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Motivation
● Found a format string vuln while fuzzing

● Wanted to look for similar vulnerabilities in the binary (no source code) 

● Decided to model it using binary ninja

● Found 1 similar vulnerability
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Format string vulnerabilities



Format string vulnerabilities
● Occurs when the format 

argument of a function from the 
printf family is controlled by user 
input

● printf(buf)
● printf(“%s”, buf)



Format string vulnerabilities
● Old and well researched vulnerability
● Compilers emit warnings



Format string vulnerabilities
● We can write our own custom printf wrappers (common for logging 

functions)
● We will call these printf-like functions from now on



Format string vulnerabilities
● Compilers will NOT emit warnings for these



Format string vulnerabilities
● Unless we add the function attribute “format”
● __attribute__ (format ([printf|scanf|strftime|strfmon], string-index, 

first-to-check))



Format string vulnerabilities - exploitability
● The “%n” (or “%hhn”) format writes the number of chars written so far

● “%6$n” will write this to the 6th argument (positional arguments)

● This can be used to achieve a write-what-where and the RCE



Format string vulnerabilities - exploitability
● Example payload: 

%2044c%10$hn%38912c%11$hn



Format string vulnerabilities - mitigations
● Windows disables “%n” by default:

○ To enable you would have to call int _set_printf_count_output(int enable); explicitly



Format string vulnerabilities - mitigations
● On linux there is FORTIFY_SOURCE:

○ need to use “-O1” or more when compiling to enable it

● FORTIFY_SOURCE:
○ Runtime check
○ Format strings containing “%n” may NOT be located in a writeable address
○ When using positional parameters, all arguments within the range must be consumed. So to 

use %7$x, you must also use 1,2,3,4,5 and 6.



Format string vulnerabilities - exploitability
● We can still use to leak memory addresses (and bypass ASLR)



Modeling format string vulns



Modeling format string vulns

● The format argument has to be a constant address inside a 

read-only section



Modeling format string vulns
● printf(“Hello”) -> string comes from the .rodata section

● printf(buf) -> if buf is a stack or heap variable -> not constant

● printf(buf) -> if buf is a global variable -> constant, but not read-only



Modeling format string vulns
● Very simple and basically what compilers do

● How can we find the ones the compiler won’t warn us about?



Modeling format string vulns
● We need to find printf-like functions automatically (compilers wouldn’t emit 

warnings)

● If the fmt parameter comes from a function argument -> printf-like function



Binary Ninja



Binary Ninja
● RE tool

○ PE, MachO, ELF, raw

○ x86, x64, arm, MIPS, 

PPC, ...

● Program analysis tool
○ great api

○ easy to script

○ headless (with the 

comercial license)



Binary Ninja - Intermediate languages
● Has several intermediate languages: LLIL, MLIL, (HLIL coming soon)

● ILs = analysis is arch agnostic

Disassembly LLIL MLIL



Single static assignment (SSA) form
Normal form

a = 10
b = 20
a = a + b

SSA form

a_1 = 10
b_1 = 20
a_2 = a_1 + b_1



Single static assignment (SSA) form
Normal form

def func(a):
    if a == 1337:
        b = 10
    else:
        b = a + 20
    
    return b

SSA form

def func(a_0):
    if a_0 == 1337:
        b_1 = 10
    else:
        b_2 = a_0 + 20
    b_3 = Φ(b_1, b_2)
    return b_3



Single static assignment (SSA) form
● SSA makes it easy to trace the uses and definitions of a variable in a 

program



Using binja to model format string vulns



Using binja to model format string vulns - overview
1. Load all known printf-like functions

2. Iterate over the xrefs, analysing the origins of the format argument:
a. origin is an argument -> add to the list of printf-like functions
b. origin is an contant and read-only address -> SAFE!
c. origin is a known safe function -> SAFE!
d. Otherwise -> VULN!



Using binja to model format string vulns
● Step 1: Load all known printf-like functions

# int printf(const char *format, ...);

printf 0

# int fprintf(FILE *stream, const char *format, ...);

fprintf 1

# int dprintf(int fd, const char *format, ...);

dprintf 1

# int sprintf(char *str, const char *format, ...);

sprintf 1

# int snprintf(char *str, size_t size, const char *format, ...);

snprintf 2

(...)



Using binja to model format string vulns
● Step 2.1: Iterate over each xref 

       to_visit = PrintfLikeFunction.load_all()

       while to_visit:

           printf_like_func = to_visit.pop(0)

     sym = self.bv.get_symbol_by_raw_name(printf_like_func.name)

           if not sym: # this function is not present in the binary

               continue

     for ref in self.bv.get_code_refs(sym.address):

   (...)



Using binja to model format string vulns
● Step 2.2: Get the format argument of the xref

       mlil_instr = ref.function.get_low_level_il_at(ref.address).medium_level_il

      if mlil_instr.operation not in (MLILOperation.MLIL_CALL, MLILOperation.MLIL_TAILCALL):

    # We don’t want to analyze cases where the address of the function is being written and not called 

(MLIL_SET_VAR)

    continue

       fmt_param = mlil_instr.ssa_form.params[printf_like_func.parameter_index]



● Step 2.3: Get the origins for the format argument 

    if fmt_param.operation in (MLILOperation.MLIL_CONST, MLILOperation.MLIL_CONST_PTR):

  # mark as const

  var_origins = [VarOriginConst(fmt_param.constant)]

    elif fmt_param.operation in (MLILOperation.MLIL_VAR_SSA, MLILOperation.MLIL_VAR_ALIASED):

  # create a backwards slice, starting from the fmt arg and tracing all the way back to its origin(s)

  var_origins = get_var_origins(fmt_param) # detailed code omitted for simplicity

● Origins can be:
○ VarOriginParameter

○ VarOriginConst

○ VarOriginCallResult

○ VarOriginUnknown 

Using binja to model format string vulns



Using binja to model format string vulns
● Step 2.4: With the origins, determine if the call is safe:

       if isinstance(orig, VarOriginParameter):

           to_visit.append(PrintfLikeFunction(ref.function.name, orig.parameter_idx))

 elif isinstance(orig, VarOriginConst) and self.is_addr_read_only(orig.const):

           safe_origins.append(orig)

       elif isinstance(orig, VarOriginCallResult) and orig.func_name in self.safe_functions:

           # We accept that 'dcgettext' is safe because you need root to control the translation files

           safe_origins.append(orig)

       else:

           vuln_origins.append(orig)



“gettext” family of functions
● Used for translation
● If we could control “/usr/share/locale/<lang>/LC_MESSAGES” -> trigger 

format strings
● But, files are owned by root -> we consider these safe



DEMO



What this plugin won’t find
● When binja analysis fails and xrefs are missed

● When the call is an indirect call -> via a vtable or function pointer



Fun fact



Fun fact
● Was trying to find edge cases against complex software
● Tested with binary ninja 
● Found a vulnerability when displaying the plugin name



Fun fact - vuln code and fix



Fun fact - security impact
● No security impact

● Has FORTIFY_SOURCE -> not exploitable

● Plugins are already code anyway



Final thoughts



Final thoughts
● https://github.com/Vasco-jofra/format-string-finder-binja
● Can also find it in the plugin manager:

https://github.com/Vasco-jofra/format-string-finder-binja


● Hope you learned something about how to model vulnerabilities in binary 
ninja

● Join the binja slack -> awesome community

Final thoughts



Thanks!
QUESTIONS?


