
Bypassing a Hardware-Based 
Trusted Boot Through x86 
CPU Microcode Downgrade

Alexander Ermolov
@flothrone

https://twitter.com/flothrone


#WhoAmI

▪ Former team member at Digital Security and Embedi

▪ Intel ME
– Intel AMT. Stealth Breakthrough

▪ Intel Boot Guard
– Safeguarding rootkits: Intel Boot Guard

– Bypassing Intel Boot Guard

▪ UEFI BIOS
– UEFI BIOS holes: So Much Magic, Don’t Come Inside

– NUClear explotion
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https://twitter.com/dsecru
https://twitter.com/_embedi_
https://embedi.org/resources/what-you-need-to-know-about-the-intel-amt-vulnerability/
https://github.com/flothrone/bootguard
https://embedi.org/blog/bypassing-intel-boot-guard/
https://embedi.org/blog/uefi-bios-holes-so-much-magic-dont-come-inside/
https://embedi.org/blog/nuclear-explotion/


#Agenda

▪ CPU microcode basics

▪ Downgrading microcode

▪ Discovering impact

▪ Mitigations & takeaways
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CPU microcode basics
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Inside Intel CPU

▪ Processor cores
– BSP (Bootstrap Processor)

– APs (Application Processors)

▪ Graphics core

▪ IMC (Integrated Memory 
Controller)

▪ L3 cache

▪ I/O logic
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Inside Intel CPU

Each core has its own:

▪ Control (execution) unit to 
decode instructions

▪ ALU to perform arithmetic, 
load/store, … actions

▪ Register file

▪ L1 and L2 cache
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Microcode

Control Unit has Microcode ROM that contains the CPU microcode - a program 
written in a hardware-level instructions to implement a higher-level instructions

For example, MOVS instruction implementation:

LLDF ; load direction flag to latch in functional unit
OR ecx, ecx ; test if ECX is zero
JZ end ; terminate string move if ECX is zero

loop:
MOVFM tmp0, [esi] ; move the data to tmp data from source and inc/dec ESI
MOVIM [edi], tmp0 ; move the data to destination and inc/dec EDI
EDECXJNZ loop ; dec ECX and repeat until zero

end:
EXIT

Control 
Unit

ROM

Control 
Store
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Security Analysis of x86 Processor Microcode
https://www.dcddcc.com/docs/2014_paper_microcode.pdf

https://www.dcddcc.com/docs/2014_paper_microcode.pdf


Microcode update

Microcode can have bugs, so it should 
be updatable

The updated microcode has to be 
loaded into Control Store upon each 
CPU power on
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Firmware Interface Table (FIT)

9



Firmware Interface Table (FIT)

▪ Is a required element for Intel 64 architecture since introduction of 
Boot Guard technology

▪ Can point to microcode update (MCU) binaries

▪ CPU can load microcode updates from FIT prior to execution 0f BIOS 
and before starting Intel Boot Guard
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Microcode Update binary main header

Microcode Update binary starts with the main header followed by an extended header and update data

typedef struct MICROCODE_UPDATE_HEADER {
unsigned long header_version; // 1
unsigned long update_revision;
unsigned long date; // BCD format
unsigned long processor_signature;  // CPUID
unsigned long checksum;
unsinged long loader_revision;
unsinged long processor_flags;
unsigned long data_size;          // in bytes
unsigned long total_size;         // in bytes
unsigned char reserved[0x0C];

};
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Microcode Update binary extended header

typedef struct MICROCODE_UPDATE_EXTENDED_HEADER {
unsigned short module_type;          // 0
unsigned short module_subtype;       // 0
unsigned long  header_size;          // in dwords
unsigned long  header_version;       // 0x20001
unsigned long  update_revision;
unsigned long  unknown[2];
unsigned long  date;                 // BCD format
unsigned long  update_size;          // in dwords
unsigned long  svn;
unsigned long  processor_signature;
unsigned long  unknown2[0x0E];
unsigned char  update_hash[0x20];    // SHA256 hash of the decrypted update data
unsigned char  rsa_mod[0x100];       // RSA 2048 public key modulus
unsigned long  rsa_exp;              // RSA 2048 public key exponent
unsigned char signature[0x100];     // RSA 2048 signature of the header

};
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Microcode Update binary data

▪ The main part in MCU binary is Data (encrypted, the decryption key is 
hardcoded into CPU)

▪ Hash of RSA public key to authenticate the MCU is also hardcoded 
into CPU

▪ So no one knows exactly what Microcode is capable of
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Known facts about Microcode

▪ Implements instructions

▪ Configures the execution logic on the line (that’s how side-channels 
are fixed)

▪ Implements some startup behavior (like FIT parsing)

▪ Loads MCU from FIT

▪ Loads and executes Intel Authenticated Code Modules (ACMs) (from 
FIT or not)
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Authenticated Code Modules (ACMs)

▪ Signed and sometimes encrypted Intel code modules

▪ Loaded and executed from L3 cache (sometimes called AC RAM)

▪ Serve as a Root-of-Trusts and a core of implementation for 
technologies:
– Intel Boot Guard

type/subtype: 2.3, not encrypted, signed with KEY2

– Intel Trusted Execution Technology (TXT)
type/subtype: 2.0, not encrypted, signed with KEY3

– Intel BIOS Guard (PFAT)
type/subtype: 1.1, encrypted, signed with KEY1

FYI: microcode update binary

type/subtype: 1.0, encrypted, signed with KEY1
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Useful links to start digging

▪ Docs:
– Intel 64 Software Developer’s manual

– leaked Intel confidential documentation

▪ Papers:
– Security Analysis of x86 Processor Microcode by Daming D. Chen and Gail-Joon

Ahn

– Reverse Engineering x86 Processor Microcode by Benjamin Kollenda and Philipp 
Koppe, Ruhr

▪ Tools
– UEFItool by CodeRush

– MCExtractor by platomav
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https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://www.dcddcc.com/docs/2014_paper_microcode.pdf
https://cansecwest.com/slides/2018/Reverse Engineering x86 Processor Microcode - Benjamin Kollenda and Philipp Koppe, Ruhr-University Bochum.pdf
https://github.com/LongSoft/UEFITool/
https://github.com/platomav/MCExtractor


Downgrading microcode
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Updating Microcode in UEFI BIOS

▪ Updates are to improve stability, performance and apply security 
fixes

▪ Updates should be loaded each time CPU is powered on, this means 
after S3 (Sleep) / S4 (Hibernation) /S5 (Shutdown) modes

▪ Far not always updates can be loaded by CPU from FIT

▪ Updates that requires something special (like initialized DRAM) has 
to be loaded by the BIOS as early as possible from the moment 
conditions are satisfied

▪ Updates should be loaded on each CPU core separately
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Microcode Update loading process

update_microcode:

mov rcx, 79h ; IA32_BIOS_UPDATE_TRIGGER in RCX

xor rax, rax ; clear RAX

xor rbx, rbx ; clear RBX

mov rax, MicrocodeUpdate ; Linear address of the microcode update

add rax, 48h ; Offset of Update Data in the Update

xor rdx, rdx ; Zero RDX

wrmsr ; trigger the microcode update

check_update_revision:

mov rcx, 08bh ; IA32_BIOS_SIGN_ID

rdmsr ; read MSR, Update Revision will be in RDX
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Normal Boot. Step 1. CpuPei

// Find the appropriate MCU in FIT

MicrocodeAddr = FindMCUinFIT ();

if (MicrocodeAddr != NULL) {

MicrocodeSize = ((MICROCODE_UPDATE_HEADER *) MicrocodeAddr)->TotalSize;

// Copy the MCU from the mapped SPI flash memory into RAM

Status = (*PeiServices)->AllocatePages ( … , EFI_SIZE_TO_PAGES (MicrocodeSize), &MicrocodeBuffer);

if (!EFI_ERROR (Status)) {

(*PeiServices)->CopyMem (MicrocodeBuffer, MicrocodeAddr, MicrocodeSize);

// Save this pointer into a HOB

Status = (*PeiServices)->CreateHob ( … , &UcodeHob);

if (!EFI_ERROR (Status)) {

AmiUcodeHobGuid = EFI_GUID (“94567C6F-F7A9-4229-1330-FE11CCAB3A11”);

memcpy (&UcodeHob->EfiHobGuidType.Name, &AmiUcodeHobGuid, sizeof(EFI_GUID));

UcodeHob->UcodeAddr = MicrocodeBuffer;
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Normal Boot. Step 2. PlatformInit

▪ Later the microcode update loader finds this HOB 

▪ Retrieves the MCU buffer address

▪ Updates CPU microcode with it
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Normal Boot. Step 3. CpuSpSmi

// Find the MCU HOB and retrieve a saved MCU address
UcodeHob = (AMI_UCODE_HOB *) GetEfiConfigurationTable (pSystemTable, &HobListGuid);

if (UcodeHob != NULL) { 
Status = FindNextHobByGuid (&gAmiUcodeHobGuid, &UcodeHob); 

if (Status == EFI_SUCCESS && UcodeHob->UcodeAddr != NULL && UcodeHob->UcodeAddr != 0xFFFF) {
gMicrocodeStart = UcodeHob->UcodeAddr;

...

// Copy the applied MCU into SMRAM (to protect it from being replaced by OS)

if (gMicrocodeStart != NULL && ((MICROCODE_UPDATE_HEADER *) gMicrocodeStart)->HeaderVersion == 1) {

UcodeSize = ((MICROCODE_UPDATE_HEADER *) gMicrocodeStart)->TotalSize;

Status = pSmst->SmmAllocatePages ( … , EFI_SIZE_TO_PAGES (UcodeSize), &SmramUcodeAddr);

if (!EFI_ERROR (Status)) {

memcpy (SmmUcodeAddr, gMicrocodeStart, UcodeSize);
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Normal Boot. Step 3. CpuSpSmi

gIntUcodeVarGuid = EFI_GUID (“eda41d22-7729-5b91-b3ee-ba619921cefa”);

...

// Save its address into the ‘IntUcode’ EFI variable
IntUcodeVarData.Version = 1;
IntUcodeVarData.UcodeAddr = SmmUcodeAddr;
IntUcodeVarData.Unknown = 0;
IntUcodeVarData.Unknown2 = 0;

Status = pRuntimeServices->SetVariable (L"IntUcode", &gIntUcodeVarGuid,
EFI_VARIABLE_NON_VOLATILE |
EFI_VARIABLE_BOOTSERVICE_ACCESS |
EFI_VARIABLE_RUNTIME_ACCESS, 
sizeof(IntUcodeVarData), &IntUcodeVarData);
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Waking from S3. Step 1. CpuPei

// Instead of searching for the MCU again, get the pointer from ‘IntUcode’ EFI variable

Status = ReadOnlyVariable2->GetVariable ( … , “IntUcode”, & gIntUcodeVarGuid, NULL,

&VarSize, &IntUcodeVarData);

if (!EFI_ERROR (Status)) {

MicrocodeAddr = IntUcodeVarData.UcodeAddr;            

Status = (*PeiServices)->CreateHob ( … , &UcodeHob);        

if(!EFI_ERROR (Status)) {

AmiUcodeHobGuid = EFI_GUID (“94567C6F-F7A9-4229-1330-FE11CCAB3A11”);

memcpy (&UcodeHob->EfiHobGuidType.Name, &AmiUcodeHobGuid, sizeof(EFI_GUID));

UcodeHob->uCodeAddr = MicrocodeAddr;
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Waking from S3. Step 2. PlatformInit

▪ Later the microcode update loader finds this HOB 

▪ Retrieves the MCU buffer address

▪ Updates CPU microcode with it
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Microcode Downgrade

This specific allows an attacker:
– to load an old microcode update capsule into memory

– make the ‘IntUcode’ EFI variable to point to it

– perform Sleep/Wake-up cycle

The system will be booted with the attacker-provided microcode (if it was valid and 
passed the integrity check, of course)
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Microcode Downgrade

▪ 2019 version of MCU of CPU ID 0x806EA

▪ Downgraded to 2018 version
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Discovering impact
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Side channel attacks

▪ Get rid of fixes (side channel attacks)

▪ Most of these attacks – extremely hard to apply in the wild

▪ Have never been spotted, however there’s not much of detection 
tools:
– SCADET by Majid Sabbagh

▪ Introduction to software-based microarchitectural side-channel 
attacks by Alexander Rumyantsev

▪ A New Memory Type Against Speculative Side-Channel Attacks by 
@IntelSTORM
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https://github.com/sabbaghm/SCADET
https://gitlab.com/saruman9/micro_arch_side_channel_attacks_pres
https://github.com/intelstormteam/Papers/blob/master/2019-A_New_Memory_Type_Against_Speculative_Side_Channel_Attacks.pdf
https://twitter.com/IntelSTORMTeam


Debug capabilities

▪ Unlock debug capabilities

▪ Get rid of INTEL-SA-00073 fix (CVE-2017-5684)

▪ Intel DCI Secrets by Maxim Goryachy and Mark Ermolov
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https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00073.html
https://conference.hitb.org/hitbsecconf2017ams/materials/D2T4 - Maxim Goryachy and Mark Ermalov - Intel DCI Secrets.pdf


Downgrading ACMs

▪ The ACM authentication is 
performed by a Microcode

▪ Older Microcode versions load 
older ACM (with reduced SVN)

▪ Downgraded ACM has exploitable 
1days which makes vulnerable the 
technology they support

31

https://twitter.com/matrosov/status/1139491430110584832

https://twitter.com/matrosov/status/1139491430110584832


Downgrading ACMs. Intel Boot Guard

▪ Not encrypted, binary diffing is applicable to find 1 days

▪ Executed only on startup (prior to BIOS) upon CPU is powered on and 
released from the RESET state

▪ ACM does not verify BIOS when waking from S3 (performance 
optimizations) except each 12 boot

The implementation of vendor part of trusted boot is a target here. 
Plenty of techniques are already in public
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Downgrading ACMs. Intel BIOS Guard

▪ Encrypted, extremely hard to find a fixed issue

▪ Triggered to run SPI flash operations via CPU MSRs from SMM

▪ Downgrade is possible if SPI flash write access is gained (at which 
point further attack is unnecessary)

First bypass is already in public:

Breaking Through Another Side: Bypassing Firmware Security 
Boundaries from Embedded Controller by Alex Matrsov
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https://www.blackhat.com/us-19/briefings/schedule/index.html#breaking-through-another-side-bypassing-firmware-security-boundaries-from-embedded-controller-15902


Downgrading ACMs. Intel TXT

▪ Not encrypted, binary diffing is applicable to find a 1 days

▪ SINIT ACM is a target

▪ Triggered via GETSEC instruction from BIOS / OS to measure boot 
chain components

▪ Address of this ACM is specified in EBX register

▪ Address doesn’t change from boot to boot, so downgrade is possible 
just by replacing this ACM in memory!

▪ INTEL-SA-00035
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https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00035.html


Downgrading ACMs. Intel TXT
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#Report and Reaction

▪ Reported to Intel on 3rd July 2018

▪ Confirmed as a valid issue on 28 August 2018

▪ INTEL-SA-00264 on 11 June 2019

▪ Affected: AMI-based UEFI BIOS for Intel hardware (since ~2014)

Would like to thank Intel PSIRT and AMI for resolving this issue

36

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00264.html


#Mitigations

▪ Intel SGX
– does not check MCU SVN when leaving S3

▪ Protect ‘IntUcode’ EFI variable (mark as read-only and close from 
runtime access)
– Could be bypassed if an attacker manages to run arbitrary code in SMM

▪ Make an OS to update the Microcode to the latest version
– Process could be already compromised at the moment of validating the update 

version

▪ Supply only the updates which could be loaded from FIT
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#Takeaways

▪ Supply chain problem

▪ The problem in a basic component compromises all technologies it 
serves as a Root-of-Trust

▪ The full impact is yet to discover
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Thank you
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