Cripto Hardware com FPGA como ir de do 0 ao 1

Luckas Farias (Judocka)

luckas.judocka@gmail.com

22 de Outubro de 2016

Cronograma

Motivação

Contextualização

Criptografia

Aritmética sobre Corpos Finitos

Hardware!

AES

Módulos em Corpos Binários

Precauções

Ataques conhecidos e vulnerabilidades

Extras

Luckas, quem é você?

- Conhecido como Judocka
- Formado em Ciência da Computação UEL
- Mestrado em Engenharia da Computação USP
- Professor Universitario UAM
- Escoteiro
- ► Membro IEEE
 - Young Professionals
 - Mentor para ramos estudantis
- Geek em eventos:
 - Latinoware
 - CPBR
 - BSideSP
 - CryptoRave
 - Mind The Sec
 - RoadSec
- Engenheiro de coração

Sumário

Motivação

Contextualização

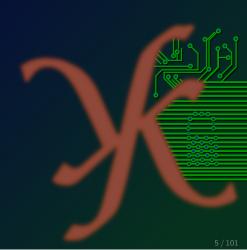
Criptografia

Aritmética sobre Corpos Finitos

Hardware!

AES

Módulos em Corpos Binários


Precauções

Ataques conhecidos e vulnerabilidades

Extras

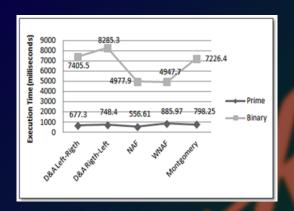
► Tempo?

- ► Tempo?
- Processamento?

- ► Tempo?
- ▶ Processamento?
- ► Conhecimento?

- ► Tempo?
- Processamento?
- ► Conhecimento?
- Otimizações?

- ► Tempo?
- Processamento?
- Conhecimento?
- Otimizações?
- Um pouco mais real...



MICAz (ATMega128)

Corpo	Trabalho	Tempo de execução (s)
	[Malan et al. 2004]	34
	[Yan and Shi 2006]	13.9
Binário	[Eberle et al. 2005]	4.14
	[Szczechowiak et al. 2008]	2.16
	[Seo et al. 2008]	1.14
	[Wang and Li 2006]	1.35
	[Szczechowiak et al. 2008]	1.27
Primo	[Gura et al. 2004]	0.81
	[Uhsadel et al. 2007]	0.76
	[Großschädl 2006]	0.745

Artigo: "Implementação eficiente de criptografia de curvas elipticas em sensores sem fio"

ARM processor at 600MHz

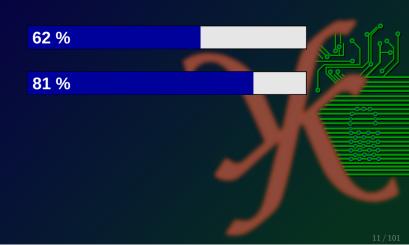
Artigo: "A Performance Comparison of Elliptic Curve Scalar Multiplication Algorithms on Smartphones"

Soluções da Literatura

Board	Curve	Cycles	Time
8-bit processor Atmega 128	163-bit ECC	111.183.513	13.9 segundos
Dispositivos MICAz (ATMega128)	sect163k1	7.022.289	0.95 segundos
Dispositivos MICAz (ATMega128)	sect163k1	5.100.400	0.69 segundos
Texas Instrument MSP430	ECC 160-bit key	5.400.000	(9.9. // 5/
8-bit processor Atmega 128	ECC 163-bit key	3.930.000	(GLV)
8-bit processor Atmega 128	ECC 163-bit key	5.945.000	(Montgomery)

Criptografia em Hardware

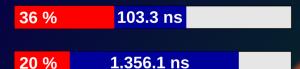
Criptografia em Hardware



Custo de operações em ECC

Eberle

Visualmente

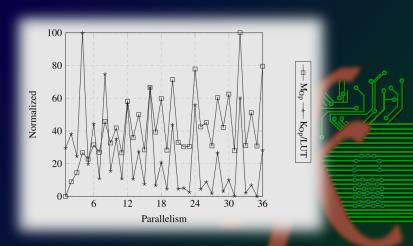

Paralelização da Arquitetura

Eberle

NIST curves F_{163} 62% Multiplicação 36% com Hardware 103.33ns

Curvas genéricas F_{163} 81% Multiplicação 20% com Hardware 1,356.11ns

Visualmente



- ► Eficiência de 156,25% em curvas NIST
- Eficiência de 125,00% em curvas genéricas

Alguns resultados de hardware

	Device		,		Clock	Time
Design	Family	m	R/N	Slices	(MHz)	(μs)
SIG-ECPM	Virtex-[]	113	Ñ	10686	108.3	61
	**	163	N	18079	90.2	106
	**	193	N	19250	90.2	139
	••	233	N	23020	73.6	227
Bednara [2]	Virtex	191	R	n.a.	50	2270
Gura [5][6]	Virtex-E	163	N	n.a.	66.4	143
	**	193	N	n.a.	66.4	187
	••	233	N	n.a.	66.4	225
Eberle [5]	Virtex-II	163	R	n.a.	66.4	300
	••	193	R	n.a.	66.4	420
	**	233	R	n.a.	66.4	510
Nguyen [11]	Virtex-II	233	R	13180	n.a.	2979
Orlando [12]	Virtex-E	167	R	n.a.	76.7	210

Estudo de Paralelismo F_{512}

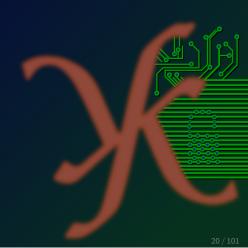
Estudo de Paralelismo F_{512}

Exemplo

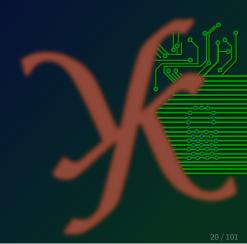
Board x Field	82 106		178	226
Zynq7020	29,371.65	19,495.66	7,336.41	5,233.57
Virtex 7 690T	29,371.65	17,626.98	6,623.95	4,501.74
DE2i-150	10,978.32	7,280.19	2,941.38	2,422.57

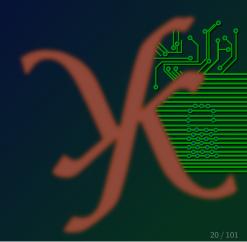
Board \times Field	346	466	562
Zynq7020	1,875.18	1,462.80	984.93
Virtex 7 690T	1,636.20	1,266.70	810.26
DE2i-150	1,167.79	729.71	437.80

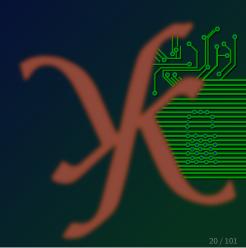
Software



Hardware




► Segurança?


- ► Segurança?
- Criptografia?

- Segurança?
- Criptografia?
- Simétrica e assimétrica?

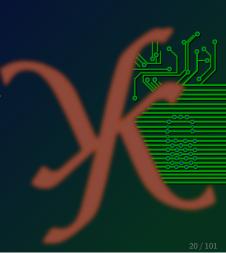
- Segurança?
- Criptografia?
- Simétrica e assimétrica?
- ► AES?

- Segurança?
- Criptografia?
- Simétrica e assimétrica?
- ► AES?
- ► RSA?


- Segurança?
- Criptografia?
- Simétrica e assimétrica?
- ► AES?
- ► RSA?
- Curvas Elipticas?

- Segurança?
- Criptografia?
- Simétrica e assimétrica?
- ► AES?
- ► RSA?
- Curvas Elipticas?
- Curvas Elipticas Criptograficas?

- Segurança?
- Criptografia?
- Simétrica e assimétrica?
- ► AES?
- ► RSA?
- Curvas Elipticas?
- Curvas Elipticas Criptograficas?
- ► Hardware?


- Segurança?
- Criptografia?
- Simétrica e assimétrica?
- ► AES?
- ► RSA?
- Curvas Elipticas?
- Curvas Elipticas Criptograficas?
- ► Hardware?
- Processadores?

- Segurança?
- Criptografia?
- Simétrica e assimétrica?
- ► AES?
- ► RSA?
- Curvas Elipticas?
- Curvas Elipticas Criptograficas?
- ► Hardware?
- Processadores?
- Co-Processadores?

- Segurança?
- Criptografia?
- Simétrica e assimétrica?
- ► AES?
- ► RSA?
- Curvas Elipticas?
- Curvas Elipticas Criptograficas?
- ► Hardware?
- Processadores?
- Co-Processadores?
- ► FPGA?

- Segurança?
- Criptografia?
- Simétrica e assimétrica?
- ► AES?
- ► RSA?
- Curvas Elipticas?
- Curvas Elipticas Criptograficas?
- ► Hardware?
- Processadores?
- Co-Processadores?
- ► FPGA?
- ► E agora?

Sumário

Motivação

Contextualização

Criptografia

Aritmética sobre Corpos Finitos

Hardware!

AES

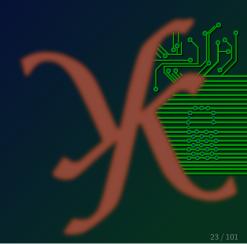
Módulos em Corpos Binários

Precauções

Ataques conhecidos e vulnerabilidades

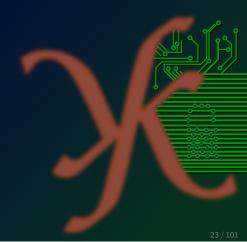
Extras

O que é Criptografia?


Criptografia é o estudo de técnicas matemáticas que visam a segurança da informação, por meio das quais é possível obter-se a integridade dos dados, autenticidade das entidades e autenticidade da informação.

O que é Criptografia?

Criptografia é o estudo de técnicas matemáticas que visam a segurança da informação, por meio das quais é possível obter-se a integridade dos dados, autenticidade das entidades e autenticidade da informação.


OK.... Mas isso é muito formal, não?

Seria por "status"?

Seria por "status"?

... por modinha?

Seria por "status"?

... por modinha?

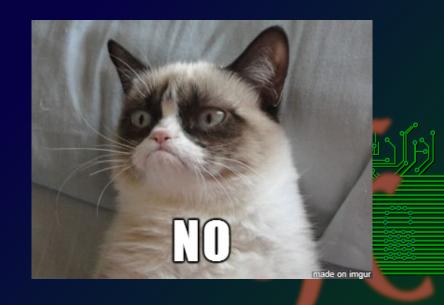
Para o Trump não ler meus e-mails?

Seria por "status"?

... por modinha?

Para o Trump não ler meus e-mails?

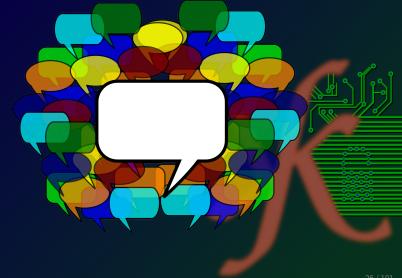
Para minhas fotos "secretas" não vazarem?


Seria por "status"?

... por modinha?

Para o Trump não ler meus e-mails?

Para minhas fotos "secretas" não vazarem?


Será mesmo que é para isso?

Why not?

Necessidade de comunicação!

Todos PRECISAM se comunicar

Há quem quer ler a mensagem...

...Mesmo essa não sendo destinada a ele...

²Malévola em "A bela adormecida", Disney, 06 de Fevereiro de 1959

E com a perda da informação...

...As coisas geralmente não acabam bem.

³ "A bela adormecida", Viktor Mikhailovich Vasnetsov

Sumário

Motivação

Contextualização

Criptografia

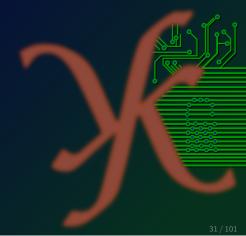
Aritmética sobre Corpos Finitos

Hardware!

AES

Módulos em Corpos Binários

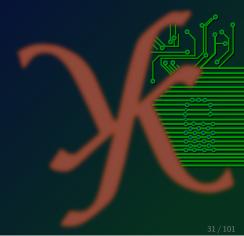
Precauções


Ataques conhecidos e vulnerabilidades

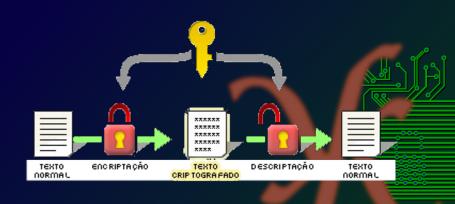
Extras

Tipos de criptografia

Existem 2 grupos em que algoritmos criptográficos são divididos



Tipos de criptografia


Existem 2 grupos em que algoritmos criptográficos são divididos

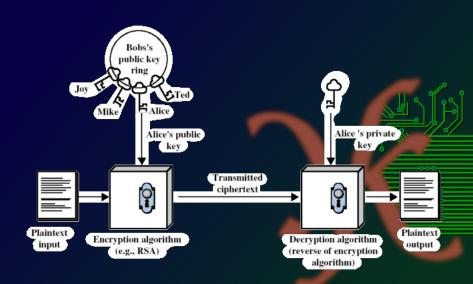
Criptografia Simétrica

Criptografia Assimétrica

Cifras simétricas

A chave que fecha abre

Exemplos


- Enigma
- DES
- AES

Onde normalmente são usados?

- Proteger arquivos em disco (TrueCrypt, EFS, etc)
- ▶ Proteção de mídias tais como DVD (css, aacs, etc)
- Transmissão eficiente de dados (desde que se tenha uma chave secreta compartilhada pelos envolvidos)
- ► ETC...

Criptografia Assimétrica

Quem fecha não abre

Exemplos

- Diffie-Hellman
- RSA
- Curvas Elípticas Criptográficas \o/
- ▶ Pós-quantica \o/\o/

Diffie-Hellman

Secreto	Público	Calcula	Envia
а	p, g		$egin{array}{l} p,\ g ightarrow \ A ightarrow \end{array}$
а	p, g, A	$g^a mod(p) = A$	$A \to$
а	p, g, A		← B
a, s	p, g, A, B	$B^a mod(p) = s$	<u> </u>

Envia	Calcula	Público	Secreto
p, g $ ightarrow$			b .
$A \to$		p, g	b
$\leftarrow B$	$g^b mod(p) = B$	p, g, A, B	b
	$A^b mod(p) = s$	p, g, A, B	b, s

Ponto inicial...

Alice:

- \triangleright Seleciona-se a=6, p=23 e g=5
- ► Envia p e g
- Calcula-se $A = g^a mod(p)$ $A = 5^6 mod(23) = 15.625 mod(23) = 8$
- Envia A

Bob:

- ► Seleciona-se b=15
- Recebe p, g e A
- Calcula-se $B = g^b mod(p)$ $B = 5^{15} mod(23) = 30.517.578.125 mod(23) = 19$
- Envia B

Segredo compartilhado

Alice:

Calcula $s = B^a mod(p)$ $s = 19^6 mod(23) = 47.045.881 mode(23) = 2$

Bob:

Calcula $s = A^b mod(p)$ $s = 8^{15} mod(23) = 35.184.372.088.832 mode(23) = 2$

Quem usa?

- ► SSH
- Bitcoin
- ► HTTPS
- ► TODOS (deveriam)

Sumário

Motivação

Contextualização

Criptografia

Aritmética sobre Corpos Finitos

Hardware!

AES

Módulos em Corpos Binários

Precauções

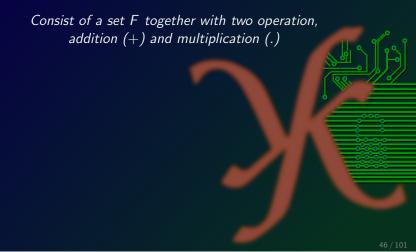
Ataques conhecidos e vulnerabilidades

Extras

Aritmética sobre corpos Finitos

Alguns corpos são melhores para uma implementação eficiente

- Corpos Primos
- Corpos Binários



Vamos complicar um pouco?

Mas o que é um Corpo?

A definição de corpo segundo Menezes é:

Mas o que é um Corpo?

A definição de corpo segundo Menezes é:

Consist of a set F together with two operation, addition (+) and multiplication (.)

Esse corpos possui operações básicas:

- ightharpoonup (F,+) é um grupo **abeliano** sobre adição, cuja identidade é 0.
- $(F \{0\}, .)$ é um grupo **abeliano** sobre a multiplicação, cuja identidade é 1.

Mas o que é um Corpo?

A definição de corpo segundo Menezes é:

Consist of a set F together with two operation, addition (+) and multiplication (.)

Esse corpos possui operações básicas:

- ightharpoonup (F,+) é um grupo **abeliano** sobre adição, cuja identidade é 0.
- $(F \{0\}, .)$ é um grupo **abeliano** sobre a multiplicação, cuja identidade é 1.
- A lei distributiva: (a+b).c = a.c + a.b é valida para $a,b,c \in F$

Corpo Primo

- Possui um numero primo como modulo.
- ► Corpo *F*₂₃:
 - ▶ 1223 mod 23 = 4
 - ▶ 911 mor 23 = 14
 - ▶ 17 mod 23 = 17

Corpo Binário

Corpos finitos da ordem 2^m são denominados **corpos binários** (ou *Corpos Finitos de característica-2*).

Um corpo finito binário é importante saber quem é o **polinômio irredutível** f(z).

AES aplica-se sobre um corpo de 8 bits Curvas Elipticas sobre corpos > 300 bits

Polinômio Binário Irredutível

O polinômio ser irredutível significa que f(z) não pode ser fatorado como um produto de polinômios binários com grau menor que m.

Para um polinômio binário a(z), a(z)modf(z) denota um único polinômio r(z) de grau menor que m. Esee resultado é chamado de redução modular f(z).

Exemplo no corpo F_{2^4}

Em F_{2^4} o polinômio irredutível é $f(z) = z^4 + z^1 + z^0$.

Exemplos de operações aritméticas:

Adição:
$$(z^3 + z^2 + 1) + (z^2 + z + 1) = z^3 + z^3$$

Subtração:
$$(z^3 + z^2 + 1) - (z^2 + z + 1) = z^3 + z$$

Multiplicação:
$$(z^3 + z^2 + 1).(z^2 + z + 1) = z^5 + z + 1$$

= $z.z^4 + z + 1 = z(z + 1) + z + 1 = z^2 + z + z + 1 = z^2 + 1$

Inversão:
$$(z^3 + z^2 + 1)^{-1} = z^2$$

Sabendo que $(z^3 + z^2 + 1).z^2 mod(z^4 + z + 1) = 1$

Sumário

Motivação

Contextualização

Criptografia

Aritmética sobre Corpos Finitos

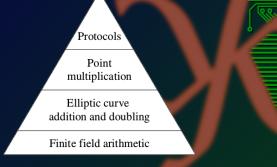
Hardware!

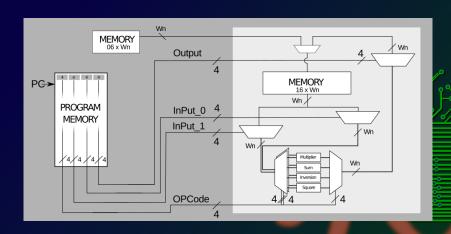
AES

Módulos em Corpos Binários

Precauções

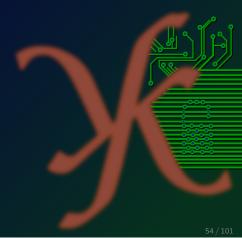
Ataques conhecidos e vulnerabilidades


Extras


Design Modular

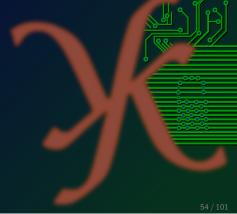
Por exemplo, a implementação de uma assinatura feita totalmente em hardware deve considerar que a **única entrada** no dispositivo é **a mensagem** a ser assinada e a **única saída** é a **assinatura** desta mensagem.

O processo de implementação pode ser representado como:



Arquitetura para um Co-Processor

Critérios pelo qual se opta pelo Hardware:


► Custo é sempre um fator significante

Critérios pelo qual se opta pelo Hardware:

Custo é sempre um fator significante

Existe um bom argumento para usar hardware accelerator?

- Custo é sempre um fator significante
- Existe um bom argumento para usar hardware accelerator?
- ► Throughput: Qual a velocidade desejada?

- Custo é sempre um fator significante
- Existe um bom argumento para usar hardware accelerator?
- ► Throughput: Qual a velocidade desejada?
- ► Flexibilidade: Precisa ter a habilidade de comportar mais funcionalidades?

- Custo é sempre um fator significante
- Existe um bom argumento para usar hardware accelerator?
- ► Throughput: Qual a velocidade desejada?
- ► Flexibilidade: Precisa ter a habilidade de comportar mais funcionalidades?
- ► Consumo de Energia: É ou não uma preocupação?

- Custo é sempre um fator significante
- Existe um bom argumento para usar hardware accelerator?
- ► Throughput: Qual a velocidade desejada?
- ► Flexibilidade: Precisa ter a habilidade de comportar mais funcionalidades?
- ► Consumo de Energia: É ou não uma preocupação?
- Segurança: Countermeasures attacks based on timing, power analysis, and electromagnetic radiation precisam ser considerados.

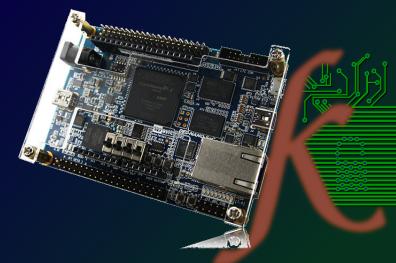
- Custo é sempre um fator significante
- Existe um bom argumento para usar hardware accelerator?
- ► **Throughput**: Qual a velocidade desejada?
- ► Flexibilidade: Precisa ter a habilidade de comportar mais funcionalidades?
- ► Consumo de Energia: É ou não uma preocupação?
- Segurança: Countermeasures attacks based on timing, power analysis, and electromagnetic radiation precisam ser considerados.
- Plataforma de desenvolvimento: Qual FPGA?

Escolha do hardware

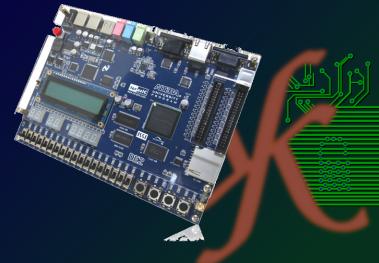
Após estas considerações, considere os itens determinantes para a escolha entre dispositivos de baixa ou alta potência:

High-end device		Low-end device	
High priority	Low priority	High Priority	Low priority
Throughput	Cost	Cost	Throughput
Security	Power consumption	Hardware vs. software	Flexibility
Scalability	Complexity	Complexity	Algorithm agility
System architecture		Power consumption	Scalability
Implementation platform		Security	
Algorithm agility		System architecture	
Flexibility		Implementation platform	
Hardware vs. software			

Fabricantes



Intel FPGA


Comprou a Altera

DE0-Nano-SoC

Altera DE2-SOC

Altera DE2i-150

Parallella - Zynq Xilinx

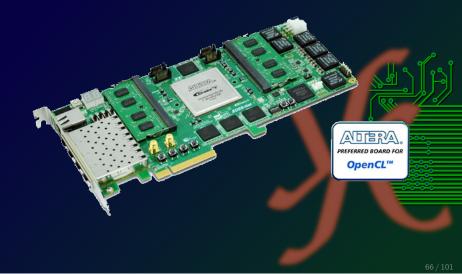


Parallella - Zynq Xilinx

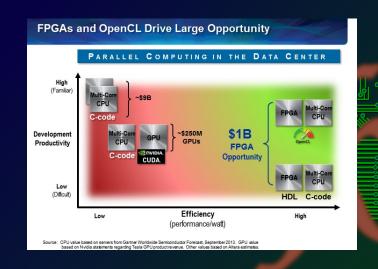
Zedboard - Zynq Xilinx

Não tão embarcado assim...

Virtex 7 - Net FPGA

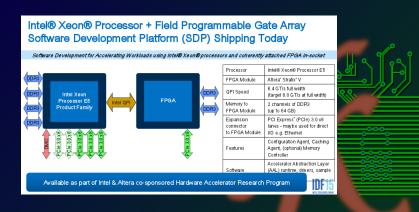

Não tão embarcado assim...

DE4 FPGA



Não tão embarcado assim...

DE5 - Net FPGA



O FUTURO

O FUTURO

Intel Xeon FPGA

O FUTURO

Intel Xeon FPGA

Sumário

Motivação

Contextualização

Criptografia

Aritmética sobre Corpos Finitos

Hardware!

AES

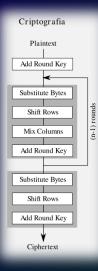
Módulos em Corpos Binários

Precauções

Ataques conhecidos e vulnerabilidades

Extras

O que é AES?


Advanced Encryption Standard

O AES é um algoritmo que usa **criptografia simétrica**, sendo capaz de codificar e decodificar **blocos** de informação de 128 bits.

Parâmetros

Data (bits)	Rounds	key size (bits)
128	10	128
128	12	192
128	14	256

Codificador e Decodificador

Considerações sobre o AES

- Padrão Simetrico
- Robusto
- Implementação simples
- Amplamente difundido

Sumário

Motivação

Contextualização

Criptografia

Aritmética sobre Corpos Finitos

Hardware!

AES

Módulos em Corpos Binários

Precauções

Ataques conhecidos e vulnerabilidades

Extras

Módulos para aritmética

Operações em F_{2^m} são tipicamente fáceis de se implementar em hardware, se comparados a implementação sobre F_p .

A adição em F_{2^m} não possui uma propagação de carry (vai um).

Além disso, o quadrado em F_p é semelhante a uma **multiplicação**, entretanto em corpos binários existem otimizações para calcular-se em **1 pulso de clock**.

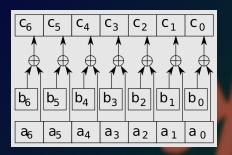
Exemplo no corpo F_{2^4}

Em F_{2^4} o polinômio irredutível é $f(z) = z^4 + z^1 + z^0$.

Exemplos de operações aritméticas:

• Adição:
$$(z^3 + z^2 + 1) \oplus (z^2 + z + 1) = z^3 + z$$

► Subtração:
$$(z^3 + z^2 + 1) \oplus (z^2 + z + 1) = z^3 + z$$


Multiplicação:
$$(z^3 + z^2 + 1).(z^2 + z + 1) = z^5 + z + 1$$

= $z.z^4 + z + 1 = z(z + 1) + z + 1 = z^2 + z + z + 1 = z^2 + 1$

Inversão:
$$(z^3 + z^2 + 1)^{-1} = z^2$$

Sabendo que $(z^3 + z^2 + 1).z^2 mod(z^4 + z + 1) = 1$

Adição

A adição consiste em uma operação de XOR bit a bit.

$$OUT \leftarrow U \oplus V$$

Redução

A redução pode ser executada como uma **redução arbitrária polinomial**, sendo neste caso a mesma operação sempre.

Se f(z) é um trinômio, ou um pentanômio com termos próximos um dos outros, então a redução de c(z) módulo f(z) pode serprocessada eficientemente uma palavra por vez.

Multiplicação

A multiplicação mais básica é a que consiste no método shift-soma:

$$a(z).b(z) = a_{m-1}.z^{m-1}.b(z) + \cdots + a_2.z^2.b(z) + a_0.z^0.b(z) + a_0.z^0.b(z)$$

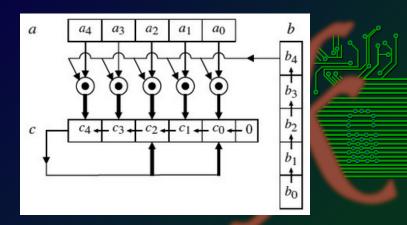
Com o qual podemos usar o fato de que:

$$b(z).z = b_{m-1}.z^{m} + b_{m-2}.z^{m-1} + \dots + b_{2}.z^{3} + b_{1}.z^{2} + b_{0}.z$$

$$b(z).z = b_{m-1}.r(z) + (b_{m-2}.z^{m-1} + \dots + b_{2}.z^{3} + b_{1}.z^{2} + b_{0}.z) modf(z)$$

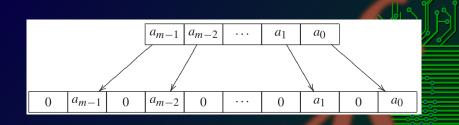
e assim calcular b'(z).z em um pulso de clock.

Assim pode-se calcular a(z).b(z) em m pulsos de clock.


Hardware de Multiplicação

Esta operação pode ser processada de formas diferentes, três delas:

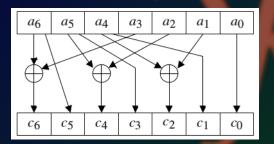
- Corpo de tamanho fixo e redução polinomial arbitrária
- Corpo de tamanho fixo e redução polinomial pré determinada.
- Corpo de tamanho variável (com redução polinomial arbitrária ou fixa).


Multiplicação esquemático

Caso a redução polinomial f(z) seja fixa pode-se projetar o multiplicador com um nível menor de complexidade, isso pois a redução precisa de um registrador menor.

Quadrado de um polinômio

A representação binária de $a(z)^2$ é obtida inserindo 0 entre os valores dos bits (posições ímpares do polinômio).


Exemplo de Hardware

Se considerarmos o corpo F_{2^7} cujo polinômio irredutível seja $f(z)=z^7+z+1$, temos que:

$$c = a^{2}$$

$$c = a_{6}z^{12} + a_{5}z^{10} + a_{4}z^{8} + a_{3}z^{6} + a_{2}z^{4} + a_{1}z^{2} + a_{0}z^{0}$$

$$c = (a_{6} + a_{3})z^{6} + a_{6}z^{5} + (a_{5} + a_{2})z^{4} + a_{5}z^{3} + (a_{4} + a_{1})z^{2} + a_{4}z + a_{0}z^{0}$$

Inversão

A operação **mais** difícil de se implementar em hardware do corpo é a inversão.

Existem dois tipos de algoritmos para se calcular a inversa de um polinômio:

- Aqueles que se baseiam no algoritmo de Euclides estendido (e suas variantes).
- Aqueles que usam a multiplicação do corpo para obter o resultado.

Inversão

Algoritmo de Euclides estendido

Sejam a e b polinômios binários, não mutuamente 0. O Maior Divisor Comum / greatest common divisor (gcd) de a e b é um polinômio binário d do maior grau que divide a e b.

Teorema

Sejam a e b polinômios binários, então

$$gcd(a,b) = gcd(b-ca,a)$$

para todo polinômio c.

A Inversa pela multiplicação

Sendo a um elemento não nulo de F_{2^m} , a inversão pela multiplicação usa o fato de que:

$$a^{-1} = a^{2^m - 2}$$

Assim $2^m - 2 = \sum_{i=1}^{m-1} 2^i$, e com isso se tem que:

$$a^{-1} = a^{\sum_{i=1}^{m-1} 2^i} = \prod_{i=1}^{m-1} a^{2^i}$$

Com isso a^{-1} pode ser computado em m-1 quadrados e m-2 multiplicações.

Meio complicado, né?

Sumário

Motivação

Contextualização

Criptografia

Aritmética sobre Corpos Finitos

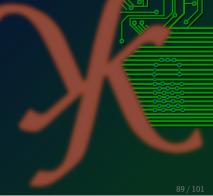
Hardware!

AES

Módulos em Corpos Binários

Precauções

Ataques conhecidos e vulnerabilidades


Extras

Como se proteger de ataques?

Considerando protocolos sem backdors, os ataques sobre maneiras de implementar recaem sobre:

- Ataques de medida de tempo
- ► Ataques de consumo de potência
- "Ladrões de galinha"

Ataques de medida

- O algoritmo depende dos elementos
- Em busca de "otimizações" como multiplicar por 0000...0010
- Equações não completas
- Depende de "conferências"

Soluções

- Usar equações completas
- Não usar sistemas que necessitam de checagem
- Mesmo parecendo burro, faça com que sempre tenha o mesmo tempo

Perspectivas futuras

- Curvas Elípticas (mais) Robustas
- Pós-quântica

Sumário

Motivação

Contextualização

Criptografia

Aritmética sobre Corpos Finitos

Hardware!

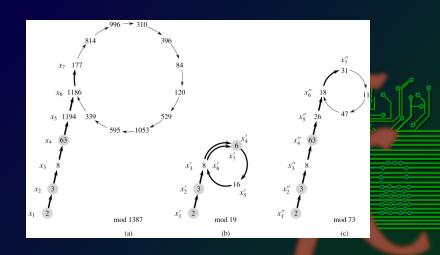
AES

Módulos em Corpos Binários

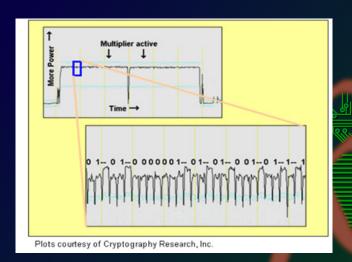
Precauções

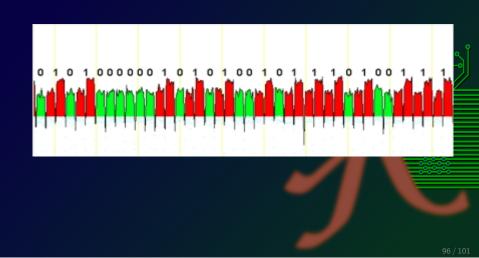
Ataques conhecidos e vulnerabilidades

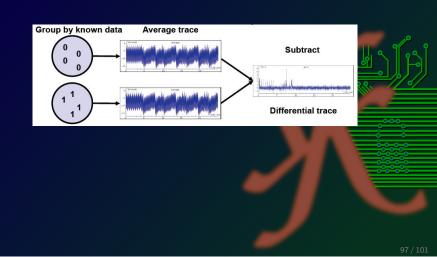
Extras



Pollard Rho


```
POLLARD-RHO(n)
 1 i = 1
 2 \quad x_1 = \text{RANDOM}(0, n-1)
3 y = x_1
4 k = 2
5 while TRUE
6 	 i = i + 1
        x_i = (x_{i-1}^2 - 1) \bmod n
8
        d = \gcd(y - x_i, n)
        if d \neq 1 and d \neq n
10
            print d
        if i == k
11
12
            y = x_i
13
            k = 2k
```



Pollard Rho


Side channel attack

Side channel attack

Side channel attack

Sumário

Motivação

Contextualização

Criptografia

Aritmética sobre Corpos Finitos

Hardware!

AES

Módulos em Corpos Binários

Precauções

Ataques conhecidos e vulnerabilidades

Extras

Ataque de força bruta

- ► Todas as precauções aqui descrevem proteção
- ▶ Se meu objetivo é atacar posso descarta-las
- Mesma arquitetura, só alterar o programa
- ► Eficiência de no melhor caso 2x e no pior caso 1x

Muitas dúvidas?

Obrigado pela atenção

E-mail: luckas.judocka@gmail.com