
Edgar Barbosa

H2HC 2011

São Paulo - Brazil


 Edgar Barbosa
 Senior Security Researcher at COSEINC (Singapore)
 One of the developers of Blue Pill, a hardware-based

virtualization rootkit. Also presented a way to detect this type
of rootkit.

 Discovered the Windows kernel KdVersionBlock data structure
used for some forensic tools.

 Focus: RCE, Windows Internals, Virtualization and Program
Analysis.

 Currently working on the COSEINC SMT Project, which aims
to automate the bug finding process with the help of SMT
solvers. The current presentation is part of the research done for
the SMT project.

Who am I?

Control Flow Analysis


 Control Flow Analysis (CFA)

 Static analysis technique to discover the hierarchical flow of
control within a procedure (function).

 Analysis of all possible execution paths inside a program or
procedure.

 Represents the control structure of the procedure using
Control Flow Graphs.

 Compiler theory - optimization

 The focus of this presentation is to demonstrate CFA for
Reverse Code Engineering, where the source code isn’t
available.

Control Flow Analysis



RCE and CFA

Executable
(binary format)

Disassembler

Extract control flow
information

Control Flow
Graph


A Control Flow Graph (CFG) is a directed graph

G(V;E) which consists of a set of vertices (nodes)V,
and a set of edges E, which indicate possible flow of
control between nodes

Or, is a directed graph that represents a superset of
all possible execution paths of a procedure.

Graph nodes represents objects called Basic Blocks
(BB)

What is a CFG?



CFG

Nodes



Edges

tail head

tail

head



CFG

Edges


Views

Nodes

 Edges

BinNavi


 In the CFA literature the algorithms assume the following

CFG properties:

 Unique Start node (Entry node)

 All the nodes of must be reachable from the START node.

 Unique Exit node

 Real-world:

 Easy to find multiple exit nodes (RETURN) on the
disassembly of a function

 Create a new exit node, add it to the graph and modify
the return instructions to jump to the new node.

CFG properties


 In general, the problem of discovering all the

possible execution paths of a code is undecidable. (cf.
Halting problem).

 First step for CFG reconstruction is to identifiy all the
basic blocks.

A basic block is a maximal sequence of instructions
that can be entered only at the first of them and
exited only from the last of them

BB identification



Basic Block (BB)


 First instruction of a BB (the leader instruction):

1. The entry point of the routine

2. The target of a branch instruction

3. The instruction immediately following a branch

 Although CALL is a branch instruction, the target
function is assumed to always return and therefore it is
allowed in the middle of a BB.

 To build the BB’s we need to identify all the leader
instructions. This requires the disassembly of the
instructions.

 Two disassembly algorithms

Basic Blocks


 A linear sweep algorithm starts with the first byte in the

code section and proceeds by decoding each byte until an
illegal instruction is encountered [a]

>> 8B FF 55 8B EC 8B 45 08

8B FF mov edi, edi

55 push ebp

8B EC mov ebp, esp

8B 45 08 mov eax, [ebp+8]

1. Linear Sweep


 Linear sweep algorithm doesn’t take into account the

control flow behaviour of some instructions.

>> EB 01 FF 8B 45 FC

 EB 01 jmp short 0x401020

 FF ??? ;invalid

Recursive traversal disassemblers interpret branch
instructions in the program to translate only those
bytes which can actually be reached by control flow. [b]

2. Recursive Traversal



 EB 01 FF 8B 45 FC

 EB 01 jmp short 0x401020

 FF ??? (UNREACHABLE)

 8B 45 FC mov eax, dword ptr ss:[ebp-4]

2. Recursive Traversal


Once identified the basic blocks, the CFG

construction is done after the addition of the edges.

CFG construction is especially difficult when the
code includes indirect calls. (call dword ptr[eax])

 State-of-art CFG construction available is the open-
source Jakstab tool (Java Toolkit for Static Analysis
of Binaries) from Johannes Kinder.

 Provides better results than IDAPro.

State-of-art CFG
reconstruction



Jakstab[d]



Self-modifying code

Control Flow Analysis


 Consider the following example[c] (not real x86 opcodes)

 A linear sweep or recursive traversal algorithm execution on
the above code would result in a single Basic Block (single
entry/single exit/no branches)

Self-modifying code

Address Assembly Binary

0x0 movb 0xc 0x8 c6 0c 08

0x3 inc %ebx 40 01

0x5 movb 0xc 0x5 c6 0c 05

0x8 inc %edx 40 03

0xa push %ecx ff 02

0xc dec %ebx 48 01

SMC

movb 0xc 0x8
inc %ebx
movb 0xc 0x5
inc %edx
push %ecx
dec %ebx

0x0
0x3
0x5
0x8
0xa
0xc

movb 0xc 0x8

inc %ebx
movb 0xc 0x5
jmp 0x3

push %ecx
dec %ebx

movb 0xc 0x8

inc %ebx
jmp 0xc

jmp 0x3

push %ecx

dec %ebx

CFG 1 CFG 2 CFG 3


 State-Enhanced Control Flow Graph (SE-CFG)

CFG augmented with extensions to support SMC.

Allows the use of control flow analysis algorithms
for SMC.

 “A Model for Self-Modifying Code”

Codebyte extensions – Codebyte conditional edges

 Implemented in a link-time binary rewriter: Diablo.

 It can be downloaded from

 http://www.elis.ugent.be/diablo

SE-CFG

http://www.elis.ugent.be/diablo
http://www.elis.ugent.be/diablo
http://www.elis.ugent.be/diablo



SMC - CFG

movb 0xc 0x8

inc %ebx

movb 0xc 0x5

inc %edx
push %ecx

dec %ebx

jmp 0x3

jmp 0xc



Dominators

Control Flow Analysis


Relation about the nodes of a control flow graph.

 “Node A dominates Node B if every path from the
entry node to B includes A”.

Representation: A dom B

 Properties:

 Antisymmetric (either A dom B or B dom A)

 Reflexive (A dom A)

 Transitive (If A dom B and B dom C then A dom C)

Can be represented by a tree, the Dominator Tree.

Dominance relation



Control Flow Graph

Exit
node

Entry
Node



Dominator Tree


Classic reference:

 Lengauer-Tarjan algorithm

 Boost C++ library

 Immunity Debugger

 libcontrolflow.py

 Class DominatorTree

 BinNavi API

 GraphAlgorithms getDominatorTree()

 DEMO: Gui plugin

Implementations


We can use the Dominator Tree to identify loops.

 Locate the back edges

 Back edge:

 An edge whose head dominates its tail.

A loop consists:

 of all nodes dominated by its entry node (head of the
back edge) from which the entry node can be reached

 These loops are named Natural Loops.

Natural loops

Loop
Header

Back Edge



ImmunityDbg !findloop
ImmDbg\PyCommands\findloop.py



Strongly connected
components

Control Flow Analysis


 SCC  Strongly connected components

A graph (directed/undirected) is called strongly
connected if there is a path from each vertex to every
other vertex

Any loop is a strongly connected component

SCC

a

b

e

d
c

f

This graph is
not strongly
connected.

SCC

a

b

e

d
c

f

But it contains
a subgraph
which is
strongly-
connected.

SCC

SCC


 Tarjan algorithm

 fast algorithm - complex

Kosaraju-Sharir algorithm

 simple, but slower than Tarjan’s algorithm

 Implementations available for all languages:

 C#/Python/Lua/Ruby/Java

SCC - algorithms



Interval Analysis

Control Flow Analysis


 Unfortunately SCC isn’t able to identify nested loops
 Interval Analysis
 Divides the CFG into regions and consolidate them into

new nodes (abstract nodes) resulting in an abstract flowgraph.

 We need to identify regions and pre-intervals
 Region:
 A region in a flow graph is a sub graph H with an unique

entry node h

 Pre-Interval:
 A pre-interval in a flow graph is a region <H,h> such that

every cycle (loop) in H includes the header h.

 Similar to a unique entry SCC.

Regions and intervals

Nested Intervals


Reduction of graphs

We can collapse nodes from a region to a single
node. This is called t1/t2 transformation. If we apply
it to all loops, the graph becomes a cycle-free one.

Cycle-free graphs are easier to analyze.

T1/T2 transformations


DEMO

Interval analysis



GOTO considered
harmful…

http://xkcd.com/292/


All the loops identified by the previous methods

(dominance tree/interval analysis) are called natural
loops.

 They are unique entry loops.

 There another type of loop:

 irreducible graphs or improper regions

Irreducible graphs



Irreducible graph

e

s

a b

r

Entry
Loop (a , b)

2 entries! b or a

Return


Who codes like that?

 Anyone who uses GOTO

 It is rare, but it does exist

 notepad.exe

 ntoskrnl.exe (Windows Kernel)

What’s the problem?

 Most of the algorithms are unable to handle
irreducible graphs!!! Including Interval analysis.

 Can’t apply T1/T2

Irreducible graphs


int *__stdcall TranslateString(int a1)

{

 wchar_t v1; // cx@1

 …

 if (v1)

 {

 while (1)

 {
 v5 = &v22 + v26;

 …

 LABEL_49:
 v1 = *(_WORD *)v7;

 …

 }
 }

 goto LABEL_49;
 }

translateString

Jump inside the
WHILE statement


 There are 2 main solutions to handle irreducible

graphs:

 Structural Analysis

 DJ-Graphs

Solutions



Structural Analysis

Control Flow Analysis


 Structural analysis will identify the main language

constructs inside a flow graph using region schemas.

Do you want to build your own decompiler?

 Hex-Rays decompiler internally uses Structural
Analysis

Created by Micha Sharir

Reference paper:

 Structural analysis: a new approach to flow analysis in
optimizing compliers (1979)

Structural Analysis



Acyclic schemas



Cyclic schemas


Another way to handle irreducible graphs.

 It is also able to identify all types of structures,
including improper regions and nested structures.

Uses a combination of the dominance tree and the
original flowgraph with two additional types of
edges:

 the D edge (Dominator)

 the J edges

 Paper: Identifying loops using DJ graphs.[e]

DJ-Graphs



DJ-Graphs


 Taint analysis

 Control dependency (dominators, post-dominators)

Diff Slicing

 Execution Indexing (view the CFG as a grammar)

 Execution alignment

 Identification of root causes of software crashes

Decompilation

Code coverage

 Bug finding

Applications


 a -

http://www.usenix.org/event/usenix03/tech/full_papers/prasad/prasad_html/n
ode5.html

 b - An Abstract Interpretation-Based Framework for Control Flow Reconstruction
from Binaries

 c – Bertrand Anckaert, Matias Madou, and Koen De Bosschere. 2006. A model
for self-modifying code. In Proceedings of the 8th international conference on
Information hiding (IH'06)

 d - http://www.jakstab.org/

 e - Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. 1996. Identifying
loops using DJ graphs. ACM Trans. Program. Lang. Syst. 18, 6 (November 1996), 649-
658.

 f - Advanced compiler implementation – Steven Muchnick

 g - Notes on Graph Algorithms Used in Optimizing Compilers - Carl D. Offner

References

http://www.usenix.org/event/usenix03/tech/full_papers/prasad/prasad_html/node5.html
http://www.usenix.org/event/usenix03/tech/full_papers/prasad/prasad_html/node5.html
http://www.usenix.org/event/usenix03/tech/full_papers/prasad/prasad_html/node5.html
http://www.usenix.org/event/usenix03/tech/full_papers/prasad/prasad_html/node5.html
http://www.jakstab.org/
http://www.jakstab.org/
http://www.jakstab.org/


Contact: edgarmb@gmail.com

 edgar@research.coseinc.com

 twitter: @embarbosa

Questions?

mailto:edgarmb@gmail.com
mailto:edgar@research.coseinc.com

