

5.7 Functions

The type (’a, ’b) fun with alternative syntax ’a ⇒ ’b (see Section 2.1.2)
is not specific for HOL, it is provided by Isabelle at the basis of the whole
Isabelle type system. It is polymorphic and denotes the type of functions
with argument type ’a and result type ’b.
However, HOL complements this basic support for functions by many func-
tions and rules for the type (’a, ’b) fun.

194



Note that functions introduced by type definitions such as constructors and
destructors of algebraic types (see Section 4.1) or the morphisms of a sub-
type (see Section 4.3) are normal functions of type (’a, ’b) fun and all
mechanisms described here for functions apply to them as well.
The type (’a, ’b) fun is not equivalent to an algebraic type. Since functions
are always total, the arguments of a constructor function would have to
specify function values for all arguments of type ’a which may be infinitely
many.

5.7.1 Values

The values of type ’a ⇒ ’b are denoted by lambda terms (see Section 2.1.2).
HOL introduces the name id for the polymorphic identity function λx. x.

5.7.2 Functions on Functions

The functions image, vimage, and range have already been described in Sec-
tion 5.4.3, they can be viewed to “lift” functions on values to functions on
value sets.
Functions of arbitrary types can be composed by the polymorphic function

comp :: (’b ⇒ ’c) ⇒ (’a ⇒ ’b) ⇒ ’a ⇒ ’c
≡ λf g x. f (g x)

if the “intermediate” type ’b matches. The operator name for infix notation
is (◦).
There is also the variant fcomp with reversed arguments where the left ar-
gument is applied first and the function

scomp :: (’a ⇒ ’b × ’c) ⇒ (’b ⇒ ’c ⇒ ’d) ⇒ ’a ⇒ ’d
≡ λf g x. (case_prod g) (f x))

which composes a binary function with a function with pairs as values, using
the uncurry function case_prod to convert the binary function to a function
with argument pairs (see Section 5.6.3). The operator names (◦>) for fcomp
and (◦→) for scomp are only available after using the command

unbundle state_combinator_syntax

on theory level.
Finite iteration of a function of type ’a ⇒ ’a can be specified by the poly-
morphic function

funpow :: nat ⇒ (’a ⇒ ’a) ⇒ ’a ⇒ ’a

with operator name (^^) (with reversed arguments) for infix notation. Thus
funpow 3 f = f ^^ 3 = f ◦ f ◦ f.

195



Injectivity and Surjectivity

For the basic function properties of injectivity, surjectivity, and bijectivity
HOL provides the predicates

inj :: (’a ⇒ ’b) ⇒ bool ≡ λf. ∀ x y. f x = f y −→ x = y
surj :: (’a ⇒ ’b) ⇒ bool ≡ λf. range f = UNIV
bij :: (’a ⇒ ’b) ⇒ bool ≡ λf. inj f ∧ surj f

and also the domain-restricted forms

inj_on :: (’a ⇒ ’b) ⇒ ’a set ⇒ bool
≡ λf A. ∀ x∈A. ∀ y∈A. f x = f y −→ x = y

bij_betw :: (’a ⇒ ’b) ⇒ ’a set ⇒ ’b set ⇒ bool
≡ λf A B. inj_on f A ∧ image f A = B

Injective functions can be inverted on their range. HOL provides the more
general inversion function

the_inv :: (’a ⇒ ’b) ⇒ (’b ⇒ ’a)
≡ λf y. THE x. f x = y

which returns the argument mapped by function f to the value y. Note the
use of the definite description operator THE (see Section 3.3.2). If there is
no such argument (because y is not in the range of f) or if it is not unique
(because f is not injective), it causes the function to be underspecified. Thus
the partial application (the_inv f) is the inverse of an arbitrary function f.
It is total but only specified for values of type ’b where the inversion exists
and is unique. It is only fully specified if bij f.
Additionally there is the domain-restricted form

the_inv_into :: ’a set ⇒ (’a ⇒ ’b) ⇒ (’b ⇒ ’a)
≡ λA f y. THE x. x ∈ A ∧ f x = y

where the partial application (the_inv_into A f) is the inverse of f re-
stricted to arguments in set A. It is only fully specified if image f A = UNIV
and inj_on f A.

Function Updates

HOL provides the function

fun_upd :: (’a ⇒ ’b) ⇒ ’a ⇒ ’b ⇒ (’a ⇒ ’b)
≡ λf a b x. if x = a then b else f x

which returns a function where the value of a single argument a of f has
been changed to b. Note that this “function update” does not “change”
the function f, it returns a new function which differs from f only for the
argument a.
HOL provides the alternative syntax

196



f(terma1 := termb1, . . ., terman := termbn)

for the term fun_upd . . . (fun_upd f terma1 termb1) . . . terman termbn. The
changes are applied from left to right, i.e. f(x := y, x := z) = f(x := z).
HOL also provides an update on a set of arguments, where the new values
are specified by another function:

override_on :: (’a ⇒ ’b) ⇒ (’a ⇒ ’b) ⇒ ’a set ⇒ ’a ⇒ ’b
≡ λf g A x. if x ∈ A then g x else f x

The Type Constructor fun as a Functor

The type constructor fun is no bounded natural functor. Values of type
(’p1, ’p2) fun can be viewed as containers for the function values of type
’p2. Since there may be a separate function value for every argument value
of type ’p1 the set of contained values may be arbitrary large depending on
the type ’p1, it is not bounded.
However, fun is still a functor and has the map function

map_fun :: (’q1 ⇒ ’p1) ⇒ (’p2 ⇒ ’q2) ⇒ (’p1 ⇒ ’p2) ⇒ ’q1 ⇒ ’q2

≡ λf1 f2 f = f1 ◦ f ◦ f2

which lifts two functions f1, f2 to a function (map_fun f1 f2) on functions
and which satisfies the laws for a functor:
map_fun.id: map_fun id id = id
map_fun.comp:

map_fun ?f ?g ◦ map_fun ?h ?i = map_fun (?h ◦ ?f) (?g ◦ ?i)

Note the different treatment of the first type parameter ’p1 by reversing the
direction of the application of function f1.
Additionally there are functions which lift predicates and relations (see Sec-
tion 3.1) in a similar way as the predicators and relators described for alge-
braic types in Section 4.1.4. These are

pred_fun :: (’p1 ⇒ bool) ⇒ (’p2 ⇒ bool) ⇒ (’p1 ⇒ ’p2) ⇒ bool
≡ λp1 p2 f. ∀ x. p1 x −→ p2 (f x)

and

rel_fun :: (’p1 ⇒ ’q1 ⇒ bool) ⇒ (’p2 ⇒ ’q2 ⇒ bool)
⇒ (’p1 ⇒ ’p2) ⇒ (’q1 ⇒ ’q2) ⇒ bool
≡ λr1 r2 f g. ∀ x y. r1 x y −→ r2 (f x) (g y)

Note again the different treatment of the first type parameter ’p1 by com-
bining it with the second by implication −→ instead of conjunction.

197



As an example using the predicate evn from Section 3.7.1, the partial ap-
plication pred_fun evn evn is the predicate of type (nat ⇒ nat) ⇒ bool
which tests whether a function on natural numbers maps all even numbers
to even numbers.

BNF Functions

Although the type constructor fun is no bounded natural functor, it becomes
one if the first type parameter is fixed, such as for the type (nat, ’p2) fun
or nat ⇒ ’p2. It has only one type parameter for the function values, the
type of the function arguments is always the same. Now for a function f of
this type the set of contained values is simply its range range f and that is
bounded by the cardinality of the argument type.
This situation is described by saying that fun is a bounded natural functor
with one “dead” type parameter (the first one). The second type parameter is
called “live”. In general a bounded natural functor may have several dead and
live type parameters. A set function only exists for each live type parameter
and the map function and the predicator and relator lift only functions for
the live type parameters.
Therefore fun has the set function (see Section 5.4.3)

range :: (’p1 ⇒ ’p2) ⇒ ’p2 set ≡ λf. {y. ∃ x. y = f x}

and the map function, predicator and relator can be constructed by the
partial applications

(map_fun id) = (λf2 f x. f2 (f x))
(pred_fun (λ_. True)) = (λp2 f. ∀ x. p2 (f x))
(rel_fun (=)) = (λr2 f g. ∀ x. r2 (f x) (g x))

The map function is equivalent to the composition (◦). For the predicator
and relator HOL does not define separate names. Note that they are also
polymorphic for the argument type, so they can be used for functions of
arbitrary types ’p1 ⇒ ’p2. They lift a predicate or relation by applying it
to all function values.
Since functions with multiple arguments in curried form (see Section 3.6.1)
have functions as intermediate result values the lifting can be iterated over
multiple arguments. For example, a relation r on the result type t can be
lifted to binary functions of type t1 ⇒ t2 ⇒ t by rel_fun (=) (rel_fun
(=) r) which is equivalent to the relation on functions λf g. ∀ x y. r (f x
y) (g x y)).

Functions for Orderings and Lattices

The ordering relations (see Section 3.2.2) are defined for functions by lifting
the ordering relations for the function values. Thus the ordering (<) on

198



functions is equivalent to rel_fun (=) (<) and analogously for (≤), (>),
(≥). In other words, f < g holds if ∀ x. (f x) < (g x). Note that even if
(<) is a total ordering on the function values, the lifted ordering is partial,
because for some arguments the function values may be less and for other
arguments not.
In a similar way the lattice operations (u), (t), (

d
), and (

⊔
) (see Sec-

tion 3.2.3) are lifted from the function values to functions:

f u g ≡ λx. f x u g x
f t g ≡ λx. f x t g xd
A ≡ λx.

d
f∈A. f x⊔

A ≡ λx.
⊔
f∈A. f x

Since (<) is not a total ordering on functions the functions min and max
are not equivalent to (u) and (t) and the functions Min and Max are not
available for sets of functions.
Since orderings and lattice operations are defined for type bool (see Sec-
tion 5.1.3) so that (≤) is equivalent to the implication (−→), the lifting
works specifically for predicates and relations (see Section 3.1). Predicates
are ordered by the “stronger as” relation where (p1 ≤ p2) ←→ (∀ x. p1 x
−→ p2 x) and the lattice operations correspond to point-wise conjunction or
disjunction, such as (p1 u p2) = (λx. p1 x ∧ p2 x). As described above
for functions with multiple arguments the boolean operations can be lifted
in the same way to binary or n-ary relations. Binary relations are ordered
by the “stronger as” relation where (r1 ≤ r2) ←→ (∀ x y. r1 x y −→ r2

x y) and the lattice operations are as above, such as (r1 u r2) = (λx y.
r1 x y ∧ r2 x y).

Monotonicity

Another way to derive predicates on functions is by applying rel_fun to
compare a function to itself. HOL supports this by the function

monotone :: (’p1 ⇒ ’p1 ⇒ bool) ⇒ (’p2 ⇒ ’p2 ⇒ bool)
⇒ (’p1 ⇒ ’p2) ⇒ bool
≡ λr1 r2 f. rel_fun r1 r2 f f

The partial application monotone r1 r2 is the predicate which tests a func-
tion whether arguments related by r1 produce results related by r2:

monotone r1 r2 = (λf. ∀ x y. r1 x y −→ r2 (f x) (f y))

The usual notion of monotonicity results when monotone is applied to the
ordering relations. HOL defines the specific predicates on functions

mono :: (’p1 ⇒ ’p2) ⇒ bool ≡ monotone (≤) (≤)
strict_mono :: (’p1 ⇒ ’p2) ⇒ bool ≡ monotone (<) (<)
antimono :: (’p1 ⇒ ’p2) ⇒ bool ≡ monotone (≤) (≥)

199



HOL also provides the domain-restricted variants:

monotone_on :: ’p1 set ⇒ (’p1 ⇒ ’p1 ⇒ bool) ⇒ (’p2 ⇒ ’p2 ⇒ bool)
⇒ (’p1 ⇒ ’p2) ⇒ bool

mono_on :: ’p1 set ⇒ (’p1 ⇒ ’p2) ⇒ bool
strict_mono_on :: ’p1 set ⇒ (’p1 ⇒ ’p2) ⇒ bool

5.7.3 Rules

Since functions are the basic type of Isabelle there are several rules which
are already built in and need not be provided by HOL. Some of them are
implicitly applied to propositions without the need of using proof methods,
such as the rewriting rule

(λx. ?P x) ?y = ?P ?y

Many others are known by the automatic proof methods (see Section 2.3.7)
so that properties relating to functions can usually be proved by them.
The most basic rules provided by HOL about functions are
ext: (

∧
x. ?f x = ?g x) =⇒ ?f = ?g

fun_cong: ?f = ?g =⇒ ?f ?x = ?g ?x
arg_cong: ?x = ?y =⇒ ?f ?x = ?f ?y
cong: [[?f = ?g; ?x = ?y ]] =⇒ ?f ?x = ?g ?y

Rules About Functions on Functions

Reasoning about the functions described in Section 5.7.2 can often be done by
substituting their definition and then using automatic proof methods. Alter-
natively HOL provides many rules for direct reasoning about these functions,
such as
comp_assoc: ?f ◦ ?g ◦ ?h = ?f ◦ (?g ◦ ?h)
image_comp: ?f ‘ ?g ‘ ?r = (?f ◦ ?g) ‘ ?r

and in particular introduction rules (see Section 2.3.3) such as
injI: (

∧
x y. ?f x = ?f y =⇒ x = y) =⇒ inj ?f

surjI: (
∧
x. ?g (?f x) = x) =⇒ surj ?g

bijI: [[inj ?f; surj ?f ]] =⇒ bij ?f
monoI: (

∧
x y. x ≤ y =⇒ ?f x ≤ ?f y) =⇒ mono ?f

the destruction (see Section 2.3.4) and elimination (see Section 2.4.4) rules
comp_eq_dest: ?a ◦ ?b = ?c ◦ ?d =⇒ ?a (?b ?v) = ?c (?d ?v)
injD: [[inj ?f; ?f ?x = ?f ?y ]] =⇒ ?x = ?y
monoD: [[mono ?f; ?x ≤ ?y ]] =⇒ ?f ?x ≤ ?f ?y
comp_eq_elim:

[[?a ◦ ?b = ?c ◦ ?d; (
∧
v. ?a (?b v) = ?c (?d v)) =⇒ ?R ]] =⇒ ?R

200



surjE: [[surj ?f;
∧
x. ?y = ?f x =⇒ ?C ]] =⇒ ?C

monoE: [[mono ?f; ?x ≤ ?y; ?f ?x ≤ ?f ?y =⇒ ?thesis ]] =⇒ ?thesis

and the simplifier rules (see Section 2.3.6)
comp_apply: (?f ◦ ?g) ?x = ?f (?g ?x)
fun_upd_apply:

(?f(?x := ?y)) ?z = (if ?z = ?x then ?y else ?f ?z)
bij_id: bij id
override_on_apply_in:

?a ∈ ?A =⇒ override_on ?f ?g ?A ?a = ?g ?a

5.8 Relations

**todo**

5.9 The Sum Type

**todo**

201


	Isabelle System
	Invoking Isabelle
	Installation and Configuration
	Theories and Sessions
	Invocation as Editor
	Invocation for Batch Processing
	Invocation for Document Creation

	Interactively Working with Isabelle
	The Text Area
	The Sidekick Panel
	The Output Panel
	The State Panel
	The Symbols Panel
	The Documentation Panel
	The Query Panel
	The Theories Panel


	Isabelle Basics
	Isabelle Theories
	Theory Notation
	Terms and Types
	Definitions and Abbreviations
	Overloading
	Propositions
	Theorems

	Isabelle Proofs
	Maintaining Proof State
	Proof Procedure
	Basic Proof Structure
	Method Application
	Stating Facts
	Facts as Proof Input
	Fact Chaining
	Assuming Facts
	Fixing Variables
	Defining Variables
	Obtaining Variables
	Term Abbreviations
	Accumulating Facts
	Equational Reasoning

	Proof Methods
	The empty Method
	Terminating Proof Scripts
	Basic Rule Application
	Rule Application in Forward Reasoning
	Composed Proof Methods
	The Simplifier
	Other Automatic Proof Methods

	Case Based Proofs
	Named Proof Contexts
	The goal_cases Method
	Case Based Reasoning
	Elimination
	Induction


	Isabelle HOL Basics
	Predicates and Relations
	Predicates
	Unary Predicates and Sets
	Relations

	Equality, Orderings, and Lattices
	The Equality Relation
	The Ordering Relations
	Lattice Operations

	Description Operators
	The Choice Operator
	The Definite Description Operator
	The Least and Greatest Value Operators

	Undefined Value
	Let Terms
	Tuples
	Function Argument Tuples
	Relations as Tuple Sets

	Inductive Definitions
	The Defining Rules
	Fixed Arguments
	The cases Rule
	The Induction Rule
	Single-Step Inductive Definitions
	Mutually Inductive Definitions

	Well-Founded Relations
	Induction
	The Accessible Part of a Relation
	Measure Functions
	The size Function

	The Proof Method atomize_elim
	Recursive Functions
	The Defining Equations
	Covering All Arguments
	Uniqueness
	The Domain Predicate
	Rules Provided by Recursive Definitions
	Termination
	Rules Provided by Termination Proofs
	Mutual Recursion


	Isabelle HOL Type Definitions
	Algebraic Types
	Definition of Algebraic Types
	Constructors
	Destructors
	Parameterized Algebraic Types as Bounded Natural Functors
	Rules
	Recursive Functions on Algebraic Types

	Record Types
	Record Definitions
	Record Constructors
	Record Destructors
	Record Updates
	Record Rules

	Subtypes
	Subtype Definitions
	Type Copies
	Subtype Rules

	Quotient Types
	Lifting and Transfer

	Isabelle HOL Types
	Boolean Values
	Values
	Destructors
	Functions
	Rules

	The Unit Type
	Values
	Destructors
	Rules

	Natural Numbers
	Values
	Destructors
	Functions
	Rules

	Sets
	Values
	Destructors
	Functions
	Rules

	Optional Values
	Values
	Destructors
	Functions
	Rules

	Tuples
	Values
	Destructors
	Functions
	Rules

	Functions
	Values
	Functions on Functions
	Rules

	Relations
	The Sum Type


