{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MPG Cars\n",
"\n",
"Check out [Cars Exercises Video Tutorial](https://www.youtube.com/watch?v=avzLRBxoguU&list=PLgJhDSE2ZLxaY_DigHeiIDC1cD09rXgJv&index=3) to watch a data scientist go through the exercises"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Introduction:\n",
"\n",
"The following exercise utilizes data from [UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Auto+MPG)\n",
"\n",
"### Step 1. Import the necessary libraries"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 2. Import the first dataset [cars1](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/05_Merge/Auto_MPG/cars1.csv) and [cars2](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/05_Merge/Auto_MPG/cars2.csv). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" ### Step 3. Assign each to a to a variable called cars1 and cars2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" mpg cylinders displacement horsepower weight acceleration model \\\n",
"0 18.0 8 307 130 3504 12.0 70 \n",
"1 15.0 8 350 165 3693 11.5 70 \n",
"2 18.0 8 318 150 3436 11.0 70 \n",
"3 16.0 8 304 150 3433 12.0 70 \n",
"4 17.0 8 302 140 3449 10.5 70 \n",
"\n",
" origin car Unnamed: 9 Unnamed: 10 Unnamed: 11 \\\n",
"0 1 chevrolet chevelle malibu NaN NaN NaN \n",
"1 1 buick skylark 320 NaN NaN NaN \n",
"2 1 plymouth satellite NaN NaN NaN \n",
"3 1 amc rebel sst NaN NaN NaN \n",
"4 1 ford torino NaN NaN NaN \n",
"\n",
" Unnamed: 12 Unnamed: 13 \n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 NaN NaN \n",
"3 NaN NaN \n",
"4 NaN NaN \n",
" mpg cylinders displacement horsepower weight acceleration model \\\n",
"0 33.0 4 91 53 1795 17.4 76 \n",
"1 20.0 6 225 100 3651 17.7 76 \n",
"2 18.0 6 250 78 3574 21.0 76 \n",
"3 18.5 6 250 110 3645 16.2 76 \n",
"4 17.5 6 258 95 3193 17.8 76 \n",
"\n",
" origin car \n",
"0 3 honda civic \n",
"1 1 dodge aspen se \n",
"2 1 ford granada ghia \n",
"3 1 pontiac ventura sj \n",
"4 1 amc pacer d/l \n"
]
}
],
"source": [
"cars1 = pd.read_csv(\"https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/05_Merge/Auto_MPG/cars1.csv\")\n",
"cars2 = pd.read_csv(\"https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/05_Merge/Auto_MPG/cars2.csv\")\n",
"\n",
"print(cars1.head())\n",
"print(cars2.head())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 4. Oops, it seems our first dataset has some unnamed blank columns, fix cars1"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" mpg | \n",
" cylinders | \n",
" displacement | \n",
" horsepower | \n",
" weight | \n",
" acceleration | \n",
" model | \n",
" origin | \n",
" car | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 18.0 | \n",
" 8 | \n",
" 307 | \n",
" 130 | \n",
" 3504 | \n",
" 12.0 | \n",
" 70 | \n",
" 1 | \n",
" chevrolet chevelle malibu | \n",
"
\n",
" \n",
" | 1 | \n",
" 15.0 | \n",
" 8 | \n",
" 350 | \n",
" 165 | \n",
" 3693 | \n",
" 11.5 | \n",
" 70 | \n",
" 1 | \n",
" buick skylark 320 | \n",
"
\n",
" \n",
" | 2 | \n",
" 18.0 | \n",
" 8 | \n",
" 318 | \n",
" 150 | \n",
" 3436 | \n",
" 11.0 | \n",
" 70 | \n",
" 1 | \n",
" plymouth satellite | \n",
"
\n",
" \n",
" | 3 | \n",
" 16.0 | \n",
" 8 | \n",
" 304 | \n",
" 150 | \n",
" 3433 | \n",
" 12.0 | \n",
" 70 | \n",
" 1 | \n",
" amc rebel sst | \n",
"
\n",
" \n",
" | 4 | \n",
" 17.0 | \n",
" 8 | \n",
" 302 | \n",
" 140 | \n",
" 3449 | \n",
" 10.5 | \n",
" 70 | \n",
" 1 | \n",
" ford torino | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mpg cylinders displacement horsepower weight acceleration model \\\n",
"0 18.0 8 307 130 3504 12.0 70 \n",
"1 15.0 8 350 165 3693 11.5 70 \n",
"2 18.0 8 318 150 3436 11.0 70 \n",
"3 16.0 8 304 150 3433 12.0 70 \n",
"4 17.0 8 302 140 3449 10.5 70 \n",
"\n",
" origin car \n",
"0 1 chevrolet chevelle malibu \n",
"1 1 buick skylark 320 \n",
"2 1 plymouth satellite \n",
"3 1 amc rebel sst \n",
"4 1 ford torino "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars1 = cars1.loc[:, \"mpg\":\"car\"]\n",
"cars1.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 5. What is the number of observations in each dataset?"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(198, 9)\n",
"(200, 9)\n"
]
}
],
"source": [
"print(cars1.shape)\n",
"print(cars2.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 6. Join cars1 and cars2 into a single DataFrame called cars"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" mpg | \n",
" cylinders | \n",
" displacement | \n",
" horsepower | \n",
" weight | \n",
" acceleration | \n",
" model | \n",
" origin | \n",
" car | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 18.0 | \n",
" 8 | \n",
" 307 | \n",
" 130 | \n",
" 3504 | \n",
" 12.0 | \n",
" 70 | \n",
" 1 | \n",
" chevrolet chevelle malibu | \n",
"
\n",
" \n",
" | 1 | \n",
" 15.0 | \n",
" 8 | \n",
" 350 | \n",
" 165 | \n",
" 3693 | \n",
" 11.5 | \n",
" 70 | \n",
" 1 | \n",
" buick skylark 320 | \n",
"
\n",
" \n",
" | 2 | \n",
" 18.0 | \n",
" 8 | \n",
" 318 | \n",
" 150 | \n",
" 3436 | \n",
" 11.0 | \n",
" 70 | \n",
" 1 | \n",
" plymouth satellite | \n",
"
\n",
" \n",
" | 3 | \n",
" 16.0 | \n",
" 8 | \n",
" 304 | \n",
" 150 | \n",
" 3433 | \n",
" 12.0 | \n",
" 70 | \n",
" 1 | \n",
" amc rebel sst | \n",
"
\n",
" \n",
" | 4 | \n",
" 17.0 | \n",
" 8 | \n",
" 302 | \n",
" 140 | \n",
" 3449 | \n",
" 10.5 | \n",
" 70 | \n",
" 1 | \n",
" ford torino | \n",
"
\n",
" \n",
" | 5 | \n",
" 15.0 | \n",
" 8 | \n",
" 429 | \n",
" 198 | \n",
" 4341 | \n",
" 10.0 | \n",
" 70 | \n",
" 1 | \n",
" ford galaxie 500 | \n",
"
\n",
" \n",
" | 6 | \n",
" 14.0 | \n",
" 8 | \n",
" 454 | \n",
" 220 | \n",
" 4354 | \n",
" 9.0 | \n",
" 70 | \n",
" 1 | \n",
" chevrolet impala | \n",
"
\n",
" \n",
" | 7 | \n",
" 14.0 | \n",
" 8 | \n",
" 440 | \n",
" 215 | \n",
" 4312 | \n",
" 8.5 | \n",
" 70 | \n",
" 1 | \n",
" plymouth fury iii | \n",
"
\n",
" \n",
" | 8 | \n",
" 14.0 | \n",
" 8 | \n",
" 455 | \n",
" 225 | \n",
" 4425 | \n",
" 10.0 | \n",
" 70 | \n",
" 1 | \n",
" pontiac catalina | \n",
"
\n",
" \n",
" | 9 | \n",
" 15.0 | \n",
" 8 | \n",
" 390 | \n",
" 190 | \n",
" 3850 | \n",
" 8.5 | \n",
" 70 | \n",
" 1 | \n",
" amc ambassador dpl | \n",
"
\n",
" \n",
" | 10 | \n",
" 15.0 | \n",
" 8 | \n",
" 383 | \n",
" 170 | \n",
" 3563 | \n",
" 10.0 | \n",
" 70 | \n",
" 1 | \n",
" dodge challenger se | \n",
"
\n",
" \n",
" | 11 | \n",
" 14.0 | \n",
" 8 | \n",
" 340 | \n",
" 160 | \n",
" 3609 | \n",
" 8.0 | \n",
" 70 | \n",
" 1 | \n",
" plymouth 'cuda 340 | \n",
"
\n",
" \n",
" | 12 | \n",
" 15.0 | \n",
" 8 | \n",
" 400 | \n",
" 150 | \n",
" 3761 | \n",
" 9.5 | \n",
" 70 | \n",
" 1 | \n",
" chevrolet monte carlo | \n",
"
\n",
" \n",
" | 13 | \n",
" 14.0 | \n",
" 8 | \n",
" 455 | \n",
" 225 | \n",
" 3086 | \n",
" 10.0 | \n",
" 70 | \n",
" 1 | \n",
" buick estate wagon (sw) | \n",
"
\n",
" \n",
" | 14 | \n",
" 24.0 | \n",
" 4 | \n",
" 113 | \n",
" 95 | \n",
" 2372 | \n",
" 15.0 | \n",
" 70 | \n",
" 3 | \n",
" toyota corona mark ii | \n",
"
\n",
" \n",
" | 15 | \n",
" 22.0 | \n",
" 6 | \n",
" 198 | \n",
" 95 | \n",
" 2833 | \n",
" 15.5 | \n",
" 70 | \n",
" 1 | \n",
" plymouth duster | \n",
"
\n",
" \n",
" | 16 | \n",
" 18.0 | \n",
" 6 | \n",
" 199 | \n",
" 97 | \n",
" 2774 | \n",
" 15.5 | \n",
" 70 | \n",
" 1 | \n",
" amc hornet | \n",
"
\n",
" \n",
" | 17 | \n",
" 21.0 | \n",
" 6 | \n",
" 200 | \n",
" 85 | \n",
" 2587 | \n",
" 16.0 | \n",
" 70 | \n",
" 1 | \n",
" ford maverick | \n",
"
\n",
" \n",
" | 18 | \n",
" 27.0 | \n",
" 4 | \n",
" 97 | \n",
" 88 | \n",
" 2130 | \n",
" 14.5 | \n",
" 70 | \n",
" 3 | \n",
" datsun pl510 | \n",
"
\n",
" \n",
" | 19 | \n",
" 26.0 | \n",
" 4 | \n",
" 97 | \n",
" 46 | \n",
" 1835 | \n",
" 20.5 | \n",
" 70 | \n",
" 2 | \n",
" volkswagen 1131 deluxe sedan | \n",
"
\n",
" \n",
" | 20 | \n",
" 25.0 | \n",
" 4 | \n",
" 110 | \n",
" 87 | \n",
" 2672 | \n",
" 17.5 | \n",
" 70 | \n",
" 2 | \n",
" peugeot 504 | \n",
"
\n",
" \n",
" | 21 | \n",
" 24.0 | \n",
" 4 | \n",
" 107 | \n",
" 90 | \n",
" 2430 | \n",
" 14.5 | \n",
" 70 | \n",
" 2 | \n",
" audi 100 ls | \n",
"
\n",
" \n",
" | 22 | \n",
" 25.0 | \n",
" 4 | \n",
" 104 | \n",
" 95 | \n",
" 2375 | \n",
" 17.5 | \n",
" 70 | \n",
" 2 | \n",
" saab 99e | \n",
"
\n",
" \n",
" | 23 | \n",
" 26.0 | \n",
" 4 | \n",
" 121 | \n",
" 113 | \n",
" 2234 | \n",
" 12.5 | \n",
" 70 | \n",
" 2 | \n",
" bmw 2002 | \n",
"
\n",
" \n",
" | 24 | \n",
" 21.0 | \n",
" 6 | \n",
" 199 | \n",
" 90 | \n",
" 2648 | \n",
" 15.0 | \n",
" 70 | \n",
" 1 | \n",
" amc gremlin | \n",
"
\n",
" \n",
" | 25 | \n",
" 10.0 | \n",
" 8 | \n",
" 360 | \n",
" 215 | \n",
" 4615 | \n",
" 14.0 | \n",
" 70 | \n",
" 1 | \n",
" ford f250 | \n",
"
\n",
" \n",
" | 26 | \n",
" 10.0 | \n",
" 8 | \n",
" 307 | \n",
" 200 | \n",
" 4376 | \n",
" 15.0 | \n",
" 70 | \n",
" 1 | \n",
" chevy c20 | \n",
"
\n",
" \n",
" | 27 | \n",
" 11.0 | \n",
" 8 | \n",
" 318 | \n",
" 210 | \n",
" 4382 | \n",
" 13.5 | \n",
" 70 | \n",
" 1 | \n",
" dodge d200 | \n",
"
\n",
" \n",
" | 28 | \n",
" 9.0 | \n",
" 8 | \n",
" 304 | \n",
" 193 | \n",
" 4732 | \n",
" 18.5 | \n",
" 70 | \n",
" 1 | \n",
" hi 1200d | \n",
"
\n",
" \n",
" | 29 | \n",
" 27.0 | \n",
" 4 | \n",
" 97 | \n",
" 88 | \n",
" 2130 | \n",
" 14.5 | \n",
" 71 | \n",
" 3 | \n",
" datsun pl510 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 170 | \n",
" 27.0 | \n",
" 4 | \n",
" 112 | \n",
" 88 | \n",
" 2640 | \n",
" 18.6 | \n",
" 82 | \n",
" 1 | \n",
" chevrolet cavalier wagon | \n",
"
\n",
" \n",
" | 171 | \n",
" 34.0 | \n",
" 4 | \n",
" 112 | \n",
" 88 | \n",
" 2395 | \n",
" 18.0 | \n",
" 82 | \n",
" 1 | \n",
" chevrolet cavalier 2-door | \n",
"
\n",
" \n",
" | 172 | \n",
" 31.0 | \n",
" 4 | \n",
" 112 | \n",
" 85 | \n",
" 2575 | \n",
" 16.2 | \n",
" 82 | \n",
" 1 | \n",
" pontiac j2000 se hatchback | \n",
"
\n",
" \n",
" | 173 | \n",
" 29.0 | \n",
" 4 | \n",
" 135 | \n",
" 84 | \n",
" 2525 | \n",
" 16.0 | \n",
" 82 | \n",
" 1 | \n",
" dodge aries se | \n",
"
\n",
" \n",
" | 174 | \n",
" 27.0 | \n",
" 4 | \n",
" 151 | \n",
" 90 | \n",
" 2735 | \n",
" 18.0 | \n",
" 82 | \n",
" 1 | \n",
" pontiac phoenix | \n",
"
\n",
" \n",
" | 175 | \n",
" 24.0 | \n",
" 4 | \n",
" 140 | \n",
" 92 | \n",
" 2865 | \n",
" 16.4 | \n",
" 82 | \n",
" 1 | \n",
" ford fairmont futura | \n",
"
\n",
" \n",
" | 176 | \n",
" 23.0 | \n",
" 4 | \n",
" 151 | \n",
" ? | \n",
" 3035 | \n",
" 20.5 | \n",
" 82 | \n",
" 1 | \n",
" amc concord dl | \n",
"
\n",
" \n",
" | 177 | \n",
" 36.0 | \n",
" 4 | \n",
" 105 | \n",
" 74 | \n",
" 1980 | \n",
" 15.3 | \n",
" 82 | \n",
" 2 | \n",
" volkswagen rabbit l | \n",
"
\n",
" \n",
" | 178 | \n",
" 37.0 | \n",
" 4 | \n",
" 91 | \n",
" 68 | \n",
" 2025 | \n",
" 18.2 | \n",
" 82 | \n",
" 3 | \n",
" mazda glc custom l | \n",
"
\n",
" \n",
" | 179 | \n",
" 31.0 | \n",
" 4 | \n",
" 91 | \n",
" 68 | \n",
" 1970 | \n",
" 17.6 | \n",
" 82 | \n",
" 3 | \n",
" mazda glc custom | \n",
"
\n",
" \n",
" | 180 | \n",
" 38.0 | \n",
" 4 | \n",
" 105 | \n",
" 63 | \n",
" 2125 | \n",
" 14.7 | \n",
" 82 | \n",
" 1 | \n",
" plymouth horizon miser | \n",
"
\n",
" \n",
" | 181 | \n",
" 36.0 | \n",
" 4 | \n",
" 98 | \n",
" 70 | \n",
" 2125 | \n",
" 17.3 | \n",
" 82 | \n",
" 1 | \n",
" mercury lynx l | \n",
"
\n",
" \n",
" | 182 | \n",
" 36.0 | \n",
" 4 | \n",
" 120 | \n",
" 88 | \n",
" 2160 | \n",
" 14.5 | \n",
" 82 | \n",
" 3 | \n",
" nissan stanza xe | \n",
"
\n",
" \n",
" | 183 | \n",
" 36.0 | \n",
" 4 | \n",
" 107 | \n",
" 75 | \n",
" 2205 | \n",
" 14.5 | \n",
" 82 | \n",
" 3 | \n",
" honda accord | \n",
"
\n",
" \n",
" | 184 | \n",
" 34.0 | \n",
" 4 | \n",
" 108 | \n",
" 70 | \n",
" 2245 | \n",
" 16.9 | \n",
" 82 | \n",
" 3 | \n",
" toyota corolla | \n",
"
\n",
" \n",
" | 185 | \n",
" 38.0 | \n",
" 4 | \n",
" 91 | \n",
" 67 | \n",
" 1965 | \n",
" 15.0 | \n",
" 82 | \n",
" 3 | \n",
" honda civic | \n",
"
\n",
" \n",
" | 186 | \n",
" 32.0 | \n",
" 4 | \n",
" 91 | \n",
" 67 | \n",
" 1965 | \n",
" 15.7 | \n",
" 82 | \n",
" 3 | \n",
" honda civic (auto) | \n",
"
\n",
" \n",
" | 187 | \n",
" 38.0 | \n",
" 4 | \n",
" 91 | \n",
" 67 | \n",
" 1995 | \n",
" 16.2 | \n",
" 82 | \n",
" 3 | \n",
" datsun 310 gx | \n",
"
\n",
" \n",
" | 188 | \n",
" 25.0 | \n",
" 6 | \n",
" 181 | \n",
" 110 | \n",
" 2945 | \n",
" 16.4 | \n",
" 82 | \n",
" 1 | \n",
" buick century limited | \n",
"
\n",
" \n",
" | 189 | \n",
" 38.0 | \n",
" 6 | \n",
" 262 | \n",
" 85 | \n",
" 3015 | \n",
" 17.0 | \n",
" 82 | \n",
" 1 | \n",
" oldsmobile cutlass ciera (diesel) | \n",
"
\n",
" \n",
" | 190 | \n",
" 26.0 | \n",
" 4 | \n",
" 156 | \n",
" 92 | \n",
" 2585 | \n",
" 14.5 | \n",
" 82 | \n",
" 1 | \n",
" chrysler lebaron medallion | \n",
"
\n",
" \n",
" | 191 | \n",
" 22.0 | \n",
" 6 | \n",
" 232 | \n",
" 112 | \n",
" 2835 | \n",
" 14.7 | \n",
" 82 | \n",
" 1 | \n",
" ford granada l | \n",
"
\n",
" \n",
" | 192 | \n",
" 32.0 | \n",
" 4 | \n",
" 144 | \n",
" 96 | \n",
" 2665 | \n",
" 13.9 | \n",
" 82 | \n",
" 3 | \n",
" toyota celica gt | \n",
"
\n",
" \n",
" | 193 | \n",
" 36.0 | \n",
" 4 | \n",
" 135 | \n",
" 84 | \n",
" 2370 | \n",
" 13.0 | \n",
" 82 | \n",
" 1 | \n",
" dodge charger 2.2 | \n",
"
\n",
" \n",
" | 194 | \n",
" 27.0 | \n",
" 4 | \n",
" 151 | \n",
" 90 | \n",
" 2950 | \n",
" 17.3 | \n",
" 82 | \n",
" 1 | \n",
" chevrolet camaro | \n",
"
\n",
" \n",
" | 195 | \n",
" 27.0 | \n",
" 4 | \n",
" 140 | \n",
" 86 | \n",
" 2790 | \n",
" 15.6 | \n",
" 82 | \n",
" 1 | \n",
" ford mustang gl | \n",
"
\n",
" \n",
" | 196 | \n",
" 44.0 | \n",
" 4 | \n",
" 97 | \n",
" 52 | \n",
" 2130 | \n",
" 24.6 | \n",
" 82 | \n",
" 2 | \n",
" vw pickup | \n",
"
\n",
" \n",
" | 197 | \n",
" 32.0 | \n",
" 4 | \n",
" 135 | \n",
" 84 | \n",
" 2295 | \n",
" 11.6 | \n",
" 82 | \n",
" 1 | \n",
" dodge rampage | \n",
"
\n",
" \n",
" | 198 | \n",
" 28.0 | \n",
" 4 | \n",
" 120 | \n",
" 79 | \n",
" 2625 | \n",
" 18.6 | \n",
" 82 | \n",
" 1 | \n",
" ford ranger | \n",
"
\n",
" \n",
" | 199 | \n",
" 31.0 | \n",
" 4 | \n",
" 119 | \n",
" 82 | \n",
" 2720 | \n",
" 19.4 | \n",
" 82 | \n",
" 1 | \n",
" chevy s-10 | \n",
"
\n",
" \n",
"
\n",
"
398 rows × 9 columns
\n",
"
"
],
"text/plain": [
" mpg cylinders displacement horsepower weight acceleration model \\\n",
"0 18.0 8 307 130 3504 12.0 70 \n",
"1 15.0 8 350 165 3693 11.5 70 \n",
"2 18.0 8 318 150 3436 11.0 70 \n",
"3 16.0 8 304 150 3433 12.0 70 \n",
"4 17.0 8 302 140 3449 10.5 70 \n",
"5 15.0 8 429 198 4341 10.0 70 \n",
"6 14.0 8 454 220 4354 9.0 70 \n",
"7 14.0 8 440 215 4312 8.5 70 \n",
"8 14.0 8 455 225 4425 10.0 70 \n",
"9 15.0 8 390 190 3850 8.5 70 \n",
"10 15.0 8 383 170 3563 10.0 70 \n",
"11 14.0 8 340 160 3609 8.0 70 \n",
"12 15.0 8 400 150 3761 9.5 70 \n",
"13 14.0 8 455 225 3086 10.0 70 \n",
"14 24.0 4 113 95 2372 15.0 70 \n",
"15 22.0 6 198 95 2833 15.5 70 \n",
"16 18.0 6 199 97 2774 15.5 70 \n",
"17 21.0 6 200 85 2587 16.0 70 \n",
"18 27.0 4 97 88 2130 14.5 70 \n",
"19 26.0 4 97 46 1835 20.5 70 \n",
"20 25.0 4 110 87 2672 17.5 70 \n",
"21 24.0 4 107 90 2430 14.5 70 \n",
"22 25.0 4 104 95 2375 17.5 70 \n",
"23 26.0 4 121 113 2234 12.5 70 \n",
"24 21.0 6 199 90 2648 15.0 70 \n",
"25 10.0 8 360 215 4615 14.0 70 \n",
"26 10.0 8 307 200 4376 15.0 70 \n",
"27 11.0 8 318 210 4382 13.5 70 \n",
"28 9.0 8 304 193 4732 18.5 70 \n",
"29 27.0 4 97 88 2130 14.5 71 \n",
".. ... ... ... ... ... ... ... \n",
"170 27.0 4 112 88 2640 18.6 82 \n",
"171 34.0 4 112 88 2395 18.0 82 \n",
"172 31.0 4 112 85 2575 16.2 82 \n",
"173 29.0 4 135 84 2525 16.0 82 \n",
"174 27.0 4 151 90 2735 18.0 82 \n",
"175 24.0 4 140 92 2865 16.4 82 \n",
"176 23.0 4 151 ? 3035 20.5 82 \n",
"177 36.0 4 105 74 1980 15.3 82 \n",
"178 37.0 4 91 68 2025 18.2 82 \n",
"179 31.0 4 91 68 1970 17.6 82 \n",
"180 38.0 4 105 63 2125 14.7 82 \n",
"181 36.0 4 98 70 2125 17.3 82 \n",
"182 36.0 4 120 88 2160 14.5 82 \n",
"183 36.0 4 107 75 2205 14.5 82 \n",
"184 34.0 4 108 70 2245 16.9 82 \n",
"185 38.0 4 91 67 1965 15.0 82 \n",
"186 32.0 4 91 67 1965 15.7 82 \n",
"187 38.0 4 91 67 1995 16.2 82 \n",
"188 25.0 6 181 110 2945 16.4 82 \n",
"189 38.0 6 262 85 3015 17.0 82 \n",
"190 26.0 4 156 92 2585 14.5 82 \n",
"191 22.0 6 232 112 2835 14.7 82 \n",
"192 32.0 4 144 96 2665 13.9 82 \n",
"193 36.0 4 135 84 2370 13.0 82 \n",
"194 27.0 4 151 90 2950 17.3 82 \n",
"195 27.0 4 140 86 2790 15.6 82 \n",
"196 44.0 4 97 52 2130 24.6 82 \n",
"197 32.0 4 135 84 2295 11.6 82 \n",
"198 28.0 4 120 79 2625 18.6 82 \n",
"199 31.0 4 119 82 2720 19.4 82 \n",
"\n",
" origin car \n",
"0 1 chevrolet chevelle malibu \n",
"1 1 buick skylark 320 \n",
"2 1 plymouth satellite \n",
"3 1 amc rebel sst \n",
"4 1 ford torino \n",
"5 1 ford galaxie 500 \n",
"6 1 chevrolet impala \n",
"7 1 plymouth fury iii \n",
"8 1 pontiac catalina \n",
"9 1 amc ambassador dpl \n",
"10 1 dodge challenger se \n",
"11 1 plymouth 'cuda 340 \n",
"12 1 chevrolet monte carlo \n",
"13 1 buick estate wagon (sw) \n",
"14 3 toyota corona mark ii \n",
"15 1 plymouth duster \n",
"16 1 amc hornet \n",
"17 1 ford maverick \n",
"18 3 datsun pl510 \n",
"19 2 volkswagen 1131 deluxe sedan \n",
"20 2 peugeot 504 \n",
"21 2 audi 100 ls \n",
"22 2 saab 99e \n",
"23 2 bmw 2002 \n",
"24 1 amc gremlin \n",
"25 1 ford f250 \n",
"26 1 chevy c20 \n",
"27 1 dodge d200 \n",
"28 1 hi 1200d \n",
"29 3 datsun pl510 \n",
".. ... ... \n",
"170 1 chevrolet cavalier wagon \n",
"171 1 chevrolet cavalier 2-door \n",
"172 1 pontiac j2000 se hatchback \n",
"173 1 dodge aries se \n",
"174 1 pontiac phoenix \n",
"175 1 ford fairmont futura \n",
"176 1 amc concord dl \n",
"177 2 volkswagen rabbit l \n",
"178 3 mazda glc custom l \n",
"179 3 mazda glc custom \n",
"180 1 plymouth horizon miser \n",
"181 1 mercury lynx l \n",
"182 3 nissan stanza xe \n",
"183 3 honda accord \n",
"184 3 toyota corolla \n",
"185 3 honda civic \n",
"186 3 honda civic (auto) \n",
"187 3 datsun 310 gx \n",
"188 1 buick century limited \n",
"189 1 oldsmobile cutlass ciera (diesel) \n",
"190 1 chrysler lebaron medallion \n",
"191 1 ford granada l \n",
"192 3 toyota celica gt \n",
"193 1 dodge charger 2.2 \n",
"194 1 chevrolet camaro \n",
"195 1 ford mustang gl \n",
"196 2 vw pickup \n",
"197 1 dodge rampage \n",
"198 1 ford ranger \n",
"199 1 chevy s-10 \n",
"\n",
"[398 rows x 9 columns]"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars = cars1.append(cars2)\n",
"cars"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 7. Oops, there is a column missing, called owners. Create a random number Series from 15,000 to 73,000."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([29487, 25680, 65268, 31827, 69215, 72602, 52693, 58440, 16183,\n",
" 45014, 32318, 72942, 62163, 35951, 57625, 59355, 36533, 67048,\n",
" 58159, 69743, 25146, 22755, 44966, 46792, 56553, 65013, 55908,\n",
" 69563, 22030, 59561, 15593, 52998, 54795, 16169, 24809, 35580,\n",
" 46590, 38792, 43099, 37166, 21390, 56496, 68606, 21110, 56334,\n",
" 45477, 51961, 27625, 51176, 30796, 61809, 65450, 67375, 23342,\n",
" 27499, 50585, 57302, 56191, 60281, 32865, 58605, 66374, 15315,\n",
" 31791, 28670, 38796, 69214, 41055, 32353, 31574, 65799, 42998,\n",
" 72785, 18415, 31977, 29812, 65439, 21161, 60871, 67151, 22179,\n",
" 32821, 55392, 34586, 67937, 31646, 66397, 35258, 63815, 71291,\n",
" 51130, 27684, 49648, 52691, 50681, 68185, 32635, 51553, 28970,\n",
" 19112, 26035, 67666, 55471, 51477, 62055, 53003, 41265, 18565,\n",
" 48851, 48673, 45832, 67891, 57638, 29240, 41236, 16950, 31449,\n",
" 50528, 22397, 15876, 26414, 16736, 23896, 46104, 17583, 65951,\n",
" 38538, 31443, 19299, 46095, 31239, 19290, 38051, 68575, 61755,\n",
" 22560, 34460, 35395, 34608, 56906, 44895, 48429, 20900, 49770,\n",
" 50513, 59402, 26893, 37233, 19036, 20523, 18765, 46333, 42831,\n",
" 53698, 25218, 63106, 16928, 34901, 43674, 65453, 54428, 68502,\n",
" 19043, 20325, 45039, 29466, 49672, 67972, 30547, 22522, 69354,\n",
" 40489, 72887, 15724, 51442, 65182, 64555, 42138, 72988, 20861,\n",
" 67898, 20768, 36415, 47480, 16820, 48739, 62610, 43473, 23002,\n",
" 43488, 62581, 37724, 63019, 44912, 35595, 59188, 51814, 65283,\n",
" 53479, 27660, 38237, 22957, 47870, 15533, 41944, 51830, 56676,\n",
" 57481, 48529, 72220, 66675, 50099, 30585, 25436, 49195, 26050,\n",
" 24899, 37213, 25870, 67447, 23808, 71275, 67572, 18545, 43553,\n",
" 54858, 23077, 33705, 31282, 26298, 23742, 36110, 51491, 18019,\n",
" 60655, 27453, 35563, 63627, 35315, 56717, 59281, 55634, 18415,\n",
" 59570, 47320, 20110, 18425, 19352, 18032, 31816, 28573, 66030,\n",
" 54723, 21592, 37160, 59518, 35629, 47619, 52359, 34566, 64932,\n",
" 24072, 39445, 31203, 63975, 62041, 70175, 51029, 32058, 19428,\n",
" 65553, 50799, 48190, 68061, 68201, 53389, 15901, 44585, 54723,\n",
" 30446, 63716, 57488, 67134, 22033, 53694, 40002, 24854, 59747,\n",
" 59827, 53378, 53196, 68686, 20784, 28181, 33044, 41694, 39857,\n",
" 57296, 69021, 17359, 29794, 22515, 55877, 22806, 50027, 56787,\n",
" 50844, 17420, 65259, 19141, 40204, 19530, 30116, 34973, 15641,\n",
" 53492, 59574, 59082, 64400, 70163, 43058, 69696, 67996, 26158,\n",
" 32936, 45461, 47390, 32368, 15400, 40895, 16572, 31776, 62121,\n",
" 56704, 39335, 27716, 52565, 50831, 45049, 25173, 25018, 18606,\n",
" 71177, 66288, 46754, 68175, 35829, 24959, 54792, 19059, 29092,\n",
" 58736, 62938, 44733, 17884, 33905, 33965, 24641, 52257, 28178,\n",
" 29515, 37703, 56036, 51556, 23590, 61888, 70224, 53730, 41328,\n",
" 16501, 30360, 54106, 29101, 35631, 56173, 30424, 46887, 23657,\n",
" 17723, 71709, 45270, 30380, 27779, 33774, 36379, 47127, 63625,\n",
" 16750, 65740, 53802, 40995, 37487, 42791, 21825, 69344, 63210,\n",
" 15982, 20259])"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nr_owners = np.random.randint(15000, high=73001, size=398, dtype='l')\n",
"nr_owners"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 8. Add the column owners to cars"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" mpg | \n",
" cylinders | \n",
" displacement | \n",
" horsepower | \n",
" weight | \n",
" acceleration | \n",
" model | \n",
" origin | \n",
" car | \n",
" owners | \n",
"
\n",
" \n",
" \n",
" \n",
" | 195 | \n",
" 27.0 | \n",
" 4 | \n",
" 140 | \n",
" 86 | \n",
" 2790 | \n",
" 15.6 | \n",
" 82 | \n",
" 1 | \n",
" ford mustang gl | \n",
" 21825 | \n",
"
\n",
" \n",
" | 196 | \n",
" 44.0 | \n",
" 4 | \n",
" 97 | \n",
" 52 | \n",
" 2130 | \n",
" 24.6 | \n",
" 82 | \n",
" 2 | \n",
" vw pickup | \n",
" 69344 | \n",
"
\n",
" \n",
" | 197 | \n",
" 32.0 | \n",
" 4 | \n",
" 135 | \n",
" 84 | \n",
" 2295 | \n",
" 11.6 | \n",
" 82 | \n",
" 1 | \n",
" dodge rampage | \n",
" 63210 | \n",
"
\n",
" \n",
" | 198 | \n",
" 28.0 | \n",
" 4 | \n",
" 120 | \n",
" 79 | \n",
" 2625 | \n",
" 18.6 | \n",
" 82 | \n",
" 1 | \n",
" ford ranger | \n",
" 15982 | \n",
"
\n",
" \n",
" | 199 | \n",
" 31.0 | \n",
" 4 | \n",
" 119 | \n",
" 82 | \n",
" 2720 | \n",
" 19.4 | \n",
" 82 | \n",
" 1 | \n",
" chevy s-10 | \n",
" 20259 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mpg cylinders displacement horsepower weight acceleration model \\\n",
"195 27.0 4 140 86 2790 15.6 82 \n",
"196 44.0 4 97 52 2130 24.6 82 \n",
"197 32.0 4 135 84 2295 11.6 82 \n",
"198 28.0 4 120 79 2625 18.6 82 \n",
"199 31.0 4 119 82 2720 19.4 82 \n",
"\n",
" origin car owners \n",
"195 1 ford mustang gl 21825 \n",
"196 2 vw pickup 69344 \n",
"197 1 dodge rampage 63210 \n",
"198 1 ford ranger 15982 \n",
"199 1 chevy s-10 20259 "
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cars['owners'] = nr_owners\n",
"cars.tail()"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 0
}