Seguranga e
ovotel Center Norte Gonh/ecimento
aaaaaaaa - Brazil : para'um mundo

:
S e |
» | - — y
. Y © HACKERS TO HACKERS CONFERENCE i ital
.y elle]
- —

- Bypassing a Hardware-Based
Trusted Boot Through x86
CPU Microcode Downgrade

—e oo = S S

Alexander Ermolov
@flothrone

https://twitter.com/flothrone

#WhoAmI

S — - S

. Former team member at Digital Security and Embedi

= Intel ME

. Int.el AMT. Stealth Breakthr_ough

» Intel Boot Guard

—' Safequarding rootkits: Intel Boot Guard

— Bypassing Intel Boot Guard

= UEFI BIOS

— UEFIBIOS holes: So Much Magic, Don’t Come Inside
- NUClear explotion '

https://twitter.com/dsecru
https://twitter.com/_embedi_
https://embedi.org/resources/what-you-need-to-know-about-the-intel-amt-vulnerability/
https://github.com/flothrone/bootguard
https://embedi.org/blog/bypassing-intel-boot-guard/
https://embedi.org/blog/uefi-bios-holes-so-much-magic-dont-come-inside/
https://embedi.org/blog/nuclear-explotion/

#Agenda

'CPU microcode basics

Downgrading microcode

Discovering impact

Mitigations & takeaways

CPU microcode basics

—_—

Inside Intel CPU

= Processor cores
- BSP (Bootstrap Processor)
— APs (Applicatibn Processors)

" G'faphics core

= IMC (Integrated Memory
Controller) |

- * L3 cache
* 1/0logic

Inside Intel CPU

=~ — - S = - —_— - —_—— = = sl ST

~Each core has its own:

= Control (execution) unit to
decode instructions

System
memory

L1 code
cache

ALU to perform arithmetic,
load/store, ... actions

Control
Unit

Control
Store

Register
: file

Register file

L1 and L2 cache

L1 data
cache

Microcode“

— s = : e : L XY S Sy e

~ Control Unit has Microcode ROM that contains the CPU microcode - a program
written in a hardware-level instructions to implement a higher-level instructions

For example, MOVS instruction implementation:

Control
Unit

! Control
ecx, ecx Store

end

loop:
tmpo, [esi]
[edi], tmpo
loop
end:

Security Analysis of x86 Processor Microcode
https://www.dcddcc.com/docs/2014 paper _microcode.pdf

7

https://www.dcddcc.com/docs/2014_paper_microcode.pdf

be updatable

The updated microcode has to be
loaded into Control Store upon each
CPU power on

Address Size Version Checksum

1 _FIT_ 00000070h 0100h
) ©000PPVOFFD70400h 00017C00h ©100h
3 ©0000PVOFFD38000h 00018000h ©100h
/1 ©D0VOOOOFFDAGOOBH 00017800h 0100h
5 0000000OFFF10000h 00008000h ©0100h
6 ©000EROFFFCDC30h 000000h 0100h
7 ©00000OFFFCCCO0h 0000RE0h 0160h

0oh

Senior Editgr PCWorld

Type
FIT Header
Microcode CPUID: QQ@906EAh, Revision: 00000096h, Date: ©2.05.2018
Microcode CPUID: 0QQB906EBh, Revision: 00000Q8Eh, Date: 24.03.2018
Microcode CPUID: ©00906ECh, Revision: 00000084h, Date: 19.02.2018
BIOS ACM LocalOffset: 00000018h, EntryPoint: ©0003BD1h, ACM SVN: ©000h, Date: ©9.02.2017

BootGuard Key Manifest

BootGuard Boot Policy

Firmware Interface Table (FIT)

Image

Descriptor region Region Descriptor
GbE region Region GbE

ME region Region ME

BIOS region Region BIOS
FA4A974FC-AF1D-4E5D-BDC5-DACD6D27BAEC NVRAM Volume FFSv2
FA4974FC-AF1D-4ESD-BDC5-DACD6D27BAEC Volume FFSv2
Padding Padding Empty (OXFF)
AF1C52D3-D824-4D2A-A2F0-EC40C23c5916 DXE Volume FFSv2

VAFDD3SF1-19D7-4501-A730-CESA27E11548B FVDATA Volume FFSv2
Pad-file File Pad
B52282EE-9B66-44B9-B1CF-7E5040F787C1 < File Raw
Pad-file
Microcode

Pad-file 0000 5F 46 49 54 SF 20 20 20 07 00 00 00 00 o1
BlosAc 0010 00 04 D7 FF 00 00 00 00 00 00 00 00 00 01
Volume free space 0020 00 80 DS FF 00 00 0O 00 00 00 00 00 00 01
14E428FA-1A12-4875-B637-8B3cc87FDro7 PEI 0030 00 00 DA FF 90 00 00 00 60 60 00 00 00 o1
61COF511-A691-4F54-974F-BSA42172CES3 PEI + SEC 0040 00 00 F1 FF 00 00 00 00 90 00 00 00 00 01

OxEEEEEECO 0050 80 DC FC FF 00 00 00 00 00 00 00 00 00 01

@ Hex view: B52282EE-9B66-44B9-B1CF-7E5040F787C1

0060 00 CC FC FF 00 00 00 00 00 00 00 V0 00 01

Firmware Interface Table (FIT)

— = — = — S -~ ~ .= ey

» |sarequired element for Intel 64 architecture since introduction of
Boot Guard technology

= Can'point to microcode update (MCU) binaries

* CPU can load microcode updates from FIT prior to execution of BIOS
and before starting Intel Boot Guard

o I *
888178880 Microcode CPUID:
888178880 Microcode CPUID:
a8a817888h Microcode CPUID:

BIOS ACM ;» EntryPoint: @2883BBlh, ACM SVN: @@8iZh, Date: @7.82.28l6

1a BootGuard Key Manifest LocalOffset: @8ee8818h, KM Version: 18h, KM SWN: @8h, KM ID: BFh

11 BootGuard Boot Policy EFP SVN: @8h, ACM SVN: @2h

10

Microcode‘Update binary main header | ~

———— s —

S = e = —

Microcode Update binary starts with the main header followed by an extended header and update data

MICROCODE_UPDATE_HEADER { oooon:
header_vePSion; : . 0 7 IZ | ZZ. OO Q0 g0

A

update_revision;
date;
processor_signature;
checksum;
loader_revision;
processor_flags;

-] o
I

1
]
1]

C g
data_size; . A 2 &F 80 or.
total size; 0 g aC AF 2 CE 00 g *H."
reserved[0x0C]; : = 63 AE 67 0D 63
}; 31 39 FC 9C BE BE
% 09 EC 36 64 32 RS
0 OB &£

11

Microcode‘Update binary extended header -

0000h
0010h:

T
.
LRLEER T 4

MICROCODE_UPDATE_EXTENDED_HEADER {

0030h:

module_type; ' B o4oh: 00 00 00
module_subtype; - 0050n:| 01 00 00 CO|E3 06 oo
header_size; 0060n:| 00 00 00 00 00 O 00
header version; 0070n:f LU LE- L ' . o
update revision; ;;z;g: : ;
unknown[2]; O0AO: -
date; 00BOR:

update_size; 00COh:

svn; 00DOR:

processor_signature; OOEDR:

unknown2[@x0E];

update_hash[0x20];

rsa_mod[0x100];

rsa_exp; ;
signature[0x100];

12

Microcode Update binary data

E——

= The main part in MCU binary is Data (encrypted, the decryption key is
| hardcoded into CPU)

= Hash of RSA public key to authenticate the MCU is also hardcoded
into CPU

* So no one knows exactly what Microcode is capable of .

13

Known facts about Microcode

et = - ——

* Implements instructions

= Configures the execution logic on the line (that's how side-channels
are fixed)

= Implements some startup behavior (like FIT parsing)
= Loads MCU from FIT

- = Loads and executes Intel Authenticated Code Modules (ACMs) (from
FIT or not) _

14

Authenticated Code Modules (ACMs)

— ———

= Signed and sometimes encrypted Intel code modules
= | oaded and executed from L3 cache (sometimes called AC RAM)

= Serve as a Root-of-Trusts and a core of implementation for
technologies:

— Intel Boot Guard

type/subtype: 2.3, ' , signed with KEY2
— Intel Trusted Execution Technology (TXT)

type/subtype: 2.0, not , signed with KEY3
— Intel BIOS Guard (PFAT) .

type/subtype: 1.1, , signed with KEY1

FYI: microcode update binary
type/subtype: 1.0, , signed with KEYa

15

Useful links to start digging

s - = e - —_———e

= Docs:
- — Intel 64 Software Developer’s manual

- leaked Intel confidential documentation

= Papers:
— Security Analysis of x86 Processor Microcode by Daming D. Chen and Gail-Joon
- Ahn : '

— Reverse Engineering x86 Processor Microcode by Benjamin Kollenda and Philipp
Koppe, Ruhr - |

= Tools
— UEFItool by CodeRush
- MCExtractor by platomav

16

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://www.dcddcc.com/docs/2014_paper_microcode.pdf
https://cansecwest.com/slides/2018/Reverse Engineering x86 Processor Microcode - Benjamin Kollenda and Philipp Koppe, Ruhr-University Bochum.pdf
https://github.com/LongSoft/UEFITool/
https://github.com/platomav/MCExtractor

Downgrading microcode

—_—

Updating Microcode in UEFI BIOS

———— = - ——

= Updates areto improve stability, performance and apply security
fixes

= Updates should be loaded each time CPU is powered on, this means
after S3 (Sleep) / S4 (Hibernation) /St (Shutdown) modes

= Far not always updates can be loaded by CPU from FIT

= Updates that requires something spécial (like initialized DRAM) has
to be loaded by the BIOS as early as possible from the moment
conditions are satisfied

» Updates should be loaded on each CPU core separately

18

Microcode'Update lcéding.prbCess

—— = =S - = - —— - _—

| update_microcode:

rcx, 79h S IABZ_BIOS_UPDATE_TRIGGER in RCX

raX, Lot | ; clear RAX

rbx, rbx ;- clear RBX |

rax, MicrocodeUpdate ; Linear address of the microcode update
rax, 48h ; Offset of Update Data in the Update-.

rdx, rdx ; Zero RDX

trigger the microcode update

T\

- check_update_revision: |
| rcx, 08bh ;. IA32 BIOS SIGN ID
; read MSR, Update Revision will be in. RDX

Normal Boot. Step 1. CpuPei

S = : : == = - ——— - — -

MicrocodeAddr = FindMCUinFIT (); -

(MicrocodeAddr !=) {
MicrocodeSize = ((MICROCODE_UPDATE_HEADER *) MicrocodeAddr)->TotalSize;

Status = (*PeiServices)->AllocatePages (..., EFI_SIZE_TO_PAGES (MicrocodeSize), &MicrocodeBuffer);

('EFI_ERROR (Status)) { ,
(*PeiServices)->CopyMem (MicrocodeBuffer, MicrocodeAddr, MicrocodeSize);

Status = (*PeiServices)->CreateHob (.. , &UcodeHob);
(EFI_ERROR (Status)) { |
AmiUcodeHobGuid = EFI_GUID (“94567C6F-F7A9-4229-1330-FE11CCAB3A11”);
memcpy (&UcodeHob->EfiHobGuidType.Name, &AmiUcodeHobGuid, (EFI_GUID));

UcodeHob->UcodeAddr = MicrocodeBuffer; i

Normal Boot . Step 2. PlatformInit

e —————

= Later the microcode update loader finds this HOB
= Retrieves the MCU buffer address

- Updates CPU microcode with it

21

Normal Boot. Step 3. CpuSpSmi

~ 2 . = — - = - p— . —ee

UcodeHob = (AMI _UCODE HOB *) GetEfiConfigurationTable (pSystemTable, &HobListGuid);

(UcodeHob !=) { _
_Status = FindNextHobByGuid (&gAmiUcodeHobGuid, &UcodeHob);

(Status == EFI SUCCESS && UcodeHob->UcodeAddr != NULL && UcodeHob->UcodeAddr != OxFFFF)
gMicrocodeStart = UcodeHob->UcodeAddr;

(gMicrocodeStart != && ((MICROCODE_UPDATE_HEADER *) gMicrocodeStart)->HeaderVersion ==
UcodeSize = ((MICROCODE_UPDATE_ HEADER *) gMicrocodeStart)->TotalSize;

Status = pSmst->SmmAllocatePages (.. , EFI SIZE TO PAGES (UcodeSize), &SmramUcodeAddr);

(!EFI_ERROR (Status)) {
memcpy (SmmUcodeAddr, gMicrocodeStart, UcodeSize);

22

{

1) {

Normal Boot. Step 3. CpuSpSmi

= = _ - N . — - ——

 gIntUcodeVarGuid = EFI_GUID (“edad41d22-7729-5b91-b3ee-ba619921cefa”);

IntUcodeVarData.Version s

IntUcodeVarData.UcodeAddr = SmmUcodeAddr;
IntUcodeVarData.Unknown = 0;
IntUcodeVarData.Unknown2 = 0;

Status = pRuntimeServices->SetVariable (L"IntUcode", &gIntUcodeVarGuid,
EFI_VARIABLE NON_VOLATILE |
EFI_VARIABLE BOOTSERVICE ACCESS |
EFI VARIABLE RUNTIME_ ACCESS,
(IntUcodeVarData), &IntUcodeVarData);

23

Waking from S3. Step 1. CpuPei

= = _ = N . — - ——

Status = ReadOnlyVariable2->GetVariable (.. , “IntUcode”, & gIntUcodeVarGuid, ,
S &VarSize, &IntUcodeVarData);

(/EFI_ERROR (Status)) {
MicrocodeAddr = IntUcodeVarData.UcodeAddr;

Status = (*PeiServices)->CreateHob (.. , &UcodeHob);
if(1EFI_ERROR (Status)) { ,
AmiUcodeHobGuid = EFI_GUID (“94567C6F-F7A9-4229-1330-FE11CCAB3A11”);
memcpy (&UcodeHob->EfiHobGuidType.Name, &AmiUcodeHobGuid, (EFI_GUID));

UcodeHob->uCodeAddr = MicrocodeAddr;

24

Waking from =t Step 2. PlatformInit

e—

= Later the microcode update loader finds this HOB
= Retrieves the MCU buffer address

- Updates CPU microcode with it

25

Microcode Downgrade

_This specific allows an attacker:
— toload an old microcode Update capsule into memory
- make the 'IntUcode’ EFl variable to point to it
— perform Sleep/Wake-up cycle

The system will be booted with the attacker-provided microcode (if it was valid and
passed the integrity check, of course)

26

Microcode Downgrade

E——

» 2019 version of MCU of CPU ID ox806EA

S CPLI D
PATCH ID

* Downgraded to 2018 version

CPU D

FATCH ID

UO0S0BEA

00000036

000S06EA,
00000084

27

Discovering impact

—_—

Side channel attacks

S — < - - ———

. ‘Getrid of fixes (side cHanneI attacks)
= Most ofthese attacks — extremely hard to apply in the wild

" Have never been spotted, however there’s not much of detection
tools:

- SCADET by Majid Sabbagh

* |ntroduction to software-based microarchitectural side-channel
attacks by Alexander Rumyantsev

* A New Memory Type Against Speculative Side-Channel Attacks by
@IntelSTORM

29

https://github.com/sabbaghm/SCADET
https://gitlab.com/saruman9/micro_arch_side_channel_attacks_pres
https://github.com/intelstormteam/Papers/blob/master/2019-A_New_Memory_Type_Against_Speculative_Side_Channel_Attacks.pdf
https://twitter.com/IntelSTORMTeam

Debug capabilities

= Unlock debug capabilities
= Getrid of INTEL-SA-00073 fix (CVE-2017-5684)

« Iritel DCI Secrets by Maxim Goryachy and Mark Ermolov

30

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00073.html
https://conference.hitb.org/hitbsecconf2017ams/materials/D2T4 - Maxim Goryachy and Mark Ermalov - Intel DCI Secrets.pdf

Downgrading ACMs

= The ACM authentication is
performed by a Microcode

= Older Microcode versions load
older ACM (with reduced SVN)

* Downgraded ACM has exploitable
adays which makes vulnerable the
technology they support

https://twitter.com/matrosov/status/1139491430110584832

Alex Matrosov
@matrosov

Intel microcode downgrade is a huge supply-
chain problem. Even after the patch problem
still exists in many platforms. Btw ACM's
downgrade is also possible (a bit more tricky
but downgrade both Microcode + ACM is a
key to success).

Great job and the team!

Alexander Ermolov @flothrone

Our team (@ttbr0 , @undermarble and me) walks through UEFI BIOS again, as a result:
- 6 Escalation of Privileges to SMM

- microcode downgrade vulnerability, allowing to bypass hardware root-of-trusts.
Details coming soon!

Show this thread

4:15 AM - 14 Jun 2019

31

https://twitter.com/matrosov/status/1139491430110584832

Downgrading ACMs. Intel Boot Guard

=, : - V— p— 4 —_— i ———— — -

* Not encrypted, binary diffing is applicable to find 1 days

= Executed only on startup (prior to BIOS) upon CPU is powered on and
released from the RESET state

* ACM does not verify BIOS when waking from S3 (performance
optimizations) except each 12 boot .

The implementation of vendor part of trusted boot is a target here.
Plenty of techniques are already in public

32

Downgrading ACMs. Intel BIOS Guard

S — < = ' ———

= Encrypted, extremely h_ard to find a fixed issue

= Triggered to run SPI flash operations via CPU MSRs from SMM

" Downgrade is possible if SPI flash write access is gained (at which

point further attack is unnecessary)

- First bypass is aIready'in public:

Breaking Through Another Side: Bypassing Firmware Security
Boundaries from Embedded Controller by Alex Matrsov

33

https://www.blackhat.com/us-19/briefings/schedule/index.html#breaking-through-another-side-bypassing-firmware-security-boundaries-from-embedded-controller-15902

Downgrading ACMs. Intel TXT

— - : ——— : e D T s T

Not encrypted, binary diffing is applicable to find a 1 days
SINIT ACM is a target

Triggered via GETSEC instruction from BIOS / OS to measure boot |
chain components

Address of this ACM is specified in EBX register

Address doesn’t change from boot to boot, so downgrade is possible
just by replacing this ACM in memory!

INTEL-SA-00025

34

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00035.html

Downgrading ACMs. Intel TXT"

— - - =SS - — p——

o HF e / BIOS region of SPI flash memory
R Microcode |

= : o Legacy

. RIS : > MCU
Normal boot path - loader

S ————-

Compromised wake o [] |
- from S3 boot path :
' | i \\ L TXT ACM }/

#Report and Reaction

Reported to Intel on 3 July 2018

Confirmed as a valid issue on 28 August 2018

INTEL-SA-00264 on 11 June 2019

Affected: AMI-based UEFI BIOS for Intel hardware (since ~2014)

Would like to thank Intel PSIRT and AMI for resolving this issue

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00264.html

#Mitigations

= Intel SGX
— does not check MCU SVN when leaving S3

= Protect ‘'IntUcode’ EFI variable (mark as read-only and close from
runtime access)

— Could be bypassed if an attacker manages to run arbitrary code in SMM

= Make an OS to update the Microcode to the latest version

— Process could be already compromised at the moment of validating the update
version

= Supply only the updates which could be loaded from FIT

37

#Takeaways

= Supply chain problem ‘ |

= The problem in a basic component compromises all technologies it
serves as a Root-of-Trust '

= The full impact is yet to discover

Thank you

_—

