Background

Deep neural networks need large amounts of labeled data to
achieve good performance. In real-world applications, labels
are usually collected from non-experts to save cost and thus
are noisy. In the past few years, many deep learning methods
based on the small-loss criterion for dealing with noisy labels
have been developed. However, there are few theoretical
analyses to explain why these methods could learn well from
noisy labels.

Our Contribution

* We theoretically explain why the widely-used small-loss
criterion works.

Based on the explanation, we reformalize the vanilla
small-loss criterion to better tackle noisy labels.

* The experimental results verity our theoretical explanation
and also demonstrate the effectiveness of the reformalization.

Preliminaries
Neural network:
g(z:0): X = R° p1(x), ..., pe(x)]" € R

exp (w,' p(x; 0))
>oi_exp (w] o(x: 0))

with output

where  p;(z) =
L.oss function:

(-1 loss bor(f(x),9) = If(x) # 9]

* Cross-entropy loss (cg(g(x;©),9) = —log(py(x))

Noise transition matrix:
| Ty = py = jly = 1)
Learning process:

O = arg énin Lz lop(g(x; ©), 7)) (1)

Our Work

Phenomenon:

The examples with correct labels will have smaller loss than
the examples with incorrect labels.

Practical strategy:

For a warmed-up neural network g:
1. selects the examples with small loss values;
2. update the model parameter with these selected
examples.
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Lemma 1. IfT" satisfies the row-diagonally dominant condi-
tion 1;; > max;-; 1, Vi, then the target concept [* has the
minimum expected 0-1 loss on the noisy data, i.e., ¥V f # f*,

2 (.) Lo1 (7 (@), §)] < B ) [lo1 (f (), 7).

With row-diagonally dominant condition, the target

concept f* has the minimum expected 0-1 loss on noisy
data.

Lemma 2. Let g* denote the deep neural network minimizing
the cross-entropy loss in Eq. (1), the induced classifier f,-
satisfies fqo~(x) = y, Vo € X, if and only if 'T' satisfies the
row-diagonally dominant condition 1;; > max;+; 1;;, Vi.

With row-diagonally dominant condition, good neural

network can be learned by minimizing the expected cross-
entropy loss on noisy data.

Theorem 1. Let g* denote the deep neural network min-
imizing the cross-entropy loss in Eqg. (1), (x,y) and
(x2.y) are any two examples with the same observed la-
bel § in D satisfying that f*(x1) = § and f*(x2) #
y, if 1" satisfies the diagonally-dominant condition 1;; >
max {max,-; 1j;, max;; T}, Vi, then lop(g*(x1),7) <

tep(g™(x2),y).

With diagonally-dominant condition, for the g* minimizing
the expected cross-entropy loss on noisy data, the examples

with correct labels will have smaller loss than that with
incorrect labels.

Theorem 2. Suppose g is e-close to g*, i.e., ||g — §"||co = €,

L

for two examples (x1,y) and (x2,y), assume f*(x1) = vy
and f*(xo) # vy, if T satisfies the diagonally-dominant con-

dition T3 > max{max;x; 1;;, max;z; T}, Vi, and € <

5 (Tyg — Tp(ma)g)s then Lep(g9(x1),9) < lep(g(x2), 7).

With diagonally-dominant condition, for a neural
network g which is not tar away from g~, the examples

with correct labels will have smaller loss than that with
incorrect labels.

This explains why small-loss criterion works.

Algorithm 1 RSL: Reformalization of Small-Loss criterion

Input: Noisy dataset D, the initial model g(a; ©(?)), epoch
limit £
- fort=1..... FE do
Update ©(*—1) on D with one epoch to get ©);
Calculate each example’s loss:
V(, g) € D, t(z, g) = lep(g(@: e(t))* g)*
end for
Calculate each example’s mean loss:
- VY(x,§) €D, Uz, j) = L3 b(=,5);
fore=1.....cdo_
9: | D; =A{(=x,y) € D|§' — ‘i}_;
10: | Rank examples in D; by /(x, 7):
11: | Calculate num(7) according to Eq. (2);
12: | Select num(7) examples with smallest /(x, ) as S;;
13: end for
14: Dy = US_, S;:
15: Train g(x; ©) with Dy:
Output: The final classifier g(x; ©)

Mean loss

AN LB T

Select class by class

Selection number num(i):

Denote the noise rate by 1; and the number of examples for
the i-th class by n;:

* first introduce parameter f > 0 to make prop(i) a little
less than 1 — n;:

prop(i) = max{1 — (1 + F)n;, (1 — L)1 —n;)}

Issue: [prop(1) - nq, - prop(c) - n.| may seriously deviate from
the true class distribution [p4, -, p.].

* set the selected data as [p; - m, ..., p. - m] to obey [p4, -, p.]:

m = 1m,in {prop(i) - n;/p;} by constraints p; - m < prop(i) - n;
<I<C

Issue: too many useful data may be wasted.

 thus additionally introduce parameter y > 1:

num(i) = min{y - p; X m, prop(i) X n;}
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The stability of mean loss vs. single epoch’s loss:
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The necessity of class-wise sample selection:
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More experimental results can be found in the paper.

Conclusion

* \We establish the connection between noisy data distribution and the
small-loss criterion.

Then we theoretically explain why the widely-used small-loss
criterion works and reformalize the vanilla small-loss criterion.

Our theoretical analysis gives the following insights:

* the empirically diagonally-dominant condition is
theoretically justified.

* the loss value for examples with different labels are not
comparable so the small-loss level should be determined
class by class.

* the warm-up stage is necessary for the small-loss
criterion.




