
OSS security,
here be dragons!
Fermin J. Serna - @fjserna

Chief Security Officer @ Semmle

Distinguished Engineer @ GitHub

Previously:

─ Head of Product Security @ Google

Other:

─ Two times Pwnie Award nomination
─ 2016 winner: glibc getaddrinfo()

─ EMET initial main developer
─ I once owned Charlie Miller’s iPhone at

Pwn2Own

@fjserna

The Problem
OSS has won! What about security?

99% of software uses open source

Open Source has won!
But it comes with challenges:

● Code quality
● Supply chain
● Common development

best practices:
○ Code review
○ Testing
○ ...

● Security: CVE tagging

https://resources.whitesourcesoftware.com/blog-whitesource/git-much-the-top-10-companies-contributing-to-open-source

https://resources.whitesourcesoftware.com/blog-whitesource/git-much-the-top-10-companies-contributing-to-open-source

CVEs in OSS

https://www.openwall.com/lists/oss-security/2019/06/15/2

https://www.openwall.com/lists/oss-security/2019/06/15/2

Linux Kernel Backdoor (2003)

Supply chain problems...

* https://www.infoq.com/news/2016/03/npm-infection/

https://www.infoq.com/news/2016/03/npm-infection/

What is Github doing?

Update Prevent

Developers

Fix Alert

Maintainers

Identify Disclose

Security Researchers

Security Advisories
Temporary Private Forks
Dependency Insights
Alerts
Vulnerability Database
CVE Issuance

Security Policies
Semmle QL

Automatic Security Fixes
Token Scanning

Open Source Security Workflow

Semmle QL - Automating Variant Analysis

from AddExpr a, Variable v, RelationalOperation cmp
where a.getAnOperand() = v.getAnAccess()
 and cmp.getAnOperand() = a
 and cmp.getAnOperand() = v.getAnAccess()
 and forall(Expr op | op = a.getAnOperand() |
 op.getType().getSize() < 4)
 and not a.getExplicitlyConverted().getType().getSize() < 4
select cmp, "Bad overflow check"

Sample QL query identifying common mistakes made checking for integer overflows

QL is an object oriented query language for exploring code as data

Treat code as data

Security engineers use QL to

● Explore code iteratively

● Map attack surfaces

● Automate variant

analysis

What is Github “also” doing?
Variant Analysis (CVE triage)

July 21, 2019

Linus Torvalds

July 18, 2019

Tavis Ormandy

Linux Kernel

July 18, 2019

Nico Waisman

Nico Waisman

July 18, 2019

Array write inside loop

We are looking for:

while (condition) {

 [...]

 array[x] = y;

 [...]

}

import cpp

from Variable buffer, Expr bufferWriteBase, ArrayExpr bufferWrite,
Assignment a, Loop loop
where

buffer.getType() instanceof ArrayType and
 bufferWriteBase = buffer.getAnAccess() and
 bufferWriteBase = bufferWrite.getArrayBase() and
 bufferWrite = a.getLValue() and
 loop = a.getEnclosingStmt().getParent*()
select a

Linux Kernel, never plug untrusted monitors...

U-Boot: A variant analysis journey

What is U-Boot?

● Open source bootloader
● Used by

○ Kindle devices
○ ChromeOS ARM devices
○ IoT

● Supports verifiable boot
○ Any vulnerability before the signature

check is a potential jailbreak
○ Filesystems should then be considered

untrusted
○ …...Not to mention any networking :)

Seed Vulnerability:

● 2x memcpy() size
argument is
attacker
controlled

● size comes from
the NFS packet

● No size
constraints

19

Vulnerability counter: 2

Query initial steps: find
all memcpy callers

● 596 instances. Find
usage of
rpc_pkt.u.reply

● 191 instances

import cpp

from FunctionCall call
where call.getTarget().getName() = "memcpy"
select call

Vulnerability counter: 2

import cpp

from FieldAccess access, Field f
where f = access.getTarget() and f.hasName("reply")
select access

Given a (problem-specific) set of
sources and sinks, is there a path
in the data flow graph from some

source to some sink?

Vulnerability counter: 2

Query refining process

● Data Flow analysis
● Source: nfs data packet

read from the socket
● Sink: memcpy()

Results:

● 4 instances
● We found the 2 original

seed vulnerabilities

import cpp
import semmle.code.cpp.dataflow.TaintTracking

class NetworkToMemFuncLength extends TaintTracking::Configuration {
 NetworkToMemFuncLength() { this = "NetworkToMemFuncLength" }

 override predicate isSource(DataFlow::Node source) {
 exists (FieldAccess access, Field f |
 source.asExpr() = access and f = access.getTarget() and
f.hasName("reply"))
 }

 override predicate isSink(DataFlow::Node sink) {
 exists (FunctionCall fc, Expr argument |
 sink.asExpr() = argument and (argument = fc.getArgument(2)
and fc.getTarget().hasQualifiedName("memcpy"))
)
 }
}

from Expr socket_buffer, Expr sizeArg, NetworkToMemFuncLength
config
where config.hasFlow(DataFlow::exprNode(socket_buffer),
DataFlow::exprNode(sizeArg))
select sizeArg

Vulnerability counter: 2

Findings triage

Looks like they are doing the correct by checking the length

Until you discover that filefh3_length is a signed integer!!!

Vulnerability Counter += 1

Vulnerability counter: 3

Findings triage

Same story:

● rlen comes directly from
the NFS packet

● rlen is consumed as the
size for the memcpy()
operation

● No checks!

memcpy() happens inside
store_block() in two different
locations

Vulnerability Counter += 2

Vulnerability counter: 5

Let’s think bigger
beyond NFS:

● Data Flow analysis
● Source: ntohl(),

ntohs() and friends
● Sink: memcpy()

Results:

● 8 instances
● Finds the all previous

vulnerabilities

import cpp
import semmle.code.cpp.dataflow.TaintTracking

class NetworkByteOrderTranslation extends Expr {
 NetworkByteOrderTranslation() {
 this = any(MacroInvocation mi |
mi.getOutermostMacroAccess().getMacroName().regexpMatch("(?i)(^|.*_)nt
oh(l|ll|s)")
).getExpr()
 }
}

[...]

 override predicate isSource(DataFlow::Node source) {
 exists (FieldAccess access, Field f |
 source.asExpr() instanceof NetworkByteOrderTranslation
 }

[...]

from Expr socket_buffer, Expr sizeArg, NetworkToMemFuncLength config
where config.hasFlow(DataFlow::exprNode(socket_buffer),
DataFlow::exprNode(sizeArg))
select sizeArg

Vulnerability counter: 5

Findings triage

TCP/IP stack

2 integer underflows with no bounds checking later ending up in memcpy()

Vulnerability Counter += 2

Vulnerability counter: 7

Other vulnerabilities

Plain stack overflow

Also happens in 4 other different functions

Vulnerability Counter += 5

Vulnerability counter: 12

Other vulnerabilities

Clearly, someone is trying to prevent the overflow

But, forgot to check the lower bound… would be a READ OOB

Vulnerability Counter += 1

Vulnerability counter: 13

CVE-2019-14192, CVE-2019-14193, CVE-2019-14194,
CVE-2019-14195, CVE-2019-14196, CVE-2019-14197,
CVE-2019-14198, CVE-2019-14199, CVE-2019-14200,
CVE-2019-14201, CVE-2019-14202, CVE-2019-14203

and CVE-2019-14204

Wifi drivers and trusting lengths

Linux Team

August 30, 2019

Nico Waisman

Linux Kernel

August 29, 2019

Nico Waisman

huangwen

August 28, 2019 Oct 4, 2019

Linux Team

Sep 20, 2019

Crash course on 802.11 framing
Vulnerability counter: 0

CVE-2019-1481[4-6]

Found by huangwen of
ADLab of Venustech

Vulnerability counter: 0

huangwen of ADLab of Venustech

We start with
cfg80211_find_ie:

● Data Flow analysis
● Source: cfg80211_find_ie
● Sink: memcpy() size

Results:

● 13 instances
● No bugs. Code looks

buggy, but there were
sanitized

● What other function deal
with IE?

class GetIE extends TaintTracking::Configuration {
 GetIE() { this="cfg80211_find_ie" }

 override predicate isSource(DataFlow::Node source) {
exists(Function sl |
 source.asExpr().(FunctionCall).getTarget() = sl

 and
 sl.hasQualifiedName("cfg80211_find_ie")

)
 }
 override predicate isSink(DataFlow::Node sink) {

exists(FunctionCall fc |
 sink.asExpr() = fc.getArgument(2)

 and
 fc.getTarget().hasQualifiedName("memcpy")
)

 }
}

Vulnerability counter: 0

A new IE based
function:

● Data Flow analysis
● Source:

ieee80211_bss_get_ie
● Sink: memcpy() size

Results:

● 10 instances
● Most of the match looks

promising, but a big chunk
where sanitized.

class GetIE extends TaintTracking::Configuration {
 GetIE() { this="ieee80211_bss_get_ie" }

 override predicate isSource(DataFlow::Node source) {
exists(Function sl |
 source.asExpr().(FunctionCall).getTarget() = sl

 and
 sl.hasQualifiedName("ieee80211_bss_get_ie")

)
 }
 override predicate isSink(DataFlow::Node sink) {

exists(FunctionCall fc |
 sink.asExpr() = fc.getArgument(2)

 and
 fc.getTarget().hasQualifiedName("memcpy")
)

 }
}

Vulnerability counter: 0

CVE-2019-16746 Vulnerability counter: 1

● cw1200 wireless driver
● Remotely exploitable through a beacon

CVE-2019-17133 Vulnerability counter: 2

● cfg80211 wext compat for managed mode.
● Remotely exploitable through a beacon

Q & A

Thanks!
@fjserna

