
Parasite OS

Disclamer
All content shown here expresses my personal opinions and not of my
current employer, Microsoft. Parasite OS is a personal pet project and is not
related to any of my work.

Redmond, October, 2017.

Parasite OS
Prologue

Are you safe?

• Firewall

• Anti-virus

• Intrusion Detection

• Patches

• Processes

Quiz: are you scared of
being hacked?

A. Yes

B. Better not know about it

C. Have processes and technology in place to mitigate the
risks

D. Will get hacked anyway, please don’t hurt me

It might not be for you, but…

• Companies will get hacked;

• People will get hacked;

• Whatever the value of information has…

• … whoever is interested in it, with a motive, will get it;

• And everybody will be in denial.

Quiz: defense vs offense,
who wins?

A. Defense

B. Offense

C. The industry

D. Nobody

Parasite OS
Gustavo Scotti

EXPLOIT

ESCALATE
PRIVILEGES INSTALL ROOTKIT

INSTALL
BACKDOOR

PURPOSE

NETWORK
ROUTING

USER
MONITORING

LOCAL
PROBE ZOMBIE

REMOTE
PROBE SNIFFERS

WAIT
CONDITION

SOCIAL
ENGINEERING

TROJAN HORSE

Yes

No

Post exploitation flow

Activity is monitored
• Most (if not all) malicious code runs over the host

Operating System;

• Operating System can be traced and malicious code
detected;

• Example:

• CreateProcess from java.exe is a bad sign;

• /bin/sh from named is also not good.

Assumptions

• Code is executed by an user (exploitation is irrelevant);

• General users are flawed (easily coerced to run code);

• Mitigation/Heuristic/A.I. tries to catch post-exploitation
(limit over infinite time is perfect detection);

• Professionally crafted backdoors / trojan horses can be
installed.

What is Parasite?

• It is a pseudo Operating System running on top of the
host Operating System;

• Provides System Calls for process, network, file, and
memory management;

• It is small kernel code footprint (~100KiB);

• Universal binaries for any OS

Why?
• Persistency is hard - most of the time processes hidden

by unreliable rootkits;

• Patches to kernel code is under surveillance (i.e. -
PatchGuard);

• People are easily tricked into running trojan horses - and
with static analysis may eventually block ill intended
code;

• JIT execution makes +rwx pages an interesting statistical
model challenge to detect malicious code execution.

How

• Two pseudo-kernels: user-mode, kernel-mode;

• Process/thread scheduler; basic preemption;

• Semaphore/Event based synchronization;

• Becomes a rootkit by design.

PARASITE
KERNEL

FILE SYSTEM

MEMORY
MANAGEMENT

NETWORKPROCESS
MANAGEMENT

PARASITE
KERNEL

FILE SYSTEM

MEMORY
MANAGEMENT

NETWORKPROCESS
MANAGEMENT

Typical System Call
USER MODE PROCESS

SYSTEM CALL

SYSENTER HANDLER

I/O OPERATION

Kernel Mode (ring 0)

User Mode (ring 3)

Pseudo system call
overview

PROCESS

PSEUDO SYSCALL

WRAPPER

HOST SYSCALL

Parasite OS kernel

Differences: ring0 vs ring3
• Parasite contexts wrapped around

kernel-mode threads

• Memory management using kernel-
mode heap with r+x permission

• Network implements raw phy
packets and an independent TCP/
IP stack

• File system is memory-based and
persisted

• Harder to detect, as it looks like
normal OS-kernel activities

• Parasite contexts wrapped
around user-mode threads

• Memory management using user-
mode heap with rw+x permission

• Network wraps BSD sockets
from host OS

• File system is memory-based
only

• Easier to detect, better than most
trojans around

Limitations
• Not POSIX compatible; sorry, no ./configure for compiling most of

your tools

• No process isolation: all pseudo-processes runs and accesses
other pseudo-process’ memory.

• Network code is somewhat convoluted as BSD socket is the
preferred choice for ring3 code and RAW TCP/IP used for ring0;

• Inefficient process scheduler - no quanta or deadlock prevention -
pre-emption is rudimentary;

• Exception handling tries to stabilize processes, but not as robust
as an actual OS

Synchronization

• Context switched over blocked system calls;

• Preemption is very hard (problem: how to stop thread
execution);

• There’s no interruptions in the pseudo kernel;

Filesystem persistency

• Steganography is a good option;

• Exploit TLV (type/length/value) on something:

• Windows Registry;

• Page file.

Network infiltration

• DNS triggering;

• Junk email;

Network exfiltration

• DNS tunnel;

• JavaScript injection;

Process Creation

• Allocates memory;

• Loads binary into memory
(.text*,.*data*,.bss)

• Sets section’s permissions

• Creates process structure and
adds to process list

• Returns process handle if called
using asynchronous flag,
otherwise, switch context to just
created process.

PARASITE
KERNEL

FILE SYSTEM

MEMORY
MANAGEMENT

PROCESS
MANAGEMENT

Future

• Should Parasite OS be free? Open? Consequences.

• Code completion

• Alter’s compiler for rogue calling convention (obfuscation).

Questions?
csh@outlook.com

mailto:csh@outlook.com

