
Jonathan Brossard
CEO – Toucan System

jonathan@
toucan-system.com

Generic exploitation of
invalid memory writes

Agenda

•The case of invalid writes

Determining the type of error

Taxonomy of invalid memory access

Memory permissions

Introduction

Introduction

Maybe you did some fuzzing and found
some bugs ?

Welcome in 2010 : exploitation is more
difficult than finding trivial bugs.

The goal of this talk is to detail (and
automate !) the steps to successful
exploitation of invalid memory writes.

Memory permissions

This is the key to modern exploitation...

Memory permissions

Under x86 : permissions are set at MMU (+
Kernel) level using three flags :

R : read permission
W : write permission
X : execution permission

5 years back, everything was in fact +X !!

Memory permissions

Where to get my shellcode executed in
memory ??

Alternatively (when not using
shellcode) : where to return in
memory to execute something usefull
(think ROP).

Memory permissions

What is or not executable depends on :
- your cpu (NX flag) + BIOS Config.
- your kernel (PaX, PAE...) and more

globally your toolchain.
- the dynamic loader (shared libs).

DEMO

Using readelf and /proc/pid/maps to
check what permissions should be.

Using paxtest to verify what is actually
executable or not.

Taxonomy of invalid
memory access

What's the impact of this bug ?

int main(int argc, char **argv){
printf(argv[1]) ;
return 0;

}

Exemple 1

Truth is : we can't know from C source :
we have to check at instruction level
to see if the c library was actually
built with a write primitive...

Segfault at...

mov DWORD PTR [eax], edx

eax 0x4000e030
ecx 0xbffff848
edx 0x0
ebx 0x40199ff4

=> Invalid write.

(more complex) exemple:

fld QWORD PTR [eax+0x8]

=> Read ? Write ? Both ??

DEMO

Triggering the bug in xpdf

Determining the error type of complex
bugs using valgrind

Summarizing

At instruction level, an invalid memory
access can be of three kinds :

- invalid read
- invalid write
- invalid exec

Exploiting invalid exec

Trivial if jump location is user controled.
eg : call [eax]

Exploitation strategy :
Have eax pointing to our shellcode

Exploiting invalid exec (2/2)

Fairly rare in userland

Used to be a major problem in kernel
land (invalid Null ptr dereference in
exec mode from kernel land). First
page not mappable without privs

since kernel 2.6.23

Exploiting invalid reads

Cannot hijack control flow directly :(

Exploitation strategy:
- Either use no memory corruption (eg :

information leakage)
- Or trigger a bug latter in the code (either

invalid exec or invalid write)
- … Or it is just plain non exploitable :(

Exploiting invalid writes

This is the meat !

Exploitation strategy :
- Either overwrite important data (eg :

tast_struct->uid in kernel land)
- Or try to hijack the control flow

The case of invalid writes :
different levels of control

X86 allows accessing either :
- 8 bytes
- 4 bytes (most instructions)
- 2 bytes
- 1 byte

The case of invalid writes :
different levels of control

- If both destination and value are fully
user controled : overwrite .dtors, liked
list in at_exit, function pointers...
(ideal case such as missing format
strings, easy !)

- If only destination is user controled :
attempt a pointer truncation on a
given function pointer.

Problem is...

Out of 3Gb of user land, how to find a
suitable function pointer to overwrite

or truncate ?

Exploitation strategy

- Dump the content of every section of the
binary

- Parse the +W ones
- Check for pointers to +X locations

=> exhaustive, reduced list of potential
candidates.

Then chose one based on actual binary
constraints (will truncation point to a user
controled location ?)

DEMO

Triggering an invalid write in Opera

Using livedump to chose potential
candidates

Memory alignement

Most Intel instructions only allow
reads/writes on aligned boundaries.

Typically : 4b aligned memory

(Common) Worst case
scenario

If only 0x00000000 can be written, in
4b aligned memory locations...

=> Then pointer truncation won't be
possible on 4b aligned sections :-(

Naive exploitation strategy

- Trigger the bug
- set a signal handler for signal 5 which re

enables single stepping
- set the « trap » cpu flag

=> Single step until exit and monitor
unaligned reads/writes.

=> Slow, painfull, per thread :(

Elite exploitation strategy
with livedump

- Trigger the bug
- set the « align » cpu flag
- setup a signal handler for SIGBUS

=> every read/write to unaligned
memory will be trapped and give
potential truncation candidates

DEMO

Using livedump to detect unaligned
memory access

Questions ?

Thank you for coming

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

