
Finding format string vulns
with (and in) binary ninja

whoami

Vasco Franco (aka jofra)

● Lisbon, Portugal
● CTF player @ STT
● Bug bounties from time to time

@V_jofra

Why am I here
● Wrote an article for

Paged Out!
● Was chosen by gynvael

and Rodrigo as the
best security/RE
article

Motivation
● Found a format string vuln while fuzzing

● Wanted to look for similar vulnerabilities in the binary (no source code)

● Decided to model it using binary ninja

● Found 1 similar vulnerability

Agenda
1. Format string vulnerabilities

2. Modeling format string vulns

3. Binary Ninja

4. Using binja to model format string vulns

5. Results

Format string vulnerabilities

Format string vulnerabilities
● Occurs when the format

argument of a function from the
printf family is controlled by user
input

● printf(buf)
● printf(“%s”, buf)

Format string vulnerabilities
● Old and well researched vulnerability
● Compilers emit warnings

Format string vulnerabilities
● We can write our own custom printf wrappers (common for logging

functions)
● We will call these printf-like functions from now on

Format string vulnerabilities
● Compilers will NOT emit warnings for these

Format string vulnerabilities
● Unless we add the function attribute “format”
● __attribute__ (format ([printf|scanf|strftime|strfmon], string-index,

first-to-check))

Format string vulnerabilities - exploitability
● The “%n” (or “%hhn”) format writes the number of chars written so far

● “%6$n” will write this to the 6th argument (positional arguments)

● This can be used to achieve a write-what-where and the RCE

Format string vulnerabilities - exploitability
● Example payload:

%2044c%10$hn%38912c%11$hn

Format string vulnerabilities - mitigations
● Windows disables “%n” by default:

○ To enable you would have to call int _set_printf_count_output(int enable); explicitly

Format string vulnerabilities - mitigations
● On linux there is FORTIFY_SOURCE:

○ need to use “-O1” or more when compiling to enable it

● FORTIFY_SOURCE:
○ Runtime check
○ Format strings containing “%n” may NOT be located in a writeable address
○ When using positional parameters, all arguments within the range must be consumed. So to

use %7$x, you must also use 1,2,3,4,5 and 6.

Format string vulnerabilities - exploitability
● We can still use to leak memory addresses (and bypass ASLR)

Modeling format string vulns

Modeling format string vulns

● The format argument has to be a constant address inside a

read-only section

Modeling format string vulns
● printf(“Hello”) -> string comes from the .rodata section

● printf(buf) -> if buf is a stack or heap variable -> not constant

● printf(buf) -> if buf is a global variable -> constant, but not read-only

Modeling format string vulns
● Very simple and basically what compilers do

● How can we find the ones the compiler won’t warn us about?

Modeling format string vulns
● We need to find printf-like functions automatically (compilers wouldn’t emit

warnings)

● If the fmt parameter comes from a function argument -> printf-like function

Binary Ninja

Binary Ninja
● RE tool

○ PE, MachO, ELF, raw

○ x86, x64, arm, MIPS,

PPC, ...

● Program analysis tool
○ great api

○ easy to script

○ headless (with the

comercial license)

Binary Ninja - Intermediate languages
● Has several intermediate languages: LLIL, MLIL, (HLIL coming soon)

● ILs = analysis is arch agnostic

Disassembly LLIL MLIL

Single static assignment (SSA) form
Normal form

a = 10
b = 20
a = a + b

SSA form

a_1 = 10
b_1 = 20
a_2 = a_1 + b_1

Single static assignment (SSA) form
Normal form

def func(a):
 if a == 1337:
 b = 10
 else:
 b = a + 20

 return b

SSA form

def func(a_0):
 if a_0 == 1337:
 b_1 = 10
 else:
 b_2 = a_0 + 20
 b_3 = Φ(b_1, b_2)
 return b_3

Single static assignment (SSA) form
● SSA makes it easy to trace the uses and definitions of a variable in a

program

Using binja to model format string vulns

Using binja to model format string vulns - overview
1. Load all known printf-like functions

2. Iterate over the xrefs, analysing the origins of the format argument:
a. origin is an argument -> add to the list of printf-like functions
b. origin is an contant and read-only address -> SAFE!
c. origin is a known safe function -> SAFE!
d. Otherwise -> VULN!

Using binja to model format string vulns
● Step 1: Load all known printf-like functions

int printf(const char *format, ...);

printf 0

int fprintf(FILE *stream, const char *format, ...);

fprintf 1

int dprintf(int fd, const char *format, ...);

dprintf 1

int sprintf(char *str, const char *format, ...);

sprintf 1

int snprintf(char *str, size_t size, const char *format, ...);

snprintf 2

(...)

Using binja to model format string vulns
● Step 2.1: Iterate over each xref

 to_visit = PrintfLikeFunction.load_all()

 while to_visit:

 printf_like_func = to_visit.pop(0)

 sym = self.bv.get_symbol_by_raw_name(printf_like_func.name)

 if not sym: # this function is not present in the binary

 continue

 for ref in self.bv.get_code_refs(sym.address):

 (...)

Using binja to model format string vulns
● Step 2.2: Get the format argument of the xref

 mlil_instr = ref.function.get_low_level_il_at(ref.address).medium_level_il

 if mlil_instr.operation not in (MLILOperation.MLIL_CALL, MLILOperation.MLIL_TAILCALL):

 # We don’t want to analyze cases where the address of the function is being written and not called

(MLIL_SET_VAR)

 continue

 fmt_param = mlil_instr.ssa_form.params[printf_like_func.parameter_index]

● Step 2.3: Get the origins for the format argument

 if fmt_param.operation in (MLILOperation.MLIL_CONST, MLILOperation.MLIL_CONST_PTR):

 # mark as const

 var_origins = [VarOriginConst(fmt_param.constant)]

 elif fmt_param.operation in (MLILOperation.MLIL_VAR_SSA, MLILOperation.MLIL_VAR_ALIASED):

 # create a backwards slice, starting from the fmt arg and tracing all the way back to its origin(s)

 var_origins = get_var_origins(fmt_param) # detailed code omitted for simplicity

● Origins can be:
○ VarOriginParameter

○ VarOriginConst

○ VarOriginCallResult

○ VarOriginUnknown

Using binja to model format string vulns

Using binja to model format string vulns
● Step 2.4: With the origins, determine if the call is safe:

 if isinstance(orig, VarOriginParameter):

 to_visit.append(PrintfLikeFunction(ref.function.name, orig.parameter_idx))

 elif isinstance(orig, VarOriginConst) and self.is_addr_read_only(orig.const):

 safe_origins.append(orig)

 elif isinstance(orig, VarOriginCallResult) and orig.func_name in self.safe_functions:

 # We accept that 'dcgettext' is safe because you need root to control the translation files

 safe_origins.append(orig)

 else:

 vuln_origins.append(orig)

“gettext” family of functions
● Used for translation
● If we could control “/usr/share/locale/<lang>/LC_MESSAGES” -> trigger

format strings
● But, files are owned by root -> we consider these safe

DEMO

What this plugin won’t find
● When binja analysis fails and xrefs are missed

● When the call is an indirect call -> via a vtable or function pointer

Fun fact

Fun fact
● Was trying to find edge cases against complex software
● Tested with binary ninja
● Found a vulnerability when displaying the plugin name

Fun fact - vuln code and fix

Fun fact - security impact
● No security impact

● Has FORTIFY_SOURCE -> not exploitable

● Plugins are already code anyway

Final thoughts

Final thoughts
● https://github.com/Vasco-jofra/format-string-finder-binja
● Can also find it in the plugin manager:

https://github.com/Vasco-jofra/format-string-finder-binja

● Hope you learned something about how to model vulnerabilities in binary
ninja

● Join the binja slack -> awesome community

Final thoughts

Thanks!
QUESTIONS?

