
1

Pentesting DevOps Environments

Matthias Luft, mluft@ernw.de, @uchi_mata

mailto:mluft@ernw.de
https://www.twitter.com/uchi_mata

2

ERNW

o Vendor-independent

o Established 2001

o 70 employees, 45 FTE consultants

o Continuous growth in revenue/profits
o No venture/equity capital, no external financial

obligations of any kind

o Customers predominantly large/very large
enterprises
o Industry, telecommunications, finance

3

whoami

o CEO of ERNW GmbH

o Technical background in hypervisor security

o From pentester to researcher to consultant
to team lead

o Dealing with Virtualization Security since
2008

44

Agenda

o DevOps?

o Attack Surface

o Attacks & Countermeasures

5

DevOps?

o Developers & Operations? … & Security?
o SecDevOps?

o DevSecOps?

o DevOpsSec?

o Agile?

o CI/CD?

o Docker? Kubernetes? Marathon? CoreOS? …

o Infrastructure-as-Code?

o ….

6

DevOps

7

DevOps

“DevOps is the philosophy of unifying
Development and Operations at the culture,
system, practice, and tool levels, to achieve
accelerated and more frequent delivery of value
to the customer, by improving quality in order to
increase velocity.”

Rob England, 2014

88

DevOps

o Culture & Practice

o Technology & Tools

9

Communication & Collaboration

o Embrace cross-functional roles/teams

o No silos of knowledge, language, goals

o Tooling:

o Repositories of Code & Knowledge

o Planning and Project Management

o Analytics

o Communication Tools

10

Difference to Agile Methods?

o Agile Methods focus on software
development.

o DevOps focusses on software deployment.

o Both share many approaches, ideas and
tools!

o Thoughts on Agile Development & Security

https://insinuator.net/2017/02/agile-development-security/

11

DevOps vs. Continuous Delivery

“Continuous Delivery (CD) is a software
engineering approach in which teams produce
software in short cycles, ensuring that the
software can be reliably released at any time. It
aims at building, testing, and releasing software
faster and more frequently.”

DOI: 10.1109/MS.2015.27

https://doi.org/10.1109/MS.2015.27

12

Continuous Deployment

… is often confused with Continuous Delivery
and “means that every change goes through the
pipeline and automatically gets put into
production, resulting in many production
deployments every day.”

https://martinfowler.com/bliki/ContinuousDelivery.html

https://martinfowler.com/bliki/ContinuousDelivery.html

13

Bringing it all together

o Agile Development produces software.
o Continuous Delivery is a paradigm for

development that each sprint (or even more
granular tasks) must result in deployable
software.

o Continuous Deployment is the automated
deployment of software produced by Continuous
Delivery to production.

o DevOps is the approach to complement Agile
Development with deployment aspects and
provide the technology required to deploy fast
and often.

1414

DevOps Technology

15

From Culture to Technology

o We’ve seen the culture and approaches to
continuously develop software that is
deployable/does not hinder deployments.

o How to make deployments

o … faster?

o … reproducible?

o … automated?

16

Core DevOps Technologies

o VCS

o Build Pipeline

o Container Orchestration

17

“CI”
Service

Registry

Container
PlatformVCS

build & test

push image

Sample Build Pipeline

18

Why Container Orchestration?

o Containers provide an independent runtime
environment

o For example, a Docker container runs (or is
at least supposed to) the very same way on
any Docker host

o Ever tried that with a jar/war/egg file? ;-)

o => Every developer can have an environment
identical to production on their own
computer.

19

Why Container Orchestration?

o Container Orchestration solutions provide great
platform features, for example:
o High availability
o APIs for automated deployment
o SDN capabilities
o Load balancing & Auto Scaling
o Metrics
o Logging
o Secret Management
o …

o => Various features that each application was
implementing on its own in the “old” world.

20

Docker?

o Docker?

o Docker Engine?

o Docker Swarm?

o Docker Machine?

o Docker Compose?

o CS Docker Engine? Docker CE/EE?

o Docker Cloud?

o Docker Registry?

o Docker Hub?

o ...

o ...

o Kubernetes, Rancher, Consul, Vault,
LambdaCD, Zookeeper, Mesos ...?

21

Docker & Container

o Docker = Docker Engine

o At least for most people as of 2017.

o What is a container?

o For now: Group of processes managed/isolated via Linux kernel features

o Core features:

o cgroups

o namespaces

o Layered filesystem

22

cgroups

o v1 vs. v2:
o v1 appeared first in 2008 2.6.24
o v2 is re-written and appeared first in 2016 4.5

o https://en.wikipedia.org/wiki/Cgroups:
o Resource limiting – groups can be set to not exceed a configured memory limit, which

also includes the file system cache
o Prioritization – some groups may get a larger share of CPU utilization or disk I/O

throughput
o Accounting – measures a group's resource usage, which may be used, for example, for

billing purposes
o Control – freezing groups of processes, their checkpointing and restarting

o [cgroups]

23

namespaces

o Kernel feature for the isolation/virtualization of resources:

o Mount

o UTS

o IPC

o PID

o Network

o User

o [namespaces]

24

Layered
Filesystem

Source

https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/

25

Layered
Filesystem

Source

https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/

26

27

28

29

30

31

32

33

Container?

o OS Container
o Group of processes isolated/controlled via OS

functionality

o Application Container
o One or more processes running in an OS container

based on an Application Container Image
o E.g. also “runtime instantiation of an

application container image”

o Application Container Image
o Portable base file system and configuration for an OS

container.
o Containing a self-contained application

including all of its dependencies.

34

Container?

o Docker, rkt, LXC are (Application/OS)
Container Management Solutions
o Defining or using (e.g. the OCI format)

Application Container Image Formats

o Providing the filesystem layout for Application
Containers

o Which are then executed

o as OS Containers containing the
processes defined in the Image

o using the created filesystem layout

35

Summary so far

o Containers are not virtual machines

o Shared resources

o Storage/File system

o NIC

o Kernel

36

Docker Swarm

37

Motivation

o So far:

o Isolated processes

o Packaging/deployment

o But what about…

o Scalability?

o High availability?

o Service discovery?

o Ease of deployment?

38

Docker Swarm

o Swarm provides automatic scaling of
containers across an arbitrary count of hosts

o Manager nodes handle cluster management
tasks

o Cluster state maintenance

o Scheduling of services

o API endpoints

o Worker nodes provide servicing and
processing capabilities

39

40

41

Swarms from the inside

o Builds on the Raft Consensus
Algorithm

o Manager nodes keep the
cluster state consistent with
the Raft log

o In case of failure:
o majority of nodes needs to

agree on values

o (N-1)/2 failures tolerated,
otherwise no more requests
are processed

Source: Docker

https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/

42

Advantages

o Scalability
o Additional nodes can easily be joined into the swarm

o High availability
o Still and forever: Apps need to be designed for HA

o If that is the case: Platform failover capabilities

o Service discovery
o Internal DNS

o Services exposed on all worker nodes (routing
mesh/ingress networking)

o Ease of deployment
o Remember demo

43

Routing Mesh

Source: [1]

44

45

Corollary: DevOps Complexity Kills The Pentester

46

Docker Engine

Source

https://github.com/docker/docker/graphs/code-frequency

47

Kubernetes

Source

https://github.com/kubernetes/kubernetes/pulse

48

Attack Surface

49

Attack Surface

o Container breakout

o Cluster compromise/lateral movement

o Remote compromise orchestration layer

50

Complete Cluster Compromise

Compromise Service in
Container

Container Breakout
Compromise

Orchestration Layer

Attack from un-
privileged NW position

Attack from
privileged NW
position

5151

Remote Compromise of the Orchestration Layer

52

Remote Compromise

o containerd socket

o No vulnerabilities yet

o No authentication per default

o access to containerd socket = root compromise.

o Docker image extraction vulnerabilities in the past

o General not: Archive handling is tricky from a security perspective

53

Security Posture

o Known vulnerabilities in the DevOps technology
space?
o Few, differing severity.

o Generally good design and platform choices

o Differing focus on security resources
o Positive: Docker

o https://www.docker.com/docker-cve-database

o https://www.docker.com/docker-security

o Room for improvement: Kubernetes

o https://kubernetes.io/security/

o Issue Tracker area:security

https://www.docker.com/docker-cve-database
https://www.docker.com/docker-security
https://kubernetes.io/security/
https://github.com/kubernetes/kubernetes/issues?utf8=%E2%9C%93&q=label:area/security

5454

Container Breakout

55

Container
Breakout

Comparison

Source

Physical Host Virtual Machine Container

Shared
Resources

Sharing the
network

Sharing the host's
hardware

Sharing the kernel

Attack
Scenario

Attacks via
network on

open ports etc.

Attacks on the
Hypervisor itself

Attacks via Syscall on
the

kernel isolation
(Namespaces, Cgroups,

...)

Protection
Measures

Portfilter, firewalls,
segmentation of

networks
Robust hypervisor

Security controls within
the

container manager,
SELinux, Capabilities

Operational
Effort

Easy, best practices
Complex,

but centrally
managable

Complex due to
relatively

big attack surface

https://www.inovex.de/fileadmin/files/Vortraege/2015/docker-security-nils-magnus-guug-26.03.2015.pdf

56

Kernel Exploitation

o Shared kernel between container and host =>
Kernel vulnerability violates isolation

o Happen on a regular basis:

o https://www.cvedetails.com/vulnerability-
list/vendor_id-33/product_id-47/cvssscoremin-
9/cvssscoremax-/Linux-Linux-Kernel.html

o http://seclist.us/list-of-linux-post-exploitation-
enumeration-and-exploit-checking-tools.html

o https://github.com/rebootuser/LinEnum

https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/cvssscoremin-9/cvssscoremax-/Linux-Linux-Kernel.html
http://seclist.us/list-of-linux-post-exploitation-enumeration-and-exploit-checking-tools.html
https://github.com/rebootuser/LinEnum

57

Kernel Exploitation

o Identify containment:

o https://github.com/jessfraz/amicontained

o Breaking out of namespaces:

o https://grsecurity.net/~spender/exploits/enligh
tenment.tgz

o Which is from 2013, btw.

https://github.com/jessfraz/amicontained
https://grsecurity.net/~spender/exploits/enlightenment.tgz

58

Container Isolation

o Default docker containers run as root

o Pre-1.0 world: Containers do not contain.
o E.g. Device/sysfs/procfs access as root from within container

o Post-1.0 (roughly):
o Still running as root per default

o Reduced capabilities

o Compared to root, increased compared to regular user

o Default AppArmor/Selinux profile

o Default seccomp filter

http://opensource.com/business/14/7/docker-security-selinux

59

Container Isolation

o Default Docker 17.06 container:
o No immediate breakout possible.

o Don’t
o use --privileged
o run containers as root
o use volumes in an unmonitored way

o Do
o Drop all privileges
o Run containers as non-root
o Not disable MAC/seccomp
o Avoid volumes, monitor use of volumes

60

61

62

63

64

6565

Cluster Lateral Movement

66

Cluster Security

So we broke out of
a container…

On manager?
yes no

Cluster Compromise! Compromise a Manager

67

Becoming a Manager

o Wait ☺
o Kill infected container

o => wait for respawn on manager
o => break out again.

o Auto scaling?
o => load on infected service
o => wait for scale-up on manager
o => break out again

o Push rights to registry?
o => modify image
o => put load on services/wait

68

Registry Misconfiguration

Registry Registry Registry

Dev QA Prod

P
u

ll

Push

69

o DCMS often used in Container
Orchestration

o E.g. etcd in k8s

o Bottom line:

o Via some stored configuration,
code exec almost always
possible.

Cluster Compromise via DCMS Backend

7070

Cluster Lateral Movement – Vulnerabilities

Docker Swarm

71

Docker Swarm Lateral Movement

o Via Swarm control plane
o No known vulnerabilities

o Relevant components:
o dockerd/containerd, TCP 2375

o not require for swarm, for sake of completeness – you don’t want to
see this anywhere ;-)

o Dockerd - managers
o TCP/UDP 7946: Gossip-based overlay network control plane
o TCP 2377: RAFT sync

o Dockerd – all nodes
o TCP 4789: VXLAN data plane

72

Docker Swarm Hardening

o No traditional configuration hardening for Swarm

o Preferred solution:

o One Swarm per application

o If not possible:

o Kubernetes does not run workloads on the managers by default

o Docker can be configured to do the same

o Implement access control on your registry

o Pay attention to container hardening against breakouts

https://docs.docker.com/engine/swarm/admin_guide/#distribute-manager-nodes

7373

Cluster Lateral Movement – Vulnerabilities

Kubernetes

74

K8s Vulnerabilities

o Kubelet port (TCP 10250) allowed unauthenticated command
execution

o … e.g. also in central management containers

o Fixed in 1.5

o Default service tokens grant cluster admin privileges
o Fixed if RBAC is used, default from 1.6 on with kubeadm

o Both vulnerabilities result in complete cluster compromise from
within an unprivileged container!

75

Enumeration K8s - Ports

o TCP 10250 kubelet

o TCP 10248 kubelet healthcheck

o TCP 10255 kubelet R/O w/o auth

o TCP 10256 kube-proxy healthcheck

o TCP 10251 kube-scheduler

o TCP 10252 kube-controller-manager

o TCP 6443 kube-apiserver

76

Enumeration Network Plugins

o Ports depend entirely on plugins
o Calico for example has a BGP daemon listening, weave running (various)

other daemons

o Multiple and independent attack surfaces!
o Compromise results in cluster compromise as well!

o High number of relevant plugins:
o Calico
o Flannel
o Weave
o Contrail
o …

77

Enumeration Network Plugins

o Barely any known vulnerabilities

o => No existing vulnerability research!

o No comprehensive security advisories/information on the project
websites

o Exception: OpenVSwitch

78

79

80

81

82

83

8484

Post Exploitation

85

Network Isolation Issues

o Recap:

o Containers share IP address of the host

o How to keep container from…

o accessing non-container services on the host (e.g. SSH)?

o accessing backend systems (e.g. NFS storage only to be used by
host)?

o accessing services on swarm members?

o accessing the orchestration control plane?

o Network movement trivially possible

86

NW Isolation Container => Host

o Option 1: iptables

o Option 2: namespaces

87

iptables

o Docker maintains dedicated iptables chains

o Changes restricted to those chains as far as possible

o Some FORWARD settings required.

o Modifications in non-Docker-chains should work

o Our (non-comprehensive/-production) experience so far: Docker is
quite well restrained to its own iptables entries

o iptables -A INPUT -p tcp --dport 22 -i
docker_gwbridge -j DROP

88

Network Namespace

o Different network namespaces result in different routing tables

o Put SSH service in dedicated network namespace

o Service will only be accessible via next layer 3 device

o Unless you can use raw sockets or tamper with your
devices/netmask/routing ;-)

o Implement filtering there

o Operational nightmare ☺

89

Credential Management

o Container Orchestration solutions offer built-
in secret management

o Always check /var/run/secrets!

90

Conclusions

o Container Orchestration solutions are great
hosting platforms from a functionality
perspective

o Not covered in this talk: How they can actually
be used to improve security.

o Also not covered image governance challenges

o Don’t rely on isolation capabilities (yet).

o Don’t treat them like a hypervisor

91

Conclusions

Go do vuln research on the
DevOps/.io technologies!

92

www.ernw.de

www.insinuator.net

Obrigado pela atenção!

Questions?

mluft@ernw.de

@uchi_mata

https://www.ernw.de/
https://www.insinuator.net/

93

Sources

o [cgroups]
o https://lwn.net/Articles/524935/

o [namespaces]
o https://lwn.net/Articles/259217/
o https://lwn.net/Articles/524952/
o https://lwn.net/Articles/531114/
o https://lwn.net/Articles/531381/
o https://lwn.net/Articles/531419/
o https://lwn.net/Articles/532748/
o https://lwn.net/Articles/532593/
o Hands-on network namespaces:

https://www.howtoforge.com/linux-namespaces

https://lwn.net/Articles/524935/
https://lwn.net/Articles/259217/
https://lwn.net/Articles/524952/
https://lwn.net/Articles/531114/
https://lwn.net/Articles/531381/
https://lwn.net/Articles/531419/
https://lwn.net/Articles/532748/
https://lwn.net/Articles/532593/
https://www.howtoforge.com/linux-namespaces

94

Sources

o [docker_images]

o https://docs.docker.com/engine/reference/buil
der/

o https://docs.docker.com/engine/userguide/en
g-image/dockerfile_best-practices/

o https://docs.docker.com/engine/userguide/co
ntainers/dockerimages/

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/userguide/containers/dockerimages/

95

Sources

o [NCCSecuringContainers]
o https://www.nccgroup.trust/us/about-

us/newsroom-and-
events/blog/2016/april/understanding-and-
hardening-linux-containers/

o [DockerContainerSecIntro]
o https://www.docker.com/sites/default/files/WP_I

ntrotoContainerSecurity_08.19.2016.pdf

o [CISDockerHardening]
o https://benchmarks.cisecurity.org/tools2/docker/

CIS_Docker_1.12.0_Benchmark_v1.0.0.pdf

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/april/understanding-and-hardening-linux-containers/
https://www.docker.com/sites/default/files/WP_IntrotoContainerSecurity_08.19.2016.pdf
https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.12.0_Benchmark_v1.0.0.pdf

96

Sources

Docker Bench: Checking for best practiceso

https://github.com/docker/dockero -bench-security

o Jérôme Petazzoni on Docker Security
E.g.: Containers, Docker, and Security: State of o

the Union
http://events.linuxfoundation.org/sites/events/fileo

s/slides/Containers,%20Docker,%20and%20Secur
ity_%20State%20of%20the%20Union.pdf

http://opensource.com/business/o 14/9/security-
for-docker
https://zeltser.com/securityo -risks-and-benefits-
of-docker-application/

https://github.com/docker/docker-bench-security
http://events.linuxfoundation.org/sites/events/files/slides/Containers, Docker, and Security_ State of the Union.pdf
http://opensource.com/business/14/9/security-for-docker
https://zeltser.com/security-risks-and-benefits-of-docker-application/

97

Sources

o http://devsecops.github.io/

o https://github.com/devsecops/awesome-
devsecops

o https://raesene.github.io/blog/2017/04/02/Ku
bernetes-Service-Tokens/

o https://raesene.github.io/blog/2016/10/08/Ku
bernetes-From-Container-To-Cluster/

http://devsecops.github.io/
https://github.com/devsecops/awesome-devsecops
https://raesene.github.io/blog/2017/04/02/Kubernetes-Service-Tokens/
https://raesene.github.io/blog/2016/10/08/Kubernetes-From-Container-To-Cluster/

