
Windows
Kernel

History, Evolution, Future

Weber Ress – H2HC 6th

about_me

Weber Ress

www.WeberRess.com

@WeberRess

http://www.weberress.com/

Kernel Pure Concept

Kernel can be thought of as
the bridge between
application and the actual
data processing done at the
hardware level

Kernel Basic Facilities

Process Management

Memory Management

Device Management

System Calls

Kernel Design Decisions

Design Decisions from 60’s, 70’s and 80’s

Design build to an inocence and secure world

CPU design decisions share the same idea

Kernel Design Decisions
Fault Tolerance

Rings Strategy

x86 – 4 rings

Multics – 8 rings

NT – use 2 rings

OS/2 – use 3 rings

Spaces

Kernel Space

User Space

More details @ CPU manufactures
redbook’s

Kernel Design Decisions

From 60’s and 70’s, the kernel design is focused
in:

Monolithic

● Linux, *BSD, Solaris, MS-DOS, Windows
3.x, 9x, ME, Mac OS up to 8.6

Microkernel

● Minix, Mach, QNX, L4

Hybrid

● Windows NT (3.1, 3.5, 4.0), 2000, XP, 2003,
2008, Vista, 7

● Plan 9 (Inferno), XNU (core Darwin Mac OS
X), Netware

Kernel Design Decisions

Monolithic

all OS services run along
with the main kernel thread,
thus also residing in the
same memory area. This
approach provides rich and
powerful hardware access.

Main disadvantage: bug in a
device driver / module
might crash the entire
system. Large kernel are
hard to maintain.

Kernel Design Decisions

Microkernel

Run most of the operating
system services in user
space as servers, aiming to
improve maintainability and
modularity of the operating
system.

Kernel Design Decisions

Hybrid Kernel

Hybrid kernels are a
compromise between the
monolithic and microkernel
designs. This implies
running some services (such
as the network stack or the
filesystem) in kernel space
to reduce the performance
overhead of a traditional
microkernel, but still running
kernel code (such as device
drivers) as servers in user
space.

Kernel in Real World
Hybrid

Windows: 88,5 %

Mac OS: 6,8%

Monolithic

Linux: 4,2%

source: www.w3schools.org

Microkernel

QNX is the only viable commercial
microkernel; most used in airports and Space
Shuttle.

Windows Kernel

Started in 1988, led by David Cutler from Digital

6 guys from Digital, 1 guy from Microsoft.

3 years of development, from scratch

Inspired in DEC VMS, DEC RSX-11 and PRISM

The idea was to have a common code base with
a custom Hardware Abstraction Layer (HAL) for
each platform (Have you seen this ?)

Windows NT 3.1 was initially developed using
non-x86 development systems and then ported
to the x86 architecture

Windows Kernel

Main Design Goals:

Hardware and software portability: (Intel IA-32,
MIPS R3000/R4000 and Alpha, with PowerPC,
Itanium and AMD64), and a private version to
Sun SPARC architecture.

Reliability: Nothing should be able to crash the
OS. Anything that crashes the OS is a bug

Compatibility: DOS, Win16, Win32, OS/2, POSIX
applications

Windows Kernel

in Windows NT 3.x, several I/O driver
subsystems, such as video and printing, were
user-mode subsystems.

In Windows NT 4, the video, server and printer
spooler subsystems were integrated into the
kernel.

In Windows 7 and 2008 R2, many subsystems
was integrated into the kernel (UAC, TPM)

Windows Kernel

Windows NT's kernel mode code further
distinguishes between the "kernel", whose
primary purpose is to implement processor and
architecture dependent functions, and the
"executive".

Both the kernel and the executive are linked
together into the single loaded module
ntoskrnl.exe;

From outside this module there is little distinction
between the kernel and the executive. Routines
from each are directly accessible, as for example
from kernel-mode device drivers.

Windows Kernel

While the x86 architecture supports four different
privilege levels (numbered 0 to 3), only the two
extreme privilege levels are used.

Usermode programs are run with CPL 3, and the
kernel runs with CPL 0. These two levels are often
referred to as "ring 3" and "ring 0", respectively.

Design decision to achieve code portability to
RISC platforms, that only support two privilege
levels

The original Multics system had eight rings, but
many modern systems have fewer.

Windows Kernel

Effective use of ring architecture requires close
cooperation between hardware and the operating
system (the Apple advantage ??)

Operating systems designed to work on multiple
hardware platforms may make only limited use of
rings if they are not present on every supported
platform.

Often the security model is simplified to "kernel"
and "user" even if hardware provides finer
granularity through rings.

More security ? Build your hardware and OS
(Microsoft future ? Apple first vision ?)

Windows

Kernel

Windows Architecture

hardware interfaces (buses, I/O devices, interrupts,
interval timers, DMA, memory cache control, etc., etc.)

System Service Dispatcher

Task Manager

Explorer

SvcHost.Exe

WinMgt.Exe

SpoolSv.Exe

Service
Control Mgr.

LSASS

O
bject

M
gr.

Windows
USER,

GDI

F
ile

 S
ystem

 C
ache

I/O Mgr

Environment
Subsystems

User
Application

Subsystem DLLs

System Processes Services Applications

System
Threads

User
Mode

Kernel
Mode

NTDLL.DLL

Device &
File Sys.
Drivers

WinLogon

Session Manager Services.Exe POSIX

Windows DLLs

P
lug and

P
lay M

gr.

P
ow

er
M

gr.

S
ecu

rity
R

eferen
ce

M
onitor

V
irtual

M
em

ory

P
rocesses

&
T

h
reads

L
ocal

P
rocedu

re
C

all Graphics
Drivers

Kernel

Hardware Abstraction Layer (HAL)

(kernel mode callable interfaces)

C
onfigura-

tion M
gr

(registry)

OS/2

Windows

Architecture of Windows

 Copyright Microsoft
Corporation

NT API stubs (wrap sysenter) -- system library (ntdll.dll)
user

mode

kernel
mode

NTOS executive layer

Trap/Exception/Interrupt Dispatch

CPU mgmt: scheduling, synchr,
ISRs/DPCs/APCs

Drivers
Devices, Filters,
Volumes,
Networking,
Graphics

Hardware Abstraction Layer (HAL): BIOS/chipset details

firmware/
hardware

CPU, MMU, APIC, BIOS/ACPI, memory, devices

NTOS
kernel
layer

Caching Mgr

Security

Procs/Threads

Virtual
Memory

IPC

glue

I/O

Object
Mgr

Registry

Windows Vista Kernel
ChangesAlgorithms, scalability, code maintainability

CPU timing: Uses Time Stamp Counter (TSC)
● Interrupts not charged to threads

● Timing and quanta are more accurate

Communication
● ALPC: Advanced Lightweight Procedure Calls

● Kernel-mode RPC

● New TCP/IP stack (integrated IPv4 and IPv6)

 I/O
● Remove a context switch from I/O Completion Ports

● I/O cancellation improvements

Memory management
● Address space randomization (DLLs, stacks)

● Kernel address space dynamically configured

Security: BitLocker, DRM, UAC, Integrity Levels

Windows Vista Kernel
Changes

Many improvements in a era with slow machines
(Intel Core Duo / Core 2 Duo was very expensise)

Modern software in old machines = no
responsiveness

Other mistakes, sure... , but it’s an evolution

Windows 7 Kernel

First general “public” revision of Windows Kernel

Improvements on performance (big mistake in
Vista); What matters is responsiveness !

Kernel Dispacher Lock was replaced by “more
complex symbolic system of semantics that lets
threads execute in a more parallel, efficient
fashion".

Previous Windows Kernel don’t understand the
new global reality: Multi Core

Windows 7 Kernel

Current Windows Kernel systems have a global
dispatcher lock which essentially stop all cores to
prevent objects from being accessed by more
than one core.

Windows 7/2008 Server will use processor groups
where threads will be assigned to groups of
cores.

Windows 7 / 2008 can use 256 cores

Windows 7 Kernel

00000000 00000000 00000000 00000000 =
thread can run on all processors (affinity is
basically off)

00000000 00000000 00000000 00000001 =
thread runs only on the first processor

00000000 00000000 00000000 00000010 =
thread runs only on the second processor

00000000 00000000 00000000 00000100 =
thread runs only on the third processor

00000000 00000000 00000000 00000111 =
thread can be distributed across the first three
processors

Threads will be assigned to groups of cores !!

Windows 7 Kernel Changes
MinWin

● Change how Windows is built
● Lots of DLL refactoring
● API Sets (virtual DLLs)

Working-set management
● Runaway processes quickly start reusing own

pages
● Break up kernel working-set into multiple

working-sets
– System cache, paged pool, pageable system

code

Security

● Better UAC, new account types, less BitLocker
blockers

Energy efficiency

● Trigger-started background services
● Core Parking
● Timer-coalescing, tick skipping

MinWin
MinWin is first step at creating architectural
partitions

Can be built, booted and tested separately from the
rest of the system

Higher layers can evolve independently

An engineering process improvement, not a
microkernel NT!

MinWin was defined as set of components
required to boot and access network

Kernel, file system driver, TCP/IP stack, device
drivers, services

No servicing, WMI, graphics, audio or shell, etc, etc,
etc

MinWin footprint:

150 binaries, 25MB on disk, 40MB in-memory

Kernel Future

Many-core challenge

New driving force in software innovation:

– Amdahl’s Law (1) overtakes Moore’s Law as
high-order bit

Heterogeneous cores?

OS Scalability

Loosely –coupled OS: mem + cpu + services?

Energy efficiency

Shrink-wrap and Freeze-dry applications?

Hypervisor/Kernel/Runtime relationships

Move kernel scheduling (cpu/memory) into run-
times?

Move kernel resource management into Hypervisor?

(1) is used to find the maximum expected improvement to an
overall system when only part of the system is improved. It is often
used in parallel computing to predict the theoretical maximum
speedup using multiple processors.

Thank you 

Weber Ress

www.WeberRess.com

@WeberRess

http://www.weberress.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

