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1 Metric Spaces

1.1 General

Definition 1.1 (Metric Space). A metric space M = (X, d) is a set equipped with a function
d : X ×X −→ R such that:

1. d(x, y) > 0 and d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, z) 6 d(x, y) + d(y, z)

Definition 1.2 (Continuity). A function f : X −→ Y is continuous at x0 ∈ X when ∀ε > 0 ∃δ > 0
such that ∀x ∈ B(x0, δ), f(x) ∈ B(f(x0), ε)

Definition 1.3 (Uniform Continuity). A function f : X −→ Y is uniformly continuous if ∀ε >
0 ∃δ > 0 such that ∀x ∈ X ∀z ∈ B(x, δ) f(z) ∈ B(f(x), ε)

Definition 1.4 (Convergence). A series (xn) converges in a metric space X if there is an x0 ∈ X
such that for all ε > 0 there is an N ∈ N such that for all n > N d(xn, x0) < ε

Lemma 1.5 (Sequential Continuity). A function f : X −→ Y is continuous at a ∈ X if and only
if for every sequence (xn)→ a, (f(xn))→ f(a)

Definition 1.6 (Norm). Let V a vector space. Then ‖.‖ : V −→ R is a norm if:

1. ‖v‖ > 0 and ‖v‖ = 0 ⇐⇒ v = 0V

2. ‖λv‖ = |λ|‖v‖

3. ‖x+ y‖ 6 ‖x‖+ ‖y‖

1.2 Toplogy

Definition 1.7 (Open Set). A set U ⊆ X is open if ∀x ∈ U , there is an ε > 0 such that B(x, ε) ⊆ U .

Theorem 1.8 (Topological Continuity). A function f : X −→ Y is continuous if and only if the
pre-image of every open set is open.

Definition 1.9 (Interior). The interior of S is the largest open subset of S, defined as:

int(S) =
⋃

U⊆S, U open

U

Definition 1.10 (Closure). The closure of a set S is the smallest closed subset containing S:

S =
⋂

S⊆C,C closed

C
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Lemma 1.11. A function is continuous if and only if f(S) ⊆ f(S)

Definition 1.12 (Isometry). An isometry is a bijection between two metric spaces tha preserves
distances. I.e. f : X −→ Y such that dX(x1, x2) = dY (f(x1), f(x2))

Definition 1.13 (Homeomorphism). A homeomorphism between two metric spaces is a continuous
bijection with a continuous inverse.

1.3 Completeness

Definition 1.14 (Cauchy Sequence). A sequence (xn) in a metric space X is Cauchy if for every
ε > 0 there is an N ∈ N such that for all n,m > N d(xn, xm) < ε.

Lemma 1.15. Convergent sequences are Cauchy. Cauchy sequences are bounded.

Definition 1.16 (Completeness). A metric space is complete if every Cauchy sequence converges.

Lemma 1.17. A subset of a complete metric space is complete if and only if the subset is closed.

Lemma 1.18. Let X complete and D1, D2, . . . closed with D1 ⊇ D2 ⊇ . . . and diam(Dk) → 0.
Then

⋂
k∈NDk = {x}.

Definition 1.19 (Lipschitz Continuity). A map f : X −→ Y is Lipschitz continuous if for all
x1, x2 ∈ X,

dY (f(x1), f(x2)) 6MdX(x1, x2)

For M ∈ [0, 1) and X = Y , f is a contraction.

Theorem 1.20 (Contraction Mapping Theorem). Let f : X −→ X a contraction and X complete
and non-empty. Then f has a unique fixed point.

1.4 Connectedness

Definition 1.21 (Connectedness). A metric space is connected if it cannot be split into two disjoint
non-trivial open sets.

Lemma 1.22. The following are equivalent:

1. X is connected

2. Any continuous function f : X −→ {0, 1} is constant

3. The only clopen sets are X and ∅

Lemma 1.23. Let Ai connected with non-empty intersection. Then
⋃
i∈I Ai is connected.

Let A connected with A ⊆ B ⊆ A. Then B is connected.

Theorem 1.24. Continuity preserves connectedness
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Theorem 1.25 (Connected sets in R). A subset of R is connected if and only if it is a “general”
interval.

Corollary 1.26. Intermediate Value theorem.

Definition 1.27 (Path). A continuous function γ : [0, 1] −→M .

Definition 1.28 (Path Connectedness). A metric space X is path-connected if there exists a path
between every two points of X

Proposition 1.29. Path connectedness implies connectedness

Proposition 1.30. For open subsets of normed vector spaces, connectedness implies path connect-
edness.

1.5 Compactness

Definition 1.31 (Sequential Compactness). A metric space is sequentially compact if every se-
quence has a convergent subsequence.

Lemma 1.32. Let Z ⊆ X

1. Z sequentially compact implies that Z is closed and bounded

2. Z is closed and X is compact then Z is compact.

Theorem 1.33. The cartesian product of compact metric spaces is compact.

Corollary 1.34. A closed and bounded subset of Rn is compact.

Theorem 1.35. A metric space is sequentially compact if and only if it is complete and totally
bounded.

Definition 1.36 (Compactness). A metric space is compact if every open cover has a finite sub-
cover.

Proposition 1.37 (Heine-Borel). The interval [a, b] is compact.

Lemma 1.38 (Compactness with closed sets). A metric space is compact if and only if for every
family of closed sets {Ci|i ∈ I} for which every finite intersection is non-empty then⋂

i∈I
Ci 6= ∅

Theorem 1.39 (Equivalence of compactness). A metric space is compact if and only if it is se-
quentially compact.

Definition 1.40 (Equicontinuity). Let X a metric space and F is a collection of real-valued
functions on X. Then F is equicontinuous if for any ε > 0 there is a δ such that for all x1, x2 ∈ X
with d(x1, x2) < δ for all f ∈ F , |f(x1)− f(x2)| 6 ε.
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Definition 1.41 (Uniformly bounded). A family of continuous functions F = f ∈ F : f : X −→ R
is uniformly bounded if there is an M such that for all x and f , |f(x)| 6M

Theorem 1.42 (Arzela-Ascoli). Let X a compact metric space and F an equicontinuous and
uniformly bounded collection of continuous functions. Then any sequence of functions fn has a
subsequence which converges uniformly on X.

2 Complex Exponential

The following power series define the complex exponential and trigonometric functions:

exp z =

∞∑
n=0

zn

n!
, sin z =

∞∑
k=0

(−1)k
z(2k+1)

(2k + 1)!
, cos z =

∞∑
k=0

(−1)k
z2k

(2k)!

sinh =

∞∑
k=0

z(2k+1)

(2k + 1)!
, cosh =

∞∑
k=0

z2k

(2k)!

Note:

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2

And
exp iθ = cos θ + i sin θ

3 Holomorphic Functions

Definition 3.1 (Domain). A domain usually denoted U is an open, connected subset of the complex
numbers.

Theorem 3.2 (Cauchy’s Theorem). Let f : U −→ C holomorphic on a domain U . Then for all
closed paths γ in U : ∫

γ
f(z)dz = 0

Theorem 3.3 (Deformation Theorem). Let f : U −→ C be holomorphic on domain U . Let two
closed paths γ1, γ2 be homotopic. Then: ∫

γ1

f =

∫
γ2

f
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Theorem 3.4 (Cauchy’s Integral Formula). Let f : U −→ C holomorphic on and inside a simple,
closed, positively oriented curve γ. Then for all points a on the interior of γ:

f(a) =
1

2πi

∫
γ

f(w)

w − a
dw

Theorem 3.5 (Taylor’s Theorem). All holomorphic functions on a domain can be expressed as a
power series. For f : U −→ C holomorphic on domain U and for a ∈ U , D(a, r) ⊆ U

f(z) =

∞∑
n=0

cn(z − a)n

where:

cn =
1

2πi

∫
γ(a,r)

f(w)

(w − a)n+1
=
f (n)(a)

n!

Theorem 3.6 (Liouville’s Theorem). Let f holomorphic on C and f bounded. Then f is constant.

Corollary 3.7. For f entire, f(C) is dense in C (i.e. f(C) = C)

Theorem 3.8 (Picard’s Little Theorem). For f non-constant entire, f(C) = C or C \ {z}

Theorem 3.9 (Fundamental Theorem of Algebra). Let p be a non-constant polynomial with com-
plex coefficients. Then there exists a ∈ C such that p(a) = 0.

Theorem 3.10 (Morera’s Theorem). Let f continuous on a domain U and for all closed paths γ
in U ∫

γ
f(z)dz = 0

Then f is holomorphic.

Theorem 3.11 (Identity Theorem). Let f holomorphic on domain U let S = f−1({0}). If S
contains one of it’s limit points then f is identically zero.

Theorem 3.12 (Counting Zeroes). Let f holomorphic inside and on a positively oriented closed
path γ. Then the sum of zeroes counting their multiplicity is:

1

2πi

∫
γ

f ′(w)

f(w)
dw

Theorem 3.13 (Laurent’s Theorem). Let f be a function holomorphic on {z ∈ C |R < |z−a| < S}.
Then,

f(z) =
∞∑

n=−∞
cn(z − a)n

For:

cn =
1

2πi

∫
γ(a,r)

f(w)

(w − a)n+1
dw
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