
Oh memset, where did you go??

Disclaimer
The opinions and positions expressed herein are mine only
and do not represent the views of any current or previous
employer, including Intel Corporation or its affiliates.

This presentation has no intention to advertise or devalue any
current or future technology.

No database software was harmed in the making of this
presentation. This research is not focused on DSE optimization
bugs.

Hello, it’s me!
Marion Marschalek

Security Researcher with Intel STORM Team

@pinkflawd | marion@0x1338.at

Why are we here?

Builtins and intrinsics are terribly fascinating
and frequently misunderstood

Builtins as a vehicle of attack

Builtins as a starting point of defense

Builtins & Intrinsics

₋ GCC provides a large number of built-in functions, for internal use, and for
optimization purposes of standard C library functions

₋ __builtin_puts, __builtin_alloca, __builtin_memcpy, etc. etc. etc.

₋ GCC intrinsics are built-in functions that help the developer use domain specific
operations, and help the compiler leverage machine specific functionality

₋ Vector operations, signal processing, interrupt handling, etc. etc. etc.

₋ Compiler can replace builtins with custom implementation if provided

From the docs:

GCC and GCC Builtins

Compiler provides its own
implementation of a
library function

Tailored to use case and
target platform

Mostly used throughout
compilation process, not
by developers

Optimizing on a case by
case basis, eg.:

printf replacement

memcpy inlining

strlen removal

sizeof removal

How does that look like inside?
builtins.def

builtins.h

builtins.c

xxx-builtin.def

xxxintrin.h

.. and many many more..

A vast choice of functions the compiler “understands”

Builtin-spotting Opportunities

• PaX’ STACKLEAK
(https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf,
https://code.woboq.org/linux/linux/scripts/gcc-plugins/stackleak_plugin.c.html,
https://a13xp0p0v.github.io/2018/11/04/stackleak.html)

• Kostya Serebryany’s AddressSanitizer
(https://github.com/google/sanitizers/wiki/AddressSanitizer,
https://code.woboq.org/gcc/gcc/asan.c.html)

What can an attacker do alongside the compiler’s own
mechanisms?

Why are we curious about tracking builtins?

https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
https://code.woboq.org/linux/linux/scripts/gcc-plugins/stackleak_plugin.c.html
https://a13xp0p0v.github.io/2018/11/04/stackleak.html
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://code.woboq.org/gcc/gcc/asan.c.html

A
ll

th
e

P
a

ss
es

Compiler debug files

Relevant Concepts

1000-foot view: GIMPLE, SSA & RTL, optimization levels
10-foot view: Alice’s Wonderland

998-foot view on compiler optimization
$ gcc −Q −O2 −−help=optimizers

shows optimizations enabled
for e.g. O2

GCC recognizes O0, O1, O2, O3,
Os, Ofast and Og

In detail, the number of possible
optimizations is YUGE

Table: https://www.sciencedirect.com/science/article/pii/B9780128007266000124

The three address code representation

Target- and language independent optimization

Calculate one solution to the [[quadratic equation]].

x = (-b + sqrt(b^2 - 4*a*c)) / (2*a)

t1 := b * b

t2 := 4 * a

t3 := t2 * c

t4 := t1 - t3

t5 := sqrt(t4)

t6 := 0 - b

t7 := t5 + t6

t8 := 2 * a

t9 := t7 / t8

x := t9
https://en.wikipedia.org/wiki/Three-address_code

GIMPLE – SIMPLE for GCC

RTL – Register Transfer Language

RTL passes “implement” the machine definition

Machine definition reflects the processor ABI

Algebraic description of target instructions

Target dependent optimization, register allocation, machine code
generation

(insn 26 25 27 2 (set (mem/c:TI (reg:DI 97) [0 MEM[(void *)&buf2]+0 S16 A128])

(const_wide_int 0x20612073692073696874206f6c6c6548)) "hellocompiler.c":23 -1

(nil))

hellocompiler.c
5 memcpy calls

300 byte empty buffer
13 byte hello world!

78 byte random string
600 byte random string

5000 byte random string

Don’t forget the printfs to
create dependencies!

Note: ignoring anything but
“memcpy”, “memset”, etc.

tree-original

tree-gimple tree-optimized

rtl-expand

Lazy Optimization Watching

Expansion pass

memcpy count per pass

x-axis: ~240 passes

y
-a
x
is
:
m
e
m
cp

y
ca
ll

co
u
n
t

h
e
l
l
o
c
o
m
p
i
l
e
r
.
c

The testbunny: Sqlite3

sqlite3.c

shell.c

lemon.c

mkkeywordhash.c

tclsqlite.c

sqlite3 / sqlite3.o

sqlite3

lemon

mkkeywordhash

tclsqlite.o

sqlite3.o memcpy

y
-a
x
is
:
m
e
m
cp

y
ca
ll

co
u
n
t

x
-a
x
is
:
co
m
p
il
a
t
io
n

p
a
ss
e
s

sqlite3’s shell memcpy observance
What to learn from comparison?

y-axis: memcpy call count

x-axis: compilation passes

Grep for Compiler Research ^^

Fairly straight forward

Not necessarily the most accurate

Text parsing only ever gets so far:
Code duplications for optimization purposes

Different representations in same log file

but there IS fun stuff we can do with that data…

grep fruit

Homemade off-by-plenty bugs
Developer controlled

Piggy-backing onto compiler behavior

__builtin_fun(x, y, magic_value);

magic_value found?

modify output

e

x

p

a

n

d

mov …

mov …

mov …

(evil) mov dst, src

victim variable

magic number

builtin to “fix”

DEMO TIME

Look ma, I
made
memcpy
faster!

Tracking from within
GCC’s location_t available throughout compilation

Provides source file, line number, function name, etc.

Plugging into four passes to take measurements
cfg, optimized, expand, vartrack

Two types of parsers: GIMPLE & RTL

“Big Data”

Flat dataset:

- builtin

- optimization setting

- output binary

- source file : line number

Future reseach …..

Memcpy calls in

sqlite3’s lemon toolmeasured passes
source file and line

optimization

memcpy calls in
that location

WAIT WHAT??

lemon_sprintf(..)

lemon_vsprintf(..)

lemon_addtext(..)

memcpy(..)

inlining

inlining /
loop
unrolling

Original
code

inlining

inlining + loop unrolling

Location dependent
actions might shift if
the compiler reorders
things, in case no data
dependency is present

But most importantly, what about the zeros?
How to know whether inlined or eliminated?

memset in sqlite3.c line
168728 when compiled with
–O2 disappears …

… in fact, the entire function
is gone …

… since it had been replaced
with another one 0.o

Experiments on Linux kernel 5.3.6

GCC plugin infrastructure plug n play (thx to PaX!)

Used default opt setting -O2

%%% ?
Linux kernel 5.3.6, some numbers

Lost memset in
./drivers/crypto/ccp/ccp-crypto-aes-cmac.c

eliminated / implied

inlined

Lost memset in
smbencrypt.c

The compiler removes
memset(p14..), and inlines the
other two

We see the memcpy(p14,
passwd,..) inlined so as passwd is
copied to a stack buffer in
chunks

The compiler also inlined the call
to E_P16

eliminated / implied

inlined

in
li
n
e
d

SMBEncrypt asm

• 14 bytes are copied out of the
passwd buffer using mov
instructions, and overwrite
the given memory

• This, regardless of what the
memory contained before

p14 memset-0 omitted

RDI holds first

argument, passwd is

copied to p14_1,

p14_2 and p14_3

… and 431 other cases, but first:

• Careful tracking: wrapper functions or self-made
implementations

• Understanding of application needed in order to track
the right information

• Gatherable information in
reality very one dimensional,
much more analysis of code
desireable

