
Hackers to Hackers Conference 2016 (Thirteenth Edition)
October 22-23, 2016, San Paulo, Brazil

Is your memory protected?
Attacks on encrypted memory and

constructions for memory protection

Shay Gueron
University of Haifa, Israel

Intel Corp., Intel Development Center, Haifa, Israel

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
1

Agenda

• Is DRAM really vulnerable?

• Does encryption save the day?

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
2

Demonstrating recent works (2016)
with multiple collaborators

• Blinded random corruption attacks

• HOST 2016

• IEEE International Symposium on Hardware Oriented Security and Trust

• Rodrigo Branco ⱡ and Shay Gueron

• ⱡ Intel corporation, Security Center of Excellence

• Fault Attacks on Encrypted General Purpose Compute Platforms

– To be published

– Announced as a poster at CHES 2016

– Shay Gueron, Jan Nordholz * , Jean-Pierre Seifert * , Julian Vetter *

– * TU Berlin, Germany

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
3

Background

Old news

• Adversaries with physical access to attacked platform – are a concern

– Mobile devices (stolen/lost)

– Cloud computing (un-trusted environments)

• Read/write memory capabilities as an attack tool have been demonstrated:

– Using different physical interfaces

– Thunderbolt, Firewire, PCIe, PCMCIA and new USB standards

• Consequences of DRAM modification capabilities:

– Active attack on memory are possible

– Attacker can change code / data from any value to any chosen value

– But this is too easy… right?

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
4

Underlying attack assumption on the threat model:
The attacker has physical means to modify DRAM

Different attacker’s tactics

• Passive attack: the attacker can only eavesdrop DRAM contents, but is not
able to inject or interfere with it (in-use or not)

– Non-existent in reality

• Active static attack: the attacker can read DRAM contents but cannot

modify in-use/to-be-used (saved) DRAM

– Example: cold boot attack

– The attack is on the data privacy

• Active dynamic attacks: the attacker can read and modify DRAM contents
that are in-use/to-be-used (saved)

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
5

The effectiveness of memory encryption without authentication is limited to
active static attacks,

since the ability to modify in-use/to-be-used DRAM is assumed to be denied

Transparent memory encryption

• Some memory protection technologies against active dynamic attacks
were proposed

– Limiting the attacker’s physical ability to read/write memory

• E.g., blocking DMA access in some scenarios

– Memory encryption

• Memory encryption using “transparent encryption” mode:

– Simpler, cheaper, faster than “encryption + authentication”

– Changes the assumptions on read/written memory capabilities of the attacker

– Therefore, seems to be effective for limiting active dynamic attacks

• Memory encryption effects:

– Attacker has limited control on the result of active attacks

– But the physical memory modification capabilities remain available

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
6

Underlying attack assumption: attacker has physical means to modify DRAM

Blinded Random Block Corruption
(BRBC)

• Under memory encryption, the attacker has limited capabilities

• Blinded Random Block Corruption (BRBC) attack

• (Blinded) The attacker does not know the plaintext memory values he can
read from the (encrypted) memory.

• (Random (Block) Corruption) The attacker cannot control nor predict the
plaintext value that would infiltrate the system when a modified (encrypted)
DRAM value is read in and decrypted.

• When using a block cipher (in standard mode of operation), any change in the
ciphertext would randomly corrupt at least one block of the eventually
decrypted plaintext

• Question: does memory encryption (limiting the active dynamic attacker
capabilities to BRBC only) provide a “good enough” mitigation in practice?

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
7

Underlying attack assumption: attacker has physical means to modify DRAM

We will show that…
– Despite limited capabilities, dynamic active attacks are possible

– Encryption-only does not offer a defense-in-depth mechanism against
arbitrary memory overwrites without removing capabilities assumptions

• The BRBC attacker is able to create Time-of-check/Time-of-use (TOCTOU)
race conditions all around the execution environment

– Usual control-flow hijacking attacks require precise pointer control to redirect
flow of execution. Usual DMA attacks perform precise code modification

– Data-only attacks caused by a BRBC attacker can be induced after some code
checks, therefore cause TOCTOU races that invalidate the results of such checks

– Unexpected computation (and flows) can emerge (since code is driven by its
input data)

• Data-only based attacks, thus control flow enforcement can’t prevent

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
8

Underlying attack assumption: attacker has physical means to modify DRAM

The A-B-C attacker model

• Access Seeking Attacker

This attacker is not the owner of the platform, but got it to his possession, in a
locked state. He wishes to get an user access, in order to steal the data on
the system.

• Breaching Attacker

This attacker is a legitimate user of the platform, who wishes to breach some
of the system’s policies or circumvent restrictions on his privileges.

• Conspirator Attacker

This attacker is also a legitimate user of the platform/environment. He has
administrative powers and conspires to collect other users’ data.

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
9

Underlying attack assumption: attacker has physical means to modify DRAM

Becoming “root” on a locked system with a
BRBC attack

global var1…varn

global preauth_flag

global preauth_related

code_logic() {

if (preauth_enabled) {

call_preauth_mechanism() -> sets preauth_flag if successful

}

repeat_auth:

if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:

return;

}

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
10

Becoming “root” on a locked system with a
BRBC attack

global var1…varn

global preauth_flag

global preauth_related

code_logic() {

if (preauth_enabled) {

call_preauth_mechanism() -> sets preauth_flag if successful

}

repeat_auth:

if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:

return;

}

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
11

Becoming “root” on a locked system with a
BRBC attack

global var1…varn

global preauth_flag

global preauth_related

code_logic() {

if (preauth_enabled) {

call_preauth_mechanism() -> sets preauth_flag if successful

}

repeat_auth:

if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:

return;

}

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
12

Becoming “root” on a locked system with a
BRBC attack

global var1…varn

global preauth_flag

global preauth_related

code_logic() {

if (preauth_enabled) {

call_preauth_mechanism() -> sets preauth_flag if successful

}

repeat_auth:

if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:

return;

}

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
13

Becoming “root” on a locked system with a
BRBC attack

global var1…varn

global preauth_flag

global preauth_related

code_logic() {

if (preauth_enabled) {

call_preauth_mechanism() -> sets preauth_flag if successful

}

repeat_auth:

if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:

return;

}

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
14

Becoming “root” on a locked system with a
BRBC attack

global var1…varn

global preauth_flag

global preauth_related

code_logic() {

if (preauth_enabled) {

call_preauth_mechanism() -> sets preauth_flag if successful

}

repeat_auth:

if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:

return;

}

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
15

Becoming “root” on a locked system with a
BRBC attack

global var1…varn

global preauth_flag

global preauth_related

code_logic() {

if (preauth_enabled) {

call_preauth_mechanism() -> sets preauth_flag if successful

}

repeat_auth:

if (preauth_flag) goto auth_ok;

authentication_logic();

auth_ok:

return;

}

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
16

BRBC Attack to the preauth_flag

Becoming “root” on a locked system with a
BRBC attack

global var1…varn

global preauth_flag

global preauth_related

code_logic() {

if (preauth_enabled) {

call_preauth_mechanism() -> sets preauth_flag if successful

}

repeat_auth:

if (preauth_flag) goto auth_ok;

authentication_logic(); -> THIS NEVER GETS EXECUTED!

auth_ok:

return;

}

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
17

TOCTOU (Time-of-use/Time-of-check) Race
Condition

• This was caused by our arbitrary memory write (the BRBC)

• The corrupted values adjacent to the preauth_flag were not used at this
moment (thus the block corruption is not a problem)

• The check for the preauth_flag only checks for not 0 (thus we don’t need
to control the exact value)

• But how do we win the race?

– In this case, quite simple: We just cause the authentication to fail at the first
time (when it does ask the password)

• The system waits for the password prompt

• We cause the corruption and input invalid password

• The authentication fails and the logic is repeated, but this time with the corruption!

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
18

Experiment

• Two demonstrations that realize the underlying attack assumptions

– A debugger to make it easy to step through and see the corruption effect

– The JTAG to demonstrate the physical addresses are not a concern

• SW mitigations are not feasible because the attacker has lots of
possibilities for targets (not only ! 0 comparisons). Some examples:

– If an attacker overwrites the NULL terminator of a string, he can generate
buffer overflows, memory leaks

– If an attacker overwrites an index, he can generate out-of-bounds writes, that
might lead to user-mode dereferences if in kernel-mode context

– If an attacker overwrites a counter, he can generate REFCOUNT overflows,
leading to use-after-free conditions

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
19

Underlying attack assumption: attacker has physical means to modify DRAM

The BRBC attack on a login program
(using debugger-based overwrites)

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
20

On the Attacked-Terminal:
The attacker types any (not even valid)
username

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
21

On the Demo-Terminal:
memory overwriting capability is simulated by
using a debugger: we connect to the login
process on Attacked-Terminal

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
22

On the Attacked-Terminal:
the attacker types any (invalid) password, so the
login process requests the username again. The
attacker types his desired username (``root'' in
this attack)

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
23

On the Demo-Terminal:
using the debugger, we demonstrate how we
monitor the correct process, and set a
breakpoint

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
24

On the Demo-Terminal:
the effective random corruption is shown (we
chose the 16-bytes string ``16 bytes garbage'' to
be the ``random'' block value

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
25

On the Attacked-Terminal:
voila Due to the random corruption, the system
does not ask again for a password, and logs the
user in - as ``root''.

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
26

The BRBC attack on a login program

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
27

Demonstration using the JTAG Interface

• The difference on the JTAG demonstration is:

– Establish the possibility of the attack against the physical address space
instead of the virtual one (as with the debugger)

– Demonstrate that blinded reads are enough to gather locality of the targeted
overwrite

– Understand possible mitigations and their impacts on the attack (for example,
CET – Control-flow Enforcement Technology would not have prevented the
attack either and can’t be considered another layer of defense against BRBC)

• Limitations of the JTAG attack

– For the MEE case, the JTAG access would be encrypted/decrypted, thus it
would not be dealing with the encrypted content

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
28

Demonstration using the JTAG Interface

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
29

Different Attack Scenarios and Targets

• Attacker with user privileges on the machine

– Higher control/visibility of the memory space

– Tries to bypass security policies

• Local administrator (common on cloud-based scenarios)

• All system software/components can be seem as targets

– We just demonstrated in a highly-limited scenario (locked machine, unknown
software running, little to no information on the OS details)

• As more interactions with the system, as bigger is the scope of possible
attack targets (as discussed previously)

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
30

Mitigation Techniques
• Hibernation when used together with proper disk encryption

• VT-d/IOMMU and PMRs

– Limits DMA capabilities exposed

– Might not be enough against certain attackers (that have physical access) and
in some platforms (only effective if the attack requirement is fully removed)

• Software self-protection (or control flow enforcement technologies)

– Attack uses valid flows with invalid data (data-only attack) bypassing CET

– Different attack targets make software hardening inviable

• Memory encryption with Authentication

– Able to detect the arbitrary change and prevent the attack

• Intel SGX (Software Guard eXtensions)

– Currently employ authentication and replay protection

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
31

The revenge of the fault attacks
(now available in the PC world)

Work by: Gueron, Nordholz, Seifert, Vetter

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
32

The return of fault attacks (to the PC world)
Gueron, Nordholz, Seifert, Vetter

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
33

• Adversary has physical access to a compute platform

– But no root privileges

• Able to install an unprivileged malware process on the system.

• Can physically access the platform (e.g. plug in a USB stick or connect a
Firewire device).

• Victim is aware of the valuable assets on his compute platform, and has
therefore enabled main memory encryption to protect specific processes.

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
34

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
35

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
36

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
37

What about the cloud scenario?
Hypervisor has management interfaces

• VM Introspection capabilities exist for legitimate security
reasons
• Inspect inside guest VMs, to auto-configure network elements, to

distribute resources

• The same capabilities can be “abused” by a malicious
administrator (even in the presence of a trusted hypervisor)

• Memory encryption of guest machines remove the ability of
administrator to snoop into the VM’s memory
• A different key per-VM is necessary, to avoid replay attacks with known

plaintext/ciphertext in another VM fully controlled by the attacker

• CPU control through introspection is similar to JTAG control (flow changes
can be performed without a BRBC attack)

• BRBC attack might be more reliable in scenarios where multiple
connections are made to the machine (like in a server scenario)

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
38

Virtualization-based

Blinded Random Corruption Attacks

are real…

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
39

Memory encryption with VM-unique keys
The threat model

• Cloud service provider hosts multiple customers’ VM’s

• But users do not necessarily trust this remote environment:

– An operator at the cloud provider’s facility can use the
hypervisor’s capabilities to read any VM’s memory

• Assumption: the hypervisor is trusted (else – game over)

• Measured hypervisor

• Memory encryption:

– Each guest VM encrypts its memory space with a unique
(per-VM) key

– Hypervisor capabilities remain, but:

Since memory is encrypted with a VM-unique key, the user’s
data privacy is protected

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
40

• Your data privacy is safe with us

• Your VM’s memory is encrypted

– With unique-per-VM encryption key!

• So, let’s login as root into your VM

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
41

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
42

Did you know?

A per-VM config file allows the admin to enable “debug”.
It is an important feature offered by VMware (and most Hypervisors)

But this feature

grants us

the ability to write to memory

Connecting to the hypervisor debug stub

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
43

The attacker connecting to the hypervisor debug stub of

the attacked guest (“victim”)

(as we enabled debug in the configuration of that guest)

The attacker is connected

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
44

Has control over the execution of the target VM

The show must go on
let the execution continue (for the target)

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
45

c

Meanwhile, on the targeted VM

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
46

Targeted VM boots normally
asking for disk encryption in this case

The legitimate user has no way to know his VM is

being debugged…

He sees a normal screen, installs his system,

doing whatever

We don’t know the password…

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
47

Wishful thinking

Of course we fail

The authentication mechanism in the targeted VM works!

We cannot login without having a password, and thanks to

the disk encryption, we can’t do much

Can you please stop for a moment?

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
48

^C
In the debugger, we stop the targeted VM

execution with a ctrl+c

We add a breakpoint
and let the targeted VM continue

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
49

breakpoint

Try to log-in again?

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
50

We try to log-in to the targeted VM: it hits the breakpoint

Try to login as root?

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
51

But we still do not know the password

Can the number 𝝅 help us?

Random corruption: overriding memory

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
52

𝜋 = 3.141592653589793238462643 is random enough

Memory is encrypted

- But we do not need to read the contents of the memory,

- And do not care about the eventual (garbage) value of the decrypted memory

We won

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
53

No password asked: password prompt does not even show up.

We got root access to the attacked VM
We can copy all the information that the memory encryption tries to hide

Summary and conclusions

• Hierarchical model of the A-B-C attackers

• Formalization the notion of BRBC attack

• Demonstration of a BRBC attack

• The well known fault attacks from the smartcard world can be imported to
the PC and cloud world.

• Encryption-only by itself is not necessarily a “good enough”
defense-in-depth mechanism against arbitrary memory write primitive

• Dilemma: What is easier/viable:

– Remove *ALL* cases of arbitrary writes for *ALL* platforms the technology
would support (which would depend on integration teams capabilities to
guarantee that)

– Or support encryption with authentication

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
54

S. Gueron * Hackers to Hackers 2016l *

Attacks on Encrypted Memory
55

Obrigado pela sua atenção

Thank you for your attention

