
Hypervisor Framework

Edgar Barbosa

H2HC 2008

São Paulo - Brasil

Who am I?

• Edgar Barbosa

• Security Researcher working at COSEINC, a
Singapore based IT company

• One of the developers of BluePill, a hardware
virtualization based rootkit.

• Experience with kernel programming and
reverse engineering.

Objectives

• Explain virtualization theory and
technologies.

• How Virtual Machine Monitors are
implemented in the Intel architecture.

• Explain how VMMs uses the Intel Virtual
Machine instructions.

• Teach how to use the Hypervisor Framework
API to create VMMs.

AGENDA

• Virtual Machine Monitor

• The “efficiency principle”

• Creating a VMM with Intel VMX

• The Framework

• Security aspects

VIRTUAL MACHINE MONITOR
Hypervisor Framework

Virtual Machines

• System Virtual Machines are virtual
environments which duplicates a real
machine.

• A Virtual Machine Monitor (VMM), also called
Hypervisor, allows multiple operating systems
to run concurrently on virtual machines.

Types of VMM

• There are 2 types of VMM implementation.

• Type I
– The VMM runs on a bare machine. It controls all the

system resources. It`s basically an operating system
with virtualization features.

– Example: VMware ESX

• Type II
– The VMM runs as an application. The Operating

System controls the hardware resources

– Example: VMware Workstation

VMware ESX – Type I VMM

VMware ESX

VMware Workstation – Type II VMM

VMM requirements

• According with Popek and Goldberg’s paper, a
VMM must satisfy 3 requirements:

1. EQUIVALENCE

2. RESOURCE CONTROL

3. EFFICIENCY

1 - EQUIVALENCE

• “Implies that any program executing on a
virtual machine must behave in a manner
identical to the way it would have behaved
when running directly on the native
hardware” [1]

• This principle is not fully respected in modern
VMMs. We will see more about this soon.

2 - RESOURCE CONTROL

• “Implies that it should not be possible for
guest software to directly change the
configuration of any system resources”[1]

• Fundamental to guarantee the isolation of
the guest virtual machines.

3 - EFFICIENCY

• “Implies that all instructions that are
innocuous must be executed natively on the
hardware, with no intervention or emulation
by the VMM”

Innocuous Instructions

• There are innocuous instructions and
sensitive instructions.

• Innocuous instructions are instructions which
doesn’t have access to system resources.
Example:

mov eax,ebx
shr eax,8
xchg ecx,edx

Sensitive Instructions

• Sensitive instructions are instructions which
have access to system resources.

• Example:
mov cr3,eax
wrmsr
outb
popf

• RULE: The VMM must always prevent the
direct execution of sensitive instructions!

Privileged instructions

• Some sensitive instructions are privileged,
which means that if not executed in the most
privileged level, it triggers a general
protection exception.

• Example:
The Write MSR instruction (wrmsr)

• If some code try to execute wrmsr with
CPL=3, then an exception is triggered.

Privileged instructions

• If all sensitive instructions of some ISA are
privileged, the processor is considered to be
‘virtualizable’[3]

• This would allow a guest Linux kernel for
example to run directly in the processor with
CPL=3. When the kernel tries to execute a
sensitive instruction, an exception will be
intercepted by the VMM and then it will
emulate the sensitive instruction.

The POPF instruction

• The POPF instruction is an example of a
sensitive instruction which is non-privileged.

• POPF can write in the EFLAGS registers, which
contains a lot of system flags.

• If executed with CPL=0, POPF is able to
change any system flag.

• If executed with CPL=3, the CPU simply
ignores the modification on the system flags,
instead of generating an exception.

POPF and the Interrupt Flag

• The IF flag inside EFLAGS controls the system
interrupts. If set, the system accepts
interrupts, else it ignores the interrupt signal.

EFLAGS IF

IF – Interrupt Flag

Kernel and POPF

• What happens if a guest VM kernel tries to
execute POPF to clear the IF flag running with
CPL=3?

• How the VMM can intercept this instruction if
POPF is non-privileged?

VMware Player case

• How VMware Player VMM is able to prevent
direct execution of sensitive instructions?

• VMware Player is a Type II VMM implemented
as a PE resource inside the binary vmware-
vmx.exe executable file.

• The resource file is a ELF executable which is
loaded directly inside the Windows kernel
memory by the vmx86.sys device driver.

VMware Player architecture

VMware code scanning

1. The VMware VMM scans the instruction
stream being executed in the VM and detects
the presence of sensitive and non-privileged
instructions. Example: the POPF instruction.

2. The VMM then substitutes the sensitive
instruction with a privileged instruction and
then emulates the action of the original
instruction.

CREATING A VMM USING INTEL®
VMX INSTRUCTIONS

Hypervisor Framework

Hardware assisted virtualization

• Any VMM must prevent the direct execution
of sensitive instructions. However, we know
there are sensitive and non-privileged
instructions.

• Intel and AMD created new instructions to
help the creation of VMMs. With these new
instruction sets, it is possible to change the
behaviour of all sensitive instructions to
execute as privileged instructions.

Virtualization technologies

• AMD created the Secure Virtual Machine
(SVM) instruction set.

• Intel created the VMX (Virtual Machine
eXtensions) instruction set.

• This presentation focus on the VMX, but the
concepts are very similar in the AMD
architecture.

Intel VMX

• The main feature of the Intel VMX is a new
system operating mode: the VMX mode.

• Two sub-modes:

– VMX root mode

– VMX non-root mode

• The VMX root mode is for the hypervisor.
There is no instruction behaviour modification
in this mode.

VMX

• When the hypervisor (VMM) transfers control to
the VM, it changes the mode to VMX non-root.

• In VMX non-root mode, the behaviour of some
instructions are changed. It is possible for
example to make the POPF instruction to trigger
an exception and wake up again the hypervisor.

• This transition from the VM to the VMM is called
VMEXIT.

VMX NON-ROOT
MODE

VMX ROOT MODE

VMM

INC EBX
MOV EBX, 23h

XCHG EAX, EDX
MOV EAX, EBX

RET

VMENTER

VM
(Linux Kernel)

POPF

VMM
Interception

Handler

#VMEXIT

VMENTER

Steps to create a VMM

• Fully documented in the Intel manuals.

• Detection of VMX instructions support
– Using CPUID instruction

• Check MSR lock flag.
– If locked by the BIOS, virtualization will not work!

• Enabling VMX

• Creation and initialization of the VMCS

• The interception handler

VMCS

• Virtual Machine Control Structure
• Data structure used by the CPU to store all information

about the Virtual Machine and the VMM.
• Divided in 5 areas:

– Guest-state area
– Host-state area
– VM-execution control fields
– VM-entry control fields
– Vm-exit information fields.

• One for each VM and for each CPU
• Must not be directly accessed

– Use the VMX instructions to access the VMCS.

Interception

• The virtual machine must handle all the
interception events (VMEXIT).

• Types of events

– CRx/DRx register access

– Interrupts

– I/O instructions

– TSC and MSR registers

– much more....

Interception event handler

• The instructions which the hypervisor wants
the CPU to intercept must be configured in
the VMCS.

• The VMCS also must be configured to contain
the address of the VMM routine that will
handle the interception event (VMEXIT info).

THE FRAMEWORK
Hypervisor Framework

The framework

• The Hypervisor Framework enables you to
easily create a Hosted Virtual Machine
Monitor (Type II VMM) using the Windows
Operating System.

• The framework exports a simple API which
creates an abstraction layer over the different
CPU virtualization instruction sets.

The framework

• Initially implemented as a Windows Device Driver
• OS-dependent functions are implemented in a

separate module. Porting to Linux/Mac must be very
easy.

• 2 versions:
– 32-bits and 64-bits

• First version uses only Intel VT
– AMD version coming soon

• Device Drivers can export functions like user-mode
DLLs.
– This is the way the driver uses to export the framework

functions.

The framework

• Initially only binary versions will be released.

• The source release is being evaluated.

• If released, you will find it at
http://code.google.com/p/hypervisor/

• Check the COSEINC blog (will open soon).

• Full documentation with examples will be
released soon.

http://code.google.com/p/hypervisor/

Architecture

Framework

Ring 0Operating System Kernel

Ring -1

User applications Ring 3

Framework
Client

Features

• Framework features

– Detection of Intel VMX instructions

– Detection of Intel virtualization status

– Initializes the VMXON area

– Creates and initialize a VMCS area for each Virtual
Machine and for each CPU.

– Intercept events and call the clients callback
functions.

API

• Function categories:

– Virtual Machine management functions

• Creation and deletion of Virtual Machines.

• Executing and resuming a virtual machine.

– Interception Events functions

• The framework call the registered client function
callbacks.

Virtual Machine management

• VMSTATUS
CreateVirtualMachine (

IN VMINFO *vminfo
);

• This function creates a new virtual machine in
the system.

• Fails if virtualization MSR is locked by the
BIOS.

VMINFO data structure

• The VMINFO structure contains:

– all the GUEST context information

– GDT, LDT, Page Tables, Control Registers, ...

– Interception handler function callback address.

– Contains Event Injection information

– VMEXIT information

GUEST_INFO

Registers

Segments

Descriptor Tables

Control

Debug

Model Specific

CONTROL_INFO

Interception

Event Injection

I/O

Interrupts

MSR

Virtual Machine

VMINFO data structure

VMEXIT info Extra info

Interception Event management

• VMSTATUS
VirtualMachineExec (

IN VMINFO *vminfo
);

• This function controls the execution of the virtual
machine. It can be called after the creation of the VM
and to resume the execution of the VM after an
intercept event.

• If the VMM must inject some event in the guest VM,
the information is provided in the VMINFO data
structure.

VM
Scheduler

VM message
handler

Timer interrupt

VM Event
Router

Virtual Machine

VM Event
Manager

Hypervisor

Framework – Client communication

Basic steps

• Allocate a VMINFO data structure.

• Initialize it with the guest context information

• Setup the instructions and operations that
you want the hypervisor to intercept

• Set your interception handler function
callback address

• Execute your VM.

x

Framework

Framework
Client

Framework

CreateVirtualMachine()

Intercept
event

handler

Intercept Event Message

VirtualMachineExec()

VirtualMachineExec()

Additional info

• You can make the host OS to become a guest
VM.

• The framework is still a work in progress.

• More functions will be added.

– Example: memory protection, Intel VT-d and EPT.

• Your feedback is fundamental.

• Lots of applications for the framework.

SECURITY
Hypervisor Framework

Security

• Modern BIOS which supports hardware
virtualization comes with virtualization
disabled by default.

• MSR protection.

• 64-bit versions of Windows Vista and XP
requires digitally signed device drivers.

Detection

• Popek and Goldberg principle of equivalence is
not fully respected in the Intel and AMD
virtualization instruction sets.

• See more information in the “Detecting
Virtualized Hardware Rootkits” presentation
at the COSEINC website.
http://www.coseinc.com/publication.html

http://www.coseinc.com/publication.html
http://www.coseinc.com/publication.html

We are hiring

• Interested in Hypervisor hacking?

• Interested to work with kernel and system
programming?

• WE ARE HIRING! 

• Contact us!

• http://www.coseinc.com/recruitment.html

http://www.coseinc.com/recruitment.html

Questions?

References

• [1] James E. Smith. Virtual Machines – Versatile Platforms for System and
Processes. Morgan Kaufmann.

• [2] Intel manuals. http://www.intel.com

• [3] J. S. Robin. Analyzing the Intel Pentium’s Capability to Support a
Secure Virtual Machine Monitor. Master’s thesis, Naval Postgraduate
School, Monterey, CA, September ,1999.

http://www.intel.com/

THANK YOU FOR YOUR TIME!

