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Whoami
• Independent developer and researcher

• Enjoys server-side exploitation and lateral movement

• Reported some critical bugs (RCE) in companies like:

– Apple.com, PayPal.com, AT&T, Samsung.com, BlackBerry, RedHat, 

GM, Oracle Cloud, US Department of Defense (DoD) , 

SonyPictures, Starbucks, Banks, Telecoms, Government, etc.

• Helped some authorities in cybersecurity cases (eg. FBI)

• Bachelor and Master Degree in Computer Science at Federal 

University of Paraíba (UFPB), Brazil.

• Author of JexBoss Audit and Exploitation Tool.
@joaomatosf

https://github.com/joaomatosf

https://github.com/joaomatosf/jexboss
https://github.com/joaomatosf


Company 
LOGO

www.company.com

Agenda

1. T(101)

2. #{Motivations}

3. %{#’simple.Example’}

4. ${new Richfaces0day()}

5. %23%7BAbout Mitigation%7D



Company 
LOGO

www.company.com

• Injection Flaws are “very prevalent”1

• Broad Vulnerability Category:
§ LDAP Injection;

§ Log Injection;

§ OS command Injection;

§ SQL/NoSQL Injection;

§ XSS;

§ XPath Injection;

§ Code Injection
§ . . .

1. 101
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1. 101

CWE-94: “Improper Control of Generation of Code”

"Data Only" "Feature"
“interpreter” Code

Flow
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1. 101

We need to put tainted data into 
a Sinkhole function.

Sanitizers
Validators

Danger Flow
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Database

Params Headers

Uploads EnvVars

APIs Cache

Tainted data comes from untrusted sources 
(or just get in touch)

DNS
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Sinkholes are sensitive methods
.eval(trusted input)

.getValue(trusted input)

.invoke(trusted input)

.sockets(trusted input)

.parseExpression(trusted input)

.file(trusted input)

.instance_eval(trusted input)

render inline: trusted input

.from_string(trusted input).render()
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1. 101

CWE-94: “Improper Control of Generation of Code”

Code
MethodExpression

.invoke()
"#{request.getClass().getC
lassLoader().loadClass(\"j
ava.lang.Runtime\").getMet
hod(\"getRuntime\").invoke
(null).exec(\"calc\")}"

Tainted Data Improper Input 
Validation

Taint Sink

Flow
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1. 101

• Some specific cases:
§ CWE-95: Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection’);

§ CWE-96: Improper Neutralization of Directives in Statically
Saved Code ('Static Code Injection’)

§ CWE-470: Use of Externally-Controlled Input to Select Classes
or Code ('Unsafe Reflection')

§ CWE-624: Executable Regular Expression Error

§ CWE-917: Improper Neutralization of Special Elements used in
an Expression Language Statement ('Expression Language
Injection’).
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Where
can
we find?



Company 
LOGO

www.company.com

2. Motivations
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90
’s Binary Code

Injection1 

(before Memory
Protections)

20
00

...

20
06

20
07

20
10

20
10

Meder
Kydyraliev
(CVE-2010-1622)

2. Motivations

Andrea Vettori
(CVE-2007-4556)

Meder
Kydyraliev
(CVE-2010-1870)

Meder
Kydyraliev
(CVE-2010-1871)

Many
vulnerabilities

RCE in Ruby 
on Rails
(CVE-2006-4111)

20
10

James  
Kettle talked
about some 
cases and
called them
as SSTI

20
15

Nike Zheng
CVE-2017-5638

some milestones

1 Cowan et al., 1998
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2. Motivations
Source: Meder Kydyraliev, 2010
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2. Motivations

Source: Asankhaya Sharma, 2018
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2. Motivations

Management / Monitoring

Virtual Machine (JVM)

Code
that 

generate 
code
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2. Motivations

Management / Monitoring

Virtual Machine (JVM)

Code
that 

genera
te 

code

Examples:

• Template Specifics
• OGNL
• SpEL
• JSP EL
• MVEL
• JEXL
• JUEL
• (JSR 245, 341)
• …
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A simple ilustrative
example

CVE-2017-5638
by Nike Zheng
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3. Simple Example

Description: The Jakarta Multipart parser in Apache
Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1
has incorrect exception handling and error-message
generation during file-upload attempts, which allows
remote attackers to execute arbitrary commands via a
crafted Content-Type, Content-Disposition, or Content-
Length HTTP header, as exploited in the wild in March
2017 with a Content-Type header containing a #cmd=
string.

CVE-2017-5638
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Description: The Jakarta Multipart parser in
Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before
2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts,
which allows remote attackers to execute arbitrary
commands via a crafted Content-Type, Content-
Disposition, or Content-Length HTTP header, as
exploited in the wild in March 2017 with a Content-Type
header containing a #cmd= string.

CVE-2017-5638



Company 
LOGO

www.company.com
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Description: The Jakarta Multipart parser in
Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before
2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts,
which allows remote attackers to execute arbitrary
commands via a crafted Content-Type, Content-
Disposition, or Content-Length HTTP header, as
exploited in the wild in March 2017 with a Content-Type
header containing a #cmd= string.

CVE-2017-5638Vulnerable Component

Taint Sink

Tainted data
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3. Simple Example

Description: The Jakarta Multipart parser in
Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before
2.5.10.1 has incorrect exception handling and error-
message generation during file-upload attempts,
which allows remote attackers to execute arbitrary
commands via a crafted Content-Type, Content-
Disposition, or Content-Length HTTP header, as
exploited in the wild in March 2017 with a Content-Type
header containing a #cmd= string.

CVE-2017-5638Vulnerable Component

Taint Sink

How to get in the taint sink
with controlled tainted data?

Tainted data
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3. Simple Example
CVE-2017-5638

Sinkholes
Taint Source

• Runtime tainting (data-flow analysis):
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3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: multipart/form-data

“Normal” tainted
data tracking
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3. Simple Example
CVE-2017-5638

This is fine!

It’s all ok...

“Normal” tainted
data tracking

POST /page.action
Content-Type: multipart/form-data
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3. Simple Example
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3. Simple Example

Description: The Jakarta Multipart parser in
Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before

2.5.10.1 has incorrect exception handling
and error-message generation during file-upload
attempts, which allows remote attackers to execute
arbitrary commands via a crafted Content-Type,
Content-Disposition, or Content-Length HTTP
header, as exploited in the wild in March 2017 with a
Content-Type header containing a #cmd= string.

CVE-2017-5638
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3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: multipart/form-data\x00

Invalid data
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3. Simple Example
CVE-2017-5638

Invalid data

POST /page.action
Content-Type: multipart/form-data\x00
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3. Simple Example
CVE-2017-5638

Invalid data

POST /page.action
Content-Type: multipart/form-data\x00
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3. Simple Example
CVE-2017-5638

Invalid data

POST /page.action
Content-Type: multipart/form-data\x00

JakartaMultiPartRequest.class

Flow deviation by
Exception Handler
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3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: multipart/form-data\x00
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3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: multipart/form-data\x00
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3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: multipart/form-data\x00

%{

(#_memberAccess=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).

(#commandarray={'/bin/bash','-c','calc'}).

(#p=new java.lang.ProcessBuilder(#commandarray)).

(#process=#p.start()).multipart/form-data

}

Disable protections

Execute OS command
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3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: %{ognl_payload}.multipart/form-data
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3. Simple Example
CVE-2017-5638

POST /page.action
Content-Type: %{ognl_payload}.multipart/form-data

PS: Don’t forget of the Black 
Swan Theory

This analysis had the benefit of hindsight



Company 
LOGO

www.company.com

CVE-2018-14667

Remote Code Execution in 
WepApps using Richfaces 3.X
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4. Richfaces 0day

• For years (since 2007) one of the most used
frameworks for JSF components;

– Primefaces started to get more attention in about ~2013.

• Faced some critical vulnerabilities:

• Richfaces v 3.X:

– RCE via deserialization (CVE-2013-2165)

– RCE via EL Injection (CVE-2018-12533)

• Before assign of CVE-2018-12533, Markus Wulftange
(from CodeWhite) tweeted about the his find...
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4. Richfaces 0day

• Next day I had find the same as Markus and others two more 
RCEs in the Richfaces...
– Two of them were used in bugbuntys like PayPal.com, Apple.com...

– A few weeks later the one of Markus was published

• I responsibly notified to the RedHat on 2018-10-15

• RedHat replied very quickly and assign the CVE-2018-14667

After a friend (@reefbr)
get my attention to this
tweet I decided to deep
look into Richfaces....
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4. Richfaces 0day

• Next day I had find the same as Markus and others two more 
RCEs in the Richfaces...
– Two of them were used in bugbuntys of PayPal.com, Apple.com...

– A few weeks later the one of Markus was published

• I responsibly notified to the RedHat on 2018-10-15

• RedHat replied very quickly and assign the CVE-2018-14667

After a friend (@reefbr)
get my attention to this
tweet I decided to deep
look into Richfaces....

Let’s resume...
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4. Richfaces 0day

• Richfaces receives serialized objects via URL but
uses the following restrict whitelist (look-ahead):

• Let’s suppose that this tainted data can be used in
one of the two possibilities:

1. Deserialization attack

2. Code Injection attack (via EL)

1) org.ajax4jsf.resource.InternetResource
2) org.ajax4jsf.resource.SerializableResource
3) javax.el.Expression
4) javax.faces.el.MethodBinding
5) javax.faces.component.StateHolderSaver
6) java.awt.Color
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4. Richfaces 0day

• Let’s reduce the “problem” to:

1. Analysis of the allowed types;

2. Look for possible sinkholes sensitives to data we can
control (yeah, we can decompile all the things);

3. Try to find a Flow that leads the tainted data to the
identified sinkholes;

"#{7*7}"
Sinkhole

(“tainted data”)
Flow

"#{7*7}"
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4. Richfaces 0day

1. Analysis of the allowed types;
1) org.ajax4jsf.resource.InternetResource
2) org.ajax4jsf.resource.SerializableResource
3) javax.el.Expression
4) javax.faces.el.MethodBinding
5) javax.faces.component.StateHolderSaver
6) java.awt.Color

Magic Methods:readObject()* readResolve()readExternal()*
finalize()readObjectNoData()

validadeObject()
…

“Indirect” Magic

invoke()* 

(InvocationHandler or 

MethodHandler)

toString()

hashCode()

transform() **

compare()

equals()…

“eval” Methods:
getValue() 

invokeMethod()
invoke()getMethodInfo()

createMethodExpress

ion()resolveVariable()

…
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4. Richfaces 0day

1) org.ajax4jsf.resource.InternetResource
2) org.ajax4jsf.resource.SerializableResource
3) javax.el.Expression
4) javax.faces.el.MethodBinding
5) javax.faces.component.StateHolderSaver
6) java.awt.Color
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4. Richfaces 0day

1) org.ajax4jsf.resource.InternetResource
2) org.ajax4jsf.resource.SerializableResource
3) javax.el.Expression
4) javax.faces.el.MethodBinding
5) javax.faces.component.StateHolderSaver
6) java.awt.Color

What about
inheritance?
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4. Richfaces 0day

1) org.ajax4jsf.resource.InternetResource

TemplateCSSResource
InternetResourceBase

AnimationResource
ProgressBarAnimatedBg

JarResource
ClientScript

Java2Dresource
BaseImage
CancelControlIcon
CalendarSeparator
ComboBoxArrowImage

+ more….
StaticResource
URIInternetResource
UserResource
QueueScript
Paint2DResource

+ more….
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4. Richfaces 0day
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1) org.ajax4jsf.resource.InternetResource

TemplateCSSResource
InternetResourceBase

AnimationResource
ProgressBarAnimatedBg

JarResource
ClientScript

Java2Dresource
BaseImage
CancelControlIcon
CalendarSeparator
ComboBoxArrowImage

+ more….
StaticResource
URIInternetResource

UserResource
QueueScript
Paint2DResource

+ more….

4. Richfaces 0day

Sinkholes
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4. Richfaces 0day

taintedData
.sinkhole()Flow

Tainted
data

sinkhole
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4. Richfaces 0day

sinkhole

Analyzing the sinkhole of UserResource

To be exploitable, two conditions are needed:
1) Achieve this method (send());
2) Control of the “context” variable.

But are they enough?
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4. Richfaces 0day

UserResource

If we can control variable “context”

Restore a object from a 
ResourceContext
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4. Richfaces 0day

UserResource.UriData
Cast to

UserResource.UriData
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4. Richfaces 0day

UserResource.UriData

createContent field
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4. Richfaces 0day

UserResource.UriData

Allowed type
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4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
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4. Richfaces 0day

UserResource.UriData
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4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
MethodExpression

#{7*7}
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4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
MethodExpression

.invoke()#{7*7}
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4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
MethodExpression

.invoke()#{7*7}
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4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
MethodExpression

org.ajax4jsf.resource.UserResource$UriData
createContent:

javax.faces.component.StateHolderSaver
savedState:

org.jboss.el.MethodExpressionImpl
exp:

"${Expression Language}"

Using a chain like this one:

PS: there are 
other possible

chains!

.invoke()#{7*7}
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4. Richfaces 0day

UserResource.UriData

createContent field

StateHolderSaver
MethodExpression

.invoke()

org.ajax4jsf.resource.UserResource$UriData
createContent:

javax.faces.component.StateHolderSaver
savedState:

org.jboss.el.MethodExpressionImpl
exp:

"${Expression Language}"

Using a chain like this one:

PS: there are 
other possible

chains!
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4. Richfaces 0day

taintedData
.sinkhole()Flow ?

Tainted
data

sinkhole
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4. Richfaces 0day

taintedData
.sinkhole()Flow ?

Static AnalysisDynamic Analysis

taintedData
.sinkhole()Flow ?
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4. Richfaces 0day
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4. Richfaces 0day

From static analysis we can see that
resources can be triggered by URLs

path = {Resource Class Name}
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4. Richfaces 0day

From static analysis we can see that
resources can be triggered by URLs

path = {Resource Class Name}/n/s
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4. Richfaces 0day

From static analysis we can see that
resources can be triggered by URLs

path = {Resource Class Name}/n/s/{mimeHashCode}
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4. Richfaces 0day

We can also include serialized objects
in the same URL pattern...

path = {Resource Class
Name}/n/s/{mimeHashCode}/DATA/{encoded payload}
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4. Richfaces 0day

We can also include serialized objects
in the same URL pattern...

path = {Resource Class
Name}/n/s/{mimeHashCode}/DATA/{encoded payload}

UserResource
Object Chain!
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4. Richfaces 0day

Let’s test the injection point and
track the tainted data....

"{7*7}"
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4. Richfaces 0day

"{7*7}"

1. Mark all data from untrusted sources as
tainted…

2. Mark all data that comes in contact with as
tainted…

3. Check if tainted data gets in sinkholes.
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4. Richfaces 0day

"{7*7}"
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4. Richfaces 0day

"{7*7}"
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4. Richfaces 0day

"{7*7}"

resource contains a 

UserResource instance!
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4. Richfaces 0day
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4. Richfaces 0day

Deserialization
of our chain!
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4. Richfaces 0day

Our chain is put
inside a 

ResourceContext
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4. Richfaces 0day
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4. Richfaces 0day

UserResource.send(“ResourceContext”)
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4. Richfaces 0day

UserResource.send(“ResourceContext”)



Company 
LOGO

www.company.com

4. Richfaces 0day

CVE-2018-14667 
Unauthenticated Remote Code Execution in Web 

Applications using Richfaces Framework 3.X
https://access.redhat.com/security/cve/cve-2018-14667

https://www.youtube.com/watch?v=HR7-nL5G91w

https://access.redhat.com/security/cve/cve-2018-14667
https://www.youtube.com/watch?v=HR7-nL5G91w
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5. About Mitigation
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5. About Mitigation

Sanitize data from 
untrusted sources, 

right?
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5. Mitigation Advices

It is good and needed, 
but not enough.
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5. Mitigation Advices

• It is not so simple…
• Taint propagation is a complex issue

“every application that copies untrusted input verbatim into an 

output program is vulnerable to code injection attacks. Proved by 

Ray & Ligatti (2012) based on formal language theory.”

• Scape may depend on semantics/context:
– HTML, JavaScript, URLencoded, JSON, XML, Binary Objects,
Unicode Strings, Exception Messages…

• Who writes filters does not always think like
who writes exploits
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5. Mitigation Advices

What about Compiler and 
hardware based protections?
We can remove this from the Web developers'
hands…

… And leave it with the compiler and
architecture guys ...

Like what was done with stack-smashing… =]
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5. Mitigation Advices

• Until then...
• Look for bugs in your frameworks/libs/platforms…

– Not only for your custom code

• Make the appropriate hardening of every layer!

– Eg. grsec, selinux, lib’s update…

• And remember: Black Swan events are more
common than we think…

“Finding bugs brings more $$$ then solving 

classes of problem” (Meder, 2012)
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João Filho Matos Figueiredo
joaomatosf@gmail.com

@joaomatosf

Thank you!

“Truth is ever to be found in simplicity, 
and not in the multiplicity and confusion of things.”

(Isaac Newton)

mailto:joaomatosf@gmail.com

