Towards Understanding Deep Learning from Noisy Labels with Small-Loss Criterion

Background

Deep neural networks need large amounts of labeled data to achieve good performance. In real-world applications, labels are usually collected from non-experts to save cost and thus are noisy. In the past few years, many deep learning methods based on the small-loss criterion for dealing with noisy labels have been developed. However, there are few theoretical analyses to explain why these methods could learn well from noisy labels.

Our Contribution

- We theoretically explain why the widely-used small-loss criterion works.
- Based on the explanation, we reformalize the vanilla small-loss criterion to better tackle noisy labels.
- The experimental results verify our theoretical explanation and also demonstrate the effectiveness of the reformalization.

Preliminaries

Neural network:

with output $[\hat{p}_1(oldsymbol{x}),\ldots,\hat{p}_c(oldsymbol{x})]^ op\in\mathbb{R}^c$ $g(\boldsymbol{x};\Theta):\mathcal{X}
ightarrow\mathbb{R}^{c}$

where $\hat{p}_i(\boldsymbol{x}) = \frac{\exp\left(\boldsymbol{w}_i^{\top}\phi(\boldsymbol{x};\boldsymbol{\theta})\right)}{\sum_{j=1}^{c}\exp\left(\boldsymbol{w}_j^{\top}\phi(\boldsymbol{x};\boldsymbol{\theta})\right)}$ Loss function:

- 0-1 loss $\ell_{01}(f(\boldsymbol{x}), \tilde{y}) = \mathbb{I}[f(\boldsymbol{x}) \neq \tilde{y}]$
- Cross-entropy loss $\ell_{CE}(g(\boldsymbol{x}; \Theta), \tilde{y}) = -\log(\hat{p}_{\tilde{y}}(\boldsymbol{x}))$

Noise transition matrix:

(1)

Our Work

Phenomenon:

The examples with correct labels will have smaller loss than the examples with incorrect labels.

Practical strategy:

For a warmed-up neural network *g*:

- 1. selects the examples with small loss values;
- 2. update the model parameter with these selected examples.

Lemma 1. If T satisfies the row-diagonally dominant condition $T_{ii} > \max_{j \neq i} T_{ij}$, $\forall i$, then the target concept f^* has the minimum expected 0-1 loss on the noisy data, i.e., $\forall f \neq f^*$, $\mathbb{E}_{(\boldsymbol{x},\tilde{y})}[\ell_{01}(f^*(\boldsymbol{x}),\tilde{y})] \leq \mathbb{E}_{(\boldsymbol{x},\tilde{y})}[\ell_{01}(f(\boldsymbol{x}),\tilde{y})].$

Xian-Jin Gui, Wei Wang and Zhang-Hao Tian National Key Lab for Novel Software Technology, Nanjing University, China

With row-diagonally dominant condition, the target concept f^* has the minimum expected 0-1 loss on noisy data.

Lemma 2. Let g^{*} denote the deep neural network minimizing the cross-entropy loss in Eq. (1), the induced classifier f_{q^*} satisfies $f_{g^*}(x) = y$, $\forall x \in \mathcal{X}$, if and only if T satisfies the row-diagonally dominant condition $T_{ii} > \max_{j \neq i} T_{ij}, \forall i$.

With row-diagonally dominant condition, good neural network can be learned by minimizing the expected crossentropy loss on noisy data.

Theorem 1. Let g^{*} denote the deep neural network minimizing the cross-entropy loss in Eq. (1), (x_1, \tilde{y}) and $(\boldsymbol{x}_2, \tilde{y})$ are any two examples with the same observed label \tilde{y} in D satisfying that $f^*(\boldsymbol{x}_1) = \tilde{y}$ and $f^*(\boldsymbol{x}_2) \neq \tilde{y}$ \tilde{y} , if T satisfies the diagonally-dominant condition $T_{ii} > 0$ $\max \{ \max_{j \neq i} T_{ij}, \max_{j \neq i} T_{ji} \}, \forall i, then \ \ell_{CE}(g^*(\boldsymbol{x}_1), \tilde{y}) < \ell_{CE}(g^*(\boldsymbol{x}_1), \tilde{y}) < \ell_{CE}(g^*(\boldsymbol{x}_1), \tilde{y}) \}$ $\ell_{CE}(g^*(\boldsymbol{x}_2), \tilde{y}).$

With diagonally-dominant condition, for the g^* minimizing the expected cross-entropy loss on noisy data, the examples with correct labels will have smaller loss than that with incorrect labels.

Theorem 2. Suppose g is ϵ -close to g^* , i.e., $\|g - g^*\|_{\infty} = \epsilon$, for two examples (x_1, \tilde{y}) and (x_2, \tilde{y}) , assume $f^*(x_1) = \tilde{y}$ and $f^*(\boldsymbol{x}_2) \neq \tilde{y}$, if T satisfies the diagonally-dominant condition $T_{ii} > \max\{\max_{j \neq i} T_{ij}, \max_{j \neq i} T_{ji}\}, \forall i, and \epsilon <$ $\frac{1}{2} \cdot (T_{\tilde{y}\tilde{y}} - T_{f^*(\boldsymbol{x}_2)\tilde{y}})$, then $\ell_{CE}(g(\boldsymbol{x}_1), \tilde{y}) < \ell_{CE}(g(\boldsymbol{x}_2), \tilde{y})$.

With diagonally-dominant condition, for a neural network g which is not far away from g^* , the examples with correct labels will have smaller loss than that with incorrect labels.

This explains why small-loss criterion works.

Alg	0]
Inp	11
mþ	
	li
1:	f
2:	
3:	
4:	
5:	e
6:	C
7:	
8:	f
9:	_
10:	
11:	
12:	
13:	e
14.	1

Selection number *num(i)*:

Denote the noise rate by η_i and the number of examples for the *i*-th class by n_i :

m =

orithm 1 RSL: Reformalization of Small-Loss criterion

ut: Noisy dataset \tilde{D} , the initial model $g(\boldsymbol{x}; \Theta^{(0)})$, epoch limit Efor t = 1, ..., E do Update $\Theta^{(t-1)}$ on \tilde{D} with one epoch to get $\Theta^{(t)}$; Calculate each example's loss: $\forall (\boldsymbol{x}, \tilde{y}) \in \tilde{D}, \ \ell_t(\boldsymbol{x}, \tilde{y}) = \ell_{CE}(g(\boldsymbol{x}; \Theta^{(t)}), \tilde{y});$ end for Calculate each example's mean loss: Mean loss $\forall (\boldsymbol{x}, \tilde{y}) \in \tilde{D}, \ \bar{\ell}(\boldsymbol{x}, \tilde{y}) = \frac{1}{E} \sum_{t=1}^{E} \ell_t(\boldsymbol{x}, \tilde{y});$ for i = 1, ..., c do $\tilde{D}_i = \{ (\boldsymbol{x}, \tilde{y}) \in \tilde{D} | \tilde{y} = i \};$ Rank examples in D_i by $\overline{\ell}(\boldsymbol{x}, \tilde{y})$; Calculate num(i) according to Eq. (2); Select num(i) examples with smallest $\overline{\ell}(\boldsymbol{x}, \tilde{y})$ as S_i ; end for **Select class by class** 14: $D_{\text{sel}} = \bigcup_{i=1}^{c} S_i;$ 15: Train $g(\boldsymbol{x}; \Theta)$ with D_{sel} ; **Output:** The final classifier $g(\boldsymbol{x}; \Theta)$

first introduce parameter $\beta \ge 0$ to make prop(i) a little less than $1 - \eta_i$:

 $prop(i) = max\{1 - (1 + \beta)\eta_i, (1 - \beta)(1 - \eta_i)\}\$

Issue: $[prop(1) \cdot n_1, \cdots, prop(c) \cdot n_c]$ may seriously deviate from the true class distribution $[p_1, \dots, p_c]$.

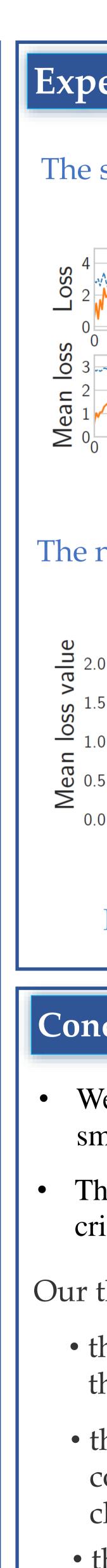
• set the selected data as $[p_1 \cdot m, ..., p_c \cdot m]$ to obey $[p_1, ..., p_c]$:

$$\min_{1 \le i \le c} \{ prop(i) \cdot n_i / p_i \} \text{ by constraints } p_i \cdot m \le prop(i) \cdot n_i$$

Issue: too many useful data may be wasted.

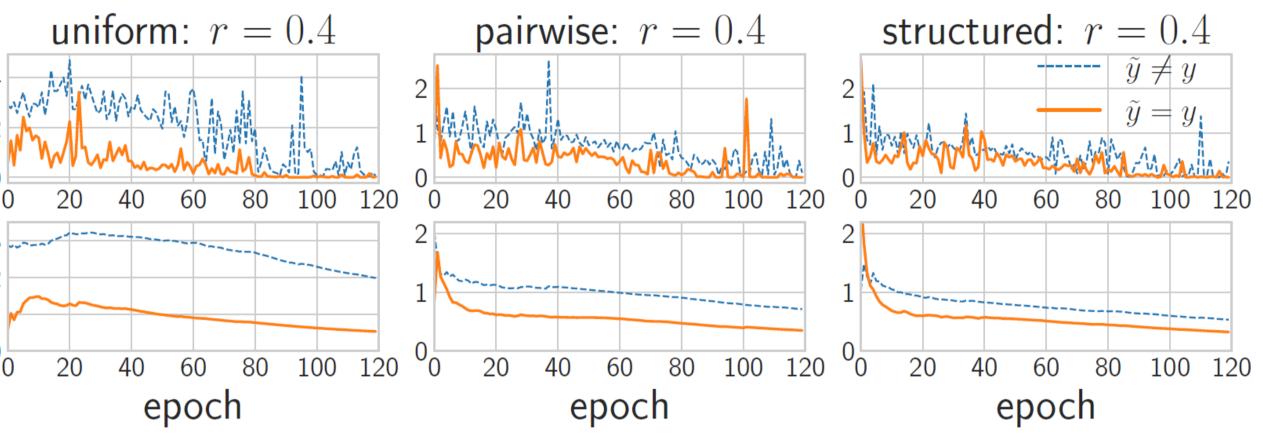
thus additionally introduce parameter $\gamma \geq 1$:

 $num(i) = \min\{\gamma \cdot p_i \times m, prop(i) \times n_i\}$

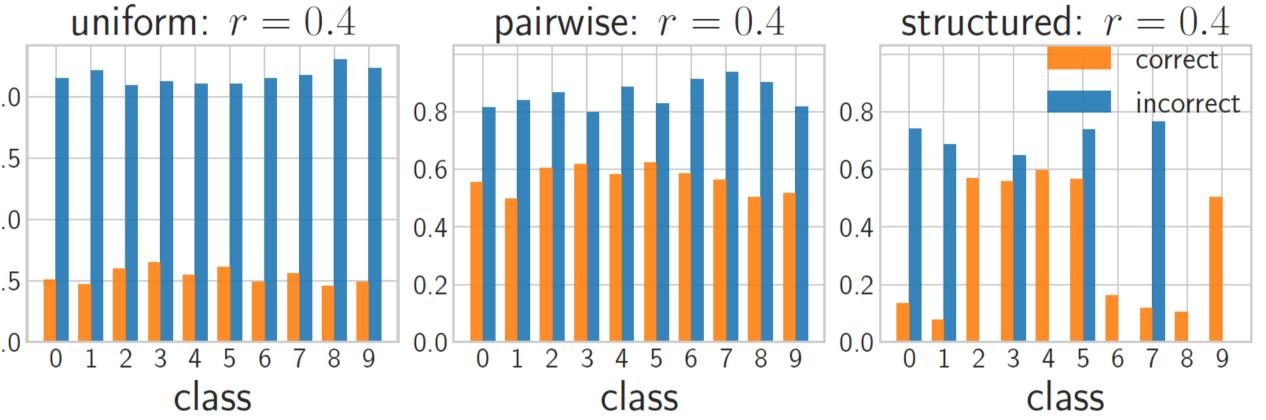


Experiments

The stability of mean loss *vs*. single epoch's loss:



The necessity of class-wise sample selection:



More experimental results can be found in the paper.

Conclusion

We establish the connection between noisy data distribution and the small-loss criterion.

Then we theoretically explain why the widely-used small-loss criterion works and reformalize the vanilla small-loss criterion.

Our theoretical analysis gives the following insights:

• the empirically diagonally-dominant condition is theoretically justified.

• the loss value for examples with different labels are not comparable so the small-loss level should be determined class by class.

• the warm-up stage is necessary for the small-loss criterion.