
Software attacks on different type of system firmware: arm vs x86

Oleksandr Bazhaniuk @ABazhaniuk

Yuriy Bulygin @c7zero

Agenda

• Introduction to x86 and arm architecture

• Reverse engineering firmware and hypervisor

• Attack vectors against firmware and hypervisor

• Exploiting Hypervisor

• Conclusions

SMM / BIOS

CPU

App

OS

App

VM

App

OS

App

VM

VMM / Hypervisor

Memory Peripherals

Firmware

Hardware

Platform

P
ri

v
il
e
g

e

System firmware (BIOS/SMM, EFI) & OS/VMM
share access, but not trust

Hypervisor can grant VM direct
hardware access

DMA

A specific Peripheral may have its own processor,
and its own firmware, which is undetectable by
host CPU/OS.

Where is x86 system firmware?

Source: Symbolic execution for BIOS security

https://www.usenix.org/sites/default/files/conference/protected-files/woot15_slides_bazhaniuk.pdf

X86 UEFI [Compliant] Firmware

SEC

Pre-EFI Init

(PEI)

Driver Exec Env

(DXE)

Boot Dev Select

(BDS)

Runtime / OS

S-CRTM; Init caches/MTRRs; Cache-as-RAM (NEM); Recovery; TPM Init

S-CRTM: Measure DXE/BDS

Early CPU/PCH Init

Memory (DIMMs, DRAM) Init, SMM Init

Continue initialization of platform & devices

Enum FV, dispatch drivers (network, I/O, service..)

Produce Boot and Runtime Services

Boot Manager (Select Boot Device)

EFI Shell/Apps; OS Boot Loader(s)

ExitBootServices. Minimal UEFI services (Variable)

ACPI, UEFI SystemTable, SMBIOS table

CPU Reset

ARMv8 Privileges Levels

P
riv

ile
g
e

5

Kernel + Drivers

App App

Secure Kernel

Trustlet Trustlet

Secure Monitor

Hypervisor

EL0

EL1

EL2

EL3

SVC

HVC

SMC SMC ERET ERET

ERET SMC

Normal World Secure World

aarch64

aarch64 or

aarch32

aarch64 or

aarch32

aarch64 or

aarch32

ARMv8 Paging

Level 1

TTBR

Level 2

Level 3

Level 1

Level 2

Level 3

Level 4

VTTBR

Stage 1
D_table

D_table

D_page

Stage 2

VA

IPA

D_table

D_table

D_page

D_table

PA

ARM TrustZone Arch Evolution

PL1 mode

ARMv7, 32 bit

Snapdragon 800 (8274)

TZ Kernel

aarch32

EL1 mode

ARMv8, 64 bit

Snapdragon 808/810 (MSM8992)

TZ Kernel

aarch32

EL3 mode

TZ Monitor

aarch64

EL1 mode

ARMv8, 64 bit

Snapdragon 821 (MSM8996)

TZ Kernel

aarch64

EL3 mode

TZ Monitor

aarch64

Google

Nexus 5

Google

Nexus 5X/6P
Google

Pixel

Qualcomm Snapdragon 810 boot flow stages

RPM ROM

Power detection

Reset APP processor

Power On

APSS ROM

SBL

EL3 TZ Secure

Monitor

EL2 TZ Kernel

EL1TZ Apps

Set RVBAR,

RMR_EL3 to

64-bit mode

Load SBL to OCMEM

Enable TZ run-time

security protection
TZ Kernel and TZ Apps

finishing init of secure

env

Read-Only Read-Write EL2 Hyp

 FC010000

Init DDR

Verify and load

TZ/HYP images

First non-secure code.

HYP loads SBL for OS

RVBAR_EL3

x86 vs ARM Architecture

x86 ARM

Root of Trust Recently introduced Boot Guard

(starting Haswell gen) to provide CPU

based root of trust (Safeguarding

rootkits: Intel BootGuard)

ARM has ROM for root of trust that

checks the boot sequence components.

May have OEM unlock mode

TEE Virtualization based trusted execution

environments. SGX provides enclave

execution to user-mode components.

SMM is also used as TEE (can be

virtualized with STM)

Flexible Secure World arch with

capabilities to run trusted apps. Allows

privilege level separation in the Secure

World context (EL0,EL1,EL3)

Virtualization VMX technology as context switching

between VMX root and VMX guest

modes. Supports privilege level

separation in VMX root

ARM has hyp mode as an exception

level

https://github.com/flothrone/bootguard/blob/master/Intel BootGuard final.pdf
https://github.com/flothrone/bootguard/blob/master/Intel BootGuard final.pdf
https://github.com/flothrone/bootguard/blob/master/Intel BootGuard final.pdf

X86 Hardware Configuration

CPU

1. x86 state: GPR (RAX, …), Control Registers (CRx), Debug Registers (DRx), etc.

2. CPU Model Specific Registers (MSR)

CPU and Chipset (SoC)

1. Processor I/O space: I/O ports and I/O BARs

2. PCIe devices configuration space

3. Memory-mapped PCIe configuration access a.k.a. Enhanced Configuration Access
Mechanism (ECAM)

4. Memory-mapped I/O ranges

5. IOSF Message Bus registers

X86 Memory Mapped I/O Registers

• Devices may have more registers than I/O and PCIe CFG spaces can fit so BIOS may
reserve physical address ranges for devices

• Ranges are defined by Base Address Registers (BAR). MMIO registers are offsets off of
base of MMIO ranges

• Any access to such MMIO range is forwarded to the device which owns this range (local
in the CPU or over a system bus to chipset) rather than decoded to DRAM

• mmio command in CHIPSEC can be used to list predefined MMIO BARs, dump entire
BAR, and read/write MMIO registers

chipsec_util.py mmio list

 MMIO Range | BAR | Base | Size | En? | Description

 GTTMMADR | 00:02.0 + 10 | 00000000F0000000 | 00001000 | 1 | Graphics Translation Table Range
 SPIBAR | 00:1F.0 + F0 | 00000000FED1F800 | 00000200 | 1 | SPI Controller Register Range
 HDABAR | 00:03.0 + 10 | 0000007FFFFFF000 | 00001000 | 1 | HD Audio Controller Register Range
 GMADR | 00:02.0 + 18 | 00000000E0000000 | 00001000 | 1 | Graphics Memory Range
 DMIBAR | 00:00.0 + 68 | 00000000FED18000 | 00001000 | 1 | Root Complex Register Range
 MMCFG | 00:00.0 + 60 | 00000000F8000000 | 00001000 | 1 | PCI Express Register Range
 RCBA | 00:1F.0 + F0 | 00000000FED1C000 | 00004000 | 1 | PCH Root Complex Register Range
 MCHBAR | 00:00.0 + 48 | 00000000FED10000 | 00008000 | 1 | Host Memory Mapped Register Range
...

chipsec_util.py mmio read|write|dump <BAR_name> <off> <width> [value]

chipsec_util.py mmio read SPIBAR 0x78 4
[CHIPSEC] Read SPIBAR + 0x78: 0x8FFF0F40

ARM Hardware Configuration

CPU

1. Core state: GPR (R0/X0 – R15/X15), CPSR, SPSR, etc.

2. Core Configuration Registers (MRC, MRS)

CPU and Chipset (SoC)

1. Memory-mapped I/O ranges

2. PCI over MMIO

Exploring Device MMIO Ranges…

Things we look for in MMIO:

• Registers accessible from different privilege levels

• Registers accessible at Boot vs Run time

• Addresses/pointers in registers

Methods to test MMIO registers:

• Every register in a specific device

• Every page in entire MMIO range

• Non-zero registers

/proc/iomem

Example of ARM SoC MMIO:
Nexus 5x/6p: 0xf9000000 - 0xffffffff

Google Pixel: 0x0000000 - 0x7fffffff

Check known vulnerabilities in x86 UEFI firmware
Issue CHIPSEC Module References

SMRAM Locking common.smm CanSecWest 2006

BIOS Keyboard Buffer Sanitization common.bios_kbrd_buffer DEFCON 16

SMRR Configuration common.smrr ITL 2009, CanSecWest 2009

BIOS Protection common.bios_wp BlackHat USA 2009, CanSecWest 2013, Black Hat 2013,

NoSuchCon 2013

SPI Controller Locking common.spi_lock Flashrom, Copernicus

BIOS Interface Locking common.bios_ts PoC 2007

Secure Boot variables with keys and configuration

are protected

common.secureboot.variables UEFI 2.4 Spec , All Your Boot Are Belong To Us (here &

here)

Memory remapping attack remap Preventing and Detecting Xen Hypervisor Subversions

DMA attack against SMRAM smm_dma Programmed I/O accesses: a threat to VMM?, System

Management Mode Design and Security Issues

SMI suppression attack common.bios_smi Setup for Failure: Defeating Secure Boot

Access permissions to SPI flash descriptor common.spi_desc Flashrom

Access permissions to UEFI variables defined in

UEFI Spec

common.uefi.access_uefispec UEFI 2.4 Spec

Module to detect PE/TE Header Confusion

Vulnerability

tools.secureboot.te All Your Boot Are Belong To Us

Module to detect SMI input pointer validation

vulnerabilities

tool.smm.smm_ptr CanSecWest 2015

http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/cansecwest2006-duflot.pdf
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/cansecwest2006-duflot.pdf
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/cansecwest2006-duflot.pdf
http://www.slideshare.net/endrazine/defcon-16-bypassing-preboot-authentication-passwords-by-instrumenting-the-bios-keyboard-buffer-practical-low-level-attacks-against-x86-preboot-authentication-software
http://www.invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://cansecwest.com/csw09/csw09-duflot.pdf
http://cansecwest.com/csw09/csw09-duflot.pdf
http://cansecwest.com/csw09/csw09-duflot.pdf
http://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
https://cansecwest.com/slides/2013/Evil Maid Just Got Angrier.pdf
http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_BHUSA2013.pdf
https://www.blackhat.com/us-13/briefings.html
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf
http://www.flashrom.org/
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://powerofcommunity.net/poc2007/sunbing.pdf
http://uefi.org/
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://cansecwest.com/slides/2014/AllYourBoot_csw14-mitre-final.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/pacsec2007-duflot-papier.pdf
http://www.ssi.gouv.fr/uploads/IMG/pdf/IT_Defense_2010_final.pdf
http://www.ssi.gouv.fr/uploads/IMG/pdf/IT_Defense_2010_final.pdf
https://www.hackinparis.com/sites/hackinparis.com/files/JohnButterworth.pdf
http://www.flashrom.org/
http://uefi.org/
http://uefi.org/
http://uefi.org/
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf

Unprotected x86 firmware in flash (Skylake based desktop)

DISCOVERING VULNERABLE UEFI FIRMWARE AT SCALE

https://github.com/abazhaniuk/Publications/tree/master/2017/44CON_2017
https://github.com/abazhaniuk/Publications/tree/master/2017/44CON_2017
https://github.com/abazhaniuk/Publications/tree/master/2017/44CON_2017

S3 Boot Script Vulnerabilities in Mac EFI and x86 UEFI

[*] running module: chipsec.modules.common.uefi.s3bootscript

[x][===

[x][Module: S3 Resume Boot-Script Protections

[x][===

[!] Found 1 S3 boot-script(s) in EFI variables

[*] Checking S3 boot-script at 0x00000000DA88A018

[!] S3 boot-script is in unprotected memory (not in SMRAM)

[*] Reading S3 boot-script from memory..

[*] Decoding S3 boot-script opcodes..

[*] Checking entry-points of Dispatch opcodes..

...

[-] Found Dispatch opcode (at 0x4A15) with entry-point 0x00000000DA5C3260:

UNPROTECTED

[-] Entry-points of Dispatch opcodes in S3 boot-script are not in protected

memory

[-] FAILED: S3 Boot Script and entry-points of Dispatch opcodes do not appear

to be protected

Exploiting Mac x86 EFI firmware

Attack. Modifying PRx registers in unprotected S3 resume boot script

X86 memory configuration

chipsec_main -m memconfig

Checking LOCK bits in PCIe config

registers

ARM Based System Boot Flow

• Root of trust is in ROM at APSS/RPM

• Read-only ROM verifies RW firmware

• Uses OTP fuses to program OEM lock

 # adb reboot bootloader

 # sudo fastboot oem unlock

• TrustZone components (Secure World) initialize and set runtime protection before

transferring execution flow to any hypervisor or OS bootloader component

Example of ARM SoC Configuration

Reverse engineering of the x86 UEFI firmware

1. Dump BIOS from SPI chip (or download from vendor web-site)

 Software method: using CHIPSEC tool: chipsec_util spi dump <file_name>

 HW programmer, for example: dediprog

2. Unpack all PEI/DXE executables.

 chipsec_util decode rom.bin

3. Load to IDA Pro

 ida-efiutils - useful scripts for reverse engineer BIOS/UEFI binary (from snare):
https://github.com/snare/ida-efiutils

 Useful blogposts from: @d_olex and http://blog.cr4.sh/

 Find definition of GUID will help to understand functionality

 Use efiperun to emulate EFI executable

https://github.com/snare/ida-efiutils
https://github.com/snare/ida-efiutils
https://github.com/snare/ida-efiutils
https://github.com/snare/ida-efiutils
http://blog.cr4.sh/
http://blog.cr4.sh/
https://github.com/jethrogb/uefireverse/tree/master/efiperun

ARM TrustZone Binary

• (Google phones specific) Download factory image from Google repository

• Use unpack_bootloader_image by laginimaineb to unpack bootloader-<DID>.img

• Extracted files:

• Disassemble tz

TZ

Kernel

TZ

Monitor

https://developers.google.com/android/images
https://github.com/laginimaineb/unpack_bootloader_image
https://github.com/laginimaineb

Test Environment

• Rooting unlocked Android Phones:

CyanogenMod

TWRP with SuperSU and custom kernel

• Useful resources: xda , Code Aurora

• Tools:

The Rekall Forensic and Incident Response Framework

Maplesyrup Register Display Tool

ARMageddon: Cache Attacks on Mobile Devices

Drammer - for testing Android phones for the Rowhammer bug

http://www.cyanogenmods.org/
https://github.com/TeamWin/Team-Win-Recovery-Project
http://www.supersu.com/
http://www.supersu.com/
https://www.xda-developers.com/
https://www.codeaurora.org/
https://www.codeaurora.org/
https://github.com/google/rekall
https://github.com/google/rekall
https://github.com/google/rekall
https://github.com/google/rekall
https://github.com/iadgov/Maplesyrup
https://github.com/iadgov/Maplesyrup
https://github.com/IAIK/armageddon
https://github.com/IAIK/armageddon
https://github.com/vusec/drammer
https://github.com/vusec/drammer
https://github.com/vusec/drammer
https://github.com/vusec/drammer
https://github.com/vusec/drammer
https://github.com/vusec/drammer
https://github.com/vusec/drammer

ARM TrustZone and Hypervisor

Reverse Engineering

https://imgflip.com/i/1t0m31

Open Source TrustZone Implementations

• ARM reference implementation -

ARM Trusted Firmware

• OP-TEE Trusted OS - Linux TEE

using ARM TrustZone technology.

Meets GlobalPlatform System

Architecture spec

• Google’s Trusty is a set of

components supporting a TEE on

mobile devices

https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://source.android.com/security/trusty/

TrustZone Monitor Vector Table

ARMv8 Architecture Reference Manual

Store 6D9B800 to VBAR_EL3

https://static.docs.arm.com/ddi0487/b/DDI0487B_a_armv8_arm.pdf

TrustZone Monitor SMC Exception Handler

EL3 Vector Table

Offset 0x400 from EL3 Vector Table

EL3 SMC exception handler

EL1 aarch64 TrustZone Kernel
VBAR_EL1

Address of EL1 Vector Table

Open Source TrustZone Driver

SCM (Secure Communication Manager) Driver

[1],[2]

Store extra arguments through

memory

Check what type of SMC system

supports

https://android.googlesource.com/kernel/msm/+/android-7.1.0_r0.2/drivers/soc/qcom/scm.c
http://bits-please.blogspot.com/2015/08/exploring-qualcomms-trustzone.html

SMC Handler Arguments in ARMv8 Systems

X0 (handler ID)

X1 (num_args)

X2 (arg0)

X3 (arg1)

X4 (arg2)

X5 (arg3)

SMC Handlers with < 5 args

X0 (handler ID)

X1 (num_args)

X2 (arg0)

X3 (arg1)

X4 (arg2)

X5 (args_buf)

Physical
Address Space

Android Memory

Arguments buffer:

Arg3

Arg4

Arg5

…

SMC Handlers with >= 5 args

Reversing SMC Default Handler…

Check SMC64 or SMC32 event

Check if Entry with ID in X0 exists in SMC

handler table

Check X1 in SMC Handler Table

If Hander has >= 5

arguments then check

arg5,… for

overlapping with TZ

address

Reversing SMC Default Handler…

Check arg0-arg4 arguments for overlapping with TZ

Call SMC dispatch function with

SMC handler pointer and SMC

caller function

Reversing Overlap Checks…

Check “buffer” pointer for overlapping with TZ

Copy “buffer” and check for

overlapping with TZ every DWORD

in the buffer

(Race Condition protection)

How the check for overlap with TZ works

X3 (arg1) X2 (arg0) X4 (arg2) X5 (arg3)

Check address in Xi and

size in Xi+1

for overlapping with TZ

check_args_TZ_addr_overlap() logic

Format:

• Index

• Enable Flag

• Address Begin

• Address End

Reversing SMC Handlers Table…

Format:

• Magic number

• SMC ID

• Arg2 (num_args)

• Arg3

• SMC function pointer

Example of SMC Handler

Write to Arg0 (X3)

ID: 2001302

num_args: 3

SVC_ID: 13

CMD-ID: 2

arg2: 0x23

type: SCM_SIP_FNID

SMC Handler Communicates with Secure Device

Read MMIO register to get

random data from RNG

Reversing Error Codes…

Error code:

FFFFFFEE

Error code:

FFFFFFE9

Different error codes

indicate different

execution flows

Hypervisor on Snapdragon 808/810
VBAR_EL2

TTBR0_EL2

Stage 1

Translation table

Firmware and Hypervisor

Attack Vectors

Run-time Attack Vectors in X86

Kernel + Drivers

App App

SMM/BIOS

Hypervisor

R3

R0

Hardware Configuration

SMI Handlers

Attack Vectors in modern ARMv8 SoC

Kernel + Drivers

App App

Secure Kernel

Trustlet Trustlet

Secure Monitor

Hypervisor

EL0

EL1

EL2

EL3

Normal World Secure World

Additional reading: awesome work on exploiting TrustZone by Gal Beniamini of P0 [1], [2], [3], [4]

http://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html

DMA attack

• Injects UEFI DXE driver into the target
system using preboot DMA attack by
d_olex [1]

• If memory protection (IOMMU) not set
attacker may read/write arbitrary
memory (including UEFI boot service
table)

• DMA also can be runtime attacks,
using for example PCILeech to
compromise OS (for example though
run-time UEFI service table by Alex
Ionescu [2])

https://github.com/Cr4sh/s6_pcie_microblaze/blob/master/README.MD
http://alex-ionescu.com/publications/Recon/recon2017-bru.pdf

Integrated Graphics DMA: Overview

Low MMIO Range

TOLUD

4GB

DRAM

Graphics Aperture

GTT MMIO

Access to

GFx Aperture

GFx Memory

Access to GFx Aperture

(MMIO) is redirected to

DRAM per GTT PTEs

GTT PTEs

Using igd command for DMA access

[CHIPSEC] Executing command 'igd' with args []

 >>> chipsec_util igd

 >>> chipsec_util igd dmaread <address> [width] [file_name]

 >>> chipsec_util igd dmawrite <address> <width> <value|file_name>

• Cannot access low 1MB legacy address space: 0x0 – 0xFFFFF

• Can access Graphics Stolen data memory

• Separate graphics VTd engine (controlled by GFXVTBAR)

References:

Intel Graphics for Linux – Hardware Specification – PRMs

chipsec_util.py igd

https://01.org/linuxgraphics/documentation/hardware-specification-prms
https://01.org/linuxgraphics/documentation/hardware-specification-prms
https://01.org/linuxgraphics/documentation/hardware-specification-prms
https://01.org/linuxgraphics/documentation/hardware-specification-prms
https://01.org/linuxgraphics/documentation/hardware-specification-prms
https://01.org/linuxgraphics/documentation/hardware-specification-prms
https://01.org/linuxgraphics/documentation/hardware-specification-prms

DMA Attacks

Kernel + Drivers

 App App

Secure Kernel

Trustlet Trustlet

Secure Monitor

Hypervisor

EL1

EL2

EL3

Normal World Secure World

Protected by

IOMMU

EL1

Over The Air: Exploiting Broadcom’s Wi-Fi Stack (Part 2)

Broadpwn2

EL0

https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
http://boosterok.com/blog/broadpwn2/

Pointer vulnerabilities

Exploiting SMM pointers…

Phys Memory

SMI Handlers in
SMRAM

OS Memory

RAX (code)

Fake SMM comm buffer

“UEFI” ACPI

EDKII

EDKI

Via ACPI table

Directly in registers

SMI

Exploit tricks SMI handler to write to an address in SMRAM (Attacking and Defending BIOS in 2015)

Comm Buffer

RBX (pointer)

http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf
http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf

Attacking hypervisors via SMM pointers…

Phys Memory

SMI Handlers in
SMRAM

OS Memory

RAX (code)

Fake SMM comm buffer

VMM protected page

“UEFI” ACPI

EDKII

EDKI

Via ACPI table

Directly in registers

SMI

Comm Buffer

RBX (pointer)

Even though SMI handler check pointers for overlap with SMRAM, exploit can trick it to write to VMM

protected page (Attacking Hypervisors via Firmware and Hardware)

Pointer Arguments to SMC Handlers

Physical Address Space

SMC Handlers in

TrustZone memory

Android Memory

Some SMC Handlers write result to a buffer at address passed in X2,…

X0 (handler ID)

X1

X2

X3

X4

X5 SMC handler specific structure

0x6D00000

SMC

Unchecked Pointer Vulnerabilities

Physical Address Space

SMC Handlers in

TrustZone memory

Android Memory

If SMC handler doesn’t validate pointer, it can overwrite TrustZone memory

Fake structure inside TZ memory

SMC

X2 (pointer)

X0 (handler ID)

X1

X3

X4

X5

Examples: Full TrustZone exploit for MSM8974, SMC vulns by Dan Rosenberg

http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html

SMC Pointer Vulnerabilities Fuzzer

Supply an address to

TrustZone in SMC argument

The same error code

indicating overlap detected

Race Condition Issues (TOCTOU)

Physical Address Space

SMC handlers in

TrustZone kernel

Android Memory

SMC handlers may have TOCTOU issues when reading structures from X2

X0 (handler ID)

X1

X2

X3

X4

X5

SMC handler specific structure

CPU0

CPU1

Modify contents

SMC

Unchecked Addresses to MMIO Ranges

Physical Address Space

SMC Handlers in

TrustZone memory

OS Memory

MMIO of (Secure) Device

An address to MMIO of a secure device can be passed to SMC handler. If the

handler doesn’t validate the address it can be tricked to write to the secure device

X2 (pointer)

X0 (handler ID)

X1

X3

X4

X5

SMC

Unchecked MMIO Pointer Fuzzer for TZ

Iterate over

MMIO ranges

SMC argument points to

MMIO range

The same error code

indicating overlap detected

Pointer overlap vulnerability

Firmware use of MMIO

Phys Memory

SMI Handlers in SMRAM

OS Memory

Base Address (BAR)

MMIO range

(registers)

Device PCI CFG

Firmware configures chipset and devices

through MMIO

SMI handlers communicate

with devices via MMIO registers

MMIO BAR Issue

Phys Memory

SMI Handlers in SMRAM

OS Memory

Base Address (BAR)

MMIO range

(registers)

Device PCI CFG

SMI

Exploit with PCI access can modify BAR

register and relocate MMIO range

On SMI interrupt, SMI handler firmware

attempts to communicate with device(s)

It may read or write “registers” within

relocated MMIO

Overlapping SoC Ranges with TrustZone Memory

• MMIO and core registers may contain

addresses to SoC or core ranges/structures

• Example: Debug Buffer, TTBR…

• Overlap range/structure with TrustZone

memory and look for unexpected behavior

• Hardware should properly handle overlap

condition

Physical Address Space

TrustZone memory

MMIO or core register with
an address

OS Memory

Device Range/Structure

Virtualization Based Security

Windows 10 Virtualization Based Security (VBS)

Example: bypassing Windows 10 VSM

Windows SMM Security Mitigations Table (WSMT)

The Windows SMM Security Mitigations Table (WSMT) specification contains details of

an Advanced Configuration and Power Interface (ACPI) table that was created for use

with Windows operating systems that support Windows virtualization-based security

(VBS) features.

This information applies to the following operating systems:

• Windows Server 2016

• Windows 10, version 1607

SMC Argument Pointing to Hypervisor

Read hypervisor memory

Check if hypervisor memory

has changed

Trigger SMC handler

Attacking on ARM hypervisor

Modifying Hypervisor on Snapdragon 808…

• We find hypervisor binary in memory. Must be a copy?

• Let’s try to modify it. The phone reboots! WTF?

• Assumption: stage 2 translation is disabled?

Now we can patch the hypervisor…

Kernel + Drivers

 App App

Hypervisor

Normal World

TrustZone Monitor/Kernel
Secure World

SMC

Kernel (EL1) exploits hypervisor

LPE to get EL2 privileges

The rootkit can protect

hypervisor from kernel access

Patched hypervisor traps access

from kernel (EL1) & app (EL0)

including SMC interface

Patch hypervisor allows

malicious app (EL0) access

entire memory

Patching EL2 Vector Table

sub_6C06E68 sub_6C017FC

One of the EL2 Vector Table

entries

We inject a payload in

the function invoked by

the vector table entry
(0x6C019F8)

PoC Exploit App and Hypervisor Patch

• Exploit app stores some magic number and command in a memory

• Hypervisor rootkit read magic number and executes command

• For example, command “Expose EL1 kernel memory at address X”

Exploit Details

Exploit Details

User mode application can

read EL2 kernel memory
from 0x80000 physical

address using our hyp patch

This has been fixed in Google Pixel

• The trust model has changed on Snapdragon 821 SoC

• EL1 (kernel) is not longer in the TCB of EL2 (hypervisor)

• Hypervisor is no longer accessible from Android kernel (EL1)

Cannot use SMC handler either

• Passing hypervisor address in the SMC argument

• Return error result

• SMC does not allow overwriting hypervisor memory on behalf of EL1

Conclusion

• Increase awareness of architecture and unpatched vulnerabilities

• Software should properly use HW in order to avoid integration bugs

• Many vendors not patched systems for known firmware vulnerabilities

• Similarities between vectors of attacks on x86 and ARM exist and

security architectures can learn from each other

Thank You!

