
Company
LOGO

www.company.comgithub.com/joaomatosf

João Filho Matos Figueiredo
joaomatosf@gmail.com

@joaomatosf

mailto:joaomatosf@gmail.com

Company
LOGO

www.company.com

Whoami
• Independent developer and researcher

• Enjoys server-side exploitation and lateral movement

• Reported some critical bugs (RCE) in companies like:

– Apple.com, PayPal.com, AT&T, Samsung.com, BlackBerry, RedHat,

GM, Oracle Cloud, US Department of Defense (DoD) ,

SonyPictures, Starbucks, Banks, Telecoms, Government, etc.

• Helped some authorities in cybersecurity cases (eg. FBI)

• Bachelor and Master Degree in Computer Science at Federal

University of Paraíba (UFPB), Brazil.

• Author of JexBoss Audit and Exploitation Tool.
@joaomatosf

https://github.com/joaomatosf

https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf

Company
LOGO

www.company.com

Agenda

1. T(101)

2. #{Motivations}

3. %{#’simple.Example’}

4. ${new Richfaces0day()}

5. %23%7BAbout Mitigation%7D

Company
LOGO

www.company.com

• Injection Flaws are “very prevalent”1

• Broad Vulnerability Category:
§ LDAP Injection;

§ Log Injection;

§ OS command Injection;

§ SQL/NoSQL Injection;

§ XSS;

§ XPath Injection;

§ Code Injection
§ . . .

1. 101

2004

2007

2010 2013

2017

Company
LOGO

www.company.com

• Injection Flaws are “very prevalent”1

• Broad Vulnerability Category:
§ LDAP Injection;

§ Log Injection;

§ OS command Injection;

§ SQL/NoSQL Injection;

§ XSS;

§ XPath Injection;

§ Code Injection
§ . . .

1. 101

2004

2007

2010 2013

2017

Company
LOGO

www.company.com

1. 101

CWE-94: “Improper Control of Generation of Code”

"Data Only" "Feature"
“interpreter” Code

Flow

Company
LOGO

www.company.com

1. 101

We need to put tainted data into
a Sinkhole function.

Sanitizers
Validators

Danger Flow

Company
LOGO

www.company.com

Database

Params Headers

Uploads EnvVars

APIs Cache

Tainted data comes from untrusted sources
(or just get in touch)

DNS

Company
LOGO

www.company.com

Sinkholes are sensitive methods
.eval(trusted input)

.getValue(trusted input)

.invoke(trusted input)

.sockets(trusted input)

.parseExpression(trusted input)

.file(trusted input)

.instance_eval(trusted input)

render inline: trusted input

.from_string(trusted input).render()

Company
LOGO

www.company.com

1. 101

CWE-94: “Improper Control of Generation of Code”

Code
MethodExpression

.invoke()
"#{request.getClass().getC
lassLoader().loadClass(\"j
ava.lang.Runtime\").getMet
hod(\"getRuntime\").invoke
(null).exec(\"calc\")}"

Tainted Data Improper Input
Validation

Taint Sink

Flow

Company
LOGO

www.company.com

1. 101

• Some specific cases:
§ CWE-95: Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection’);

§ CWE-96: Improper Neutralization of Directives in Statically
Saved Code ('Static Code Injection’)

§ CWE-470: Use of Externally-Controlled Input to Select Classes
or Code ('Unsafe Reflection')

§ CWE-624: Executable Regular Expression Error

§ CWE-917: Improper Neutralization of Special Elements used in
an Expression Language Statement ('Expression Language
Injection’).

Company
LOGO

www.company.com

Where
can
we find?

Company
LOGO

www.company.com

2. Motivations

Company
LOGO

www.company.com

90
’s Binary Code

Injection1

(before Memory
Protections)

20
00

...

20
06

20
07

20
10

20
10

Meder
Kydyraliev
(CVE-2010-1622)

2. Motivations

Andrea Vettori
(CVE-2007-4556)

Meder
Kydyraliev
(CVE-2010-1870)

Meder
Kydyraliev
(CVE-2010-1871)

Many
vulnerabilities

RCE in Ruby
on Rails
(CVE-2006-4111)

20
10

James
Kettle talked
about some
cases and
called them
as SSTI

20
15

Nike Zheng
CVE-2017-5638

some milestones

1 Cowan et al., 1998

Company
LOGO

www.company.com

2. Motivations
Source: Meder Kydyraliev, 2010

Company
LOGO

www.company.com

2. Motivations

Source: Asankhaya Sharma, 2018

Company
LOGO

www.company.com

2. Motivations

Management / Monitoring

Virtual Machine (JVM)

Code
that

generate
code

Company
LOGO

www.company.com

2. Motivations

Management / Monitoring

Virtual Machine (JVM)

Code
that

genera
te

code

Examples:

• Template Specifics
• OGNL
• SpEL
• JSP EL
• MVEL
• JEXL
• JUEL
• (JSR 245, 341)
• …

Company
LOGO

www.company.com

A simple ilustrative
example

CVE-2017-5638
by Nike Zheng

Company
LOGO

www.company.com

3. Simple Example

Description: The Jakarta Multipart parser in Apache
Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1
has incorrect exception handling and error-message
generation during file-upload attempts, which allows
remote attackers to execute arbitrary commands via a
crafted Content-Type, Content-Disposition, or Content-
Length HTTP header, as exploited in the wild in March
2017 with a Content-Type header containing a #cmd=
string.

CVE-2017-5638

Company
LOGO

www.company.com

3. Simple Example

Description: The Jakarta Multipart parser in
Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before
2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts,
which allows remote attackers to execute arbitrary
commands via a crafted Content-Type, Content-
Disposition, or Content-Length HTTP header, as
exploited in the wild in March 2017 with a Content-Type
header containing a #cmd= string.

CVE-2017-5638

Company
LOGO

www.company.com

3. Simple Example

Description: The Jakarta Multipart parser in
Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before
2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts,
which allows remote attackers to execute arbitrary
commands via a crafted Content-Type, Content-
Disposition, or Content-Length HTTP header, as
exploited in the wild in March 2017 with a Content-Type
header containing a #cmd= string.

CVE-2017-5638Vulnerable Component

Taint Sink

Tainted data

Company
LOGO

www.company.com

3. Simple Example

Description: The Jakarta Multipart parser in
Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before
2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts,
which allows remote attackers to execute arbitrary
commands via a crafted Content-Type, Content-
Disposition, or Content-Length HTTP header, as
exploited in the wild in March 2017 with a Content-Type
header containing a #cmd= string.

CVE-2017-5638Vulnerable Component

Taint Sink

How to get in the taint sink
with controlled tainted data?

Tainted data

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

Sinkholes
Taint Source

• Runtime tainting (data-flow analysis):

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: multipart/form-data

“Normal” tainted
data tracking

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

This is fine!

It’s all ok...

“Normal” tainted
data tracking

POST /page.action
Content-Type: multipart/form-data

Company
LOGO

www.company.com

3. Simple Example

Company
LOGO

www.company.com

3. Simple Example

Description: The Jakarta Multipart parser in
Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before

2.5.10.1 has incorrect exception handling
and error-message generation during file-upload
attempts, which allows remote attackers to execute
arbitrary commands via a crafted Content-Type,
Content-Disposition, or Content-Length HTTP
header, as exploited in the wild in March 2017 with a
Content-Type header containing a #cmd= string.

CVE-2017-5638

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: multipart/form-data\x00

Invalid data

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

Invalid data

POST /page.action
Content-Type: multipart/form-data\x00

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

Invalid data

POST /page.action
Content-Type: multipart/form-data\x00

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

Invalid data

POST /page.action
Content-Type: multipart/form-data\x00

JakartaMultiPartRequest.class

Flow deviation by
Exception Handler

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: multipart/form-data\x00

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: multipart/form-data\x00

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: multipart/form-data\x00

%{

(#_memberAccess=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).

(#commandarray={'/bin/bash','-c','calc'}).

(#p=new java.lang.ProcessBuilder(#commandarray)).

(#process=#p.start()).multipart/form-data

}

Disable protections

Execute OS command

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: %{ognl_payload}.multipart/form-data

Company
LOGO

www.company.com

3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: %{ognl_payload}.multipart/form-data

PS: Don’t forget of the Black
Swan Theory

This analysis had the benefit of hindsight

Company
LOGO

www.company.com

CVE-2018-14667

Remote Code Execution in
WepApps using Richfaces 3.X

Company
LOGO

www.company.com

4. Richfaces 0day

• For years (since 2007) one of the most used
frameworks for JSF components;

– Primefaces started to get more attention in about ~2013.

• Faced some critical vulnerabilities:

• Richfaces v 3.X:

– RCE via deserialization (CVE-2013-2165)

– RCE via EL Injection (CVE-2018-12533)

• Before assign of CVE-2018-12533, Markus Wulftange
(from CodeWhite) tweeted about the his find...

Company
LOGO

www.company.com

4. Richfaces 0day

• Next day I had find the same as Markus and others two more
RCEs in the Richfaces...
– Two of them were used in bugbuntys like PayPal.com, Apple.com...

– A few weeks later the one of Markus was published

• I responsibly notified to the RedHat on 2018-10-15

• RedHat replied very quickly and assign the CVE-2018-14667

After a friend (@reefbr)
get my attention to this
tweet I decided to deep
look into Richfaces....

Company
LOGO

www.company.com

4. Richfaces 0day

• Next day I had find the same as Markus and others two more
RCEs in the Richfaces...
– Two of them were used in bugbuntys of PayPal.com, Apple.com...

– A few weeks later the one of Markus was published

• I responsibly notified to the RedHat on 2018-10-15

• RedHat replied very quickly and assign the CVE-2018-14667

After a friend (@reefbr)
get my attention to this
tweet I decided to deep
look into Richfaces....

Let’s resume...

Company
LOGO

www.company.com

4. Richfaces 0day

• Richfaces receives serialized objects via URL but
uses the following restrict whitelist (look-ahead):

• Let’s suppose that this tainted data can be used in
one of the two possibilities:

1. Deserialization attack

2. Code Injection attack (via EL)

1) org.ajax4jsf.resource.InternetResource
2) org.ajax4jsf.resource.SerializableResource
3) javax.el.Expression
4) javax.faces.el.MethodBinding
5) javax.faces.component.StateHolderSaver
6) java.awt.Color

Company
LOGO

www.company.com

4. Richfaces 0day

• Let’s reduce the “problem” to:

1. Analysis of the allowed types;

2. Look for possible sinkholes sensitives to data we can
control (yeah, we can decompile all the things);

3. Try to find a Flow that leads the tainted data to the
identified sinkholes;

"#{7*7}"
Sinkhole

(“tainted data”)
Flow

"#{7*7}"

Company
LOGO

www.company.com

4. Richfaces 0day

1. Analysis of the allowed types;
1) org.ajax4jsf.resource.InternetResource
2) org.ajax4jsf.resource.SerializableResource
3) javax.el.Expression
4) javax.faces.el.MethodBinding
5) javax.faces.component.StateHolderSaver
6) java.awt.Color

Magic Methods:readObject()* readResolve()readExternal()*
finalize()readObjectNoData()

validadeObject()
…

“Indirect” Magic

invoke()*

(InvocationHandler or

MethodHandler)

toString()

hashCode()

transform() **

compare()

equals()…

“eval” Methods:
getValue()

invokeMethod()
invoke()getMethodInfo()

createMethodExpress

ion()resolveVariable()

…

Company
LOGO

www.company.com

4. Richfaces 0day

1) org.ajax4jsf.resource.InternetResource
2) org.ajax4jsf.resource.SerializableResource
3) javax.el.Expression
4) javax.faces.el.MethodBinding
5) javax.faces.component.StateHolderSaver
6) java.awt.Color

Company
LOGO

www.company.com

4. Richfaces 0day

1) org.ajax4jsf.resource.InternetResource
2) org.ajax4jsf.resource.SerializableResource
3) javax.el.Expression
4) javax.faces.el.MethodBinding
5) javax.faces.component.StateHolderSaver
6) java.awt.Color

What about
inheritance?

Company
LOGO

www.company.com

4. Richfaces 0day

1) org.ajax4jsf.resource.InternetResource

TemplateCSSResource
InternetResourceBase

AnimationResource
ProgressBarAnimatedBg

JarResource
ClientScript

Java2Dresource
BaseImage
CancelControlIcon
CalendarSeparator
ComboBoxArrowImage

+ more….
StaticResource
URIInternetResource
UserResource
QueueScript
Paint2DResource

+ more….

Company
LOGO

www.company.com

4. Richfaces 0day

Company
LOGO

www.company.com

1) org.ajax4jsf.resource.InternetResource

TemplateCSSResource
InternetResourceBase

AnimationResource
ProgressBarAnimatedBg

JarResource
ClientScript

Java2Dresource
BaseImage
CancelControlIcon
CalendarSeparator
ComboBoxArrowImage

+ more….
StaticResource
URIInternetResource

UserResource
QueueScript
Paint2DResource

+ more….

4. Richfaces 0day

Sinkholes

Company
LOGO

www.company.com

4. Richfaces 0day

taintedData
.sinkhole()Flow

Tainted
data

sinkhole

Company
LOGO

www.company.com

4. Richfaces 0day

sinkhole

Analyzing the sinkhole of UserResource

To be exploitable, two conditions are needed:
1) Achieve this method (send());
2) Control of the “context” variable.

But are they enough?

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource

If we can control variable “context”

Restore a object from a
ResourceContext

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.UriData
Cast to

UserResource.UriData

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.UriData

createContent field

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.UriData

Allowed type

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.UriData

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
MethodExpression

#{7*7}

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
MethodExpression

.invoke()#{7*7}

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
MethodExpression

.invoke()#{7*7}

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
MethodExpression

org.ajax4jsf.resource.UserResource$UriData
createContent:

javax.faces.component.StateHolderSaver
savedState:

org.jboss.el.MethodExpressionImpl
exp:

"${Expression Language}"

Using a chain like this one:

PS: there are
other possible

chains!

.invoke()#{7*7}

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
MethodExpression

.invoke()

org.ajax4jsf.resource.UserResource$UriData
createContent:

javax.faces.component.StateHolderSaver
savedState:

org.jboss.el.MethodExpressionImpl
exp:

"${Expression Language}"

Using a chain like this one:

PS: there are
other possible

chains!

Company
LOGO

www.company.com

4. Richfaces 0day

taintedData
.sinkhole()Flow ?

Tainted
data

sinkhole

Company
LOGO

www.company.com

4. Richfaces 0day

taintedData
.sinkhole()Flow ?

Static AnalysisDynamic Analysis

taintedData
.sinkhole()Flow ?

Company
LOGO

www.company.com

4. Richfaces 0day

Company
LOGO

www.company.com

4. Richfaces 0day

From static analysis we can see that
resources can be triggered by URLs

path = {Resource Class Name}

Company
LOGO

www.company.com

4. Richfaces 0day

From static analysis we can see that
resources can be triggered by URLs

path = {Resource Class Name}/n/s

Company
LOGO

www.company.com

4. Richfaces 0day

From static analysis we can see that
resources can be triggered by URLs

path = {Resource Class Name}/n/s/{mimeHashCode}

Company
LOGO

www.company.com

4. Richfaces 0day

We can also include serialized objects
in the same URL pattern...

path = {Resource Class
Name}/n/s/{mimeHashCode}/DATA/{encoded payload}

Company
LOGO

www.company.com

4. Richfaces 0day

We can also include serialized objects
in the same URL pattern...

path = {Resource Class
Name}/n/s/{mimeHashCode}/DATA/{encoded payload}

UserResource
Object Chain!

Company
LOGO

www.company.com

4. Richfaces 0day

Let’s test the injection point and
track the tainted data....

"{7*7}"

Company
LOGO

www.company.com

4. Richfaces 0day

"{7*7}"

1. Mark all data from untrusted sources as
tainted…

2. Mark all data that comes in contact with as
tainted…

3. Check if tainted data gets in sinkholes.

Company
LOGO

www.company.com

4. Richfaces 0day

"{7*7}"

Company
LOGO

www.company.com

4. Richfaces 0day

"{7*7}"

Company
LOGO

www.company.com

4. Richfaces 0day

"{7*7}"

resource contains a

UserResource instance!

Company
LOGO

www.company.com

4. Richfaces 0day

Company
LOGO

www.company.com

4. Richfaces 0day

Deserialization
of our chain!

Company
LOGO

www.company.com

4. Richfaces 0day

Our chain is put
inside a

ResourceContext

Company
LOGO

www.company.com

4. Richfaces 0day

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.send(“ResourceContext”)

Company
LOGO

www.company.com

4. Richfaces 0day

UserResource.send(“ResourceContext”)

Company
LOGO

www.company.com

4. Richfaces 0day

CVE-2018-14667
Unauthenticated Remote Code Execution in Web

Applications using Richfaces Framework 3.X
https://access.redhat.com/security/cve/cve-2018-14667

https://www.youtube.com/watch?v=HR7-nL5G91w

https://access.redhat.com/security/cve/cve-2018-14667
https://www.youtube.com/watch?v=HR7-nL5G91w

Company
LOGO

www.company.com

5. About Mitigation

Company
LOGO

www.company.com

5. About Mitigation

Sanitize data from
untrusted sources,

right?

Company
LOGO

www.company.com

5. Mitigation Advices

It is good and needed,
but not enough.

Company
LOGO

www.company.com

5. Mitigation Advices

• It is not so simple…
• Taint propagation is a complex issue

“every application that copies untrusted input verbatim into an

output program is vulnerable to code injection attacks. Proved by

Ray & Ligatti (2012) based on formal language theory.”

• Scape may depend on semantics/context:
– HTML, JavaScript, URLencoded, JSON, XML, Binary Objects,
Unicode Strings, Exception Messages…

• Who writes filters does not always think like
who writes exploits

Company
LOGO

www.company.com

5. Mitigation Advices

What about Compiler and
hardware based protections?
We can remove this from the Web developers'
hands…

… And leave it with the compiler and
architecture guys ...

Like what was done with stack-smashing… =]

Company
LOGO

www.company.com

5. Mitigation Advices

• Until then...
• Look for bugs in your frameworks/libs/platforms…

– Not only for your custom code

• Make the appropriate hardening of every layer!

– Eg. grsec, selinux, lib’s update…

• And remember: Black Swan events are more
common than we think…

“Finding bugs brings more $$$ then solving

classes of problem” (Meder, 2012)

Company
LOGO

www.company.comgithub.com/joaomatosf

João Filho Matos Figueiredo
joaomatosf@gmail.com

@joaomatosf

Thank you!

“Truth is ever to be found in simplicity,
and not in the multiplicity and confusion of things.”

(Isaac Newton)

mailto:joaomatosf@gmail.com

