
Linux Kernel Rootkits
Advanced Techniques

Ilya V. Matveychikov
Ighor Augusto

October 24, 2018
release

Introduction
Who we fuckingˆW are?

Ilya V. Matveychikov – Linux kernel addict, security researcher,
reverse engineer https://github.com/milabs

Ighor Augusto - Just a guy who thinks bytes come before titles!
https://github.com/f0rb1dd3n

https://github.com/milabs
https://github.com/f0rb1dd3n

Introduction
About the talk

This talk is about:

 Programming
± Linux kernel rootkits

This talk is NOT about:

é Malware
é Exploitation

Please note that all the techniques described are publicly available
as well as Linux kernel source code.

Introduction
Agenda

� bla bla bla

Introduction
A rootkit’s purpose

Rootkit (root’s toolkit) - kind of software designed to provide
continued privileged access to the target while actively hiding its
presence.

� affects computers, servers, smartphones . . .
� provides privileged access . . .
� hides itself . . .

Introduction
A rootkit’s purpose

Rootkits can be classified according to the environment they are
operating (living) in.

� User-mode (UM) rootkits: typically, LD PRELOAD-based
� Kernel-mode (KM) rootkits: typically, LKM-based
� Firmware-based (FW) rootkits (UEFI)
� Hypervisor (HV) rootkits
� Hybrid rootkits (the mix)

Introduction
A rootkit’s purpose

Kernel-based rootkit. Why to have it?

� Why not?
� Altering whole the system: you can do (almost) everything.
� Extremely hard to detect from the user mode.
� Overall, it’s a great challenge.

Introduction
A rootkit’s purpose

Challenges of writing (a good) Linux kernel-mode rootkit.

� Kernel-mode programming requires an in-depth knowledge of
how the OS-kernel and hardware works. Every little
 in the
code will became a big pain in the ass.

� The scope of work (in terms of required features) must have
been defined before the start of development.

� Fighting against a loooooot of kernel versions, distributions
and RHEL «backport hell»-like approach (for example,
kernel-2.6.32-754.2.1.el6 is not actually 2.6.32).

Introduction
A rootkit’s purpose

Constraints of Linux kernel-based rootkit.

� Non-stable (volatile) kernel API. It’s hard to manage all the
possible versions of the kernel.

� In general, LKM-based rootkit requires to be built for every
kernel version. It’s (almost) impossible to have the only
rootkit’s binary that fits all the targets.

� Most likely the rootkit will not survive the kernel update.
� Kernel API is not indented for doing non-kernel tasks. Try to

download & execute zipped payload using HTTP(s).

Introduction
A rootkit’s purpose

A common subset of (Linux) kernel rootkit features.

� Be able to survive the reboot, update.
� Be able to alter whole the system behaviour (not only the

kernel).
� Be able to hide files, directories, processes, network

connections, users and other resources.
� Be able to evade against the detection (hide own components,

filter kernel & audit logs, restore «taint»-like flags, . . .).
� Be able to provide the payload (keylogger, backdoor/shell,

gain privileges, . . .).

Base techniques
Linux kernel symbols

Symbol - a symbolic name of some object (function or variable).
Treat the symbol as a way to get an object’s address by using just
it’s name (for ex., sys call table[]).

� Symbols can be exported or non-exported.
� Public kernel API consists of only exported symbols

(EXPORT SYMBOL()-like macros is used).
� Private kernel API consists of public kernel API and any other

symbols available.

Base techniques
Linux kernel symbols

While public kernel symbols are always available it’s often required
to use private symbols and there are few common ways to find
them.

� Read and parse /proc/kallsyms file.
� Use kallsyms lookup name() method.
� Use kallsyms on each symbols() method.
� Use signatures and/or by disassembling the kernel’s code

(from inside the kernel, of course).

NOTE that a) kallsyms-interface might not be compiled in and
b) System.map is mostly useless nowadays because of ASLR.

Base techniques
Writing to the read-only memory

Write Protect (bit 16 of CR0) - when set, inhibits supervisor-level
procedures from writing into read-only pages; when clear, allows
supervisor-level procedures to write into read-only pages 1. . .

This flag facilitates implementation of the copy-on-write method
of creating a new process (forking) used by operating systems such
as UNIX.

1http://vulnfactory.org/blog/2011/08/12/wp-safe-or-not

http://vulnfactory.org/blog/2011/08/12/wp-safe-or-not

Base techniques
Writing to the read-only memory

In case you want to use CR0, use the following to disable write
protection (on this CPU):

static inline \
unsigned long pax_open_kernel(void) {

unsigned long cr0;

preempt_disable ();
barrier ();
cr0 = read_cr0 () ˆ X86_CR0_WP;
BUG_ON(unlikely(cr0 & X86_CR0_WP));
write_cr0(cr0);
return cr0 ˆ X86_CR0_WP;

}

Listing 1: Disable Write Protection

Base techniques
Writing to the read-only memory

In case you want to use CR0, use the following to enable write
protection (on this CPU):

static inline \
unsigned long pax_close_kernel(void) {

unsigned long cr0;

cr0 = read_cr0 () ˆ X86_CR0_WP;
BUG_ON(unlikely (!(cr0 & X86_CR0_WP)));
write_cr0(cr0);
barrier ();
preempt_enable_no_resched ();
return cr0 ˆ X86_CR0_WP;

}

Listing 2: Enable Write Protection

Base techniques
Writing to the read-only memory

In case you want to use CR0, use the following sequence to modify
ready-only memory:

pax_open_kernel ();
sys_call_table[__NR_open] = my_sys_open;
... # system behaviour is undefined
pax_close_kernel ();

Base techniques
Writing to the read-only memory

In practice, approach of using WP-bit of CR0 works nearly all of
the time. But there are some caveats to be aware of when using
this trick in real life scenarios.

� There is a window of undefined system behaviour between
pax open kernel() and pax close kernel() calls.

� WP is disabled/enabled only for CPU which is calling those
methods. So, further memory modification must be done from
the same CPU.

� Hypervisor (if any) is able to detect flipping of WP-bit of CR0
register which might be treated as a sign of attack.

Base techniques
Writing to the read-only memory

The better approach is to create a writable mapping of read-only
region using vmap.

� For each page in region translate it’s virtual address to
struct page. Use virt to page() for kernel and
vmalloc to page() for modules.

� Use vmap() to map those pages to virtually contiguous space
using page protection required (PAGE KERNEL).

� Use vunmap() to unmap the mapping after using.

Base techniques
Writing to the read-only memory

void *map_writable(void *addr , size_t len) {
void *vaddr = NULL;
void *paddr = (void *)(addr & PAGE_MASK);
struct page *pages[...];

for (int i = 0; i < ARRAY_SIZE(pages); i++) {
if (__module_address ((ulong)paddr))

pages[i] = vmalloc_to_page(paddr);
else pages[i] = virt_to_page(paddr);
if (! pages[i]) return NULL;
paddr += PAGE_SIZE;

}

vaddr = vmap(pages ,
ARRAY_SIZE(pages),
VM_MAP , PAGE_KERNEL);

return vaddr ? \
vaddr + offset_in_page(addr) : NULL;

}

Base techniques
Writing to the read-only memory

The better approach is to create a writable mapping of read-only
region using vmap:

size_t slen = \
__NR_syscall_max * sizeof(sys_call_ptr_t);

sys_call_ptr_t *sptr = \
map_writable(sys_call_table , slen);

sptr[__NR_open] = my_sys_open;
...
vunmap(sptr);

Base techniques
Hooking in the kernel

Hooking - range of techniques used to alter the behaviour of some
system. Hooking various kernel functions is the base of kernel
rootkit’s live.

� Hooking system calls by replacing pointers in
sys call table[] and ia32 sys call table[].

� Hooking virtual methods calls (vtable-like) by replacing
pointers in tables like struct file operations.

� Hooking of kernel symbols by patching their code (will be
discussed).

� Registering any kind of callbacks and notifiers (for example,
register module notifier())

� Registering LSM security callbacks (hooks).

Base techniques
Hooking in the kernel

KHOOK2- automatic kernel function hooking engine designed to
simplify our live. Provides simple API for hooking kernel symbols
(functions).

� Uses code patching technique which is based on overwriting
target function prologue with JMP xxx. Simplest, reliable and
100% working solution.

� Uses in-kernel length disassembler engine (LDE) to get the
number of instructions to save before overwriting.

� Allows to make a call to the original function while this
function is being hooked.

� For each function hooked a use-counter maintained. This
prevents unhooking of symbols which are in use.

2https://github.com/milabs/khook

https://github.com/milabs/khook

Base techniques
Hooking in the kernel

KHOOK provides a set of macros to make the hooker’s life a bit
easier.

� Use KHOOK(xxx) macro for declaring a hook of function xxx
which has it’s prototype declared (somewhere).

� Use KHOOK EXT(xxx, typeof(arg0), typeof(arg1),
...) macro for declaring a hook of function xxx which has
not have it’s prototype declared.

� Use KHOOK GET(xxx) and KHOOK PUT(xxx) macros for
managing symbol’s hook use counter.

� Use KHOOK ORIGIN(xxx, args...) to call to the original
function as it was not hooked.

Base techniques
Hooking in the kernel

Use khook init() and khook cleanup() to init and cleanup the
engine. Calling to khook init() causes all declared hooks to be
installed while calling to khook cleanup() does the reverse.

Add the following includes to your code:

include "engine/engine.h"
include "engine/engine.c"

Add the following options to the linker:

ldflags -y += -T$(src)/engine/engine.lds

Base techniques
Hooking in the kernel

KHOOK(inode_permission);
static int \
khook_inode_permission(struct inode *i, int m)
{

int ret = 0;

KHOOK_GET(inode_permission);
ret = KHOOK_ORIGIN(inode_permission , i, m);
printk("%s(%p,␣%08x)␣=␣%d\n", \

__func__ , i, m, ret);
KHOOK_PUT(inode_permission);

return ret;
}

Listing 3: Hooking of inode permission() example

Common Techniques
Hiding of processes

Hiding of processes is the one of the most popular rootkit features.
There is no publicly available Linux kernel rootkit which can hide
processes well.

This task is not complex by itself but it requires to have a good
knowledge of how the kernel works. At least how it manages the
processes.

Common Techniques
Hiding of processes

Implementation of hiding processes requires the following to be
done:

� Managing the processes lifecycle. Be able to attach/detach
some attributes to processes while forking and executing.

� Managing the processes visibility by filtering out /proc and
some system calls.

� Managing the processes CPU-time accounting.

Common Techniques
Hiding of processes: lifecycle

Hook copy creds() function to be able to attach attributes to
processes at fork time. Inherit parent process attributes for all
direct children, if required.

Hook exit creds() function to be able to detach attributes from
the processes at exit time.

In it’s simplest form attaching/detaching attributes to processes
may be implemented by using one of unused (reserved) bits of
task->flags, for example: 0x80000000.

Common Techniques
Hiding of processes: lifecycle

Illustration of the inheritance of attributes of hidden processes.

Common Techniques
Hiding of processes: visibility

Hook next tgid() function to be able to filter out /proc/PID
like directory entries. Just skip all the tasks with “hidden”
attribute set from being iterated.

NOTE: There is no reason to hook getdents() to filter out
/proc/PID content. Do not do it.

Common Techniques
Hiding of processes: visibility

Hook find task by vpid() function to be able to fight against
unhide3by altering some system calls:

� getsid
� getpgid
� getpriority
� sched getparam
� sched getaffinity
� sched getscheduler
� sched rr get interval
� kill

3https://github.com/Enrico204/unhide

https://github.com/Enrico204/unhide

Common Techniques
Hiding of processes: accounting

CPU utilization is the sum of work handled by a processor unit.
It’s a good idea to exclude hidden processes from being accounted.

Hook account process tick() function to be able to exclude
ticks spent by a hidden processes from system wide ticks
accounting.

Common Techniques
Hiding files and directories

Hiding of files and directories is the one of the most popular
rootkits features.

Being implemented as a part of Linux kernel rootkit it allows to
hide filesystem stuff from being observed by system administrators
and other users. Sure, this will work only from the moment LKM is
loaded.

Common Techniques
Hiding files and directories

Implementation if hiding files and directories is based on the
following:

� Filtering the access to files or directories by using their full
path (open()-like system calls).

� Filtering files and directories from being listed
(filldir()-like system calls).

Common Techniques
Hiding files and directories

To be able to filter out the access to files or directories by using
their filenames hook the following non-public kernel functions:

� do sys open
� user path at
� user path at empty

Common Techniques
Hiding files and directories

To be able to filter out files and directories from being listed hook
the following non-public kernel functions:

� filldir
� filldir64
� fillonedir
� compat filldir
� compat filldir64
� compat fillonedir
� d lookup

Demo I
Live demo of Reptile r00kit

https://github.com/f0rb1dd3n/Reptile

https://github.com/f0rb1dd3n/Reptile

Advanced Techniques
Kernel auditing bypass

The Linux Audit system provides a way to track security-relevant
information on your system. It might be useful for:

� Watching file access.
� Monitoring system calls.
� Recording commands run by a user.
� Monitoring network access.
� . . . and so on

Advanced Techniques
Kernel auditing bypass

The Audit system consists of two main parts: the user-space
applications and utilities, and the kernel-side system call
processing. The architecture is show below:

Advanced Techniques
Kernel auditing bypass

There is a way to completely disable (bypass) auditing for the
certain task. Use the following:

� Hook audit alloc() function.
� Inside the hook just clear TIF SYSCALL AUDIT for the task if

required.

As the result there will be completely no audition for all tasks
without TIF SYSCALL AUDIT. By design. Really.

Advanced Techniques
Kernel auditing bypass

KHOOK(audit_alloc);
static int \
khook_audit_alloc(struct task_struct *t)
{

int err = 0;

KHOOK_GET(audit_alloc);
if (task_audit_disable(t)) {

clear_tsk_thread_flag(t, TIF_SYSCALL_AUDIT);
} else {

err = KHOOK_ORIGIN(audit_alloc , t);
}

out:
KHOOK_PUT(audit_alloc);
return err;

}

Advanced Techniques
Filtering the kernel log

Linux kernel log is a standard way to log the information by the
kernel. The information logged can be obtained by user-space
programs like dmesg or (journalctl).

It’s mandatory for Linux kernel rootkit to be able to filter-out
kernel log messages like the following:

Advanced Techniques
Filtering the kernel log

There are 2 ways of getting messages from the log:

� Using syslog(2)
� Using /proc/kmsg

syslog interface is an old-style way to get messages from the
kernel. It’s implemented internally by do syslog() function.

/proc/kmsg interface is the new-style one and it’s implemented
internally by devkmsg read() function.

Advanced Techniques
Filtering the kernel log

There are few types of kernel log messages . . .

syslog message

"<%u> message-text\n" (no timestamp)
"<%u>[%5lu.%06lu] message-text\n"

/proc/kmsg message

"%u,%llu,%llu,%c,[,...];message-text\n"
" key=value\n[key=value\n]" (options, if any)

Advanced Techniques
Filtering the kernel log

Filtering-out messages from the kernel’s log requires us to a) hook
proper symbols b) let them do their job and c) post process
written out data.

� Hook do syslog() and devkmsg read().
� Let them do their job by writing messages to user-space

processes (like dmesg), when requested.
� Having the address (and the length) of just filled user-space

buffer do the following . . .
� . . . make an in-kernel copy using memdup user()
� . . . filter it out splitting messages by newline
� write out filtered result altering the final length (if changed)

Advanced Techniques
Matryoshka loader

It’s a good idea to have a tiny LKM-module (loader) which loads
the encrypted payload. That’s something we call Matryoshka4.

4https://github.com/milabs/kmatryoshka

https://github.com/milabs/kmatryoshka

Advanced Techniques
Matryoshka loader

The technique is pretty simple.

� Write your payload.ko in form of LKM without any
restrictions.

� Write the loader.ko module which will embed the encrypted
payload.ko as is.

� Use user addr max() to get the current value of user-space
address limit (SEG).

� Extend the user-space address limit to fit the decrypted
payload and use sys load module() to load it.

� Restore the user-space address limit by using
user addr max() and SEG value.

Advanced Techniques
Matryoshka loader

The example of using Matryoshka technique is shown below. The
module parasite loader.ko hosts the encrypted body of
parasite.ko and then loads it from inside the kernel.

Advanced Techniques
Static string obfuscation

It’s possible to get rid of static C-strings at compile time using the
following approach (GCC-only, but who cares).

$ echo 'printk (" hello␣world\n");' | perl
destringify.pl

printk (({ \
unsigned int *p = __builtin_alloca (16); \
p[0] = 0x6c6c6568; \
p[1] = 0x6f77206f; \
p[2] = 0x0a646c72; \
p[3] = 0x00000000; \
(char *)p; \

}));

Listing 4: Static C-string compile-time obfuscation

Demo II
Live demo of some other stuff

	Introduction
	Base techniques
	Linux kernel symbols
	Writing to the read-only memory
	Hooking in the kernel

	Common Techniques
	Hiding of processes
	Hiding files and directories

	Demo I
	Advanced Techniques
	Kernel auditing bypass
	Filtering the kernel log
	Matryoshka loader
	Static string obfuscation

	Demo II

