
The Limits of Smart Voting in Liquid

Democracy

Giannis Tyrovolas

Supervisor: Edith Elkind

4th Year Project Report

Honour School of Mathematics and Computer Science (Part C)

Trinity Term 2022

Words: 9962

Acknowledgements

I begin by acknowledging the guidance of my supervisor Edith Elkind. Without her exceptional

knowledge of recent academic developments, insightful comments and the time she dedicated to

reviewing my manuscript this work would not be possible. For this, I am extremely grateful.

Further, I am very appreciative to the hours my tutors have spent to sharpen my mind in the

last years. I am grateful to Andrew Ker and Nikolay Nikolov for helping me blossom to the student

I am today. The sharpening of my mind started in High School, and so I thank Christos Nikolaidis

and Panagiotis Economopoulos as well.

I want to thank my good friends Victoria Walker and Dimitrios Iatrakis for taking the time to

look through my work. I thank Radostin Chonev for bouncing off ideas about a solution that never

came to be.

Finally, I want to thank my family for the support throughout my life and especially this last

year.

Contents

1 Introduction 2

1.1 Liquid Democracy and Ground Truth . 3

1.2 A Game-Theoretic Approach . 7

1.3 Preference Aggregation Properties . 8

1.4 Our Contribution . 11

2 Preliminaries 12

2.1 Ballots . 12

2.2 Unravellings . 14

3 Complexity Results 18

3.1 Hardness Results . 18

3.2 Extensions of Hardness . 29

3.3 Results for LIQUID . 31

4 Axiomatisation 34

5 Conclusion 38

1

1 Introduction

Liquid democracy, also referred to as delegative democracy, is a decision-making mechanism that

allows greater choice to voters than representative democracy. Firstly, every voter is allowed to

vote directly on an issue. Voters can delegate their vote to other voters. Importantly delegations

are transitive. So, we allow Alice to delegate to Bob and Bob to delegate to Charlie. In this case

Charlie votes with the combined power of all three.

One of the first published proposals of this model is a non-technical work by Ford [2002]. Ford

claims that large-scale direct democracy is infeasible and likely undesirable. It is infeasible because

of the frequency of policy decisions and likely undesirable because the “effective wisdom of the

collective can easily turn out to be much worse than its average.” Representative democracy on

the other hand, holds elections every so often. Winners get to represent their constituency while

losers gain no representative power. Additionally, there is a prescribed limit on the total number

of elected representatives and every voter can pick from a limited number of representatives.

Delegative democracy is introduced as a balance of the two by challenging the premise that the

number of representatives needs to be kept small. In this model, voters that wish to do so, can vote

directly on issues. Passive voters can delegate to the representatives called delegates. Delegates are

not chosen through time-specific elections but need to canvas voters continually. When delegates

vote, they vote with the combined power of all voters that delegate for them. They can vote on

issues directly, or they can delegate to other more specialised delegates. A key idea is that delegates

need not win competitive elections and that delegates have their votes made public for the sake of

accountability. Ford then introduces notions to replace the parliamentary committees in a setting

of liquid democracy. Then, Ford introduces strengthenings of liquid democracy. Of interest is the

ability to split votes, where agents can delegate fractions of their votes to different delegates. Even

more interesting is that Ford introduces the ability of agents to submit “multiple delegation choices

in order of preference.” This is done partly to deal with the case of cycles, where Alice delegates

to Bob but also Bob delegates to Alice. This is one of the key extensions of Liquid Democracy we

2

consider in our work.

1.1 Liquid Democracy and Ground Truth

An important strand of work in Liquid Democracy is to have Liquid Democracy find a ground

truth. A key contribution is by Kahng et al. [2021]. The model considers binary issues {0, 1} with

0 being the incorrect outcome and 1 being the correct outcome. Every voter i has a competence

level 0 ≤ pi ≤ 1, which is the probability that a direct vote of voter i is a correct vote. Further,

voters are only able to pick delegators from a predefined social network. This can be thought of as

a directed graph. These delegates are called the neighbours of i. Further, agents are only allowed

to delegate to agents that are more competent than them by some global constant α > 0. So, voter

i may delegate to their neighbour j if and only if pi + α ≤ pj . We say that i approves of j. This

rules out the problem of cyclical delegations a priori, as α > 0.

Delegation mechanisms in this context are functions which input an instance of the model

and output, for each voter i, a delegation probability distribution over the agents i approves of.

Then the majority rule is applied on the outcome of a delegation mechanism. Ties are broken

arbitrarily. The probability that the group votes for the correct outcome for a particular instance

of the model G and a delegation mechanism M is PM (G). A particular delegation mechanism is

that of direct voting denoted as D. An important distinction the authors make is between local and

non-local delegation mechanisms. Local delegation mechanisms are delegation mechanisms where

the resulting distribution for agent i depends only on the set of agents i approves of, the set of

neighbours of i and an arbitrary ranking πi. For example, every voter voting directly or voting

for a random approved delegate is a local mechanism. Voting for the most competent approved

delegate or voting for a delegate with a specific identifier are non-local mechanisms.

In this setting, Kahng et al. compare liquid democracy to direct voting. They set out two

desirable properties. Mechanism M satisfies the do no harm property if, the improvement that

direct voting D has on M applied to any instance of size n vanishes as n tends to infinity. Formally,

3

for every ε > 0 there exists N such that for all n > N and graphs G of size n, PM (G)−PD(G) ≥ −ε.

Mechanism M satisfies the positive gain property if for some constant γ > 0 and for every large

enough n there exist instances with size n such that M outperforms D by γ.

After this lengthy setup, we arrive at the key result of the paper. No local delegation satisfies

both positive gain and do no harm. As this is an impossibility result, the requirement that agents

are only able to delegate to more informed voters seems to strengthen this result rather than weaken

it. Something mitigating the impossibility result is that the do no harm property focuses on worst

case instances rather than average instances. It is still undecided if there exist local delegation

mechanisms with positive gain that do no harm on average. The paper’s secondary result is that if

we bound voters competence away from 0 and 1, a simple non-local delegation mechanism exists.

The mechanism iteratively constructs delegations by having voter i delegate their vote to the most

competent approved voter of i that has at most 3
√

log n already delegating to them.

Caragiannis and Micha [2019] further considered this model after the preprint of Kahng et al.

[2021] was published in 2018. The authors first disagree with the premise that α-delegations capture

the essence of disagreeing opinions. They claim that a voter i with competence level of 0.1 would

never delegate to voter j with a competence level of 0.6 as voter i would consider j to be horribly

misinformed. Instead, in their paper, for α ≥ 0, if pi ≥ 1
2 , agent i would be able to delegate only to

agents with pj > pi + α, and symmetrically if pi ≤ 1
2 . A small objection to this modelling is that

the model implicitly gives meta-information to agents with competence less than 1
2 − ε or greater

than 1
2 + ε. Nevertheless, the paper only proves hardness results and so this meta-information

strenghtens the results.

A more important objection to α-delegations is that there are cases where voting for someone

less competent can be beneficial. A simple example is that for 2k+ 1 voters, let p1 = . . . = pk = 0,

pk+1 = . . . = p2k = 1 − ε and p2k+1 = 1 − 2ε. Agents k + 1, . . . , 2k form a star with agent 2k + 1

in the middle. Then, if agents are restricted to delegating to more competent agents, all voters

need to independently vote for 1 for the majority to vote for 1. The probability of this occurring

4

is bounded by (1− ε)k which tends to 0 as k goes to infinity. On the contrary, if agents delegate to

the central node the probability of correct vote is 1− 2ε.

The paper then proves the following two hardness results. For any local delegation mechanism

M and any δ > 0 there are instances where direct voting or complete dictatorship outperforms

M by 1
2 − δ − α. Their construction does not use transitive delegations and so applies to simpler

models of Liquid Democracy like Proxy Voting [Green-Armytage, 2015]. The more striking hardness

result is that even if we consider non-local delegation mechanisms the optimal delegation is hard

to approximate. The authors then introduce the OptimalDelegationProblem or ODP. ODP

is the optimisation problem of finding the optimal success rate for a given instance of a Liquid

Democracy setting. By a reduction from a special version of 3-SAT, approximating ODP within

an additive term of 1
16 is NP-hard.

Becker et al. [2021] published a collection of results about ODP. They firstly do away with

α-delegations and do not consider any restrictions on who agents can delegate to. Their negative

result considers ODPr where for every voter i the competence level pi is at least r. If r ∈
(
0, 12
)

then for any instance with n voters and for any constant C > 0 it is NP-complete to approximate

ODPr within (lnn)−C . The bound on r is tight as for r ≥ 1
2 direct voting is a 1

2 -approximation.

Their positive result is a 1
2 -approximation algorithm for the case that the graph given by the

neighbourhood relation is strongly connected. The algorithm is to have every voter delegate to the

most competent voter. Becker et al. then proceed to outline heuristics and experimentally compare

them to direct democracy. All of their heuristics consistently outperform direct democracy. A

particular modelling assumption of interest is that the average competence of agents is 0.48, which

dooms direct democracy’s outcome to tend to 0 as the number of voters grows. Nevertheless, their

experimental data suggest that their heuristics improve as more agents are added.

Several of the negative results that arise in the aforementioned papers are due to individual

voters gaining too much power. This is a phenomenon observed in practice in some implementations

5

of liquid democracy1. So, Gölz et al. [2021] continue their work from Kahng et al. [2021] by

examining how to minimise the maximum power of individual voters. The problem they tackle is:

let G a graph with nodes the agents, where agents u, v are connected by an edge if and only if u

approves of v. Let V a set of voters that vote directly. Then, what is the minimum of the maximum

voting power a voter in V amasses? If you remove the agents that have no path to any voter in

V , the problem is equivalent to minimising congestion for confluent flow with unit demands and

infinite edge capacity. To see why, observe that when u delegates to v, u transfers the votes of u

plus 1 to v giving us flow conservation with unit demands. As every agent can only delegate to

a single other agent, this makes the flow confluent. Agents can transfer an unbounded amount of

power giving infinite capacity. Congestion is precisely a metric of the maximum flow going in to a

vertex. So, the authors transform results for confluent flow giving a polynomial time approximation

algorithm with ratio 1 + ln |V | and proving hardness for approximating to a factor of 1
2 log2 |V |.

Gölz et al. then consider a more generalised version of liquid democracy where agents can split

their votes equally among k delegates. To probabilistically analyse this model, they introduce a

preferential attachment model that generalises the one by Barabási and Albert [1999], but analyse

special cases of the model. For this model, they prove that for k = 1, the maximum voting power

is Ω(nβ) with high probability. Here, β > 0 is a constant determined by a model parameter.

The impressive result is that, if k = 2, then the maximum voting power is bounded above by

log2 lnn+ Θ(1) with high probability.

The authors run simulations that confirm the benefits of delegating to two agents for several

instances of their model. It is also computationally feasible to coordinate the agents to resolve

cases with multiple delegations in a way that is close to optimal, possibly “even at a national

scale.” Additionally, the benefits of increasing k diminish as k grows larger than 3 in the Barabási-

Albert model. Further, their empirical results justify that the special cases of the model they

consider in their analysis are the more realistic ones.

1Article in Der Spiegel

6

https://www.spiegel.de/international/germany/liquid-democracy-web-platform-makes-professor-most-powerful-pirate-a-818683.html

1.2 A Game-Theoretic Approach

The first game-theoretic approach to liquid democracy is by Bloembergen et al. [2019]. In their

model, as above, there is a social network and agents can only delegate to their neighbours in

their social network. Here as well, agents vote on binary issues. Bloembergen et al. introduce

a new concept of types. There is no objectively correct answer, but every agent has a preferred

alternative. Voter i does not know what their preferred type is but if i votes directly they vote

with accuracy qi ≥ 0.5 in favour of their type. In their full model, types are independent random

variables.

To create a game the authors introduce the following utility function, with minimum payoff 0.5

and maximum payoff 1. When voter v directly or indirectly delegates their vote to voter u, the

payoff for agent v is the probability that u votes for v’s type. If voter v is part of a delegation cycle,

v’s payoff is 0.5. If voter v votes directly, v’s payoff is the accuracy minus their effort to manifest

the accuracy qi − ei. The authors model qi − ei ≥ 0.5 as otherwise the voter could flip a coin for

zero effort. Note that the authors have made the decision to have users benefit from maximising

the accuracy of the delegated vote. Individual payoffs are independent of the final outcome. For

instance, this model does not account for agents being lazy and essentially abstaining while other

voters make a decision that benefits them. Or it does not account for cases where individual agents

maximise their accuracy by delegating to a dictator, but the group accuracy is lower than if agents

voted independently. The focus is strictly on agents conveying their type truthfully to the model.

After setting up the framework they prove two results. Firstly, for deterministic type profiles

there exist pure strategy Nash Equilibria (NE). The assumption that the profiles are deterministic is

important as the proof separates all agents with type 0 and all agents of type 1 and deals with them

independently. In particular Nash Equilibria exist if agents all have the same type, as in the setting

where they discover a correct ground truth. Secondly, for non-deterministic but independent types,

if voting is effortless, i.e., ei = 0, there exist pure strategy Nash Equilibria. This is established by

proving that best responses to any state of the game do not decrease the utility of any agent. They

7

then provide an example of a NE providing group accuracy of almost a coin toss whereas it would

be easy to get an accuracy of 1.

Zhang and Grossi [2021] study a modified version of the above model. In doing so, they introduce

a power index in liquid democracy which extends the index introduced by Banzhaf III [1964]. The

original Banzhaf index is in the context of weighted voting on binary issues. The power index of

voter v is proportional to the number of outcomes v can swing. These are the coalitions which

would fail without v but succeed with v.

Now, for the delegative setting, Zhang and Grossi only consider liquid democracy after each

agent has cast their votes. In the resulting graph they consider that a coalition can only use the

voting power that is accrued within the coalition. For instance, in a delegation chain a → b → c,

the coalition {a, c} has a voting power of 1. Given these details. If b were to join {a, c} the voting

power of the coalition would be 3. The authors then axiomatically characterise the index. These

axioms include that a dummy voter has no power, a dictator has power of 1, agents which swing

the same coalitions have equal power and some other reasonable composition properties. Further,

this power index gives more power to agents voting directly for their final delegator than voting

indirectly. This comes in contrast with the spirit of liquid democracy’s transitive delegations.

After the power index is introduced, they revisit the game theoretic model by Bloembergen

et al. [2019]. They change the reward of voter v from being the accuracy of the final delegator to

being the accuracy of the final delegator multiplied by the power index of v. They also abstract

away the concept of direct voting requiring effort. The authors then prove that there are delegation

games without pure strategy NE. Nevertheless, if the underlying social network is complete, pure

strategy NE do exist.

1.3 Preference Aggregation Properties

The final approach focuses on the case where there is more than one way to combine individual

votes to create a group decision. As a canonical example, think of a case where Alice delegates to

8

Bob, Bob delegates to Charlie and Charlie delegates to Alice.

The first work considering this is by Kotsialou and Riley [2020]. Their model allows every agent

to have an antisymmetric and transitive ordering over other agents and alternatives. The authors

explicitly state that the order need not be complete. They encode these preference relations in a

directed weighted graph with nodes being the voters and edges the delegations. If voter u thinks

voter v is the ith preferred delegator then there exists an edge (u, v) with weight i. Here, we note a

small and easily remediable inconsistency. To be able to have a well-defined notion of v being the

ith preferred delegator, the first i voters need to be totally orderable. An example where this could

be a problem is the partial order � over {a, b, c, d} given by a � d and b � c � d. The rest of the

paper seems to assume that for every agent u their preference relation is a total order for some ku

agents and the rest of the agents are tied at the end and are not approved of2.

Now that the graph is set up, there are different ways to resolve delegations called delegation

mechanisms. Further, once every voter has voted, there are different aggregation rules such as the

majority rule, a qualified majority rule or a weighted majority rule. The key concepts extended in

this paper are those of cast participation and guru participation and they are defined for a pair of

delegation mechanism and aggregation rules. Cast participation is the property that every voter i

with a preference over the alternatives weakly improves the outcome by voting directly compared to

abstaining. Guru participation is the property that voter g weakly benefits by having more voters

delegate to g. The property of cast participation has been introduced in the past [Moulin, 1988],

but this is the first introduction of such a notion in Liquid Democracy. Further, guru participation

is a very reasonable extension.

The paper then goes on to fix the aggregation rule to be the simple majority rule for binary

issues. It then examines two different delegation mechanisms, depth-first search and breadth-first

search. Suppose voter i has stated that they want to delegate to some agent. Let us represent a

delegation chain as (c1, c2, . . . , ck) meaning that agent i delegates to their c1
th preference and the

2This inconsistency and our given remedy has been acknowledged by Dr. Kotsialou in correspondence with her.

9

jth agent in the chain delegates to their cj
th preference. Then, DFS would have voter i delegate

to a final voter given by the smallest lexicographical chain that does not include a cycle. For

instance, if agent i has preferences a > b and agent a has preferences i > c, then DFS would have

voter i delegating to c with chain (1, 2). The reasonable objection by Kotsialou and Riley is that

the second preference of agent i is probably a better choice for i than the second preference of

voter a. So, they propose BFS to return the lexicographically smallest chain from the chains with

the smallest lengths. They then prove that if there are cycles in the graph DFS may not satisfy

guru participation whereas if there are no cycles guru participation is satisfied. In contrast, guru

participation is always satisfied for breadth first search.

A different approach and model are given by Colley et al. [2022]. This is the paper which we

will be extending, so a formal treatment of their model is given in the next section. The authors

of the paper allow individual agents to delegate to functions of other agents. A simple example

would be to delegate to the majority of some trusted agents. Agents submit a ballot where these

functions are totally ordered in terms of preference. These two complications of the simple model

means that cycles can be introduced in much more complicated ways.

To resolve these cycles two optimal “unravelling” procedures are introduced. MinSum is a

utilitarian method that minimises the sum of preference levels used and MinMax is an egalitarian

method that minimises the maximum of the preference levels used. Both of these procedures are

irresolute and may return more than one outcome as valid if ties exist. They also introduce four

heuristic unravelling procedures, two of which are deterministic and two of which are randomised.

They then prove that MinSum is NP-complete if agents are allowed to use monotone boolean

functions and MinMax is NP-complete for arbitrary boolean formulas. They then give polynomial

time algorithms to unravel instances where agents can only delegate directly to other agents. The

complexity of deciding instances where voters can delegate to majorities is implicitly left as an open

problem which we resolve. Further, they analyse the complexity of the heuristics they introduce.

Colley et al. also analyse their heuristics with respect to the axioms introduced by Kotsialou

10

and Riley in the case where voters are allowed to vote for binary issues or abstain. As the axioms

were introduced for resolute procedures they do not examine the axioms for MinSum and MinMax,

which we do in Section 4. They prove that their deterministic heuristics satisfy cast participation

for any monotone aggregation rule when voters can only delegate directly to other voters. They

then prove that their heuristics do not satisfy guru participation when agents are allowed to delegate

to pluralities.

1.4 Our Contribution

We extend the work of Colley et al. in two directions. In Section 3, we use novel gadgets to prove

that, if agents can delegate using the binary logical OR and binary logical AND, then unravelling

delegations optimally is NP-hard. Our reductions give tight bounds on NP-hardness. If we were

to allow users to delegate to strictly fewer functions, the resulting instances would be trivial.

We also use the binary version of the logical functions rather than n-ary versions. Additionally,

optimal unravellings do not admit a constant factor approximation. We then take a detour through

boolean functions to generalise our hardness result for many reasonable classes of functions. As a

corollary, we resolve an open question left in the original paper about the complexity of delegating

to majorities. We then move on and give positive complexity results for direct delegation. With two

simple tweaks, the original MinMax algorithm is improved from O(n2l2) to O(nl log l). We also

provide an algorithm to check if a MinMax outcome exists in favour of a particular alternative.

In Section 4, we extend the definition of Kotsialou and Riley [2020] to irresolute procedures. We

provide negative results for many reasonable unravelling procedures if any non-monotone functions

are included. Additionally, we show that the optimal unravelling procedures of MinMax and

MinSum, do not satisfy cast participation in restricted settings.

11

2 Preliminaries

We now formally present the model of Colley et al. [2022] which we will consider for the rest of the

paper.

2.1 Ballots

A single-issue election consists of a finite set of voters that vote on a single issue. Each voter can

choose from a finite set of alternatives. A special alternative is the abstention represented by ∗.

Finally, there is an aggregation function that decides the result of the election. Formally:

Definition 1 (Single-issue election). A single-issue election consists of a tuple 〈N,D, r〉 where

N = {1, ..., n} is a finite non-empty set of voters. The set D is a finite set with |D| ≥ 1. The

function r : Dn −→ D is a resolute aggregation function that inputs the votes of every voter and

outputs the outcome of the election.

Throughout this work we will focus on single issues with a binary set of outcomes. That is

because all of our hardness results hold for binary issues, and we can easily extend them to n-ary

issues. Therefore, unless otherwise stated we will consider D = {0, 1}.

The model we will consider generalises the above and allows each voter to submit a smart ballot.

A smart ballot is a preference list of smart votes. Each smart vote is a function whose domain is

a subset of N . A special requirement is that the final preference in the preference list is a direct

vote on an alternative in D. Formally:

Definition 2 (Smart Ballots). A smart ballot of an agent a is an ordering ((S0, F 0) > . . . >

(Sk−1, F k−1) > d) where k ≥ 0. Each Sh for h ≤ k is a subset of N and F h : DSh −→ D is a

resolute non-constant aggregation function. We also have that d ∈ D.

Further when relevant we will consider F k to be the constant function with output d. Now, in

most cases the sets Sh are implicit and we will drop any mention of them. That is supported by the

12

fact that we will treat two functions F,G as identical if they are extensionally equal. Additionally,

we will disallow a voter to delegate to themselves. This is formalised by the following definition:

Definition 3 (Valid Smart Ballot). A valid smart ballot of an agent a is a smart ballot Ba such

that for all 0 ≤ s < t ≤ k F s is not equivalent to F t. Additionally, for all 0 ≤ t ≤ k, a /∈ St.

We collect the n smart ballots into a smart profile B.

For illustration consider the following non-trivial example. Consider votersN = {a, b, c, d, e, f, g},

with smart ballots:

Ba = (b ∨ c > b > 0)

Bb =
(
d > c > 1

)
Bc = (Maj (e, f, g) > a > 1)

Bd = (a > c > 1)

Be = (d > f ∧ g > 0)

Bf = (c > 0)

Bg = (1)

This is illustrated in Figure 1, where full lines indicate first preferences, dashed lines indicate

second preferences and loosely dashed lines third preferences. To avoid clutter we have removed

the third preferences of a, b, c.

Throughout this work it will be meaningful to restrict the functions agents can delegate from.

The most notable classes of functions we will consider are:

• Direct delegations to voter v denoted by LIQUID = {idv | v ∈ N}, where idv is the identity

function applied to the vote of voter v.

• Boolean functions in disjunctive normal form denoted by BOOL.

13

a b

c

d

e

f

g

0

1

∨

¬

Maj ∧

Figure 1: An example of a smart profile

• Monotone boolean function in disjunctive normal form denoted by MON -BOOL.

2.2 Unravellings

Now that we have defined each agent’s preferences we need to formalise how to make sense of these

preferences. To do so, we use unravelling procedures to determine each agent’s vote.

Definition 4 (Unravelling Procedure). An unravelling procedure is any computable function U

where B 7→U d with d ∈ Dn.

The reason we need to consider unravelling procedures is that smart ballots can create cycles.

Different choices on how to “unravel” cycles will produce different outcomes. For the majority of

this work we will focus on the mathematical and computational properties of different unravelling

procedures.

14

When the outcome is calculated, it is important for agents to know which preference level was

used to compute their vote. To do so we introduce the notion of a certificate:

Definition 5 (Certificate). A certificate c ∈ Nn for a profile B is a vector where for each a ∈ N

such that Ba = (B0
a > . . . > Bka

a), the entry ca ∈ [0, ka] corresponds to the preference level for

agent a.

Something that will be of high importance is that functions of interest can be calculated on

partial input. For example, consider majority rule denote as Maj . For a variable a, Maj (1, 1, a)

will always resolve to 1 regardless of agent a’s vote. We refer to these cases as necessary winners

as in Konczak and Lang [2005]. We formalise this in the following definition where we use ∆ to

denote placeholder values.

Definition 6 (Necessary winners). Let F : Dn −→ D be a function. We define the necessary winner

extension F ′ : {D ∪ {∆}}n −→ D ∪ {∆} of function F . We set for all d ∈ Dn, F ′(d) = F (d). For

d ∈ {D ∪ {∆}}n, let i1, i2, . . . , im be the indices such that dij = ∆. Let d[x1, . . . , xm] denote the

vector d where xj replaces the value at index ij . Then, if for some y ∈ D and for all x ∈ Dm,

F (d[x]) = y then F ′(d) = y. Otherwise F ′(d) = ∆.

To actually use our agents’ preferences we need to introduce the concept of a consistent cer-

tificate. Consistent certificates are certificates where the vote of each agent is determined by the

votes of other agents using the functions in their smart ballots. Formally:

Definition 7 (Consistent certificate). For a profile B, a certificate c is consistent if there is an

ordering σ : N −→ {1, . . . , n} of agents starting from vector X0 = (∆, . . . ,∆) with placeholder

values ∆ for all agents, iteratively constructs an outcome vector of direct votes X ∈ Dn as follows

for σ(a) = z ∈ [1, n]. For ease of notation, we abbreviate agent a’s cath function, F caa to F .

Xz
a = F ′(Xz−1 �Sca

a
).

15

Here, Xa represents agent a’s entry in X. The restriction of vector X in S, written as X �S , is a

vector indexed by S where for each s ∈ S, (X �S)s = Xs.

Now, we are only interested in consistent certificates as these are the ones that respect the

agents’ votes. We will denote the set of consistent certificates of a profile B as C(B). It is good

that there is only one outcome matched to each consistent certificate regardless of the ordering σ.

The following proposition is proven by Colley et al. [2022].

Proposition 8. If a consistent certificate c can be given by two orderings σ and σ′ of the agents,

then the orderings yield the same outcome Xc ∈ Dn.

Consequently, consistent certificates are enough to determine every agent’s vote. Now that we

have settled the framework it is time to consider some “good” certificates. There is a very natural

“cost” in this scenario and that is using a lot of the later preferences of each agent. So, we can set

two very natural ways of minimising this cost. We can attempt to minimise the sum of the costs

or in a more egalitarian spirit attempt to minimise the maximum cost. Formally:

Definition 9 (MinSum). For a given profile B, the MinSum unravelling procedure is defined as:

MinSum(B) =

{
Xc

∣∣ arg min
c∈C(B)

n∑
i=1

ci

}
.

Definition 10 (MinMax). For a given profile B, the MinMax unravelling procedure is defined as:

MinMax(B) =

{
Xc

∣∣ arg min
c∈C(B)

max(c)

}
.

The above unravelling procedures have already been introduced and studied by Colley et al.

[2022]. A natural extension of MinMax, is that of MinMaxSum that selects from the MinMax

certificates the ones with minimum sum. Formally:

Definition 11 (MinMaxSum). For a given profile B, the MinMaxSum unravelling procedure s

16

defined as:

MinMaxSum(B) =

{
Xc

∣∣ arg min
c∈minC (B)

n∑
i=1

ci

}
.

where minC (B) is the set of consistent certificates that minimise the maximum ci.

We can apply these to our illustrative example in Figure 1. We first observe that (1, . . . , 1) is

not a consistent certificate. Because for an ordering σ using only the first preferences, σ(a) > σ(b)

or σ(a) > σ(c) as a delegates to b ∨ c. But, σ(b) > σ(d) > σ(a). So it must be that σ(a) > σ(c).

But, σ(c) > σ(f) or σ(c) > σ(e) as c delegates to the majority Maj (e, f, g). But f delegates to c

so σ(c) > σ(e), but again σ(e) > σ(d) leading to a contradiction.

So, if there is a certificate using only the first two preferences then it is a MinMax certificate.

Such a certificate is the one given by the resolving voters in the order g < f < e < c < b < a < d.

Where g = 1, f = 0, e = f ∧ g = 0, c = Maj(e, f, g) = 0, b = c = 0, a = b ∨ c = 0, d = a = 0. This

gives a certificate c = (1, 2, 1, 1, 2, 2, 1). In fact, one can be convinced that this is a MinMaxSum

certificate by considering all other certificates where every voter votes for their first preference

except for two voters which vote for their second preference.

On the other hand a MinSum certificate is given by c = (1, 1, 3, 1, 1, 1, 1). Here, c votes directly

for 1. Then, a = b ∨ c = 1, d = a = 1, b = d = 0. Further f = c = 1, e = d = 1 and g votes

directly for 1. To verify that this is indeed a MinSum certificate we need to check that there is no

consistent certificate (1, . . . , 1, 2, 1, . . . , 1). Although usually tedious, in this case the only suitable

candidate would be to use the second preference of f to vote for 0 directly. But then Maj (e, f, g)

cannot be resolved as e is undecided. But d, a, b are also undecided. So this is not a consistent

certificate. Hence, c is a consistent certificate. Note that c is not the only MinSum certificate.

We can select the third preference of d and the first preference of other agents. Then, we get an

ordering g < d < b < e < c < f < a. This is given by d and g voting directly for 1. Then,

b = d = 0, e = d = 1. So, c = Maj (e, f, g) = 1, by necessary winners despite not having decided f .

Then f = c = 1 and a = b ∨ c = 1.

17

3 Complexity Results

3.1 Hardness Results

In order to study the computational properties of the unravelling procedures we set them up as

decision problems.

Definition 12 (BoundedMinSum). Let BoundedMinSumF be the decision problem with input

a target constant M and a smart profile B which uses functions in the class F . The YES instances

are those with a consistent certificate c with
∑

i ci ≤M .

Definition 13 (BoundedMinMax). Let BoundedMinMaxF be the decision problem with input

a target constant M and a smart profile B which uses functions in the class F . The YES instances

are those with a consistent certificate c with max(c) ≤M .

Definition 14 (BoundedMinMaxSum). Let BoundedMinMaxSumF be the decision problem

with input target constants M,S and a smart profile B which uses functions in the class F . The

YES instances are those with a consistent certificate c with max(c) ≤M and
∑

i ci ≤ S.

Colley et al. have proven that BoundedMinSumLIQUID and BoundedMinMaxLIQUID are

poly-time computable and that BoundedMinSumMON -BOOL and BoundedMinMaxBOOL are NP-

complete. We improve on these hardness results by introducing novel gadgets and conclude some

inapproximability results.

Before delving any further, we can consider the trivially easy cases. For any function class F ,

BoundedMinSumF and BoundedMinMaxF are trivially solvable if the maximum size of the

ballot is 1. That is because every agent is required to vote for a constant.

Now, let ∨ be the binary logical OR and ∧ be the binary logical AND. Then:

Proposition 15 (Hardness of BoundedMinSum). Suppose LIQUID∪{∨,∧} ⊆ F . Then Bound-

edMinSumF is NP-hard, even if the maximum size of a smart ballot is 2.

18

zero

0

(a) zero
voter

xi

1zero

0

(b) Voter xi

Figure 2: Setting up the variables voters

Proof. We reduce from the NP-hard problem of 3-SAT. Let ϕ =
∧k
i=1 ti a 3-SAT instance on

boolean variables x1, . . . , xn with ti = la ∨ lb ∨ lc where la, lb, lc correspond to literals of variables

xa, xb, xc or their negations.

We first define constant voter zero, that always votes for 0, so that Bzero = (0).

For each variable xi we construct a voter xi with voting profile Bxi = (zero > 1). These are

drawn in Figure 2. We denote the first preferences as solid lines and second preferences as dashed

lines.

We then construct gadgets for each term th. These gadgets will have the property that they

incur no additional cost if th is satisfied and a cost of at least one if th is not satisfied. We prove

this for the four different structures of a term th.

Case xi ∨ xj ∨ xk: We construct fresh voters th, a, b, and c with smart profiles:

Ba = (th > 0)

Bb = (xi ∨ a > 0)

Bc = (xj ∨ b > 0)

Bth = (xk ∨ c > 0).

19

Now, we analyse when the first preferences of the additional voters can be resolved without pro-

ducing cycles. If xi = 1 then xi ∨ a = 1 and b resolves to vote 1 using the first preference. Hence,

b ∨ xj = 1 and c resolves to 1 using first preference. Similarly, th resolves to 1 and then a resolves

to 1 using only first preferences. Similarly, if xj = 1 or xk = 1, agents c and th respectively will

resolve to 1 and so all fresh agents will resolve their votes using only first preferences.

Now, suppose xi = xj = xk = 0. Suppose there is an ordering σ : N −→ {1, . . . ,m} that gives

rise to a consistent certificate using only the first preferences of agents a, b, c, th. Then, σ(th) < σ(a)

as a needs th to be resolved. Further, σ(c) < σ(th) as xk = 0 and so c determines the clause xk ∨ c.

Similarly, σ(b) < σ(c) and σ(a) < σ(b). This leads to the contradiction that σ(a) < σ(a). Therefore,

no such ordering exists and if xi = xj = xk = 0, one of the fresh voters a, b, c, th will need to incur

a cost of at least 1.

Case xi ∨ xj ∨ xk: We construct additional voters th, a, b and c, with smart profiles:

Ba = (th > 0)

Bb = (xi ∧ a > 0)

Bc = (xj ∨ b > 0)

Bth = (xk ∨ c > 0).

This is demonstrated by Figure 3a.

Now, we analyse when the first preferences of the additional voters can be resolved without

producing cycles. If xk = 1 then th can resolve to 1 and so will a. As xi and a are set to a value,

b can resolve its first preference. As xj and b are set, c can resolve its first delegation as well.

Similarly, if xj = 1 then c is immediately resolved to 1 and so th is resolved. Hence, a and then b

can be resolved. Similarly, if xi = 0 xi ∧ a = 0 and so b resolves to 0 and all additional voters are

resolved.

20

xi a

xj

xk

b

c

th

∧

∨

∨

(a) Case xi ∨ xj ∨ xk

xk a

xj

xi

b

c

th

∨

∧

∧

(b) Case xi ∨ xj ∨ xk

Figure 3: Gadgets for MinSum

Now, suppose xi = 1, xj = 0, xk = 0. Then th cannot immediately resolve the logical OR as it

is dependent on the vote of c, similarly c is waiting for b to decide, and b is waiting for a. But a is

waiting for th to decide. There is no way to resolve this cycle, and so one of the additional voters

we have introduced will have to vote for their second preference. This will incur an additional cost

of at least 1.

Case xi ∨ xj ∨ xk: The proof is symmetrical for this case. We need to switch some ANDs to

ORs and vice versa but other than that it is identical. For completeness, we show the resulting

gadget in Figure 3b. This is the result of a smart profile of:

Ba = (th > 0)

Bb = (xk ∨ a > 0)

Bc = (xj ∧ b > 0)

Bth = (xi ∧ c > 0)

Case xi ∨xj ∨xk: The proof is symmetrical to the case of xi ∨xj ∨xk. We only need to switch

21

∨ to ∧. This is achieved by the following smart ballot:

Ba = (th > 0)

Bb = (xi ∧ a > 0)

Bc = (xj ∧ b > 0)

Bth = (xk ∧ c > 0).

Now suppose we construct n + 1 such gadgets for each term. Then if every term is satisfied

by some assignment of the variables x1, x2, . . . , xn then the total cost incurred will be at most n.

That is because the fresh voters incur no additional cost but each voter xi can incur a cost of at

most 1. If a term is not satisfied then at least n+ 1 gadgets will incur a cost of at least 1 so that

the cost is at least n + 1. Hence, we have reduced the satisfiability of any 3-SAT instance ϕ to

querying if there is a certificate c for the above election with
∑

i ci ≤ n. Thus, BoundedMinSumF

is NP-hard.

Corollary 16 (Hardness of BoundedMinMaxSum). If LIQUID ∪ {∨,∧} ⊆ F then Bounded-

MinMaxSumF is NP-hard.

Proof. Every instance of BoundedMinSum is an instance of BoundedMinMaxSum. For target

maximum sum S and smart profile B a MinSum query, we can consider a MinMaxSum query

with target maximum M , target sum S and smart profile B. Simply set M to be the maximum

of the size of smart ballots, i.e., M = maxa∈N ka. Then the max requirement of MinMaxSum is

trivially satisfied and so we have reduced BoundedMinMax to BoundedMinMaxSum.

Corollary 17 (Inapproximability of BoundedMinSum). A constant factor approximation of

BoundedMinSumF is NP-hard.

Proof. We can adapt the above proof to prove that BoundedMinSum is not constant-factor ap-

proximable. Following our construction above we can incur a cost of k for when the expression ϕ is

22

not satisfiable by simply creating k gadgets for each term. So for a MinSum outcome c:
∑

i ci ≤ n

if and only if ϕ is satisfiable and
∑

i ci ≥ k if and only if ϕ is not satisfiable. So, any constant

factor approximator would solve 3-SAT, thus proving hardness.

Now we shift our focus on BoundedMinMax. We first note that there is an additional easiness

lemma for BoundedMinMax. The point of this lemma is that BoundedMinMax does not

introduce any additional hardness beyond the hardness needed for computing the necessary winner

of a function.

Proposition 18. Let F be any computable family of functions and B a smart profile where each

ballot has size at most 2. Suppose for each function f ∈ F , the necessary winner f ′ can be computed

in time T . Then, there is an algorithm that decides BoundedMinMaxF which runs in O(n2 · T)

steps.

Proof. Let mi the size of the ballot of agent i, as always c = (m1, . . . ,mn) is a consistent certificate,

as each delegate votes for a constant. As each mi ≤ 2, the only possible certificate that improves

on c is 1 = (1, . . . , 1). To check if 1 is consistent, we first set all agents a with F 1
a constant and

equal to d to vote for d. Then, we check iteratively if any of the unset agents can vote using their

first preference. We repeat this step until running this iteration makes no changes. We return that

1 is a consistent certificate if and only if all agents are set at this final point.

We now prove correctness of the above. If the algorithm returns that 1 is a consistent certificate

then it truly is so. It can be proved by constructing σ : N −→ {1, . . . , n} where σ(a) is the position

in which a was activated by our algorithm. By our definition, a then uses only the values of agents

that were set before a in this ordering. Now consider every case where 1 is a consistent certificate

with a corresponding ordering σ. Then, without loss of generality all the agents that vote for

constants are placed first in positions 1, . . . , k. Then, for σ(a) = k + 1, F 1
a can be calculated using

only agents v with σ(v) ≤ k, hence our algorithm will set a to vote for F 1
a . Inductively, it will

reconstruct an equivalent ordering to σ.

23

Now that we have the easiness result the following hardness result will be tight. Our construction

is similar to the one for BoundedMinSum. Instead of using multiple gadgets to amplify the effect

of cycles we create some additional cycles by introducing primed voters a′, b′, c′ and t′h.

Proposition 19 (Hardness of BoundedMinMax). Suppose LIQUID∪{∨,∧} ⊆ F . Then Bound-

edMinMax is NP-hard, even if the maximum size of a smart ballot is 3.

Proof. We follow a similar construction as above. We reduce from the NP-hard problem 3-SAT.

Suppose ϕ is an instance of 3-SAT as above on k terms and n variables. We again introduce

constant voter zero with smart ballot Bzero = (0). For each variable xi we create a voter xi with

smart ballot Bxi = (zero > 1). For each term th, we create gadgets with the property that if th is

satisfied, the gadget uses only the first two preference levels. If th is not satisfied, the gadget uses

the third preference level. We prove this for the following four cases.

Case th = xi ∨ xj ∨ xk: For each term we construct additional voters a, a′, b, b′, c, c′, th. With

voting profiles:

Ba = (a′ > th > 0)

Ba′ = (a > th > 0)

Bb = (b′ > xi ∨ a > 0)

Bb′ = (b > xi ∨ a > 0)

Bc = (c′ > xj ∨ b > 0)

Bc′ = (c > xj ∨ b > 0)

Bth = (t′h > xk ∨ c > 0)

Bt′h = (th > xk ∨ c > 0).

Now, we claim that if th is satisfied then this component can be resolved with at most the second

preference being used. If xk = 1 then we can resolve th, t
′
h to 1 using their second preferences. Hence,

24

we can then resolve agents in order (a, a′, b, b′, c, c′) using the agents’ second preference. Similarly

if xj = 1 we can resolve in order (c, c′, th, t
′
h, a, a, b, b

′) using only the agents’ first two preferences.

Similarly, for xi = 1.

Now consider the case where xi = xj = xk = 0. Let σ : N −→ {1, . . . ,m} be an ordering of the

m agents from which a consistent certificate arises. Suppose, this only uses the agents’ first two

preferences. As the fresh agents a, b, c, th are identical with the primed versions a′, b′, c′, t′h, without

loss of generality every unprimed agent appears before their primed counterpart so for instance

σ(th) < σ(t′h). Then, σ(c) < σ(th) as xk ∨ c cannot be resolved with xk = 0. Similarly, σ(b) < σ(c)

and σ(a) < σ(b) but σ(th) < σ(a). This leads to the contradiction σ(th) < σ(th). Hence, if th is

not satisfied, one of the fresh agents will use their third preferences, and if th is satisfied, all fresh

agents will use only their first two preferences.

Case th = xi ∨ xj ∨ xk: For each term we construct additional voters a, a′, b, b′, c, c′, th. With

voting profiles:

Ba = (a′ > th > 0)

Ba′ = (a > th > 0)

Bb = (b′ > xi ∧ a > 0)

Bb′ = (b > xi ∧ a > 0)

Bc = (c′ > xj ∨ b > 0)

Bc′ = (c > xj ∨ b > 0)

Bth = (t′h > c ∨ xk > 0)

Bt′h = (th > c ∨ xk > 0).

We present this smart ballot in the much easier to parse Figure 4a where solid lines indicate

first preferences and dashed lines indicate second preferences:

Now, we claim that if th is satisfied then this component can be resolved with at most the second

25

xi a a′

xj b b′

xk c c′

th t′h

∧ ∧

∨ ∨

∨ ∨

(a) Case xi ∨ xj ∨ xk

xk a a′

xj b b′

xi c c′

th t′h

∨ ∨

∧ ∧

∧ ∧

(b) Case xi ∨ xj ∨ xk

Figure 4: Gadgets for MinMax

26

preference being used. If xk = 1 then we can resolve th, t
′
h to 1 using their second preferences. Hence,

we can then resolve agents in order (a, a′, b, b′, c, c′). Similarly, if xj = 1 we can resolve in order

(c, c′, th, t
′
h, a, a, b, b

′) using only the agents first two preferences. Now, if xi = 0 the same argument

holds, as the logical AND is resolved to 0.

Now consider the case where xi = 1, xj = 0 and xk = 0. Let σ : N −→ {1, . . . ,m} be an ordering

of the m agents from which a consistent certificate arises. Suppose, this only uses the agents’ first

two preferences. As the fresh agents a, b, c, th are identical with the primed versions a′, b′, c′, t′h,

without loss of generality every unprimed agent appears before their primed counterpart, so for

instance σ(th) < σ(t′h). Then, σ(c) < σ(th) as xk ∨ c cannot be resolved with xk = 0. Similarly,

σ(b) < σ(c). Again, σ(a) < σ(b) as xi ∧ a = a as xi = 1. But σ(th) < σ(a). This leads to the

contradiction σ(th) < σ(th). Hence, if th is not satisfied one of the fresh agents will use their third

preferences and if th is satisfied all fresh agents will use only their first two preferences.

Case xi ∨ xj ∨ xk: This case is symmetrical to the above. We only need to permute the agents

and replace the logical ANDs with ORs and vice versa. For completeness, the smart voting profiles

are:

Ba = (a′ > th > 0)

Ba′ = (a > th > 0)

Bb = (b′ > xk ∨ a > 0)

Bb′ = (b > xk ∨ a > 0)

Bc = (c′ > xj ∧ b > 0)

Bc′ = (c > xj ∧ b > 0)

Bth = (t′h > c ∧ xi > 0)

Bt′h = (th > c ∧ xi > 0).

These are drawn in Figure 4b.

27

Case xi ∨ xj ∨ xk: The proof is symmetrical to the case xi ∨ xj ∨ xk. The smart ballot used

reverses ∨ to ∧. This is accomplished by the following smart profile:

Ba = (a′ > th > 0)

Ba′ = (a > th > 0)

Bb = (b′ > xi ∧ a > 0)

Bb′ = (b > xi ∧ a > 0)

Bc = (c′ > xj ∧ b > 0)

Bc′ = (c > xj ∧ b > 0)

Bth = (t′h > xk ∧ c > 0)

Bt′h = (th > xk ∧ c > 0).

So, ϕ is satisfiable if and only if there exists a consistent certificate c with max(c) ≤ 2. Hence, we

have reduced 3-SAT to BoundedMinMaxF , proving that BoundedMinMaxF is NP-hard.

Proposition 20 (BoundedMinMax is not approximable). If LIQUID ∪ {∨,∧} ⊆ F then a non-

trivial approximation of BoundedMinMaxF is NP-hard.

Proof. This result can be proven by modifying the above proof. Instead of constructing a cycle of

size 2 for voters a, b, c, th, we construct a cycle of size k+ 1. So every voter a, b, c, th can be thought

of as a voter v with Bv = (v′ > u > 0). Then we construct voters v1, . . . , vk and set Bv = (v1 >

v2 > . . . > vk > u > 0) and for vi, Bvi = (v > v1 > . . . > vi−1 > vi+1 > . . . > vk > u > 0). Now,

since the maximum size of the smart ballots is k + 2 then clearly for the MinMax certificate c,

max c ≤ k+2. But suppose that an algorithm was able to decide if there was c with max c ≤ k+1.

Then this algorithm would be able to determine if the original instance is satisfied. So, it would

solve 3-SAT.

28

3.2 Extensions of Hardness

Throughout this process we have proven results for ∨ and ∧. We can use these results to prove

that hardness results extend to all “reasonable” and sufficiently complex function classes. We make

this precise below. First, we consider that “reasonable” functions are monotone. We define 0 < 1

and extend this to a partial order in {0, 1}n as u ≤ v if for all i, ui ≤ vi. Then we can define

monotonicity of a function.

Definition 21 (Monotonicity). Function f : {0, 1}n −→ {0, 1} is monotone if for all u,v ∈ {0, 1}n,

u ≤ v implies that f(u) ≤ f(v).

We also need to use functions that are not equivalent to direct delegation. These functions are

referred to as dictator functions by O’Donnell [2014] and are equivalent to projection functions.

Definition 22 (Dictator functions). Function f : {0, 1}n −→ {0, 1} is a dictator function if there

is some index 1 ≤ i ≤ n such that for every x ∈ {0, 1}n, f(x) = xi.

Lemma 23. For n ≥ 2, let f : {0, 1}n −→ {0, 1} be a function that is monotone, non-constant and

not a dictator function. Then there exist indices i, j with i < j and constants ck for 1 ≤ k ≤ n and

k 6= i and k 6= j such that f(c1, . . . , ci−1, xi, ci+1, . . . , cj−1, xj , cj+1, . . . , cn) = xi ∨ xj or xi ∧ xj .

Proof. By O’Donnell [2014] exercise 4.3, any monotone function f can be written as a boolean

formula in disjunctive normal form without negations. Let f(x) =
∨k
i=1 ti, with ti = xj1 ∧ . . .∧ xjr .

Without loss of generality we can assume that for all i and j, ti 9 tj . Then, k ≥ 1 as f is not

constant.

Suppose t1 = xj1 ∧ . . . ∧ xjr for jr > 1. Then, we can pick j1, j2 as distinguished indices. Set

cji = 1 for i > 2 and ci = 0 otherwise. So that for i > 1, terms ti evaluate to 0 and t1 = xj1 ∨ xj2 .

Hence, f is equivalent to xj1 ∧ xj2 .

If t1 = xj , then as f is not a dictator, k > 1. As t1 9 t2, t2 does not contain xj . Hence, for

t2 = xi ∧ ϕ for some ϕ, we can set all variables of ϕ to 1 and all variables not appearing in t1 or t2

29

to 0. Then, for any tr for r > 2, tr = 0. That is because tr cannot contain xj and the variables of

tr cannot be a subset of the variables of t2. So, tr contains variables not in t1 and not in t2 which

are set to 0. So tr is set to 0. Hence, f is made equivalent to xi ∨ xj .

Now, we need a final ingredient to add to our conditions for reasonable functions to discuss

function classes. We think that it is reasonable that agents are offered functions of similar express-

ibility regardless of voting in favour of 0 or 1. For instance, if qualified majorities in favour of

0 are allowed then we would expect in most scenarios that qualified majorities in favour of 1 to

be allowed. This concept can be formalised by considering the dual of each function as stated in

O’Donnell [2014].

Definition 24 (Duality). Let f : {0, 1}n −→ {0, 1}. Then f ’s dual function f † : {0, 1}n −→ {0, 1}

is f †(x) = f(x).

In particular ∨† = ∧, Maj † = Maj and for Maj 0k, the qualified majority of k in favour of 0,

(Maj 0k)
† = Maj 1k.

So, we would expect that in most settings the choices of voters to be closed under taking duals.

Nevertheless, the following key theorem works even if there is only one sufficiently “complex” but

monotone function f and the dual f †.

Theorem 25. Let F any function class such that F contains LIQUID. Suppose f, f † ∈ F with f

non-constant, not dictatorial and monotone. Then BoundedMinSumF and BoundedMinMaxSumF

are NP-hard even if the maximum ballot size is 2. BoundedMinMaxF is NP-hard even if the max-

imum ballot size is 3.

Proof. By Lemma 23 there are designated indexes i, j and constants ck for k 6= i, j such that f is

equivalent to xi∨xj or to xi∧xj . Hence, for constants ck, f
† is equivalent to xi∨xj if f is equivalent

to xi ∧ xj or vice versa. Hence, by constructing suitably many constant voters zero and one with

Bzero = (0) and Bone = (1), f and f † can be used to simulate ∨ and ∧. Hence, our propositions of

hardness hold here as well.

30

As an immediate corollary, if agents are allowed to delegate to some odd majority then MinSum

and MinMax are NP-hard. This resolves the question left open in Colley et al. [2022].

3.3 Results for LIQUID

Now that we have shown hardness results for function classes larger than LIQUID we focus on

what we can do with LIQUID .

For every smart ballot B with delegating functions from LIQUID we can construct a directed

graph that encodes this information ϕ(B). In ϕ(B) every arborescence is a valid certificate of the

election induced by B. As a reminder, an arborescence A in a directed graph G = (V,E) rooted

in r is a subgraph for which for each u ∈ V \ {r} there exists a unique path from r to u. This

construction is essentially in Colley et al. [2022] and we formalise it below.

For an election with voters N and smart ballot B, we construct ϕ(B) = (V,E) as follows.

For V = N ∪ {0, 1, r} where 0, 1 and r are fresh nodes. For each voter v ∈ N with smart ballot

Bv = (a1 > . . . > ak) for 1 ≤ i ≤ k we construct edges (ai, v). In addition, we construct edges

(r, 0), (r, 1). Then we can claim that:

Proposition 26. For every smart profile B there is a natural bijection between the consistent

certificates of B and the arborescences of ϕ(B) rooted in r. This is given by having voter v

delegate to their parent in the arborescence.

Proof. Let A an arborescence of ϕ(B) rooted in r. Let voter v delegate to their parent par(v). Then

every agent is delegating to a unique agent by the properties of the arborescence. Additionally,

there are no cycles and every chain of delegations reaches 0 or 1 as they are the only vertices that

are children of the root, so every voter is a assigned a vote.

In the other direction let c a consistent certificate. Let d : N −→ N ∪ {0, 1} the delegation

function induced by c. Then, (d(u), u) forms are arborescence. That is because for every voter u

there is a unique path to a constant symbol.

31

This construction allows us to argue graph-theoretically about LIQUID elections.

Consider the problem of finding a MinMax certificate on instances with n voters and at most

l preference levels. The paper by Colley et al. [2022] provides a O(n2l2) algorithm for finding a

MinMax certificate. With two tweaks we construct an algorithm that runs in O(nl log l).

Proposition 27. Consider an instance with voters N = {1, . . . , n} and smart ballot B. Let the

maximum preference used by any voter be l. Then there is a O(nl log l) algorithm that returns a

MinMax certificate.

Proof. Suppose we want to check if there exists a consistent certificate using the agents’ first m

preferences. Then we can consider the smart ballot given by the first m preferences Bm. Then it

suffices to check if there exists an arborescence of ϕ(Bm). To do so, we can run Depth First Search

from r in O(nm) steps. As m ≤ l, it is O(nl). If there is an arborescence it will be returned as the

DFS tree of the traversal. If not, some node is unreachable from r and thus Bm has no consistent

certificate.

Now, to find the smallest m for which the above is satisfied we only need to binary search

suitable m in {1, . . . , l}. This gives a total complexity of O(nl log l).

The above algorithm works for cases where voters are offered more than two alternatives. To

retain the complexity of O(nl log l) it suffices to assume that |D| ≤ n. We also, show that it is easy

to modify the above algorithm to check if there is a valid MinMax certificate voting for 0 or 1 in

polynomial time.

Proposition 28. Consider an instance of a monotone aggregation rule r that translates the votes

of the agents to the final vote of the group. Then for d ∈ {0, 1} there is a O(nl log l) algorithm that

determines if there is a MinMax certificate such that the election resolves in favour of d and if it

exists it returns the certificate.

32

Proof. For ease of notation, we assume without loss of generality that d = 0. We first determine by

the previous algorithm the smallest m for which there exists a MinMax certificate using at most

m preferences. Then we construct the graph ϕ(Bm). Then, instead of initiating a DFS search from

the root we initiate it from node 0. This returns the directly connected component of 0 denoted

S. Let x with xi = 0 if and only if i ∈ S. Any voter outside of S cannot be made to vote for 0, so

that S is maximal. As r is monotone, r(x) = 0 if and only if there is a possible way of resolving

the election to 0.

If r(x) = 1 then we return that every valid MinMax outcome votes for 1. Otherwise, we

run DFS from 1 on the subgraph not visited by our previous DFS. From this we recover a valid

certificate from the rest of the agents. We only need to return this certificate to conclude the

algorithm. The complexity is inherited by the algorithm to determine m and it is O(nl log l).

The above result implies that there need to be clear and predetermined rules on tie-breaking of

results. That is because it is computationally cheap to adversarially break ties to rig the election

in someone’s favour.

We have not been able to develop an algorithm or a proof of hardness for a similar result in

MinSum. But, we have been able to reduce it to a graph theoretic problem in the case of qualified

majorities. A qualified majority is a rule where outcome 1 is selected if and only if at least k voters

vote for 1.

Now suppose that our graph ϕ(B) is weighted, so for Bv = (a1 < . . . < ak), edge (ai, v) has

weight i. Then, the equivalent graph theoretic question is, for graph ϕ(B) is there a minimum weight

arborescence with the size of subtree of 1 greater than k? We leave whether this is polynomial time

computable or NP-hard as an open question.

33

4 Axiomatisation

We introduce the axiom of cast participation. This axiom states that voters preferring outcome d

benefit from voting directly for d. As mentioned in the introduction, this axiom is introduced by

Kotsialou and Riley [2020] and Colley et al. [2022] have applied it for binary issues with abstentions.

We use the definition for binary issues with abstentions i.e., D = {0, 1, ∗}. We denote that agent

a prefers outcome d to e as d >a e. As in Colley et al. we infer that if agent a votes directly

for outcome d ∈ {0, 1} then agent a prefers d over any other outcome. Formally if Ba = (d)

then d >a 1 − d and d >a ∗. Additionally, we consider that if agent a votes directly for d then

∗ >a 1− d. Originally, Kotsialou and Riley focus on resolute unravelling procedures. Colley et al.

do so as well and only examine the axioms for their resolute heuristics. We will extend these to the

irresolute unravelling procedures we have studied. So, we need to extend the original definition.

We need to assign preferences over sets of outcomes rather than just for single outcomes. For the

case D = {0, 1, ∗} we posit that reasonable extensions of the order 1− d <a ∗ <a d would include

the partial order:

{1− d} < {1− d, ∗} < {∗} ∼ {1− d, d} ∼ {1− d, ∗, d} < {∗, d} < {d}.

Here S1 ∼ S2 denotes that S1 is not comparable to S2. Then we can formalise cast participation

for irresolute procedures:

Definition 29 (Cast participation for irresolute procedures). A resolute voting rule r and a irres-

olute unravelling procedure U satisfy cast participation if for all valid smart profiles B and agents

a ∈ N such that Ba ∈ D \ {∗} we have that for all B′a 6= Ba:

r(U(B)) ≥a r(U(B−a, B
′
a)).

Here B−a, B
′
a denotes replacing Ba with B′a and r is applied to subsets of S ⊆ Dn as follows:

r(S) = {r(d) | d ∈ S}.

34

Cast participation can be thought of as disallowing tactical voting. Unfortunately, it is not

always satisfied. We first consider the cases of some non-monotone r and non-monotone delegating

functions. Note that we have defined monotonicity for binary issues in Definition 21. We extend

this to issues with abstentions by considering D = {0, 1, ∗} to be totally ordered as 0 < ∗ < 1.

Then, we can define a partial order on Dn where u ≤ v if for all i, ui ≤ vi. Then monotonicity is

defined identically.

We now prove a series of negative results for cast participation.

Proposition 30. Suppose that the voting rule r is not monotone. Additionally, the counterex-

ample to monotonicity is not caused by flipping a ∗ to a 0 or 1. That is, there exists u =

(u1, . . . , ui−1, 0, ui+1, . . . , un) and u′ = (u1, . . . , ui−1, e, ui+1, . . . , un) with 0 6= e but r(u) > r(u′).

Then cast participation does not hold.

Proof. Consider the smart profile where for each agent a, Ba = (ua). In particular 0 >i ∗ >i 1.

We are allowed to deduce this because i does not vote for an abstention. But, by setting a smart

ballot of Bi = (e) we obtain r(u′) and r(u′) < r(u). So, voter i prefers to vote directly for e rather

than for 0 despite preferring outcome 0. This violates cast participation.

We consider that most reasonable unravelling procedures will not needlessly violate their agents’

first preferences. We formally say that U respects first preferences if whenever c = (1, 1, . . . , 1) is

a consistent certificate, U returns an outcome with certificate c. Note that MinMax, MinSum

and MinMaxSum respect first preferences as well as any Pareto optimal unravelling procedure.

A notable exception is the BFS algorithm proposed by Kotsialou and Riley as shorter delegation

chains are preferred over longer delegation chains.

Proposition 31. Suppose r is a monotone rule and U respects first preferences. Suppose addi-

tionally, that for some n and k > 0 there exists a “deciding” subset of voters S with |S| ≤ n − k

such that if every voter in S votes for d, r votes for d. Then, cast participation does not hold.

35

Proof. Let S as defined above and f : {0, 1, ∗}k −→ {0, 1, ∗}. Further, suppose there exist u < u′

with only ui < u′i, ui = 0 and f(u) > f(u′). Then, enumerate voters v1, . . . , vk not in S and let

Bvi = (ui). For all other agents a set Ba = (f(v1, . . . , vk) > d) for some arbitrary d. Then the

first preferences of the voters do not introduce cycles. As U respects first preferences it picks an

outcome where every agent votes for their first preference. Hence, r resolves to vote for f(u) as

all voters in S vote for f(u). Now if agent vi were to switch their vote from 0 to u′i everyone in S

would vote for f(u′) and so r would resolve to f(u′). This breaks cast participation for voter vi as

they prefer outcome 0 but are better not voting for 0.

Proposition 32. Let r be a rule such that for n ≥ 5 voters if n−2 voters vote for d then r assigns

d. Then there are examples that unravelling with MinMax violates cast participation for any n.

This result holds even if we only allow agents to vote using LIQUID.

Proof. Let N = {v, v′, a, u1, . . . , un−3} and r as described. Then, let Bv = (0), Bv′ = (v > 0), Ba =

(1), Bui = (a > 0). Then MinMax would simply assign each individual to first preferences and the

majority votes for 1. So the outcome set is {1}.

But, if Bv = (v′ > 0) then a cycle is formed and so necessarily, MinMax will have to use

some second preferences. Hence, setting v, u1, . . . , un−3 to their second preference would be a valid

solution. So every voter except a vote for 0, so that r resolves to 0. Note that we can still assign

first preference to all voters except than v so that (2, 1, . . . , 1) is a consistent certificate and would

result to the majority again voting for 1. Therefore, the set of outcomes is {0, 1} which is better

than {1} for agent v.

Do note that the above counterexample works even when considering issues with binary out-

comes without abstentions. Additionally, the above proof would not work in the case of MinMax-

Sum, as MinMaxSum would only return the certificate (2, 1, . . . , 1).

We can further prove that MinSum does not satisfy cast participation in general.

36

Proposition 33. Let r be such that if a strict majority votes for outcome d then r supports outcome

d. Then even if we consider only binary issues, cast participation does not hold for MinSum.

Proof. Let N = {a, b, c, d, e, f, zero}. Let Bzero = (0), Ba = (1), Bb = (zero > 1), Bc = (a ∨ b > d >

1), Bd = (a ∨ b > c > 1), Be = (b > 1) and Bf = (b > 1). Then, the unique MinSum outcome

is everyone voting for their first preferences with a ∨ b resolving to 1 and a, c, d voting for 1 and

zero, b, e, f voting for 0. This gives an outcome set of {0}.

Now, if a were to switch their vote to (c > d > 1), then the MinSum outcome set would be {1}.

Because if b votes for 1 directly, every other first preference can be resolved. Hence, a should not

vote directly for 1 even though it is their preferred outcome. This violates cast participation.

Note, that in the above case ∨ is a monotone rule. So, it is not the case that monotone rules

guarantee cast participation for MinSum even for binary issues.

Conjecture: Suppose that r is a monotone rule and voters are restricted to casting LIQUID

ballots. Then MinSum satisfies cast participation.

37

5 Conclusion

In summary, we have extended the work of Colley et al. [2022] in two directions. On the complexity

theoretic level, we have produced a new hardness criterion using novel gadgets. Additionally, we

have improved on the algorithms to find MinMax outcomes and given an algorithm that returns

if a MinMax outcome for a particular alternative exists. On the axiomatisation direction we have

extended the definition by Colley et al. and proved several negative results.

There are three ideas that could guide future work. First, the two open questions we leave at

the end of Sections 3 and 4 can be resolved. In particular, I am slightly surprised the question at

the end of Section 3 has not been resolved yet, as it is a general result concerning arborescences.

Another direction is to extend the model by allowing agents to assign cardinal values of how much

they approve of their preferences, instead of just ordering them. The cardinal voting model seems

like a meaningful generalisation of the preferential voting model we have here. Finally, our hardness

result implies that for many reasonable functions optimal unravellings can be NP-hard. But there

is a case relevant to the real world that is not covered by the hardness result. One implementation

of liquid democracy requires agents to choose before the election if they want to be delegated to.

Thus splitting the electorate between voters who cannot be delegated to and delegates who can be

delegated to. Suppose we allow voters to delegate to a single boolean function of delegates. But,

delegates can only delegate directly to other delegates, then NP-hardness does not arise. That

is because the only cycles that need to be resolved happen in LIQUID which can be optimally

unravelled in polynomial time. This gives voters a lot of expressive power while maintaining

polynomial time unravellings. A question that seems interesting in this setting is when it would be

better for someone to join the delegates or the voters in different instances.

In these final paragraphs, I include my personal reflections. This project has allowed me to

explore a topic in detail that I was interested in before. Initially, I was quite ambitious and tried to

come up with a game-theoretic model that rewarded amassing power. This is a reflection of real-life

politics, as successful political parties get funding and members of parliament are paid a salary from

38

the government. As far as I have seen, such a model has not appeared in the literature yet. The

resulting model was complex and unwieldy and had no pure strategy Nash Equilibria. Hence, we

moved on to another idea where voters want to coordinate on how to delegate to delegates in order

to maximise the probability of voting for the ground truth. This path also did not yield substantial

results. Nevertheless, I did come up with some nice simulations and graphs.

The direction of my work changed when my supervisor suggested I read the paper by Colley

et al. [2022] which she thought left open questions I could answer. I did so, and it turned out she

was correct. The paper had a wide gap between what was proven to be easy, the simplest class of

functions, and hard, arbitrary boolean functions. A class of functions that was noted throughout

the work but not assigned a complexity class was that of delegating to majorities. I grappled with

this over the Christmas vacation and realised that it was indeed NP-hard. The next task I had in

mind was to check a less expressive function class that is binary OR and binary AND. As shown

in the main hardness reduction, these too turned out to be NP-hard. I was very excited to present

these to my supervisor as these superseded my previous result.

Our work would include all the complexity results but importantly, we also considered the

axiomatic results in Colley et al. [2022]. The axiomatic results were only for resolute procedures

and so there was space to extend them to irresolute ones. We picked the most unassuming definition

we could and then started proving negative results for non-monotone functions. I was under the

impression that MinMax and definitely MinSum would satisfy cast participation for monotone

functions. It turned out I was wrong even for a restricted class of monotone functions. In fact, I

arrived at the example of Proposition 33 by trying to prove its negation.

Overall, I have deeply enjoyed the repeated successes and failures of research. I am quite happy

with the final result which would not be possible without the guidance of my supervisor.

39

References

John F Banzhaf III. Weighted voting doesn’t work: A mathematical analysis. Rutgers L. Rev., 19:

317, 1964.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286

(5439):509–512, 1999.

Ruben Becker, Gianlorenzo D’Angelo, Esmaeil Delfaraz, and Hugo Gilbert. Unveiling the truth in

liquid democracy with misinformed voters. In Algorithmic Decision Theory - 7th International

Conference, ADT 2021, Toulouse, France, November 3-5, 2021, Proceedings, volume 13023 of

Lecture Notes in Computer Science, pages 132–146. Springer, 2021.

Daan Bloembergen, Davide Grossi, and Martin Lackner. On rational delegations in liquid democ-

racy. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1796–

1803, 2019.

Ioannis Caragiannis and Evi Micha. A contribution to the critique of liquid democracy. In Pro-

ceedings of the 28th International Joint Conference on Artificial Intelligence, pages 116–122,

2019.

Rachael Colley, Umberto Grandi, and Arianna Novaro. Unravelling multi-agent ranked delegations.

Autonomous Agents and Multi-Agent Systems, 36(1):1–35, 2022.

Bryan Alexander Ford. Delegative democracy. Technical report, 2002.

Paul Gölz, Anson Kahng, Simon Mackenzie, and Ariel D Procaccia. The fluid mechanics of liquid

democracy. ACM Transactions on Economics and Computation, 9(4):1–39, 2021.

James Green-Armytage. Direct voting and proxy voting. Constitutional Political Economy, 26(2):

190–220, 2015.

40

Anson Kahng, Simon Mackenzie, and Ariel Procaccia. Liquid democracy: An algorithmic perspec-

tive. Journal of Artificial Intelligence Research, 70:1223–1252, 2021.

Kathrin Konczak and Jérôme Lang. Voting procedures with incomplete preferences. In Proc.

IJCAI-05 Multidisciplinary Workshop on Advances in Preference Handling, volume 20. Citeseer,

2005.

Grammateia Kotsialou and Luke Riley. Incentivising participation in liquid democracy with

breadth-first delegation. In Proceedings of the 19th International Conference on Autonomous

Agents and Multiagent Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020, pages

638–644. International Foundation for Autonomous Agents and Multiagent Systems, 2020.

Hervé Moulin. Condorcet’s principle implies the no show paradox. Journal of Economic Theory,

45(1):53–64, 1988.

Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

Yuzhe Zhang and Davide Grossi. Power in liquid democracy. In Proceedings of the 35th AAAI

Conference on Artificial Intelligence (AAAI), pages 5822–5830, 2021.

41

	Introduction
	Liquid Democracy and Ground Truth
	A Game-Theoretic Approach
	Preference Aggregation Properties
	Our Contribution

	Preliminaries
	Ballots
	Unravellings

	Complexity Results
	Hardness Results
	Extensions of Hardness
	Results for LIQUID

	Axiomatisation
	Conclusion

