
The ERESI Team
team@eresi-project.org

 The Embedded ERESI debugger: e2dbg
 The Embedded ERESI tracer: etrace
 The ERESI reverse engineering language
 Unification & reconstruction of debug formats
 Program analysis built-ins (focusing on

control flow graphs)

 Started in 2001 with the ELF shell
 Developed at LSE (EPITA security laboratory)
 Contains more than 10 components
 Featured in 2 articles in Phrack Magazine:
◦ The Cerberus ELF Interface (2003)
◦ Embedded ELF Debugging (2005)

 GDB: Use OS-level debugging API (ptrace)
◦ Does not work if ptrace is disabled or absent

 Very sensible to variation of the environment
(ex: ET_DYN linking of hardened gentoo)

 Strace/Ltrace: use ptrace as well. Very few
interaction (command-line parameters)

 None of these frameworks rely on a real
reverse engineering language

 Started with a single person in 2001 (The ELF
shell crew). Remained as it during 3 years.

 Another person joined and developed libasm
(disassembling library) since 2002

 A third person developed libdump (the
network accessibility library) in 2004-2005

 Since mid-2006: community project (have
included up to 10 people)

 elfsh (and libelfsh): the ELF shell
 e2dbg (and libe2dbg): the embedded ELF

debugger
 etrace (and libetrace): the embedded tracer
 kernsh (and libkernsh): code injection and

redirection inside the Linux kernel (IA-32
only)

 evarista: a program analyzer written in ERESI

 librevm: the language interpreter
 libmjollnir: fingerprinting & graphs library
 libaspect: aspect oriented library (provides

many useful data-types)
 libasm: disassembling library with semantic

annotations
 libedfmt: the ERESI debug format library
 libui: the user interface (readline-based)

 Can debug hardened systems (does not need
ptrace)
◦ PaX/grsec compatible

 Very effective analysis
◦ Improve the performance of fuzzing, heavy-weight

debugging
◦ No context switching between the debugger and

the debuggee - the dbgvm resides in the debuggee

 A reflective framework
◦ Possibility to change part of it in runtime without

recompilation
 The first real reverse engineering language!!!
◦ Hash tables
◦ Regular expressions
◦ Loops, conditionals, variables
◦ The complete ELF format objects accessible from

the language

load /usr/bin/ssh

set $entnbr 1.sht[.dynsym].size
div $entnbr 1.sht[.dynsym].entsize
print Third loop until $entnbr :
foreach $idx of 0 until $entnbr
 print Symbol $idx is 1.dynsym[$idx].name
forend

unload /usr/bin/ssh

add $hash[hname] Intel
add $hash[hname] Alpha
add $hash[hname] Sparc32
add $hash[hname] Mips
add $hash[hname] Sparc64
add $hash[hname] AMD
add $hash[hname] Pa-risc
foreach $elem of hname matching Sparc

print Regex Matched $elem
 endfor

 Basic blocks (key: address)
 Functions (key: address)
 Regular expression applied on the key
 Many dozen of hash tables (commands,

objects...)
◦ See ‘tables’ command of ERESI

 Currently not supported: hash table of
instructions, of data nodes (too many
elements) => need of demand-driven
analysis

 Does not use ptrace. Does not have to use
any OS level debug API. Evades PaX and
grsecurity

 Proof of concept developed on Linux/x86
 Scriptable using the ERESI language
 Support debugging of multithreads
 No need of ANY kernel level code (can

execute in hostile environment)

 Classical features:
◦ breakpoints (using processor opcode or function

redirection)
◦ stepping (using sigaction() syscall)

 Allocation proxying
◦ keep stack and heap unintrusiveness
◦ NOT a memory protection technique

 Support for multithreading

 We manage two different heap allocator in a
single process:
int hook_malloc(int sz)
{

if (debugger)
return (aproxy_malloc(sz));

return (orig_malloc(sz))
}

 Describe each element of a program
◦ Give names and position of:
 Variables
 Functions
 Files
 …
◦ Store type information

 Distinction of debugging format
◦ stabs, dwarf, stabs+, dwarf2, gdb, vms...
◦ Different ways to parse, read, store…

 For example with stabs and dwarf2
◦ Stabs does not contain any position reference
 You store the whole parsing tree
◦ Dwarf2 use read pattern apply directly on data
 You cannot store everything (too big)
◦ …

 Parsing
◦ So we can read the debugging format

 Transforming
◦ We transform it to a uniform representation
◦ Keep only useful information

 Cleaning
◦ We keep only the unified debugging format

 New debugging format
◦ We change only backend part

 Register types on ERESI type engine

 Tracer using ERESI framework
 Tracing internal and external calls
 Dynamic and supports multiple architecture
◦ It does not use statically stored function prototypes
◦ Use gcc to reduce architecture dependence

 Work with and without debugging format
 Recognize string, pointers and value

#!/usr/local/bin/elfsh32
load ./sshd
traces add packet_get_string
traces create privilege_sep
traces add execv privilege_sep
traces create password
traces add auth_password password
traces add sys_auth_passwd password
save sshd2

+ execv(*0x80a5048 “(…)/openssh-4.5p1/sshd2",
*0x80aa0a0)
+ packet_get_string(*u_int length_ptr: *0xbf8f4738)
- packet_get_string = *0x80ab9f0 "mxatone"

debug1: Attempting authentication for mxatone. (…)
+ packet_get_string(*u_int length_ptr: *0xbf8f42fc)
- packet_get_string = *0x80a9970 "test1"
+ auth_password(*Authctxt authctxt: *0x80aaca0, void*

password: *0x80b23a8 "test1")
+ sys_auth_passwd(*Authctxt authctxt: *0x80aaca0,

void* password: *0x80b23a8 "test1")
- sys_auth_passwd = 0x0

- auth_password = 0x0

 Trace backend
◦ Analyze target functions to determine number of

parameters
◦ Create proxy functions

 Embedded tracer
◦ Inject proxy functions in the binary
◦ Redirect calls into our proxy functions
◦ Create a new binary

 Automated using the ELF tracer

 With debugging
information
◦ Extract arguments

information
 size
 names
 type names
 …

 With architecture
dependent argument
counting
◦ Backward analysis
◦ Forward analysis

 ET_REL injection
principle
◦ Add a binary module

directly on target binary
 Merge symbols and

sections list
 Section injection
◦ Code sections
◦ Data sections

 Internal function
◦ CFLOW technique

 External function
◦ ALTPLT technique

 Graph analyzers
◦ Identify blocks and functions
◦ Identify links (calls and jumps)
◦ Build a graph with this info

 Control Flow Graphs (CFGs)
◦ Inter-blocks CFGs vs. Interprocedural CFGs
◦ Main instrument to Control Flow analysis

 Control Flow Analysis
◦ Essential to some kinds of further analysis and to

optimization
◦ Gives information about properties such as
 Reachability
 Dominance
 ...

 Libasm
◦ Lowest layer of this application
◦ Multi-architecture disassembling library
 Intel IA-32
 SPARC V9
 In the near future, MIPS
◦ Unified list of semantic attributes

Attribute Description
IMPBRANCH Branching instruction which always branch (jump)
CONDBRANCH Conditional branching instruction
CALLPROC Sub Procedure calling instruction
RETPROC Return instruction
ARITH Arithmetic (or logic) instruction
LOAD Instruction that reads from memory
STORE Instruction that writes in memory
ARCH Architecture dependent instruction
WRITEFLAG Flag-modifier instruction
READFLAG Flag-reader instruction
INT Interrupt/call-gate instruction
ASSIGN Assignment instruction
COMPARISON Instruction that performs comparison or test
CONTROL Instruction modifies control registers
NOP Instruction that does nothing
IO Instruction accesses I/O locations (e.g. ports)
TOUCHSP Instruction modifies stack pointer
BITTEST Instruction investigates values of bits in the operands
BITSET Instruction modifies values of bits in the operands
INCDEC Instruction does an increment or decrement
PROLOG Instruction is part of a function prolog
EPILOG Instruction is part of a function epilog
STOP Instruction stops the program

 The instruction semantic annotations
◦ Works with non-mutually exclusive ‘types’
◦ Provides means to ‘blindly’ analyze an instruction
◦ eg. Control Flow analysis!

 Libasm vectors
◦ Storage of pointers to opcode handling functions
◦ Runtime dumping and replacing of vectors
 Built-in language constructs
 Easy-made opcode tracer!

 Libmjollnir
◦ Upper-layer component
◦ Code fingerprinting and program analysis

 CFG construction
◦ Libmjollnir treats both: blocks and functions
◦ Separate representations (structures)

 Containers
◦ Generic structures to encapsulate blocks and

functions
◦ Have linking (input and output links) information
◦ Have a pointer to data and type information to

interpret this data accordingly

 Containers
◦ Allow for more abstract graph analysis (analyzing a

graph of containers)
◦ In the future, may also store data nodes (Data Flow

analysis)
◦ Also for the future, containers of containers
 Even higher abstraction of links and relationships

A Graph Analyzer - Example
#include <stdio.h>
void func1() {}
void func2() { func1(); }
int main(int argc,char **argv) {
 if (argc > 2) {
 func1();
 }
 else {
 func2();
 printf("hey there!\n");
 }
 return 0;
}

A Graph Analyzer - Example

A Graph Analyzer - Example

A Graph Analyzer - Example

 New foundations for reverse engineering and
debugging of closed-source software using
in-process analysis

 A language approach for reversing
 Many concrete applications (embedded tracer

and debugger)

 Binding of demand-driven dataflow analysis
in the ERESI language

 Program transformation builtins for custom
decompilation

 Kernel debugging and tracing
 More portability (OS/Architectures)
 More integration between the components

(tracer/debugger mostly)

 Thank you for your attention
 If you are interested in joining us, come to

talk after the conference.
 The source code of the current version

(0.8a19) is available at our web CVS:
◦ http://cvs.eresi-project.org/

 Also, don’t forget to visit our website:
◦ http://www.eresi-project.org/

http://cvs.eresi-project.org/
http://www.eresi-project.org/

The ERESI Team
team@eresi-project.org

