13 EDITION | 2016

i 22 n 23 of October
. Novotel Morumbi

Sao Paulo - Brasi

HACKERS TO HACKERS CONFERENCE

Hackers to Hackers Conference 2016 (Thirteenth Edition)
October 22-23, 2016, San Paulo, Brazil

Is your memory protected?
Attacks on encrypted memory and
constructions for memory protection

Shay Gueron
University of Haifa, Israel
Intel Corp., Intel Development Center, Haifa, Israel

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

Agenda

* |s DRAM really vulnerable?

* Does encryption save the day?

Demonstrating recent works (2016)
with multiple collaborators

* Blinded random corruption attacks
HOST 2016

IEEE International Symposium on Hardware Oriented Security and Trust

Rodrigo Branco * and Shay Gueron

" Intel corporation, Security Center of Excellence

* Fault Attacks on Encrypted General Purpose Compute Platforms
— To be published
— Announced as a poster at CHES 2016

— Shay Gueron, Jan Nordholz ™, Jean-Pierre Seifert *, Julian Vetter *
— “TU Berlin, Germany

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

Background

Old news

* Adversaries with physical access to attacked platform — are a concern
— Mobile devices (stolen/lost)
— Cloud computing (un-trusted environments)

* Read/write memory capabilities as an attack tool have been demonstrated:
— Using different physical interfaces
— Thunderbolt, Firewire, PCle, PCMCIA and new USB standards

* Consequences of DRAM modification capabilities:
— Active attack on memory are possible
— Attacker can change code / data from any value to any chosen value
— But this is too easy... right?

Underlying attack assumption on the threat model:
The attacker has physical means to modify DRAM

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

Different attacker’s tactics

Passive attack: the attacker can only eavesdrop DRAM contents, but is not
able to inject or interfere with it (in-use or not)

— Non-existent in reality

Active static attack: the attacker can read DRAM contents but cannot
modify in-use/to-be-used (saved) DRAM

— Example: cold boot attack
— The attack is on the data privacy

Active dynamic attacks: the attacker can read and modify DRAM contents
that are in-use/to-be-used (saved)

The effectiveness of memory encryption without authentication is limited to
active static attacks,
since the ability to modify in-use/to-be-used DRAM is assumed to be denied

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

Transparent memory encryption

Some memory protection technologies against active dynamic attacks
were proposed

— Limiting the attacker’s physical ability to read/write memory
* E.g., blocking DMA access in some scenarios

— Memory encryption
Memory encryption using “transparent encryption” mode:
— Simpler, cheaper, faster than “encryption + authentication”
— Changes the assumptions on read/written memory capabilities of the attacker
— Therefore, seems to be effective for limiting active dynamic attacks
Memory encryption effects:
— Attacker has limited control on the result of active attacks
— But the physical memory modification capabilities remain available

Underlying attack assumption: attacker has physical means to modify DRAM

Blinded Random Block Corruption
(BRBC)

Under memory encryption, the attacker has limited capabilities
* Blinded Random Block Corruption (BRBC) attack

* (Blinded) The attacker does not know the plaintext memory values he can
read from the (encrypted) memory.

* (Random (Block) Corruption) The attacker cannot control nor predict the
plaintext value that would infiltrate the system when a modified (encrypted)
DRAM value is read in and decrypted.

* When using a block cipher (in standard mode of operation), any change in the

ciphertext would randomly corrupt at least one block of the eventually
decrypted plaintext

 Question: does memory encryption (limiting the active dynamic attacker
capabilities to BRBC only) provide a “good enough” mitigation in practice?

Underlying attack assumption: attacker has physical means to modify DRAM

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

We will show that...

— Despite limited capabilities, dynamic active attacks are possible

— Encryption-only does not offer a defense-in-depth mechanism against
arbitrary memory overwrites without removing capabilities assumptions

 The BRBC attacker is able to create Time-of-check/Time-of-use (TOCTOU)
race conditions all around the execution environment

— Usual control-flow hijacking attacks require precise pointer control to redirect
flow of execution. Usual DMA attacks perform precise code modification

— Data-only attacks caused by a BRBC attacker can be induced after some code
checks, therefore cause TOCTOU races that invalidate the results of such checks

— Unexpected computation (and flows) can emerge (since code is driven by its
input data)

* Data-only based attacks, thus control flow enforcement can’t prevent

Underlying attack assumption: attacker has physical means to modify DRAM

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

The A-B-C attacker model

* Access Seeking Attacker

This attacker is not the owner of the platform, but got it to his possession, in a
locked state. He wishes to get an user access, in order to steal the data on
the system.

* Breaching Attacker

This attacker is a legitimate user of the platform, who wishes to breach some
of the system’s policies or circumvent restrictions on his privileges.

* Conspirator Attacker

This attacker is also a legitimate user of the platform/environment. He has
administrative powers and conspires to collect other users’ data.

Underlying attack assumption: attacker has physical means to modify DRAM

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

Becoming “root” on a locked system with a
BRBC attack

global varl...varn _

global preauth_flag
global preauth_related
code_logic() {
if (preauth_enabled) {
call_preauth_mechanism() -> sets preauth_flag if successful
}
repeat_auth:
if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:
return;

S. Gueron * Hackers to Hackers 20161 *

Attacks on Encrypted Memory 10

Becoming “root” on a locked system with a
BRBC attack

global varl...varn
global preauth_flag _
global preauth_related
code_logic() {
if (preauth_enabled) {
call_preauth_mechanism() -> sets preauth_flag if successful
}
repeat_auth:
if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:
return;

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory H

Becoming “root” on a locked system with a
BRBC attack

global varl...varn
global preauth_flag
global preauth_related _
code_logic() {
if (preauth_enabled) {
call_preauth_mechanism() -> sets preauth_flag if successful
}
repeat_auth:
if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:
return;

S. Gueron * Hackers to Hackers 20161 *

Attacks on Encrypted Memory 12

Becoming “root” on a locked system with a
BRBC attack

global varl...varn
global preauth_flag
global preauth_related
code_logic() {
if (preauth_enabled) {
call_preauth_mechanism() -> sets preauth_flag if successful
}
repeat_auth:
if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:
return;

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory 13

Becoming “root” on a locked system with a
BRBC attack

global varl...varn
global preauth_flag
global preauth_related
code_logic() {
if (preauth_enabled) {
call_preauth_mechanism() -> sets preauth_flag if successful
}
repeat_auth:
if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:
return;

S. Gueron * Hackers to Hackers 20161 *

Attacks on Encrypted Memory 4

Becoming “root” on a locked system with a
BRBC attack

global varl...varn
global preauth_flag
global preauth_related
code_logic() {
if (preauth_enabled) {
call_preauth_mechanism() -> sets preauth_flag if successful
}
repeat_auth:
if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:
return;

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory 1o

Becoming “root” on a locked system with a
BRBC attack

global varl...varn
global preauth_flag
global preauth_related
code_logic() {
if (preauth_enabled) {
call_preauth_mechanism() -> sets preauth_flag if successful

}

repeat_auth:

if (preauth_flag) goto auth_ok; _ BRBC Attack to the preauth_flag

authentication_logic();

auth_ok:
return;

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory 16

Becoming “root” on a locked system with a

BRBC attack

global varl...varn
global preauth_flag
global preauth_related
code_logic() {
if (preauth_enabled) {
call_preauth_mechanism() -> sets preauth_flag if successful
}
repeat_auth:
if (preauth_flag) goto auth_ok;

authentication_logic(); -> THIS NEVER GETS EXECUTED!

auth_ok: _

return;

S. Gueron * Hackers to Hackers 20161 *
Attacks on Encrypted Memory

17

TOCTOU (Time-of-use/Time-of-check) Race
Condition

* This was caused by our arbitrary memory write (the BRBC)

* The corrupted values adjacent to the preauth_flag were not used at this
moment (thus the block corruption is not a problem)

* The check for the preauth_flag only checks for not 0 (thus we don’t need
to control the exact value)

* But how do we win the race?
— In this case, quite simple: We just cause the authentication to fail at the first
time (when it does ask the password)
e The system waits for the password prompt
e We cause the corruption and input invalid password
* The authentication fails and the logic is repeated, but this time with the corruption!

Experiment

Two demonstrations that realize the underlying attack assumptions
— A debugger to make it easy to step through and see the corruption effect
— The JTAG to demonstrate the physical addresses are not a concern
SW mitigations are not feasible because the attacker has lots of
possibilities for targets (not only | 0 comparisons). Some examples:

— If an attacker overwrites the NULL terminator of a string, he can generate
buffer overflows, memory leaks

— If an attacker overwrites an index, he can generate out-of-bounds writes, that
might lead to user-mode dereferences if in kernel-mode context

— If an attacker overwrites a counter, he can generate REFCOUNT overflows,
leading to use-after-free conditions

Underlying attack assumption: attacker has physical means to modify DRAM

S. Gueron * Hackers to Hackers 20161 *

Attacks on Encrypted Memory 19

The BRBC attack on a login program
(using debugger-based overwrites)

On the Attacked-Terminal:
The attacker types any (not even valid)
username

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

21

On the Demo-Terminal:
memory overwriting capability is simulated by

using a debugger: we connect to the login
process on Attacked-Terminal

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

22

On the Attacked-Terminal:

the attacker types any (invalid) password, so the
login process requests the username again. The
attacker types his desired username (root'" in
this attack)

S. Gueron * Hackers to Hackers 2016l * 23
Attacks on Encrypted Memory

On the Demo-Terminal:

using the debugger, we demonstrate how we
monitor the correct process, and set a
breakpoint

Attacks on Encrypted Memory

24

On the Demo-Terminal:
the effective random corruption is shown (we

chose the 16-bytes string 16 bytes garbage'' to
be the random' block value

S. Gueron * Hackers to Hackers 2016l * o5
Attacks on Encrypted Memory

On the Attacked-Terminal:
voila Due to the random corruption, the system

does not ask again for a password, and logs the
userin-as root'".

Attacks on Encrypted Memory

26

The BRBC attack on a login program

f)

O. LUEIUIll ©” AdCKeIS U NdCKels Zulol -
Attacks on Encrypted Memory

Demonstration using the JTAG Interface

e The difference on the JTAG demonstration is:
— Establish the possibility of the attack against the physical address space
instead of the virtual one (as with the debugger)
— Demonstrate that blinded reads are enough to gather locality of the targeted
overwrite

— Understand possible mitigations and their impacts on the attack (for example,
CET — Control-flow Enforcement Technology would not have prevented the
attack either and can’t be considered another layer of defense against BRBC)

e Limitations of the JTAG attack

— For the MEE case, the JTAG access would be encrypted/decrypted, thus it
would not be dealing with the encrypted content

Demonstration using the JTAG Interface

venlan GNU/L inux

7 debian tty1

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

29

Different Attack Scenarios and Targets

Attacker with user privileges on the machine
— Higher control/visibility of the memory space

— Tries to bypass security policies
* Local administrator (common on cloud-based scenarios)

All system software/components can be seem as targets

— We just demonstrated in a highly-limited scenario (locked machine, unknown
software running, little to no information on the OS details)

As more interactions with the system, as bigger is the scope of possible
attack targets (as discussed previously)

Mitigation Techniques

Hibernation when used together with proper disk encryption

VT-d/IOMMU and PMRs

— Limits DMA capabilities exposed

— Might not be enough against certain attackers (that have physical access) and
in some platforms (only effective if the attack requirement is fully removed)

Software self-protection (or control flow enforcement technologies)
— Attack uses valid flows with invalid data (data-only attack) bypassing CET
— Different attack targets make software hardening inviable

Memory encryption with Authentication
— Able to detect the arbitrary change and prevent the attack

Intel SGX (Software Guard eXtensions)
— Currently employ authentication and replay protection

The revenge of the fault attacks
(now available in the PC world)

Work by: Gueron, Nordholz, Seifert, Vetter

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory 32

The return of fault attacks (to the PC world)
Gueron, Nordholz, Seifert, Vetter

Adversary has physical access to a compute platform
— But no root privileges

Able to install an unprivileged malware process on the system.

Can physically access the platform (e.g. plug in a USB stick or connect a
Firewire device).

Victim is aware of the valuable assets on his compute platform, and has

therefore enabled main memory encryption to protect specific processes.

-
EE]

Attacker Victim

Process Process

/ E— Operating System

zFirewire
R LLLLERRRLERRRLEN] (] Hardware

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

33

Preliminaries

RSA-CRT fault attacks

Almost all efficient RSA implementations use the Chinese Remainder Theorem (CRT). For
our attack, we use the Boneh-DeMillo-Lipton fault attack [2]. It can be applied to RSA
implementations that use the CRT. The attack is based on obtaining two signatures of the
same message m. The first one 1s correct, and denoted by s. The second one 1s faulty, and is
obtained by injecting some corruption, so that the value of s, is computed correctly, but s,
is corrupted to s. The recombination yields the faulty signature s'. It satisfies (with very
high likelihood) ¢ = ged(s' — s,n). Thus, the attack can reveal the RSA private
signing key.

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory 34

Inception Framework

We extended the Inception framework [5] to write phyvsical memory via a
FireWire cable, In order to inject the fault at the right time the adversarial
process has to notify the external DMA deviee when to inject the tanlt.

r.l-l.l- l!ll.l [lJi!‘-. 1|III' II-I]"L'II'II!‘-'.-!'I'].-EI] |.|'I'IJII'li'h"-u .-'I”I.IIZ'I-IrlI'.H il |J'IIZ'-I'|." I.I-I. tllL"l[I'i:ll:'n'. r[.'|:Ili'

memory location is then sent to the external agent. Once negotiated, the

adversarial process uses this memory location to notify the external DMA Fig. % Ineeption
deviee when to inject the fault, framnewoek
\, A
S. Gueron * Hackers to Hackers 2016l * 35

Attacks on Encrypted Memory

Preparation

(D)

target (Key element p)

Identifying fault-injection>

Identifying Prime+Probe >

target (do_sign function

- e EeEEmEEEEEEEEEE ==

Fi

Attacking GnuPG

Prephase Attack
I (1)

Prime+Probe
profiling

N

o. 4: The three steps of our fault injection attack.

Setup DMA. >:: A]loc'aqon +| Fault injecﬂon>
communication /i prediction prime p

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory 36

Page Allocator Prediction

To do the fault injection we have to
determine the physical address of the
prime factor p. As it is allocated on the
heap it is necessary to predict its phys-
ical address. To achieve this, we anno-
tated GnuPG to print the virtual and
physical address of the prime p once al-
located. In our adversarial process, we
then allocated a mumber of pages us-
ing mmap and caleulated their respective
physical address using the pagemap.

Attack success probability [%)

100
e
sk
Tk

Gl b

Ak

136 Hi) 250 S 512 Gl TS 200G 1024

Nr. of previously allocated /freed pages [#]

Fig. 6: Success rate of predicting the memory address of prime .

Afterwards we freed all these pages and let GnuPG run. We then compared if the physical address of the prime p was among our

previously allocated /freed pages. When the physical address of the prime was among the previously allocated /freed pages it was
always on the same one. But as can be obtained from the figure only in a certain number of measurements the physical page of
the prime was among the allocated/freed pages at all. Moreover, the overall success rate depended on the number of previously
allocated/freed pages. When allocating/freeing between 380 and 500 pages berfore GnuPG, we are able to
retrieve the GnuPG private key with success probability of ~60% per session.

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory 37

What about the cloud scenario?
Hypervisor has management interfaces

VM Introspection capabilities exist for legitimate security
reasons

* Inspect inside guest VMs, to auto-configure network elements, to
distribute resources

The same capabilities can be “abused” by a malicious
administrator (even in the presence of a trusted hypervisor)

Memory encryption of guest machines remove the ability of
administrator to snoop into the VM’s memory

* Adifferent key per-VM is necessary, to avoid replay attacks with known
plaintext/ciphertext in another VM fully controlled by the attacker

* CPU control through introspection is similar to JTAG control (flow changes
can be performed without a BRBC attack)

 BRBC attack might be more reliable in scenarios where multiple
connections are made to the machine (like in a server scenario)

Virtualization-based
Blinded Random Corruption Attacks

are real...

Memory encryption with VM-unique keys
The threat model

Cloud service provider hosts multiple customers’ VM'’s
But users do not necessarily trust this remote environment:

— An operator at the cloud provider’s facility can use the
hypervisor’s capabilities to read any VM’s memory

Assumption: the hypervisor is trusted (else — game over)
* Measured hypervisor

Memory encryption:

— Each guest VM encrypts its memory space with a unique
(per-VM) key

— Hypervisor capabilities remain, but:

Since memory is encrypted with a VM-unique key, the user’s
data privacy is protected

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory 40

* Your data privacy is safe with us

* Your VM’s memory is encrypted
— With unique-per-VM encryption key!

* So, let’s login as root into your VM

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

Did you know?

A per-VM config file allows the admin to enable “debug’.
It is an important feature offered by VMware (and most Hypervisors)

Victim.vmx config file

—JC Jduae 1 o' o ety Wttt BnChon' Dl - Dvwita 7.0 200 pertwnr Dvvl - Dipbosey 70001508 pmonqt s - Mlonegped= - for remOte dEbu ggi ng‘l

T OHE A SR TR Be AN aa T BRI W ebugStub.listen.guest32 = "TRUE"

* 5 Tl - g, 77 Oniretres s 1 A L] . .
- Eéb‘[i‘.ﬁ'é?f wiw ebugStub.hideBreakpoints = "TRUE"
gpiahcl.parent = "SLT onitor.debugOnStartGuest32 = "TRUE"

checkpoint.vmState

¢ usb.autoConnect.device = "" ebugStub.listen.guest32.remote = "TRUE"
79 tools.remindInstall "TRUE" e .
0 idel:0.startConnected = "FALSE" usb:u -Present = TRUR

1 tnnlﬁrnstalLManaqer.updateCnunter "q0m
2 tools.syncTime = "FALSE"
Ethernetl.present "TRUE" .
I ethernetl.connectionType = "hostonly™ B t th f t
ethernetl .wakeOnPcktRcv "FALSE" u IS ea‘ u re
6 ethernetl.addressType = "generated"
ethernetl.pciSlotHumber e [g grants us
8 ‘ethernetl.generatediaddress = "00:0c:29:§9:81:24"
12 ethernetl.generatedAddress0Offset = "107
0 sound.startConnected = "FALSE"

Tor Temote debusing the ability to write to memory

! HebugStub.listen.guest32 "TRUE"
ebugStub.hideBreakpoints = "TRUE"
nitor.debugOnStartGuestiz = "TRUE"
ebugStub.listen.quest3?. remote = "TRUE"
ushb:U.present = "TROLE"
usb:0.deviceType = "hid"
! ush:0.port = "O"

n_am

ush:0.parent = "-1

Picrrea ins 4 gt 1 NP a1 231 insi Gl i3 Said0 Dot Bcresy N IR L

S. Gueron * Hackers to Hackers 2016l *
Attacks on Encrypted Memory

42

Connecting to the hypervisor debug stub

The attacker connecting to the hypervisor debug stub of
the attacked guest (“victim”)
(as we enabled debug in the configuration of that guest)

[AttackerM 1# gdb

MU gdb (GLDBE) Hed Hat Evnterprize Linux (7.2£-98.el6)
opyright (C) ZB818 Free Software Foundation, Inc.

icense GPLv3+: GHU GPL wersion 3 or later <htip:/-/gnu.org

1iz iz free software: you are free to change and redistrib
1iere is NO WARRANTY, to the extent permitted by law. Type

and “show warranty” for details.

1is GDB was configured as "xB6_64-redhat-1inux-gnu’.
or bug reporting instructions, please see:
http:/swas, onu . orgssof twaresgdbsbugs.s>

(gdb) target remote 192.168.69.1:883Z_

The attacker is connected

Has control over the execution of the target VM

[AttackerUM 1#t gdb

aHU gdb (GDE) Hed Hat Enterprise Linux (7.2-9H.el6)

opuyright (C) ZA18 Free Software Foundation, Inc.

icense GPLv3i+: GNU GPL wer=zion 3 or later <http:- - gnu.org-licenses-gpl.html>
1ig i free software: you are free to change and redistribute it.

iere is NO WARRANTY, to the extent permitted by law. Type “show copying”
and “"show warranty"” for details.

112 GDB was conf igured as "xB6_64-redhat-1inux-gnu®.
or bug reporting instructions, please see:
http: /2w gnu.org-sof tware/gdb bugs->.
(gdb) target remote 192.168.69.1:8832
emote dehogming nsiog 192 1683 .69.1:8832
.ﬂxfffffffﬂ in 77 ()
(gdb)

The show must go on
let the execution continue (for the target)

C

Attacker™ 1# gdb
iNU gdb (GDBE) Red Hat Enterprise Lixiux (7.2-98.el6)

opuright (C) 2818 Free Software Poundation, Inc.
icense GPLuv3+: GNU GPL wersion/3 or later <http: - gnu.org-licenszes-gpl.html>

Thiz is free software: you are/free to change and redistribute it.
There is NO WARRANTY, to the/extent permitted by law. Type "show copying"

and 'show warranty"” for defails.
This GDB was configured as "xB6_64-redhat-1inux-gnu".

or bug reporting instructions, please =ee:
http: 2w gnu . org-20f tware/gdb-bugs->.
gdb) target remote” 192.168.69.1:86832
lemote debugging A=ing 192.168.69.1:86832

A TR in 77 ()

Meanwhile, on the targeted VM
Targeted VM boots normally

asking for disk encryption in this case

The legitimate user has no way to know his VM is
being debugged...

He sees a normal screen, installs his system,
doing whatever

pading, please wait./.
[1.9858711 =d B:8:8:8: [=dal Assuming drive cache: write through
[1.986575]1 =d B:4:8:8: [=dal Assuming drive cache: write through
[1.9882631 =d B/H:B:8: [=sdal Assuming drive cache: write through
Uolume group "devel"” not found
skipping volume /group devel
nable to find LUAM volume devel- root

Uolume group "devel” not found
skipping wvolurie group devel
nable to find /LUM volume devel swap_1
nlocking the disk sdevs/disksby-uunid-belde?bc-b956-4f95-b422-87d88895a182
rypt)
nter passphrase:

We don’t know the password...

The authentication mechanism in the targeted VM works!
We cannot login without having a password, and thanks to
the disk encryption, we can’'t do much Wishful thinking

Of course we fall

Debian GHNUASLINu= 7 devel tiyl

Ideuel login: root
Fas=sword:
Login i1ncorrect

devel login: _

Can you please stop for a moment?

In the debugger, we stop the targeted VM A
execution with a ctrl+c C

NU gdb (GDE) Red Hat Enterprise Linux (V.2-98.elb)
opyright (C) 2818 Free Software Foundation, Inc.
icense GPLv3+: GHU GPL werziom 3 or later <http_ s#gnu.org-slicenses-sgpl.html>
iz iz free software: you are free to change a0d redistribute it.
ere is NO WARRANTY, to the extent permitted by law. Type “show copying”
and "show warranty” for details.
is GDB was configured as "xB6_64-redhat-linux-gnu".
or bug reporting instructions, pl<ase see:
http /7wt gnu . org-sof tware gds-bugs.>.
(gdb) target remote 192.168.G9.1:8832
lemote debugging using 12€.168.69.1:8832
A fEEFEER in 77 ()

FeeAdAR Y o~

ontinuing.

C

rogram received signal SIGINT, Interrupt.
xc1824814 in 77 ()

(gdb)

We add a breakpoint
and let the targeted VM continue

breakpoint

aHU gdb (GDB) Red Hat Enterprise Linux (?7.2-98.elb)
opyright (C) ZB1H Free Software Foundation, Inc.
icense GPLvd+: GHU GPL wvers=ion 3 or later <http:- - gud.org
1iz is free software: you are free to change and redistri
iere is NO LMRRANTY, to the extent permitted by law. Typ
and “show warranty” for details.
11 GDB was conf igured as “"=86_64-redhat-Linu=—gnn' .
or bug reporting instructions, please =gé:
http . 7wag. gnu . org-sof tware-sgdb-bugs-2.
(gdb) target remote 192.168.69.1:8832Z

lemote debugging wusing 192.168.6971 :86832
A= TfEFFFfA in 27 ()

Program received signxl SIGINT, Interrupt.
Hxc1B824814 in 77 ()

reakpoint 1 at BxBH4abeb
Codb) o

Fgﬂh] break *==ogliabeEb

Try to log-in again?
We try to log-in to the targeted VM: it hits the breakpoint

lemote debugging wsing 19£2.168.69.1:8832
A FEFFFEA in 77 ()

gdb) c

ontinuing.

C

'rogram received signal 3IGINT/ Interrupt.
A=c 1824814 in 77 ()

gdb) break =HxOH1abeb

ireakpoint 1 at HxSH4akeb

gdb) cC

ontinuing.

ireakpoint 1, BxHOH4abeb in 77 ()

h I -5
TLLY I

Try to login as root?

But we still do not know the password
Can the number 1T help us?

iebian GHUASLinu= 7 devel ttyl
devel login: root

ogin incorrect

devel loagin: _

Random corruption: overriding memory

Memory is encrypted
- But we do not need to read the contents of the memory,
- And do not care about the eventual (garbage) value of the decrypted memory

m = 3.141592653589793238462643 is random enough

emote debugging using .1bo . b

ontinuwing .

C

rogram received sigual SIGINT, Interrup
Hxc 124814 in Y ()

(gdbl break =HxHH4dabeb

Breakpoint 1 at BxO8H1abeb

(gdbl cC

ontinwing .

B w o E e e B e e e S
Fg‘dh] set {intiIH=xBH566414 .
Cgdbh) C

ontinwing.

We won

No password asked: password prompt does not even show up.

We got root access to the attacked VM
We can copy all the information that the memory encryption tries to hide

iebian GHNUSLinux 7 devel ttyl

dewvel login: root

2 fallures since las
ast was Tue Sep 6 16:25:37 2016 on Sdevsttyl.

Summary and conclusions

Hierarchical model of the A-B-C attackers
Formalization the notion of BRBC attack
Demonstration of a BRBC attack

The well known fault attacks from the smartcard world can be imported to
the PC and cloud world.

Encryption-only by itself is not necessarily a “good enough”
defense-in-depth mechanism against arbitrary memory write primitive

Dilemma: What is easier/viable:

— Remove *ALL* cases of arbitrary writes for *ALL* platforms the technology
would support (which would depend on integration teams capabilities to
guarantee that)

— Or support encryption with authentication

Obrigado pela sua atencao

Thank you for your attention

