Filipe Balestra Rodrigo Rubira Branco

filipe @balestra.com.br rodrigo @kernelhacking.com
rodrigo @risesecurity.org

http://www.risesecurity.org

mailto:filipe@balestra.com.br
mailto:rodrigo@kernelhacking.com
mailto:rodrigo@risesecurity.org

W e b

- What is Syscall Proxying?
- Why Syscall Proxy is better than the open-source Squid?
- Why not open the Syscall Proxy source-code? Security
Reasons!

- Understand the proxy architecture

INTERMNET

Rear view

Clients

http://www.risesecurity.org

Agenda (the real one!):

- Background knowledge

- What is Syscall Proxying?

- Why I need it or When 1t's interesting?
- Difficulties

- Some samples

- The Future

- Acknowledges

- References

http://www.risesecurity.org

rise

= E & B

- When a process need any resource 1t must perform a system call to ask
the operation system for the needed resource.

- Syscall interface are generally offered by the libc (the programmer doesn't
need to care about system calls)

- We will discuss syscall proxying under Linux environment, so, some
aspects:

* Homogeneous way for calling syscalls (by number)

* Arguments passed via register (or a pointer to the stack)

* Little number of system calls

http://www .risesecurity.org

rise

Process
User Mode . /
Kernel Mode
System Call
\ Handler

http://www .risesecurity.org

open

|
read

-
close

-

http://www .risesecurity.org

strace cat /etc/passwd

execve("/bin/cat", ["cat", "/etc/passwd"], [/* 17 vars */]) =0

open('"/etc/passwd", O_RDONLYIO_LARGEFILE) =3

read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 1669

close(3) =0

- As we can see using the strace program, even a simple command uses
many syscalls to accomplish the task

http://www .risesecurity.org

- EAX holds the system call number

- EBX, ECX, EDX, ESI and EDI are the arguments (some system
calls, like socket call can use the stack to pass arguments)

- Call int $0x80 (software interrupt)

- Value 1s returned in EAX

http://www .risesecurity.org

rise

F E & E & KOG = K O P

- The 1dea 1s to split the default syscall functionality in two steps:

* A client stub

Receives the requests for resources from the programs

Prepair the requests to be sent to the server (called marshalling)
Send requests to the server

Marshall back the answers

* A syscall proxy server

Handle request from the client

Convert the request in the native form (in our case, just linux)
Calls the asked system call

Sends back the response

http://www .risesecurity.org

rise

F E & E & KOG = K O P

- A way to use many tools without install anything in an owned machine
(1n an attack or in a penetration test)

- Just play with the memory

- Use your own tools (for your own native system) and don't care about
what 1s the operation system owned (the syscall proxy server for sure need to
be coded for many operation systems)

- Pivoting is because you can use the syscall proxy server to attack many
other servers in the local network of the syscall proxy

http://www .risesecurity.org

h_open _
sys_send
open
h_read >
sys_send
h_close read
L
sys_send
close
|

http://www .risesecurity.org

rise

F E & E & K O = = O UV P

- The syscall proxy server can be injected in a remote process and offer
an interface to the underlying operation system (including remotely 'local’
privilege escalation)

- You can use any tools you like to your own system, without change
then (if you use LD_PRELOAD)

- The local process you are running under the stub does not know it 1s
running remotely

- Easily infection of remote process and the kernel itself (using the
IDT patch you can easily execute arbitrary commands in the kernel — showed
by me 1n the latest Hackers to Hackers Conference)

http://www .risesecurity.org

rise

= E &8 R & HOO O m =KEOC U ¢

- RPC does the same idea that we have showed, but the problem is
in the server-side we have lots of complexity

- We need a small piece of code in the server-side, because it will be
injected in the vulnerable program

- To accomplish that, we have in the client-side the 'image’ of the stack-state
of the server-side

http://www .risesecurity.org

Pack Arguments

Send t«

Received a response from the server as reply

http://www .risesecurity.org

- In the beginning of a connection, the server returns its ESP

The request

local vars

saved ESP

http://www .risesecurity.org

rise

= E &8 R & HOO O m =KEOC U ¢

- Remote Shell using syscall proxying

- Remote Process Injection (using ptrace — be explained in another
h2hc 3 presentation)

- Remote Scanning (pivoting system)

- Remote Kernel Infection (not using IDT patch — explained in my
presentation at h2hc 2)

http://www .risesecurity.org

rise

= E &8 R & HOO O m =KEOC U ¢

- Finish the stub implementation of more system calls

- Have a better version of the syscall proxy server for *BSD systems
- Optimize the size of the syscall proxy server

- Optimize the speed of execution of the syscall proxy scheme (for
remotely sniffing sections)

http://www .risesecurity.org

rise

E E =S E & K O = = Cr LI P

- RISE Security

- H2HC Organization? I'm included!

- Casek from UberWall for some news and
ideas

- Tiago Assumpcao - First person to talk
with me about it (~2003)

- Ramon de Carvalho Valle from RISE -
Assembly Master

- Your patience!

- Without friends, we are nothing,
let's drink!

http://www .risesecurity.org

rise

= E & KO

- Syscall Proxying — Simulating Remote Execution by Maximiliano Caceres
http://www.coresecurity.com/blackhat2002.htm -> This presentation are embased in lot of
ideas and samples showed here

- Syscall Proxying fun and applications by Casek
http://events.ccc.de/congress/2005/fahrplan/events/553.en.html -> The sample injection
and scan codes are ideas shared by Casek in his presentation

- RISE Security - http://www.risesecurity.org

- Personal Website - http://www .kernelhacking.com/rodrigo

http://www .risesecurity.org

http://www.coresecurity.com/blackhat2002.htm
http://events.ccc.de/congress/2005/fahrplan/events/553.en.html
http://www.risesecurity.org/
http://www.kernelhacking.com/rodrigo

R E S E o R C | G RO U P

DOUBTS ?

Filipe Balestra Rodrigo Rubira Branco

filipe @balestra.com.br rodrigo @kernelhacking.com
rodrigo @risesecurity.org

http://www .risesecurity.org

mailto:filipe@balestra.com.br
mailto:rodrigo@kernelhacking.com
mailto:rodrigo@risesecurity.org

