

The Computer Forensics
Challenge and Anti-Forensics

Techniques

H2HC – Hackers 2 Hackers Conference

Domingo Montanaro
<conferences@montanaro.org>

Brasília, November 09, 2007

Agenda

Defeating forensics analysis

• Subverting clones/imaging processes

• Backdoors/Rootkits/Whatever

• Etc ;D

Data Remanence -> Magnetic Media

• From erased data (covering some filesystems)

• From overwritten data

• From destroyed media

Agenda

Defeating forensics analysis

• Subverting clones/imaging processes

• Backdoors/Rootkits/Whatever

• Etc ;D

Data Remanence -> Magnetic Media

• From erased data (covering some filesystems)

• From overwritten data

• From destroyed media

Being prepared to the incident

• Turn off or keep turned on the hw? It Depends

• RAM Clone ? Always

Using the SO or hw specialized with DMA support?

• Take the HD out or clone? Clone

• Physical Manipulation of evidences? For Sure –
Special equipment

• Hard Locks ? You kidding me, right?

Methodology

Method!

Straight Lines or curves?

Forensics analysis require deep information technology knowledge

Just a few examples that can simply modify the “guilty-non guilty” boolean variable:

• ADS

• MD5

• Simple image stego

• Slack Space

• Hiding data inside the "visible" filesystem

• Forging fake HDD defects

• Rootkits - Subverting the first step – Imaging

Methodology

C:\ads>echo "Conteudo Normal" > teste.txt

C:\ads>echo "Conteudo Escondido" > teste.txt:escondido.txt

C:\ads>dir /a
Pasta de C:\ads

22/11/2004 00:59 <DIR> .
22/11/2004 00:59 <DIR> ..
22/11/2004 00:59 20 teste.txt
 1 arquivo(s) 20 bytes
 2 pasta(s) 1.696.808.960 bytes disponíveis

C:\ads>type teste.txt
"Conteudo Normal"

C:\ads>notepad teste.txt:escondido.txt

ADS – Alternate Data Streams

Forensics analysis require deep information technology knowledge

Just a few examples that can simply modify the “guilty-non guilty” boolean variable:

• ADS

• MD5

• Simple image stego

• Slack Space

• Hiding data inside the "visible" filesystem

• Forging fake HDD defects

• Rootkits - Subverting the first step – Imaging

Methodology

Hash Collision

black@bishop:~/quebra_md5$ ls

1.asc 1.bin 2.asc 2.bin resultado.txt

black@bishop:~/quebra_md5$ cmp 1.bin 2.bin

1.bin 2.bin differ: char 20, line 1

black@bishop:~/quebra_md5$ md5sum 1.bin 2.bin

79054025255fb1a26e4bc422aef54eb4 1.bin

79054025255fb1a26e4bc422aef54eb4 2.bin

Hash Collision

Not indicated to use only MD5 nowadays

From: Gerardo Richarte - CORE SDI
MD5 to be considered harmful today

Same MD5 Same CRC

Hash Collision

Again, not good to use only MD5

http://www.doxpara.com/research/md5/confoo.pl

confoo $VERSION: Web Conflation Attack Using Colliding MD5 Vectors and Javascript
Author: Dan Kaminsky(dan\@doxpara.com)
Example: ./confoo www.lockheedmartin.com active.boeing.com/sitemap.cfm

http://www.doxpara.com/stripwire-1.1.tar.gz

Stripwire emits two binary packages. They both contain an arbitrary

payload, but the payload is encrypted with AES. Only one of the

packages ("Fire") is decryptable and thus dangerous; the other ("Ice")

shields its data behind AES. Both files share the same MD5 hash.

Attack Vectors!

Forensics analysis require deep information technology knowledge

Just a few examples that can simply modify the “guilty-non guilty” boolean variable:

• ADS

• MD5

• Simple image stego

• Slack Space

• Hiding data inside the "visible" filesystem

• Forging fake HDD defects

• Rootkits - Subverting the first step – Imaging

Methodology

 Certificação Digital

Simplistic Image Steganography

• Image files follow their layout standards, as of any
other kind of file

• Each standard has it's own data hiding capabilities
(GIF, BMP, TIFF, etc) – of course, not the original
purpose

Ex: GIF89a

• Con: Not many tools to analyze file's layout,
comparing it to a standard layout and a base of
layout possibilities (out-of-range values in some
fields)

And we are not even talking about the graphic part, which implies on techniques such as
Color Reduction, LSB (Least Significant Bit) – noise, etc.

Dumbest stego method ;)

Simply copy command

The 2 files continue, but notice the size of
“logo_h2hc.gif”

Opening the file on the standard Image Visualization
app, it comes up what was expected

Dragging and dropping the same GIF file on a
winamp's window, we have 37 seconds of sound.

Two simple files

Forensics analysis require deep information technology knowledge

Just a few examples that can simply modify the “guilty-non guilty” boolean variable:

• ADS

• MD5

• Simple image stego

• Slack Space

• Hiding data inside the "visible" filesystem

• Forging fake HDD defects

• Rootkits - Subverting the first step – Imaging

Methodology

• NTFS uses logical cluster of 4kb

• Files less than 4kb use 4kb (outside MFT)

• Tools can build a own MFT and address directly
on the disk its own blocks to use as a container
for the backdoor (and can mark it as bad block to
the filesystem, so it would not be overwritten)

• Combining this to crypto/steganographic technics
should make the forensics job much harder (and
most of times when it’s well done, efforts will be
lost)

Non-addressable space in the MFT than can be written by specfic tools (RAW)

Slack Space

Update: Tool: Slacker from the Metasploit project

Slack Space

Slack Space

->Hidden Data

Forensics analysis require deep information technology knowledge

Just a few examples that can simply modify the “guilty-non guilty” boolean variable:

• ADS

• MD5

• Simple image stego

• Slack Space

• Hiding data inside the "visible" filesystem

• Forging fake HDD defects

• Rootkits - Subverting the first step – Imaging

Methodology

Use of redundant/Zero/Align
spaces

Executables (ELF, Win32PE, etc) when compiled, depending on the compiler, most of the
times need to have some space for alignment between soubroutines.

Not a new idea in the IT field, since it's used by virii coders (injecting malware instructions
into space used for alignment)

4AD051A5: C3 RETN ; end of subroutine
4AD051A6: 90 NOP ;
4AD051A7: 90 NOP ;
4AD051A8: 90 NOP ;
4AD051A9: 90 NOP ;
4AD051AA: 55 PUSH EBP ; begin of next subroutine

}Alignment that can be used to store data
Can be 0x90, 0xCC or signature-based like GCC

On a 2GB “system” filesystem, it's possible to store nearly 1 MB on a “Second Filesystem”
inside the “system” filesystem, only using alignment spaces (including DLLs) – Need to
remember that relative (short) JMPs are needed to return in the program normal flow.

Going even deeper

So, every filetype has it's possibilities of storing “evil” data, not regarding
compression formats.

Harmful to think on all this knowledge about hiding information (stego) in files to
come in a toolkit.

Scenario:

LibStego – Supports data hiding on several file formats, applying the
parsing tons of these formats from wotsit.org

libStego

Supports 3 modes of operation

1) Growing up files – Ex: comments on graphic files (as showed before)

2) Use redundant space on Multimedia formats (GIF, JPEG, AVI, MOV, etc), OLE
formats (doc, xls, ppt, etc – not talking about compression here too) and others
(DWG, CDR, etc)

3) Use of alignment space on executable files (PE, ELF, etc)

The libStego Project - Examples

Field “Comment Extension” in GIF89a from CompuServe Graphics Interchange Format

24. Comment Extension.

 a. Description. The Comment Extension contains textual information which is not part of the actual graphics in
the GIF Data Stream. It is suitable for including comments about the graphics, credits, descriptions or any other type
of non-control and non-graphic data. The Comment Extension may be ignored by the decoder, or it may be saved
for later processing; under no circumstances should a Comment Extension disrupt or interfere with the processing
of the Data Stream. This block is OPTIONAL; any number of them may appear in the Data Stream.

 b. Required Version. 89a.

 c. Syntax.
 7 6 5 4 3 2 1 0 Field Name Type
 +---------------+
 0 | | Extension Introducer Byte
 +---------------+
 1 | | Comment Label Byte
 +---------------+

 +===============+
 | |
 N | | Comment Data Data Sub-blocks
 | |
 +===============+

 +---------------+
 0 | | Block Terminator Byte
 +---------------+

The libStego Project - Examples

Comments Chunk in Wave File Format

Comments Chunk Format

#define CommentID 'COMT' /* chunkID for Comments Chunk */

typedef struct {
 ID chunkID;
 long chunkSize;

 unsigned short numComments;
 char comments[];
}CommentsChunk;

The ID is always COMT. chunkSize is the number of bytes in the chunk, not
counting the 8 bytes used by ID and Size fields.

The numComments field contains the number of Comment structures in the chunk.
This is followed by the Comment structures, one after the other. Comment
structures are always even numbers of bytes in length, so there is no padding
needed between structures.

The Comments Chunk is optional. No more than 1 Comments Chunk may appear in
one FORM AIFF.

The libStego Project - Examples

Field “JFIF extensions” in JPEG File Interchange Format Version 1.02

Immediately following the JFIF APP0 marker segment may be a JFIF extension APP0
marker. This JFIF extension APP0 marker segment may only be present for JFIF versions
1.02 and above. The syntax of the JFIF extension APP0 marker segment is:

 X'FF', APP0, length, identifier, extension_code, extension_data
 length (2 bytes) Total APP0 field byte count, including the byte
 count value (2 bytes), but excluding the APP0
 marker itself
 identifier (5 bytes) = X'4A', X'46', X'58', X'58', X'00'
 This zero terminated string ("JFXX") uniquely
 identifies this APP0 marker. This string shall
 have zero parity (bit 7=0).
 extension_code (1 byte) = Code which identifies the extension. In this
 version, the following extensions are defined:
 = X'10' Thumbnail coded using JPEG
 = X'11' Thumbnail stored using 1 byte/pixel
 = X'13' Thumbnail stored using 3 bytes/pixel
 extension_data (variable) = The specification of the remainder of the JFIF
 extension APP0 marker segment varies with the
 extension. See below for a specification of
 extension_data for each extension.

APP0 marker used to specify JFIF extensions

Additional APP0 marker segment(s) can optionally be used to specify JFIF extensions. If used, these segment(s)
must immediately follow the JFIF APP0 marker. Decoders should skip any unsupported JFIF extension
segments and continue decoding.

The libStego Project - Examples

Comments on PDF files

From the “Portable Document Format Reference Manual” Version 1.3:

5.14 Body
 The body of a PDF file consists of a sequence of indirect
objects representing a document. The objects, which are of the basic
types described in Chapter 4, represent components of the document
such as fonts, pages, and sampled images.
 Comments can appear anywhere in the body section of a PDF file.
Comments have the same syntax as those in the PostScript language;
they begin with a % character and may start at any point on a line.
All text between the % character and the end of the line is treated
as a comment. Occurrences of the % character within strings or
streams are not treated as comments.

Forensics analysis require deep information technology knowledge

Just a few examples that can simply modify the “guilty-non guilty” boolean variable:

• ADS

• MD5

• Simple image stego

• Slack Space

• Hiding data inside the "visible" filesystem

• Forging fake HDD defects

• Rootkits - Subverting the first step – Imaging

Methodology

 Certificação Digital

False positive about Defects

1 Cluster normally consists in 1 header, 512 bytes and ECC byte

When Recovery Software tries to get a cluster from the HD, if it comes with a ECC
bad checksum, it will assume that this specific cluster is a “bad cluster”

Int13 Bios Access

Command Code Category
Reset 00h control
Get last status 01h information
read sectors 02h read
Write sectors 03h Write
Verify sectors 04h information (or read or control)
Format Cylinder 05h Configuration
Read Drive Parameters 08h Information
Initialize Drive Parameters 09h Configuration
Read Long Sector 0Ah Read
Write Long Sector 0Bh Write
Seek Drive 0Ch Control
Alternate disk reset 0Dh Control
Test drive ready 10h Information
Recalibrate drive 11h Configuration
Controller diagnostic 14h Configuration
Read drive type 15h Information
Check extensions present 41h Information
Extended read 42h Read
Extended write 43h Write
Verify sectors 44h Information
Extended seek 47h Control
Get drive parameters 48h Information

Int13 Bios Access

Opportunities

One not-that-hard-to-code backdoor can simply forge this ECC bad checksum
(error types “UNC” – Uncorrectable data - or AMNF – Address Mark Not Found)
statically or dynamic to keep it’s code on the media hard-to-find.

So, to achieve reading of these sectors, some ATA commands that ignore ECC
need to be issued to recover byte-a-byte rather then sector-per-sector as most
OS and BIOS do.

Forensics analysis require deep information technology knowledge

Just a few examples that can simply modify the “guilty-non guilty” boolean variable:

• ADS

• MD5

• Simple image stego

• Slack Space

• Hiding data inside the "visible" filesystem

• Forging fake HDD defects

• Rootkits - Subverting the first step – Imaging

Methodology

In ring0 fights, it's all a mess. -> Let's protect the ring0!

First thing the we should do to analyze a compromised machine is to clone
the RAM contents. Why? Because all binaries in the system can be cheated
statically (binary itself modified) or dynamically (hooked in int80h).

So, what do we find in the RAM analysis? *Should be* Everything

Structures commonly searched in memory

EPROCESS and ETHREAD blocks (with references to the memory pages used by the

process/threads)

Lists like PsActiveProcessList and waiting threads to be scheduled (used for cross-

view detection)

Interfaces(Ex: Ethernet IP, MAC addr, GW, DNS servers)

Sockets and other objects used by running processes (with detailed information

regarding endpoints, proto, etc)

There are many techniques in the wild to subvert forensics analisys

After kernel compromise, life is
never the same

Grabbing RAM contents

RAM clone

Windows

E:\bin\UnicodeRelease>.\dd.exe if=\\.\PhysicalMemory
of=E:\Ram_Clone.bin bs=512 conv=noerror

Linux
king:/mnt/sda1# ./dcfldd if=/dev/mem of=Ram_Clone.bin bs=512
conv=noerror

Trustable Method?

Windows Malware

Piece of cake: Malware running in user-space

(99% of trojan horses that attack brazilian users in Scam)

Windows Malware

Inject kernel modules to hide themselves

Examples:
• Hacker Defender
• Suckit
• Adore
• Shadow Walker

These rootkits use well known techniques (Ex: IAT hooking) to monitor/subvert user-
space/kernel-space conversations.

dd.exe

Kernel

User-Space

Kernel-Space

ReadFile()

Which File?

•\\.\PhysicalMemory

•\\.\PhysicalDrive0

Etc.

RAM Forensics – Linux Scenario

On Linux, to proceed with RAM analysis, tools like Fatkit are used (Static memory
dump file analysis)

But at clone time, the destination image can be subverted if the machine is
compromised with a custom rootkit

dcfldd

Kernel

User-Space

Kernel-Space

int0x80 execve - /bin/dcfldd
open - /etc/ld.so.cache
read - /bin/dcfldd (ELF)
mmap2,fstat and others

Is it requesting the addrs
of the user space

backdoor task_struct?
Yes? So send httpd

task_struct

RAM Forensics

ssize_t h_read(int fd, void *buf, size_t count){

unsigned int i;

ssize_t ret;

char *tmp;

pid_t pid;

If the fd (file descriptor) contains something

that we are looking for (kmem or mem)

return_address();

At this point we could check the offset being

required. If is our backdoor addr, send

another task_struct

ret=o_read(fd,buf,count);

change_address();

return ret;

}

int change_address()
{
put our hacks into
the kernel
}

int return_address()
{
return our hacks to the
original state
}

Windows Malware

Let's say our scanner/detector/memory dumper/whatever resides in Kernel-Space
and althout using ReadFile() uses ZwReadFile or ZwOpenKey or Zw***.

Reliable?

• SST – System Service Table Hooking

C:\>SDTrestore.exe
SDTrestore Version 0.2 Proof-of-Concept by SIG^2 G-TEC (www.security.org.sg)

KeServiceDescriptorTable 80559B80
KeServiceDecriptorTable.ServiceTable 804E2D20
KeServiceDescriptorTable.ServiceLimit 284

ZwClose 19 --[hooked by unknown at FA881498]--
ZwCreateFile 25 --[hooked by unknown at FA881E16]--
ZwCreateKey 29 --[hooked by unknown at FA882266]--
ZwCreateThread 35 --[hooked by unknown at FA880F8E]--
ZwEnumerateKey 47 --[hooked by unknown at FA882360]--
ZwEnumerateValueKey 49 --[hooked by unknown at FA881EDE]--
ZwOpenFile 74 --[hooked by unknown at FA881D6C]--
ZwOpenKey 77 --[hooked by unknown at FA8822E2]--
ZwQueryDirectoryFile 91 --[hooked by unknown at FA881924]--
ZwQuerySystemInformation AD --[hooked by unknown at FA881A4A]--
ZwReadFile B7 --[hooked by unknown at FA8810EE]--
ZwRequestWaitReplyPort C8 --[hooked by unknown at FA881310]--
ZwSecureConnectPort D2 --[hooked by unknown at FA8813EA]--
ZwWriteFile 112 --[hooked by unknown at FA881146]--

Number of Service Table entries hooked = 14

Windows Malware

Ok, let's say we want to go deeper and grab

a file directly from the HD: Then we use

IoCallDriver() to talk directly with the

HDD.

Reliable?

• IRP (I/O Request Packet) Hooking

Fonte: Rootkits – Advanced Malware

Darren Bilby

I/O Manager

Application

File System Driver
(ntfs.sys, …)

Disk Driver (disk.sys)

Volume manager disk driver
(ftdisk.sys, dmio.sys)

Disk Array

Readfile()
(Win32 API)

NtReadfile()
(Kernel 32.dll)

Kernel Mode

User Mode

Int 2E
(Ntdll.dll)

Call NtReadFile()
(Ntoskrnl.exe)

KiSystemService
(Ntoskrnl.exe)

Initiate I/O Operation
(driver.sys)

1 32

Disk port driver (atapi.sys, scsiport.sys)

Disk miniport driver

Keep it simple!

How about if our memory grabber just sets up a pointer to offset 0x00 of RAM
memory and copies to another var till it reaches the end of memory? (Regardless

of race conditions to kernel memory)

Reliable?

WatchPoints in memory pages (DR0 to DR3)

When our backdoor offset is hit
by the “inspector” it will generate
a #DB (Debug Exception) which we
can work on it

Securely? Grabbing the RAM contents

Some hardwares attempt to get the RAM contents

These type of solutions rely on the DMA method of accessing the RAM and
then acting on it (CoPolit) or dumping it (Tribble)

• Tribble – Takes a snapshot (dump) of the RAM

http://www.digital-evidence.org

• CoPilot – Audits the system integrity by looking at the RAM Contents

www.komoku.com/pubs/USENIX-copilot.pdf

• Other Firewire (IEEE 1394) Methods – Michael Becher, Maximillian
Dornseif, Christian N. Klein @ Core05 CanSecWest

Reliable method?

Joanna Rutkowska showed on BlackHat DC 2007 a technic using MMIO that
could lead the attacker to block and trick a DMA access from a PCI card.

The Kernel War

• If the attacker compromised the machine and have
access to the kernel, a lot of problems will appear:

– We can signature detect the forensics tool:

• Multiple (continuous) memory reads

• Multiple (continuous) disk reads

– Even deeper:

• Binary program signature (like antiviruses use to
detect a virus)

• Program behaviour (what the program does? how
they does that?)

Detecting forensics tool

• We can hook system loading interfaces to easily
spot a new program been runned, and them
analyse the program and compare to a signature
base:

– ld.so, init_module, lsm, load_binary, do_execve, do_fork,
....

• But, how about other tools?

Fighting against Forensics tools – The
old school

• A lot of different talks about different ways to hide
information from a Forensics tool – our approach is not
to try to hide it, but discover a forensic tool running in
the system (if someone is analysing the system, is
because they already know something is wrong)

What is needed in an anti-
forensic rootkit?

• It must detect a forensic analysis and react to it
(maybe removing all the evidences, including itself)

• In some way it must be 'pattern free', so it cannot be
detected by common ways (to detect it will be needed
a lot of knowledge from the analyst, and it is almost
impossible to detect if you don't know the rootkit itself)

• Maybe the Virtualized Rootkit is dead, but what about
use another hardware resource in rootkits?

How? SMM!

SMM – System Management Mode

The Intel System Management Mode (SMM) is typically
used to execute specific routines for power
management. After entering SMM, various parts of a
system can be shut down or disabled to minimize power
consumption. SMM operates independently of other
system software, and can be used for other purposes
too.

From the Intel386tm Product Overview – intel.com

SMM and Anti-Forensics?

SMM and Anti-Forensics?

• Duflot paper released a way to turn off BSD protections using
SMM

• A better approach can be done using SMM, just changing the
privilege level of a common task to RING 0 (Ex: CPL0)

• The segment-descriptor cache registers are stored in reserved
fields of the saved state map and can be manipulated inside the
SMM handler

• We can just change the saved EIP to point to our task and also
the privilege level, forcing the system to return to our task, with
full memory access

• Since the SMRAM is protected by the hardware itself, it is really
difficult to detect this kind of rootkit

Agenda

Defeating forensics analysis

• Subverting clones/imaging processes

• Backdoors/Rootkits/Whatever

• Etc ;D

Data Remanence -> Magnetic Media

• From erased data (covering some filesystems)

• From overwritten data

• From destroyed media

Aligning knowledge – the very
beginning

Simple file deletion on FAT filesystem

First Step

Fat entry deleted

This indicates that the area
blocks occupied by that file are

now free

Second Step

The file’s registry on the
directory’s entry is modified

First char is changed (Ex: E5 Hex [Fat32])

Third Step? No! :(

Data is still there

Data blocks are still avaliable for
recovering until other aplication write in

the same clusters

How the recovery process works

Index damaged and Directory entry ok -> Easy recover by parsing directory
information and some items from the Index (example: format on Windows
machines) – Remembering that NTFS stores a copy of it’s MFT within the unit

No Index and no Directory -> Should be easy by header/footer search and
grabbing the middle contents, but some fragmentation issues could lead to get
“currupted” files, which consist in “garbage” in the middle of a true “specific
format” file.

Tool to perform recovery on header/footer (and also expected size) search:
foremost

Oops: It’s almost impossible to see tools in the wild that perform structured file
analysis, which are totally necessary to recover files by it’s internals
characteristics (file format).
For file formats, www.wotsit.org

Fact: Only 1 kb of garbage in a contiguous file of 10MB can lead
to non recovery of this file if no file format comparison is made

 Certificação Digital

Magnetic Level

• Data overlapping:

- Changing OS and FileSystem

- Wipe tools

Causes:

 Certificação Digital

Magnetic Level

• STM (Scanning Tunneling Microscopy)

• SPM (Scanning Probe Microscopy)

• MFM (Magnetic Force Microscopy) ->

• AFM (Atomic Force Microscopy)

Why? HYSTERESIS

Study: The Hysteresis Loop and

Magnetic Properties

Method:

From: LFF – IF - USP

 Certificação Digital

Magnetic Level

The loop is generated by measuring the magnetic flux of a
ferromagnetic material while the magnetizing force is changed. A
ferromagnetic material that has never been previously magnetized
or has been thoroughly demagnetized will follow the dashed line as
H is increased. As the line demonstrates, the greater the amount of
current applied (H+), the stronger the magnetic field in the
component (B+). At point "a" almost all of the magnetic domains
are aligned and an additional increase in the magnetizing force will
produce very little increase in magnetic flux. The material has
reached the point of magnetic saturation. When H is reduced to
zero, the curve will move from point "a" to point "b." At this point,
it can be seen that some magnetic flux remains in the material
even though the magnetizing force is zero. This is referred to as the
point of retentivity on the graph and indicates the remanence or
level of residual magnetism in the material. (Some of the magnetic
domains remain aligned but some have lost their alignment.) As
the magnetizing force is reversed, the curve moves to point "c",
where the flux has been reduced to zero. This is called the point of
coercivity on the curve. (The reversed magnetizing force has flipped
enough of the domains so that the net flux within the material is
zero.) The force required to remove the residual magnetism from
the material is called the coercive force or coercivity of the
material.
As the magnetizing force is increased in the negative direction, the
material will again become magnetically saturated but in the
opposite direction (point "d"). Reducing H to zero brings the curve
to point "e." It will have a level of residual magnetism equal to that
achieved in the other direction. Increasing H back in the positive
direction will return B to zero. Notice that the curve did not return
to the origin of the graph because some force is required to remove
the residual magnetism. The curve will take a different path from
point "f" back to the saturation point where it with complete the
loop.

From Iowa’s State University Center for
Nondestrutive Evaluation NDT (Non Destrutive
Testing)

 Certificação Digital

Magnetic Level

In other words:

Hd’s Heads are only
prepared to read and write 0
or 1.

When one bit is 0 and it
changes to 1, the head will
“read/feel” 1 at the read
time, but what is stored in
the media is (for example)
analogic 0,78 value

bit 1 original Changed to 0

HD’s heads
will read 0

Electronic Microscopes (such as confocal
blue laser scanning) will notice other
“states” – rudimentary 0,12 for example

Magnetic Level

Residuals of overwritten
information on the side of
magnetic disk tracks.
Reproduced with permission
of VEECO

Pictures taken from methods in the previous slides

• Possible because Information is digital, but it’s supporting technology is analogic

Magnetic Level

• And How about 1-Step wipe? Good enough. Why?

Simple to understand. Hard drives are coming with tons of storage space and
it's “physical size” is always the same (most of the times same number of
platters/heads then the previous model). The platters and heads are almost
the same scheme and the storage size is increasing each time more. So,
various techniques to increase speed/storage capabilities imply on reducing
data recovering from electronic microscopy, such as Zoned Bit Recording

As far as the track is from the center, it
supports more sectors, increasing the
space for storage but drastically reducing
magnetic data recovery

Graphic from PcGuide.com

 Certificação Digital

Damaged Hard Drives

• Accidents

- Accidental Falls

- Destroying on purpose

Causes:

 Certificação Digital

Damaged Hard Drives

• Platters removal

• Special liquid for clearing the platters

• Low level reading of platters by generics
heads that have pre-configured vectors of
reading

Method:

●Questions?

●Valeu!

Domingo Montanaro
<h2hc@montanaro.org>

Muito obrigado :D

