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1 Metric Spaces

1.1 General

Definition 1.1 (Metric Space). A metric space M = (X,d) is a set equipped with a function
d: X x X — R such that:

1. d(z,y) 20 and d(z,y) =0 <= z =y
2. d(z,y) = d(y, v)
3. d(z,2) < d(x,y) + d(y, 2)

Definition 1.2 (Continuity). A function f: X — Y is continuous at zp € X when Ve > 039 > 0
such that Va € B(xg,9), f(x) € B(f(xg),¢)

Definition 1.3 (Uniform Continuity). A function f: X — Y is uniformly continuous if Ve >
0 30 > 0 such that Vo € X Vz € B(x,9) f(2) € B(f(z),¢)

Definition 1.4 (Convergence). A series (x,) converges in a metric space X if there is an g € X
such that for all € > 0 there is an N € N such that for all n > N d(x,,z0) < €

Lemma 1.5 (Sequential Continuity). A function f: X — Y is continuous at a € X if and only
if for every sequence (x,) — a, (f(xn)) = f(a)

Definition 1.6 (Norm). Let V' a vector space. Then ||.|: V — R is a norm if:
L |l = 0and |[v|| =0 <= v =0y
2. ([l = Al

3. [l +yll < =l + llyll

1.2 Toplogy
Definition 1.7 (Open Set). A set U C X isopen if V& € U, there is an € > 0 such that B(z,e) C U.

Theorem 1.8 (Topological Continuity). A function f: X — Y is continuous if and only if the
pre-image of every open set is open.

Definition 1.9 (Interior). The interior of S is the largest open subset of S, defined as:

int(S)=|J U

UCS, U open

Definition 1.10 (Closure). The closure of a set .S is the smallest closed subset containing S:

s= (1 cC

SCC, C closed
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Lemma 1.11. A function is continuous if and only if f(S) C f(S)

Definition 1.12 (Isometry). An isometry is a bijection between two metric spaces tha preserves
distances. Le. f: X — Y such that dx(z1,22) = dy (f(z1), f(x2))

Definition 1.13 (Homeomorphism). A homeomorphism between two metric spaces is a continuous

bijection with a continuous inverse.

1.3 Completeness

Definition 1.14 (Cauchy Sequence). A sequence (x,) in a metric space X is Cauchy if for every
e > 0 there is an N € N such that for all n,m > N d(zp,xn) < €.

Lemma 1.15. Convergent sequences are Cauchy. Cauchy sequences are bounded.
Definition 1.16 (Completeness). A metric space is complete if every Cauchy sequence converges.
Lemma 1.17. A subset of a complete metric space is complete if and only if the subset is closed.

Lemma 1.18. Let X complete and Dy, Do, ... closed with D1y O Dy D ... and diam(Dy) — 0.
Then (e Dr = {2}

Definition 1.19 (Lipschitz Continuity). A map f: X — Y is Lipschitz continuous if for all
1,22 € X,

dy (f(21), f(x2)) < Mdx (z1,22)
For M € [0,1) and X =Y, f is a contraction.

Theorem 1.20 (Contraction Mapping Theorem). Let f: X — X a contraction and X complete
and non-empty. Then f has a unique fized point.

1.4 Connectedness

Definition 1.21 (Connectedness). A metric space is connected if it cannot be split into two disjoint
non-trivial open sets.

Lemma 1.22. The following are equivalent:
1. X is connected
2. Any continuous function f: X — {0, 1} is constant
3. The only clopen sets are X and &

Lemma 1.23. Let A; connected with non-empty intersection. Then Uie ;A is connected.
Let A connected with A € B C A. Then B is connected.

Theorem 1.24. Continuity preserves connectedness



Theorem 1.25 (Connected sets in R). A subset of R is connected if and only if it is a “general”
interval.

Corollary 1.26. Intermediate Value theorem.
Definition 1.27 (Path). A continuous function v: [0,1] — M.

Definition 1.28 (Path Connectedness). A metric space X is path-connected if there exists a path
between every two points of X

Proposition 1.29. Path connectedness implies connectedness

Proposition 1.30. For open subsets of normed vector spaces, connectedness implies path connect-
edness.

1.5 Compactness

Definition 1.31 (Sequential Compactness). A metric space is sequentially compact if every se-
quence has a convergent subsequence.

Lemma 1.32. Let Z C X

1. Z sequentially compact implies that Z is closed and bounded

2. Z is closed and X is compact then Z is compact.
Theorem 1.33. The cartesian product of compact metric spaces is compact.
Corollary 1.34. A closed and bounded subset of R™ is compact.

Theorem 1.35. A metric space is sequentially compact if and only if it is complete and totally
bounded.

Definition 1.36 (Compactness). A metric space is compact if every open cover has a finite sub-
cover.

Proposition 1.37 (Heine-Borel). The interval [a, b] is compact.

Lemma 1.38 (Compactness with closed sets). A metric space is compact if and only if for every
family of closed sets {C;|i € I} for which every finite intersection is non-empty then

ﬂ C; 75 %)
el
Theorem 1.39 (Equivalence of compactness). A metric space is compact if and only if it is se-

quentially compact.

Definition 1.40 (Equicontinuity). Let X a metric space and F is a collection of real-valued
functions on X. Then F is equicontinuous if for any & > 0 there is a § such that for all z1,20 € X
with d(z1,x9) < ¢ for all f € F, |f(z1) — f(x2)| < e.



Definition 1.41 (Uniformly bounded). A family of continuous functions F = f € F: f: X — R
is uniformly bounded if there is an M such that for all z and f, |f(z)| < M

Theorem 1.42 (Arzela-Ascoli). Let X a compact metric space and F an equicontinuous and
uniformly bounded collection of continuous functions. Then any sequence of functions f, has a
subsequence which converges uniformly on X.

2 Complex Exponential

The following power series define the complex exponential and trigonometric functions:

< n 0 . 5 (2k+1) 0 . 52k
expz:zm, smz:Z(—l) oh cosz:Z(—l) k)
n=0 k=0 k=0
00 (2k+1) O L2k
z z
sinhzzi coshzzi
1’ |
— (2k + 1)! — (2k)!
Note:
eiz _ efiz eiz 4 efiz
sinz:T, cosz:T
z_ =z z —z
sinhz:%, coshz = %
And

expif = cosf + isin 6

3 Holomorphic Functions

Definition 3.1 (Domain). A domain usually denoted U is an open, connected subset of the complex
numbers.

Theorem 3.2 (Cauchy’s Theorem). Let f: U — C holomorphic on a domain U. Then for all
closed paths v in U:
/ f(z)dz=0
.

Theorem 3.3 (Deformation Theorem). Let f: U — C be holomorphic on domain U. Let two
closed paths v1,7v2 be homotopic. Then:
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Theorem 3.4 (Cauchy’s Integral Formula). Let f: U — C holomorphic on and inside a simple,
closed, positively oriented curve v. Then for all points a on the interior of ~y:

a :L 7f(w)dw
f(a) /

21 w—a

Theorem 3.5 (Taylor’s Theorem). All holomorphic functions on a domain can be expressed as a
power series. For f: U — C holomorphic on domain U and for a € U, D(a,r) CU

f(2) =) culz —a)"
n=0

where:

Cn

SR G - ™(a)
271 Jy(ary (w — @)1 n!

Theorem 3.6 (Liouville’s Theorem). Let f holomorphic on C and f bounded. Then f is constant.

Corollary 3.7. For f entire, f(C) is dense in C (i.e. f(C)=C)

Theorem 3.8 (Picard’s Little Theorem). For f non-constant entire, f(C) =C or C\ {z}

Theorem 3.9 (Fundamental Theorem of Algebra). Let p be a non-constant polynomial with com-
plex coefficients. Then there exists a € C such that p(a) = 0.

Theorem 3.10 (Morera’s Theorem). Let f continuous on a domain U and for all closed paths

in U
/ f(z)dz=0
.
Then f is holomorphic.

Theorem 3.11 (Identity Theorem). Let f holomorphic on domain U let S = f~1({0}). If S
contains one of it’s limit points then f is identically zero.

Theorem 3.12 (Counting Zeroes). Let f holomorphic inside and on a positively oriented closed
path v. Then the sum of zeroes counting their multiplicity is:

1 !/
1S
2mi J f(w)
Theorem 3.13 (Laurent’s Theorem). Let f be a function holomorphic on{z € C|R < |z—a| < S}.
Then,
f2)= ) ealz—a)"
For:



