
Rogue Behavior Detection
Tackling binaries

while they‘re
on the ground

Marion Marschalek

Malware Researcher

G DATA Advanced Analytics

marion.marschalek@gdata-adan.de
@pinkflawd

Malware Analysts
And their issues…

Malware analysis and its issues

The average malicious binary is not interesting
- Repetitive code

- Repetitive techniques

- Self-taught developers

- Limited interests

Wouldn‘t it be neat to see at one glance roughly
what a binary is about?

Limitations of contemporary
automated malware analysis

Obfuscation

Self-modifying code

Byte code and virtual machines

Dynamic API loading

Asynchronous code

Object oriented code

Sandbox detection

Missing dependencies/components

Need for interaction

Time based evasion

Missing input values

Multiple execution paths

Incompatibilities

Static Dynamic

Multiple execution paths

Common sandboxes are fairly limited in their analysis
capabilities of multi-purpose malware

In almost all cases they are totally useless for analyzing
benign binaries

Packer /
Evasion

Setup Call home

might or might not
be analyzed

Look at all areas of a binary
API calls

Strings

Structure

Graphs

Radare2

Wicked plan…

Graphs
Binaries naturally are graphs,
and graphs of graphs,
and graphs of.. You get it

Great for visualisation

Also pretty amazing data structure

Strings, APIs, what not

Indicators for packersbenign

targeted random

EP section name abnormal

EP section entropy too high/low

Use of TLS sections

API calls / KB ratio

Section count too low

Imphash missing

No big data

No clustering

For sure no machine learning

No binary diffing

No serious math

No software licenses ^^

Help in static analysis

Persisting of analysis results

Small to medium scale sample sets

Tool thats easy to handle and
extendable

Metrics

Creative indicator extraction

So yeah.. I used radare2

Radare2 accessed through r2pipe, scripted from Python

Available for free

Disassemble (and assemble for) many different architectures

Debug with local native and remote debuggers (gdb, rap, webui, r2pipe, winedbg, windbg)

Run on Linux, *BSD, Windows, OSX, Android, iOS, Solaris and Haiku

Perform forensics on filesystems and data carving

Be scripted in Python, Javascript, Go and more

Support collaborative analysis using the embedded webserver

Visualize data structures of several file types

Patch programs to uncover new features or fix vulnerabilities

Use powerful analysis capabilities to speed up reversing

Aid in software exploitation

Scalable

Scriptable

GUI-free

Great support

Quick bug fixes

With splendid reasoning

Can analyze entire binaries

Provides
- functions and cross references

- symbols

- strings

- basic PE information

Color me
rainbow ^^

r2
command
cheat
sheet

R2handle = r2pipe.open(<file>)

R2handle.cmd(<cmd>)

Watch magic

aaa – analyze the target binary

afr @ [address] – recursively analyze function at [address]

iS – get information about file sections

iij – get import table in JSON format

axtj @@ sym.* - get cross references on found symbols in JSON

axtj @ [address] – get cross references for [address]

pd 300 @ [address] – disassemble 300 instructions at [address]

pd -30 @ [address] – disassemble backwards 30 instructions at [address]

pdf @ [address] – disassemble function at [address], after e.g. aaa command

izzj – get strings out of entire binary in JSON

iz – get strings out of code section

iEj – get exports of a library

?v $FB @ [address] – get function which contains [address]

aflj – get list of functions with supporting information in JSON

Many thanks to
pancake, maijin &
friends <3

Graphity

Python project built on
radare2 / r2pipe

NetworkX

pyplot

pefile

Neo4j

Be published soonish at
https://github.com/pinkflawd

graphity

graphityOut

graphityFunc

graphityUtil

A binary art project :)

Function call graphs
Function cross references within code section

References to function offsets

References to code w/o function

Outside executable section(s)

Nodes: functions
=> Offset, size, calling convention

Edges: calls, handler functions

Strings

String parsing

Evaluation: ASCII, cross references

String list detection

string length + alingment

string following w/o cross reference

Fitting strings into the graph

Whats the information one can gain from strings?

APIs

Cross references on symbols

Indirect calls
- parsing for mov/lea

- disassembling further

- call and jmp considered xref

Thunk pruning

Dynamic loading

Callbacks / Handler Functions
„Top-down“

Disassemble upwards

Check the push instructions for function cross references

Add edge and tag

Currently only CreateThread and SetWindowsHookEx,
because context

„Bottom-up“

Sweep for nodes without inbound edges

Check for cross references within functions

Add edge and tag

Compiler settings & optimizer magic

Graphing objectives:
- as little data as possible

- with as much information as possible

Default FullyOptimized

SizeOptimized
vc110

vc120 vc150Dbg

STUFF

Visualization

Behavior

Metrics

GraphDB

Backdoor: Win32/Redsip.A

https://github.com/citizenlab/malware-indicators/blob/master/file-indicators.csv

Thread handler function

C&C command parsing

System information gathering

System shutdown feature

Writing to logfile

Who‘s Paul Pierce?!

Suspiciously low on strings

Rich in APIs for download-and-execute-binary ops

Holistic view

Needs human analyst

Not always feasible

So..

Rogue behavior detection

API call gadgets

„pattern matching“ of APIs

Iterate nodes

Iterate neighbors

If feasible, further iterations

Problems:

- indirect function calls

- bigger call gadgets lower
hit chances

- human analyst to draw
final conclusions

Backdoor: Win32/Redsip.A

Random Dropper

Win32/Banito

Packed / obfuscated binaries

Some binaries

got _something_ to hide

Why metrics?

Measuring things is fun

Lack of metrics for sophistication

Lack of metrics for complexity

IOCs suck
- they ain‘t no metrics that aren‘t cheaply tricked

Little ability to measure suspiciousness

Little ability to masure benign-ness

Backdoor: Win32/Redsip.A
Random Info

Graph Measurement

Numbers: simplified representation, allow for distance
measurement, help finding outliers and anomalies

Fat node detection
Also called spaghetti code metric

interesting

awkward

interesting

Math, FTW
Useful for graph complexity evaluation

Moarrr metrics to come

Library usage

API usage variance

Global variables

Data cross references

Neo4j

Graph database with nice
documentation and tutorials
and a python connector

Chosen backend (for now)

Got visualization (again)

Now what

Tool still far from being ready for use in production

Works great with dynamically linked Win32 C binaries

Works somewhat with statically linked and/or Win64
binaries

Produces funny results for C++, Delphi and such things

Barely ever crashes ;) ;)

Thank You

Good Papers

„Jackdaw: Towards Automated Reverse Engineering of Large Datasets of Binaries“,
Polino, Scorti, Maggi, Zanero
https://iseclab.org/media/uploads/zotero/Polino%20et%20al_2015_Jackdaw.pdf

„Distributing the Reconstruction of High-Level Intermediate Representation for
Large Scale Malware Analysis“, Matrosov, Rodionov, Barbosa, Branco
https://github.com/REhints/BlackHat_2015/blob/master/slides_BHUS_2015.pdf

„Automated Reverse Engineering“, Halvar Flake
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-flake.pdf

https://iseclab.org/media/uploads/zotero/Polino et al_2015_Jackdaw.pdf
https://github.com/REhints/BlackHat_2015/blob/master/slides_BHUS_2015.pdf
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-flake.pdf

