
Bypassing a Hardware-Based
Trusted Boot Through x86
CPU Microcode Downgrade

Alexander Ermolov
@flothrone

https://twitter.com/flothrone

#WhoAmI

▪ Former team member at Digital Security and Embedi

▪ Intel ME
– Intel AMT. Stealth Breakthrough

▪ Intel Boot Guard
– Safeguarding rootkits: Intel Boot Guard

– Bypassing Intel Boot Guard

▪ UEFI BIOS
– UEFI BIOS holes: So Much Magic, Don’t Come Inside

– NUClear explotion

2

https://twitter.com/dsecru
https://twitter.com/_embedi_
https://embedi.org/resources/what-you-need-to-know-about-the-intel-amt-vulnerability/
https://github.com/flothrone/bootguard
https://embedi.org/blog/bypassing-intel-boot-guard/
https://embedi.org/blog/uefi-bios-holes-so-much-magic-dont-come-inside/
https://embedi.org/blog/nuclear-explotion/

#Agenda

▪ CPU microcode basics

▪ Downgrading microcode

▪ Discovering impact

▪ Mitigations & takeaways

3

CPU microcode basics

4

Inside Intel CPU

▪ Processor cores
– BSP (Bootstrap Processor)

– APs (Application Processors)

▪ Graphics core

▪ IMC (Integrated Memory
Controller)

▪ L3 cache

▪ I/O logic

5

Inside Intel CPU

Each core has its own:

▪ Control (execution) unit to
decode instructions

▪ ALU to perform arithmetic,
load/store, … actions

▪ Register file

▪ L1 and L2 cache

L1 code
cache

ALU

Control
Unit

Register
file

L1 data
cache

L1 TLB
cache

ROM

L2 cache

Control
Store

I/O

System
memory

6

Microcode

Control Unit has Microcode ROM that contains the CPU microcode - a program
written in a hardware-level instructions to implement a higher-level instructions

For example, MOVS instruction implementation:

LLDF ; load direction flag to latch in functional unit
OR ecx, ecx ; test if ECX is zero
JZ end ; terminate string move if ECX is zero

loop:
MOVFM tmp0, [esi] ; move the data to tmp data from source and inc/dec ESI
MOVIM [edi], tmp0 ; move the data to destination and inc/dec EDI
EDECXJNZ loop ; dec ECX and repeat until zero

end:
EXIT

Control
Unit

ROM

Control
Store

7

Security Analysis of x86 Processor Microcode
https://www.dcddcc.com/docs/2014_paper_microcode.pdf

https://www.dcddcc.com/docs/2014_paper_microcode.pdf

Microcode update

Microcode can have bugs, so it should
be updatable

The updated microcode has to be
loaded into Control Store upon each
CPU power on

8

Firmware Interface Table (FIT)

9

Firmware Interface Table (FIT)

▪ Is a required element for Intel 64 architecture since introduction of
Boot Guard technology

▪ Can point to microcode update (MCU) binaries

▪ CPU can load microcode updates from FIT prior to execution 0f BIOS
and before starting Intel Boot Guard

10

Microcode Update binary main header

Microcode Update binary starts with the main header followed by an extended header and update data

typedef struct MICROCODE_UPDATE_HEADER {
unsigned long header_version; // 1
unsigned long update_revision;
unsigned long date; // BCD format
unsigned long processor_signature; // CPUID
unsigned long checksum;
unsinged long loader_revision;
unsinged long processor_flags;
unsigned long data_size; // in bytes
unsigned long total_size; // in bytes
unsigned char reserved[0x0C];

};

11

Microcode Update binary extended header

typedef struct MICROCODE_UPDATE_EXTENDED_HEADER {
unsigned short module_type; // 0
unsigned short module_subtype; // 0
unsigned long header_size; // in dwords
unsigned long header_version; // 0x20001
unsigned long update_revision;
unsigned long unknown[2];
unsigned long date; // BCD format
unsigned long update_size; // in dwords
unsigned long svn;
unsigned long processor_signature;
unsigned long unknown2[0x0E];
unsigned char update_hash[0x20]; // SHA256 hash of the decrypted update data
unsigned char rsa_mod[0x100]; // RSA 2048 public key modulus
unsigned long rsa_exp; // RSA 2048 public key exponent
unsigned char signature[0x100]; // RSA 2048 signature of the header

};

12

Microcode Update binary data

▪ The main part in MCU binary is Data (encrypted, the decryption key is
hardcoded into CPU)

▪ Hash of RSA public key to authenticate the MCU is also hardcoded
into CPU

▪ So no one knows exactly what Microcode is capable of

13

Known facts about Microcode

▪ Implements instructions

▪ Configures the execution logic on the line (that’s how side-channels
are fixed)

▪ Implements some startup behavior (like FIT parsing)

▪ Loads MCU from FIT

▪ Loads and executes Intel Authenticated Code Modules (ACMs) (from
FIT or not)

14

Authenticated Code Modules (ACMs)

▪ Signed and sometimes encrypted Intel code modules

▪ Loaded and executed from L3 cache (sometimes called AC RAM)

▪ Serve as a Root-of-Trusts and a core of implementation for
technologies:
– Intel Boot Guard

type/subtype: 2.3, not encrypted, signed with KEY2

– Intel Trusted Execution Technology (TXT)
type/subtype: 2.0, not encrypted, signed with KEY3

– Intel BIOS Guard (PFAT)
type/subtype: 1.1, encrypted, signed with KEY1

FYI: microcode update binary

type/subtype: 1.0, encrypted, signed with KEY1

15

Useful links to start digging

▪ Docs:
– Intel 64 Software Developer’s manual

– leaked Intel confidential documentation

▪ Papers:
– Security Analysis of x86 Processor Microcode by Daming D. Chen and Gail-Joon

Ahn

– Reverse Engineering x86 Processor Microcode by Benjamin Kollenda and Philipp
Koppe, Ruhr

▪ Tools
– UEFItool by CodeRush

– MCExtractor by platomav

16

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://www.dcddcc.com/docs/2014_paper_microcode.pdf
https://cansecwest.com/slides/2018/Reverse Engineering x86 Processor Microcode - Benjamin Kollenda and Philipp Koppe, Ruhr-University Bochum.pdf
https://github.com/LongSoft/UEFITool/
https://github.com/platomav/MCExtractor

Downgrading microcode

17

Updating Microcode in UEFI BIOS

▪ Updates are to improve stability, performance and apply security
fixes

▪ Updates should be loaded each time CPU is powered on, this means
after S3 (Sleep) / S4 (Hibernation) /S5 (Shutdown) modes

▪ Far not always updates can be loaded by CPU from FIT

▪ Updates that requires something special (like initialized DRAM) has
to be loaded by the BIOS as early as possible from the moment
conditions are satisfied

▪ Updates should be loaded on each CPU core separately

18

Microcode Update loading process

update_microcode:

mov rcx, 79h ; IA32_BIOS_UPDATE_TRIGGER in RCX

xor rax, rax ; clear RAX

xor rbx, rbx ; clear RBX

mov rax, MicrocodeUpdate ; Linear address of the microcode update

add rax, 48h ; Offset of Update Data in the Update

xor rdx, rdx ; Zero RDX

wrmsr ; trigger the microcode update

check_update_revision:

mov rcx, 08bh ; IA32_BIOS_SIGN_ID

rdmsr ; read MSR, Update Revision will be in RDX

19

Normal Boot. Step 1. CpuPei

// Find the appropriate MCU in FIT

MicrocodeAddr = FindMCUinFIT ();

if (MicrocodeAddr != NULL) {

MicrocodeSize = ((MICROCODE_UPDATE_HEADER *) MicrocodeAddr)->TotalSize;

// Copy the MCU from the mapped SPI flash memory into RAM

Status = (*PeiServices)->AllocatePages (… , EFI_SIZE_TO_PAGES (MicrocodeSize), &MicrocodeBuffer);

if (!EFI_ERROR (Status)) {

(*PeiServices)->CopyMem (MicrocodeBuffer, MicrocodeAddr, MicrocodeSize);

// Save this pointer into a HOB

Status = (*PeiServices)->CreateHob (… , &UcodeHob);

if (!EFI_ERROR (Status)) {

AmiUcodeHobGuid = EFI_GUID (“94567C6F-F7A9-4229-1330-FE11CCAB3A11”);

memcpy (&UcodeHob->EfiHobGuidType.Name, &AmiUcodeHobGuid, sizeof(EFI_GUID));

UcodeHob->UcodeAddr = MicrocodeBuffer;
20

Normal Boot. Step 2. PlatformInit

▪ Later the microcode update loader finds this HOB

▪ Retrieves the MCU buffer address

▪ Updates CPU microcode with it

21

Normal Boot. Step 3. CpuSpSmi

// Find the MCU HOB and retrieve a saved MCU address
UcodeHob = (AMI_UCODE_HOB *) GetEfiConfigurationTable (pSystemTable, &HobListGuid);

if (UcodeHob != NULL) {
Status = FindNextHobByGuid (&gAmiUcodeHobGuid, &UcodeHob);

if (Status == EFI_SUCCESS && UcodeHob->UcodeAddr != NULL && UcodeHob->UcodeAddr != 0xFFFF) {
gMicrocodeStart = UcodeHob->UcodeAddr;

...

// Copy the applied MCU into SMRAM (to protect it from being replaced by OS)

if (gMicrocodeStart != NULL && ((MICROCODE_UPDATE_HEADER *) gMicrocodeStart)->HeaderVersion == 1) {

UcodeSize = ((MICROCODE_UPDATE_HEADER *) gMicrocodeStart)->TotalSize;

Status = pSmst->SmmAllocatePages (… , EFI_SIZE_TO_PAGES (UcodeSize), &SmramUcodeAddr);

if (!EFI_ERROR (Status)) {

memcpy (SmmUcodeAddr, gMicrocodeStart, UcodeSize);

22

Normal Boot. Step 3. CpuSpSmi

gIntUcodeVarGuid = EFI_GUID (“eda41d22-7729-5b91-b3ee-ba619921cefa”);

...

// Save its address into the ‘IntUcode’ EFI variable
IntUcodeVarData.Version = 1;
IntUcodeVarData.UcodeAddr = SmmUcodeAddr;
IntUcodeVarData.Unknown = 0;
IntUcodeVarData.Unknown2 = 0;

Status = pRuntimeServices->SetVariable (L"IntUcode", &gIntUcodeVarGuid,
EFI_VARIABLE_NON_VOLATILE |
EFI_VARIABLE_BOOTSERVICE_ACCESS |
EFI_VARIABLE_RUNTIME_ACCESS,
sizeof(IntUcodeVarData), &IntUcodeVarData);

23

Waking from S3. Step 1. CpuPei

// Instead of searching for the MCU again, get the pointer from ‘IntUcode’ EFI variable

Status = ReadOnlyVariable2->GetVariable (… , “IntUcode”, & gIntUcodeVarGuid, NULL,

&VarSize, &IntUcodeVarData);

if (!EFI_ERROR (Status)) {

MicrocodeAddr = IntUcodeVarData.UcodeAddr;

Status = (*PeiServices)->CreateHob (… , &UcodeHob);

if(!EFI_ERROR (Status)) {

AmiUcodeHobGuid = EFI_GUID (“94567C6F-F7A9-4229-1330-FE11CCAB3A11”);

memcpy (&UcodeHob->EfiHobGuidType.Name, &AmiUcodeHobGuid, sizeof(EFI_GUID));

UcodeHob->uCodeAddr = MicrocodeAddr;

24

Waking from S3. Step 2. PlatformInit

▪ Later the microcode update loader finds this HOB

▪ Retrieves the MCU buffer address

▪ Updates CPU microcode with it

25

Microcode Downgrade

This specific allows an attacker:
– to load an old microcode update capsule into memory

– make the ‘IntUcode’ EFI variable to point to it

– perform Sleep/Wake-up cycle

The system will be booted with the attacker-provided microcode (if it was valid and
passed the integrity check, of course)

26

Microcode Downgrade

▪ 2019 version of MCU of CPU ID 0x806EA

▪ Downgraded to 2018 version

27

Discovering impact

28

Side channel attacks

▪ Get rid of fixes (side channel attacks)

▪ Most of these attacks – extremely hard to apply in the wild

▪ Have never been spotted, however there’s not much of detection
tools:
– SCADET by Majid Sabbagh

▪ Introduction to software-based microarchitectural side-channel
attacks by Alexander Rumyantsev

▪ A New Memory Type Against Speculative Side-Channel Attacks by
@IntelSTORM

29

https://github.com/sabbaghm/SCADET
https://gitlab.com/saruman9/micro_arch_side_channel_attacks_pres
https://github.com/intelstormteam/Papers/blob/master/2019-A_New_Memory_Type_Against_Speculative_Side_Channel_Attacks.pdf
https://twitter.com/IntelSTORMTeam

Debug capabilities

▪ Unlock debug capabilities

▪ Get rid of INTEL-SA-00073 fix (CVE-2017-5684)

▪ Intel DCI Secrets by Maxim Goryachy and Mark Ermolov

30

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00073.html
https://conference.hitb.org/hitbsecconf2017ams/materials/D2T4 - Maxim Goryachy and Mark Ermalov - Intel DCI Secrets.pdf

Downgrading ACMs

▪ The ACM authentication is
performed by a Microcode

▪ Older Microcode versions load
older ACM (with reduced SVN)

▪ Downgraded ACM has exploitable
1days which makes vulnerable the
technology they support

31

https://twitter.com/matrosov/status/1139491430110584832

https://twitter.com/matrosov/status/1139491430110584832

Downgrading ACMs. Intel Boot Guard

▪ Not encrypted, binary diffing is applicable to find 1 days

▪ Executed only on startup (prior to BIOS) upon CPU is powered on and
released from the RESET state

▪ ACM does not verify BIOS when waking from S3 (performance
optimizations) except each 12 boot

The implementation of vendor part of trusted boot is a target here.
Plenty of techniques are already in public

32

Downgrading ACMs. Intel BIOS Guard

▪ Encrypted, extremely hard to find a fixed issue

▪ Triggered to run SPI flash operations via CPU MSRs from SMM

▪ Downgrade is possible if SPI flash write access is gained (at which
point further attack is unnecessary)

First bypass is already in public:

Breaking Through Another Side: Bypassing Firmware Security
Boundaries from Embedded Controller by Alex Matrsov

33

https://www.blackhat.com/us-19/briefings/schedule/index.html#breaking-through-another-side-bypassing-firmware-security-boundaries-from-embedded-controller-15902

Downgrading ACMs. Intel TXT

▪ Not encrypted, binary diffing is applicable to find a 1 days

▪ SINIT ACM is a target

▪ Triggered via GETSEC instruction from BIOS / OS to measure boot
chain components

▪ Address of this ACM is specified in EBX register

▪ Address doesn’t change from boot to boot, so downgrade is possible
just by replacing this ACM in memory!

▪ INTEL-SA-00035

34

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00035.html

Downgrading ACMs. Intel TXT

35

BIOS region of SPI flash memory

Microcode
ROM

FIT MCU
Boot Guard

ACM

BIOS Guard
ACM

TXT ACM

OS

SMM

Legacy
MCU

loader
MCU

PEI

DXE

TXT ACM

Normal boot path

Compromised wake
from S3 boot path

#Report and Reaction

▪ Reported to Intel on 3rd July 2018

▪ Confirmed as a valid issue on 28 August 2018

▪ INTEL-SA-00264 on 11 June 2019

▪ Affected: AMI-based UEFI BIOS for Intel hardware (since ~2014)

Would like to thank Intel PSIRT and AMI for resolving this issue

36

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00264.html

#Mitigations

▪ Intel SGX
– does not check MCU SVN when leaving S3

▪ Protect ‘IntUcode’ EFI variable (mark as read-only and close from
runtime access)
– Could be bypassed if an attacker manages to run arbitrary code in SMM

▪ Make an OS to update the Microcode to the latest version
– Process could be already compromised at the moment of validating the update

version

▪ Supply only the updates which could be loaded from FIT

37

#Takeaways

▪ Supply chain problem

▪ The problem in a basic component compromises all technologies it
serves as a Root-of-Trust

▪ The full impact is yet to discover

38

Thank you

39

