
0-RING x64 Gustavo Scotti,
Immunity, Inc.

Agenda:

• Differences for x86 vs. x64

• The techniques

• PatchGuard

• Deactivating it

• 2-stages approach

• Lessons learnt

Photo: Organize the prints with index numbers shown altogether.

Differences for x86 vs x64

• No GDT / selectors (cs and ds only)

• 64-registers, address is 48-bits, bye
bye selectors

• Still have 4k paging

• CR0 bit 10h trick still valid (?)

• No task switching (TSS), but Task
Priority Level (CR8)

• The calling conventions

In one hand, that’s odd, but has benefits, like, selectors
are useless with large address registers

Silly joke: “To operate in 64-bits, you would need twice as much RAM.” (unknown
source)
Calling conventions: introduce the subject, how Intel suggested to use rcx/rdx/r8.../
then stack.

 The challenge to debug and doing stack backtrace (hooray to windbg)
Selectors: Why do I hate selectors so much? Selectors are friendly fire for those in the
development front. Context switches and gdt change hurt my balls off.

Why insisting on paging? Nice speech to make the time runs up. Explain how the
mapping process is done, and raise the question why Intel allows 4k, 2M and 4M
pages?

Code Signing

• In 64-bit, all drivers need to be
signed

• PnP has a mandatory catalog
(.cat) companion, which is also
signed

• Non-PnP or boot drivers,
embedded signature is enough

• Have you bought your ticket to
the Ring-0?

The Techniques Repertoire

• Hook’n’Roll (Jump Around)

• Page Re-referencing

• Rewriting the Service Table

• IAT for ntdll

• Function Rewind Exception Hijack

This is some of the
techniques to work with
when dealing in Ring0

Silly joke for “Hook’n’Roll”... “Sing the rap ‘Jump Around’ from House of
Pain”
Explain the IAT and why it is so important. Dll loading is also a good
call.

KeServiceTable

• #1 choice of 32-bitters

• X64 uses a different approach

• Offset to the service is 32-bit

• Base address is the table

• 0x10 aligned, last 4 bits used to
stack alignment

Why is the service table the #1 choice? Explain the export table in PE
format and why not having the table is bad to figure out function
addresses and it’s painful to signature process for public symbol
addresses.

KeServiceTable

• The trick is to rebase the entire
table

• JMP [0] will jump to the next
“instruction” as it were the
address (in 64-bits)

• Will show you how it’s done!

Next Slide is the video

Next slide is the video copying the service table and having the driver
running.
Silly joke: “your debit card is about to be charged $100 bucks for this
exhibition (DRM protected).
Later link the Patchguard protection mechanism, linked to the DRM
modules.

KeServiceTable - In Action

Comment the video as it plays.
You can do some more silly jokes, like “See me, without hands!”
Or shout “oops..” when mistypes is played back.

Hook’n’Roll

• Copy overwritten bytes to a
temp buff

• Make code to jump to
somewhere

• Original call back is the temp
buff

• And a jump back to original
code

• Voila

Explain this is as old as assembler exists.
Or another silly joke: “as old as the real Rock’n’Roll, kid”.
TODO: You can make an animation for this thing. Amuse us, dude!

Page Referencing

• Figure out where in physical
memory it is

• You can remap the same
physical address

• You can copy your content to
another physical memory

• Reference a virtual address to
another physical page

• That’s the PAGE fun!

PLEASE FINISH ME!!!

Exception Handler

• Calling Convention for x64

• How to backtrace?

• Several general purpose regs

• The opposite happens: regs are
stored in local stack

Explain how it works, and why it’s better than the stack model. And why
the stack changes inside the code and how it can help in reversing x64
code.

• Unwind Info holds:

• Stacked saved
parameters

• Internal stack changes
at code flow

• Holds function
Exception Handler for
SEH

• Function information is
inside PE’s Directory

Exception Handler

You can talk one whole day here.
Maybe a quick explanation of the Kernel exception handling.
This is interesting to reverse engineering.

Using Exception - In Action

You can have a pause after the video to a quick demonstration of a
different approach for exception handling in x64. You can reach new
levels of exploitation by dealing with it. More slides on this?

The PatchGuard

“Opening the PatchGuard” - that’s the silly joke for this one.

• Protects the Operating System
vital structures

• “Code our way, or die in our
way too” - (failed to rhyme)

• Asserts that drivers use the
right API

• Gives the kernel team flexibility
to change internals w/o
supporting the vendors

• Maybe security?

What is it?

Use the link for that silly joke about the debit card, so DRM-based
codecs use the Patchguard to ensure their code is not getting tempered.
Please concentrate this slide on flaming Microsoft for convincing the
world that Patchguard is good for anything but to protect against
malicious code.

Obfuscation++

• PoolTag randomly chosen

• Random “Fat” allocation space

• Random split the Fat before
and after real data

• Fat filled with garbage

• Uses Timer + DPC, using
random valid DPC dispatchers,
with invalid context data (which
will throw an exception)

Break this thing up, show some code, show some graphics on how it’s
done.

Obfuscation++

• 2 PgContexts are injected into
the Kernel Memory

• One is close to the processor
context

• 3/13 chances to have custom
DPC dispatcher, to prevent
public PatchGuard deactivators

• PgContext is encrypted

• Checks performed inside trap
interruption

This is a cool slide. Put some picture of the code here.

Obfuscation++

• Copy kernel vital functions like
KeBugCheckEx,
KeBugCheck2,
KiBugCheckDebugBreak, etc...

• About 20
debugger_is_attached checks,
leading to infinite loop with
interrupts disabled

• uninformed.org has published
several papers on how to
deactivate

• Some proposed paths to block
is already patched by Microsoft
in latest builds.

• Windows 7 follows the same
PG code from Vista, even
encryption constants are the
same

• X86 can run PatchGuard

PatchGuard - review

• All encryption are based on
RDTSC instruction, which can
be deactivated by CR4.2

• DPC for timers are encrypted,
but decryption is trivial

• Seek and destroy timers

Deactivating it

• You can change the IDT, but get
ready for behind the scenes
dirty job for exception handling

• Use the rewind info to
construct the call backtrace

• Find if this is a Dpc in the list of
PatchGuard borrowed
Dispatcher routines (9/13
chances).

• If custom Dpc, figure the
structures, go, go & go!

Deactivating it

• Get ready to the cat and mouse
race! This obfuscation and
Patchguard techniques WILL
change, and eventually a
KeBugCheck issued

Deactivating it

Let’s get it all

The Two-Stages

The Two-Stages

• You can hide files and folders

• Hide registry information

• Change process information

• Open network connections

• A new TCP/IP stack can be
built, and raw packets sent
through ndis.sys

• A key logger still can be coded

Natural root kits

• Is this kernel PG-removable?

• If not, tcp connect to TP server.

• Send me your kernel details

• If no patching code available,
just leave

• Will operate in stage-1

• Once patched, go to stage-2

Dialing The Patcher

This is the last subject-based slide. May finish it better, though.

➡“The BIOS is eternally the weakest spot.”

➡“Can we load your ntoskrnl.exe?”

➡“I noticed in your CR4 that VMX is not running.”

➡“The user mode is yet the blue ocean for the Ring0.”

➡“Do you want the real system safety? - get out of the virtual.”

➡“2-Stage approach for the sustainable ownage!”

Gustavo Scotti,
gustavo@immunityinc.com
Immunity, Inc.

The Thank You Final Act!
You may incite the audience to flame you about the virtual environment.
Either send them to hell, tell them to check for your next presentations,
or both!

