
Construindo Bootkits: Ideias
para GRUB2 com Linux

Who am I
- Security Consultant at PRIDE Security

- ….

Previous Work
Matrosov, Alex, Eugene Rodionov, and Sergey

Bratus. Rootkits and bootkits: reversing

modern malware and next generation threats.

No Starch Press, 2019.

Startup Overview

GRUB2 MBR GRUB2 Kernel Image

Linux Kernel

(bzImage)

vmlinux

linux | linux16

commands

Core Image
(Boot Sector)

Core Image
(Decompressor)

Startup Overview

GRUB2 MBR GRUB2 Kernel Image Linux Kernel
(bzImage)

vmlinux

linux | linux16
commands

Core Image
(Boot Sector)

Core Image
(Decompressor)

Startup Overview

GRUB2 MBR GRUB2 Kernel Image

Linux Kernel

(bzImage)

vmlinux

linux | linux16

commands

Core Image
(Boot Sector)

Core Image
(Decompressor)

vmlinux implant

evil process

Startup Overview

GRUB2 MBR GRUB2 Kernel Image Linux Kernel

(bzImage)

vmlinux

linux | linux16

commands

Core Image
(Boot Sector)

Core Image
(Decompressor)

compressed

Encrypted Filesystem

Startup Overview

GRUB2 MBR GRUB2 Kernel Image

Linux Kernel

(bzImage)

vmlinux

linux | linux16

commands

Core Image
(Boot Sector)

Core Image
(Decompressor)

vmlinux implant

evil process

Infect this elements
bzImage implantGRUB2 implant

runtime patch runtime patch runtime patch

0x7c00

0x8000

0x8200

0x100000

GRUB2 - Startup Overview

GRUB2 MBR

Core Image
(Boot Sector)

grub-core/boot/i386/pc/boot.S

grub-core/boot/i386/pc/diskboot.S

Decompressor

Compressed Data

Reed-Solomon
redundancy
(optional)

grub-core/boot/i386/pc/startup_raw.S

grub-core/kern/i386/realmode.S

grub-core/boot/i386/pc/lzma_decode.S

GRUB2 Kernel
Image

Module Info
Structure

ELF Modules

Public Keys
(optional)

Memory Disk
(optional)

Early Config File
(optional)

Prefix String
(optional)

Core Image

- executed from 0x7c00

- load the next stage to to 0x8000

- jumps to it

- executed from 0x8000

- load next stage to 0x8200

- jumps to decompressor code

- executed from 0x8200

- switch processor to protected mode

- decompress grub2 kernel to 0x100000

- jumps to uncompressed grub2 kernel

- executed from 0x100000

- copy kernel image to 0x9000

- module info and its later are not copied

- clear bss section

- call grub_main()

grub-core/kern/i386/pc/startup.S

(entrypoint)

GRUB2 - MBR
kernel_address at 0x5a

kernel_sector at 0x5c

kernel_sector_high at 0x60

GRUB2 - Core Image (Boot Sector)
- implemented by boot/i386/pc/diskboot.S

- loads all sectors of the core image (decompressor and compressed data) to 0x8200

- uses a table present at the bottom of the sector

- each entry of the table has the following format:

struct _load_entry {
u32 sector_low;
u32 sector_high;
u16 num_of_sectors;
u16 segment;

};

- we can find a small code cave between the last instruction and the start of the table (~144 bytes)

- jmps to decompressor code

GRUB2 - Core Image (Boot Sector)

the loop goes from bottom to
up and stops when it finds
num_of_sectors == 0

we can add another entries
here
we can add code too

{
.sector_low = 0x2,
.sector_high = 0x0,
.num_of_sectors = 0x65,
.segment = 0x0820

};

GRUB2 - Core Image (Decompressor)
- implemented by different files

- the main file is grub-core/boot/i386/pc/startup_raw.S

- includes grub-core/kern/i386/realmode.S

- includes grub-core/boot/i386/pc/lzma_decode.S

- switch processor to protected mode, ensure a20 line enable

- uses the function real_to_prot defined in grub-core/kern/i386/realmode.S

- decompress GRUB2 kernel image to 0x100000 jumps to uncompressed kernel

- two function pointers are passed as argument:

- prot_to_real, real_to_prot
- all transitions real mode <-> protected mode are made using these functions

GRUB2 - Core Image (Decompressor)
- some important notes:

- GRUB2 does not define any interruption handler for protected mode

- the function real_to_prot also sets idtr.base = 0 and idtr.size = 0

- using the values defined by protidt which is defined as (check grub-

core/kern/i386/realmode.S):

protidt:

.word 0

.long 0

- we can set another value for protidt (which implies to define some entries for IDT)

- hardware breakpoints might be useful

GRUB2 - Core Image (Decompressor)
gdt entries

gdtdesc

realidt

protidt

In the current version of
GRUB2, this values are

always in the first sector
of the decompressor

GRUB2 - Minimal changes to inject a payload loader
MBR

Core Image

(Boot Sector)

Decompressor

LOADER: small piece of code injected into the cave

- reserve memory (e.g.: decreasing "Memory Size" at Bios Data Area)

- load all payloads on memory (int 13)

- execute the first

Patch the pointer in the offset 0x5a to jump to LOADER (0x8000 + offset)

Patch the variable "protidt" to point to a custom IDT (Interrupt Descriptor Table)

there are some fixed addresses to use, e.g.: anything in the range between 0x7e00 - 0x8000

Payload #1

LOADER

Payload #2

Payload #3

Core Image

One nice place to put the payloads is the

free sectors before the first partition

Payload #1: grub2

Payload #2: bzImage

Payload #3: vmlinux

Payload #4: userspace shellcode

Payload #4

GRUB2 - Minimal changes to inject a payload loader

GRUB2 MBR

GRUB2 Kernel Image

Core Image
(Boot Sector)

Core Image
(Decompressor)

0x100000

LOADER

GRUB2 payload #1

Set IDT entries on memory

Set a hardware breakpoint for execution on 0x100000

GRUB2 payload #2

#DB (fault)

GRUB2 - Uncompressed Kernel Image (overview)
0x100000

grub-core/kern/i386/pc/startup.SGRUB2 Kernel Image

Startup Code

0x0000ee7f

0x0000ae66

0x00000001

"grub_disk_read"

0x55 0x89 0xe5 ...

Code Area

Data Area

struct symtab {
const char *name;
void *addr;
int isfunc;

};

0x100000 +
kernel_size

0x100000: mov %ecx,0x41(%esi)

0x100006: mov %edi,0x45(%esi)

0x10000c: mov %eax,0x164(%esi)

0x100012: mov $0x6cec,%ecx

0x100017: mov $0x9000,%edi

0x10001c: rep movsb %ds:(%esi),%es:(%edi)

0x10001e: mov $0x9025,%esi

0x100023: jmp *%esi

0x100025:

- the first task is to copy itself from 0x100000 to 0x9000

- then, the startup code clears the bss section and calls the grub_main function

- parsing this code we can find the size of the uncompressed kernel

- every exported symbol of grub2 kernel has an entry in a symbol table

- each entry of the table has the following format:

- finding this table on memory we can find the address of some interesting symbols,

e.g.: grub_register_command_prio, grub_file_open, grub_file_read, grub_file_seek,

grub_file_close

symtab [0]

GRUB2 - Commands
- Some important functions (both in kernel and modules) are implemented as

commands, e.g.: insmod, set, unset, ls, normal, linux, linux16, initrd, initrd16,

ntldr

- All commands are registered using the function

grub_register_command_prio which is exported by the kernel, soon has

an entry in the symbol table

- Controlling the calls to grub_register_command_prio we can find the

address of all commands at runtime

GRUB2 - Commands
- However, some command registrations might have a different meaning, e.g:

- the module "normal.mod" implements an approach to load all the necessary commands on-

demand

grub_register_extcmd_prio(
name,
grub_dyncmd_dispatcher,
GRUB_COMMAND_FLAG_BLOCKS |
GRUB_COMMAND_FLAG_EXTCMD |
GRUB_COMMAND_FLAG_DYNCMD,
0, N_("module isn't loaded"), 0, prio);for all command in the file

command.lst

grub_register_command_prio(

name,
grub_extcmd_dispatch,
0,
N_("module isn't loaded"),
prio);

read_command_list(...)

grub-core/normal/dyncmd.c

grub-core/commands/extcmd.c
grub-core/kern/command.c

this ends by registering the command with a

common dispatch function

the command function will be loaded and

registered in the first use

- if we're hooking every call to grub_register_command_prio, we need a way to filter that behaviour

- a simple way is just to check if the fourth argument is "module isn't loaded"

GRUB2 implant (Controlling Commands)

GRUB2 MBR

GRUB2 Kernel Image

Core Image
(Boot Sector)

Core Image
(Decompressor)

0x100000

LOADER

GRUB2 payload #1

Set IDT entries on memory

Set a hardware breakpoint for execution on 0x100000

GRUB2 payload #2

#DB (fault)

Find symtable on memory

Find the address of the functions: grub_register_command_prio,

grub_file_open, grub_file_read, grub_file_close

Hook all of them

grub_register_command_prio

Control file operations to infect the

bzImage

Hook

if command name == “linux” ||

command name == “linux16”

hook command function

linux | linux16 Hook

Linux Kernel bzImage (x86_64)

Header

Linux Kernel bzImage (x86_64)

Setup Code CRC

arch/x86/boot/header.S

32-bit entrypoint (startup_32 in arch/x86/boot/compressed/head_64.S)

+0x00

16-bit entrypoint

+0x200

64-bit entrypoint (startup_64 in arch/x86/boot/compressed/head_64.S)

compressed vmlinux

Linux Kernel bzImage (x86_64)

- The first task is to parse the code in memory

- find the point in decompressor code where the kernel is about to be called

- patch there, to get execution right before the vmlinux entrypoint

Linux Kernel bzImage (x86_64)

Setup Code

32-bit entrypoint

+0x00

16-bit entrypoint

+0x200

64-bit entrypoint

decompression

code

vmlinux

kernel_implant_start(...)

Linux Kernel bzImage (x86_64)

32-bit entrypoint

+0x00

16-bit entrypoint

+0x200

64-bit entrypoint

decompression

code

Setup

Code

/*

* Jump to the relocated address.

*/

leaq relocated(%rbx), %rax

jmp *%rax

relocated:

…

/*

* Do the extraction, and jump to the new kernel..

*/

pushq %rsi

movq %rsi, %rdi

leaq boot_heap(%rip), %rsi

leaq input_data(%rip), %rdx

movl $z_input_len, %ecx

movq %rbp, %r8

movq $z_output_len, %r9

call extract_kernel /* returns kernel location in

%rax */

popq %rsi

/*

* Jump to the decompressed kernel.

*/

jmp *%rax

arch/x86/boot/compressed/head_64.S

Linux Kernel bzImage (x86_64)

32-bit entrypoint

+0x00

16-bit entrypoint

+0x200

64-bit entrypoint

decompression

code

Setup

Code

/*

* Jump to the relocated address.

*/

leaq relocated(%rbx), %rax

jmp *%rax

relocated:

…

subq %rdi, %rcx

shrq $3, %rcx

rep stosq

pushq %rsi

movq %rsi, %rdi

leaq boot_heap(%rip), %rsi

leaq input_data(%rip), %rdx

movl $z_input_len, %ecx

movq %rbp, %r8

movq $z_output_len, %r9

call extract_kernel /* returns kernel location in

%rax */

popq %rsi

/*

* Jump to the decompressed kernel.

*/

jmp *%rax

arch/x86/boot/compressed/head_64.S

kernel_implant_start(...)

inline hook

Be careful: This code is slightly

different for the kernels v3, v4, v5

Linux Kernel bzImage (x86_64)

32-bit entrypoint

+0x00

16-bit entrypoint

+0x200

64-bit entrypoint

decompression

code

Setup

Code

/*

* Jump to the relocated address.

*/

leaq relocated(%rbx), %rax

jmp *%rax

relocated:

…

subq %rdi, %rcx

shrq $3, %rcx

rep stosq

pushq %rsi

movq %rsi, %rdi

leaq boot_heap(%rip), %rsi

leaq input_data(%rip), %rdx

movl $z_input_len, %ecx

movq %rbp, %r8

movq $z_output_len, %r9

call extract_kernel /* returns kernel location in

%rax */

popq %rsi

/*

* Jump to the decompressed kernel.

*/

jmp *%rax

arch/x86/boot/compressed/head_64.S

vmlinux_implant_start(...)

inline hook

Linux >= 3 seems to have a indirect

jump after the vmlinuz

decompression

Payload #2 - Linux Kernel implant
- after decompression…

- the execution calls startup_64 defined in linux/arch/x86/kernel/head_64.S

- kernel are using an 1:1 mapping between physical and virtual address spaces (identity pages)

- the code are running with just one processor (no race conditions)

- vmlinux_implant_start()

- resolve the virtual address where the kernel will execute

- get from the switch: identity mapping -> full virtual address mapping

- find systall table (pattern matching)

- hook some not implemented syscalls (userspace interface)

Payload #2 - Linux Kernel implant

v
m

l
i
n

u
x

kernel implant + Systemd Stub + Userspace Shellcode

sys_call_table

sys_epoll_wait

btk_manager_loop

- systemd stay in a loop calling sys_epoll_wait

- we have the chance to access Systemd context

- filter process by pid

- allocate memory, copy systemd stub to process memory

sys_not_implemented

sys_not_implemented+1

restore_parent_process

- unmap memory

- restore original regs

- returns to original flow

init_evil_process

- copy shellcode to user memory

Payload #2 - Linux Kernel implant
- bootkit manager: hook in sys_epoll_wait

- wait for init process (systemd): just ignore a number of calls

- if there is no user space implant running, spawn one

- be careful with hibernation

- spawning evil process

- allocate memory (rxw), for now, I use sys_mmap (yeah, inside the kernel)

- https://lwn.net/Articles/751052 (different internal syscall calling convention)

- inject a stub into process memory

- set new return address on kernel stack

https://lwn.net/Articles/751052/

Demo

Questions

