

Million Songs

1 Data Preparation

2 Drill Database Query

3 Big Data Recommendation

4 Year Prediction

1. Data Preparation

The following codes are added to ~/.bashrc to automatically mount millionsongs upon booting.

1 echo "password" | sudo -S sshfs /home/hadoopuser/ece472
\hookrightarrow-o allow_other -o Port=2223
\hookrightarrow ece472@focs.ji.sjtu.edu.cn: -o
\hookrightarrow IdentityFile=~/.ssh/id_ed25519 1>/dev/null
\hookrightarrow 2>/dev/null
2 echo "password" | sudo -S mount
$\hookrightarrow ~ / h o m e / h a d o o p u s e r / e c e 472 / m i l l i o n s o n g . i s o$
$\hookrightarrow ~ / h o m e / h a d o o p u s e r / e c e 472 /$ 1>/dev/null 2>/dev/null

```
Track.h5
    - analysis
    - bars confidence
    metadata
            artist terms
musicbrainz
            artist mbtags
```

- Divide the dataset into 26 parts
- Create one .avro file for all files in each part
- Use pyspark to parallelize the process
- Merge 26 small .avro files into one single big file

With 8 cores processing in parallel, the total time cost to form one .avro file is reduced from 6 hours to 3 hours.

The .avro file generated which is consisted of all desired features of one million songs is approximately 150 Mb .

Table: Statistic of Raw Data

	tempo	hotness	year	time_signature	\ldots
count	1000000	581965	1000000	1000000	
mean	123.889	0.356	1030	3.59	
std	35.056	0.234	999	1.22	
min	0.000	0.000	0	0	
$\mathbf{2 5 \%}$	97.995	0.215	0	3	
$\mathbf{5 0 \%}$	122.086	0.378	1969	4	
$\mathbf{7 5 \%}$	144.089	0.532	2002	4	
max	302.300	1.000	2011	7	

What features are needed to describe a Song?
(1) Duration

- The duration cannot directly determine the style of songs
- Adjusting granularity \& OneHotEncoder
(2) Segments_loudness_max / Segments_loudness_max_time
- The most load segment can be regarded as the "musical climax"
- Classify this feature by the occurrence of musical climax.
(3) Segments_pitches
- Analyze emotion of song by computing the mean of pitches.
- Associate with the Segments_loudness_max

Prepare the data for Model:

- Missing \& Abnormal Value
- Distribution (Left/Right Skew)
- Granularity (Year)
- Encoding (One-hot, Hash...)
- Combination
- Normalize \& Standardize

Issues:

- Mostly <0 with $359 / 1000000$ abnormal values
- Left skewed

Figure: Distribution of Raw Data

Methods:

- Replace exceptions with median
- loudness_log $=\ln (-$ loudness $)$

Figure: Distribution of Adjusted Data

```
processed_data = process_data_gm(data, (
    # Customized Column Transformer
    (log_transform_negative_column, ['loudness'], None),
    (classify_year_column, ['year'], None),
    (proportion_fade_out, None, None),
    (fade_out_time, None, None),
    # Exception Handling
    (drop_zeros, [List_of_Features], None),
    (fill_hotness_na_with_0, None, None),
    # Normalize Selected Features
    (normalized_selected_columns, [List_of_Features], None),
    # Select Features
    (select_columns, ['Log_loudness', 'bar_num', 'beat_num',
                        # Add features here
                                ], None),
))
```


2. Drill Database Query

In this part, we used drill to perform simple database queries, including:

- Find the range of dates covered by the songs in the dataset, i.e. the age of the oldest and of the youngest songs
- Find the hottest song that is the shortest and has the highest energy with the lowest tempo.
- Find the name of the album with the most tracks.
- Find the name of the band(artists) who recorded the longest song.

Given the avro file, we first created a table in drill

```
1 -- read avro file from local file system (~100M)
2 create table dfs.tmp.`songs` as
3 select * from dfs.`F:/avro/songs.avro`;
4 -- change path
5 use dfs.tmp;
```

1. the oldest and youngest songs
```
1 select max(year_end) from songs where year_end > 0;
2 +--------+
| EXPR 0 |
| 2011 |
+--------+
1 \text { row selected (0.321 seconds)}
select min(year_end) from songs where year_end > 0;
+--------+
| EXPR 0 |
+--------+
| 1922 |
+--------+
1 row selected (0.323 seconds)
```

Therefore, the dataset covered songs from 1922 to 2011, namely the age of the songs vary from 12 years to 101 years.
2. the hottest, shortest, highest energy, lowest tempo

```
1 select id, title from songs
2 where hotness <> 'NaN'
order by hotness desc, duration asc, energy desc, tempo asc
limit 5;
l---------------------+--------------------------------------------------------------------------------------------------------------------
| SONASKH12A58A77831 | Jingle Bell Rock
| SOAVJBU12AAF3B370C | Rockin Around The Christmas Tree
| SOEWAKD12AB01860D5 | Holiday
| SOAAXAK12A8C13C030 | Immigrant Song (Album Version) |
| SOAXLDX12AC468DE36 | La Tablada |
+--------------------+----------------------------------------
5 \text { rows selected (0.497 seconds)}
```

Therefore, Jingle Bell Rock is the song the hottest song that is the shortest and shows highest energy with lowest tempo.
3. the album with the most songs

```
1 select album_id, album_name, count(album_id) as numSongs
2 from songs
group by album_id, album_name
order by numSongs desc
limit 1;
l----------+------------------------------------------------------
+----------+-----------------------------------------------------
| 60509 | First Time In A Long Time: 
1 \text { row selected (1.076 seconds)}
```

First Time In A Long Time: The Reprise Recordings is the album with most tracks. Indeed, it has 4CDs and 80+ tracks.
4. the band with longest song

```
1 select artist_name, title, duration from songs
2 order by duration desc limit 1;
```


Therefore, the band Mystic Revelation of Rastafari has recorded Grounation which has highest duration.
3. Big Data Recommendation

Similarity between Song $A_{A}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and Song ${ }_{B}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$
(1) L_{1} Norm

$$
d_{L_{1}}=\sum_{i=1}^{n}\left|a_{i}-b_{i}\right|
$$

(2) Cosine Similarity

$$
\cos \theta=\frac{\sum_{i=1}^{n}\left(a_{i} \times b_{i}\right)}{\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \times \sqrt{\sum_{i=1}^{n} b_{i}^{2}}}
$$

(3) Combination
$\operatorname{Similarity}\left(\right.$ Song $\left._{A}, \operatorname{Song}_{B}\right)=\lambda \cos \theta-d_{L 2}$

Figure: Two layers BFS

Input song: (Old Man Mose, The Bristols)
Recommended Song:
(1) L_{1} Norm: (The Story of Two, Micragirls)
(2) Cosine Similarity: (Kentish (demo), Modwheelmood)
(3) Combination:

When $\lambda \leq 307$, (Kentish (demo), Modwheelmood).
When $\lambda \geq$ 308, (The Story of Two, Micragirls).

Choose different λ to reach diverse recommendations!

```
1 import numpy as np
2 from numpy import ndarray
3 def calcDistance(song1: tuple, song2: ndarray) -> float:
4 # song1: (feature: ndarray, track_Id: str)
5 weight = 325
6 return weight * (np.dot(song1[0], song2) / \
            (np.linalg.norm(song1[0]) * \
            np.linalg.norm(song2)) \
            - np.sum(np.abs(song1[0]-song2)), song1[1])
```



```
def getKMostRelatedCenter(track_id, data, cluster_centers,
\hookrightarrow k=3)-> list:
song = data[data["track_id"] == track_id]
song = song.loc[:, features_list].to_numpy()
dis = []
for center in cluster_centers:
    dis.append(np.dot(song, center) / (np.linalg.norm(song) *
    @p.linalg.norm(center)))
sorted_np = np.argsort(np.array(dis), axis=0)[:,0] < k
index = range(0, np.shape(cluster_centers)[0])
cluster_centers_withindex = np.hstack((cluster_centers,
up.array(index).reshape(-1, 1)))
selected_centers = cluster_centers_withindex[sorted_np][:, -1]
return list(selected_centers)
```

Function of mappers and reducer:

- mapper_artist.py: given an artist id as input, find all the similar artists (according to the database)
- mapper_song.py: given the similar artists, find all of their songs
- mapper_distance.py: given the list of songs, calculate their cosine similarity from the given song
- reducer.py: find the song with largest similarity

We implement a driver. sh to run the three map reduce job:

```
1 # How to run
2 cd MapReduce
3 time bash ./driver.sh
# Result
+ hdfs dfs -cat /project_distance/part-00000
('Story Of Two', 'TRMHEEB12903C9F3C9',
@ 0.9140447260983122)
real 4m18.674s
user 1m27.983s
sys 0m5.830s
```


Use the same strategy, we implement the map and reduce in spark:

```
sc = SparkContext()
# find the list of similar artists
for i in range(depth):
    artists += sc.parallelize(artists, 4)\
        .map(artistNeighbor).reduce(merge_lists)
# find all the songs of similar artists
songs: list = sc.parallelize(artists, 12)\
        .map(getArtistSongs).reduce(merge_lists)
# find the feature of the input song
features = sc.parallelize(features, 100)\
    .map(lambda x: (np.concatenate((x[1:2], x[3:-7]))\
    .astype(np.float64), (x[-6],x[-5],x[-1]))).collect()
# reduce to get the song with largest similarity
result = sc.parallelize(features, 100)\
    .map(lambda x: calcDistance(x, songFeature))\
    .reduce(lambda x, y: max(x, y))
```

For pyspark, there is an interface for you to play with :).

1 Please enter the name of a song: Old Man Mose
2 Too many songs have the same name! Please choose a specific author \hookrightarrow from the list:
['Jesse Fuller', 'George Lewis And His New Orleans Stompers', 'Louis \hookrightarrow Armstrong', 'Manhattan Transfer', 'Kenny Ball And His Jazzmen', \hookrightarrow 'The Bristols']
The author of your song: The Bristols
The song you choose:
Name: Old Man Mose, Author: The Bristols, Id: TRYESJS12903CDF730
Please enter the depth of the BFS: 2
Num of similar artists in the 1th layer: 48.
Num of similar artists in the 2th layer: 1134.
Num of similar songs: 29818.
(0.9140447260983123, ("Story Of Two", "TRMHEEB12903C9F3C9", "The

↔ Micragirls"))

```
real 0m32.016s
user 0m2.668s
sys 0m2.587s
```


That is $\mathbf{8}$ times speed up than Mapreduce!

4. Year Prediction

We want to train a model to predict the year of a song with its features.

1 SELECT COUNT (*) AS year_num FROM songs WHERE year<>0;
2 +----------+
| year_num |
+----------+
| 515576 |
+----------+
1 row selected (0.402 seconds)

Approximately half of the songs have years labeled. We use 80% of them as training set and 20% as validation set.

- Years are grouped by every 5 neighboring years so that total number of classes is reduced from 88 to 18 .
- Each feature is normalized to the range of $[0,1]$
- Very few data are missing (less than 1%). We just fill them as 0 and it would be not a big deal to the model.

We fitted a PCA model on the training set, which keeps 6 principal components from 15 original features.

```
1 pca = PCA(k=6, inputCol='features',
    @ outputCol='pca_features')
pca_model = pca.fit(feature_df)
return pca_model
pca_df = pca_model.transform(feature_df)
res_df =pca_df.select('coarse_classified_class_year',
'pca_features').rdd.map(lambda x: Row(tag=x[0],
PC1=float(x[1][0]), PC2=float(x[1][1]),
PC3=float(x[1][2]), PC4=float(x[1] [3]),
PC5=float(x[1][4]), PC6=float(x[1][5])))
.toDF()
```

We trained a logistic regression model to do the classification task.

```
1 lrm = LogisticRegressionWithLBFGS.train(
2 sc.parallelize(data_train, 200), iterations=200,
3 numClasses=18)
4 print("Weights:", lrm.weights)
5 lrm.save(sc,'file:///home/hadoopuser/project
    /predict/model')
```

1 (dfy['coarse_classified_class_year']==
2 dfp['year_predict']).value_counts()

No PCA

Applying PCA

1	False	71696
2	True	30861
3	Name: count,	
4	dtype:	int64

Applying PCA raises prediction accuracy from 22.69% to 30.09%. For a 18 classification task, this result is satisfying enough.

Thank you!

