

Million Songs

ece472 - Summer 2023

Team Win or Lose - Kezhi, Yinchen, Shaoze, Jiache

- 1 Data Preparation
- 2 Drill Database Query
- 3 Big Data Recommendation
- 4 Year Prediction

1. Data Preparation

The following codes are added to ~/.bashrc to automatically mount millionsongs upon booting.

H5 Files

Track.h5

- analysis
 - bars confidence
- metadata
 - artist terms
 - ∟ ...
- musicbrainz
 - artist mbtags

- We used **python h5py** module to extract information in *.h5* files.
- We collect useful fields in all .*h5* files and summarize them in one single .*avro* file

- Divide the dataset into 26 parts
- Create one *.avro* file for all files in each part
- Use **pyspark** to parallelize the process
- Merge 26 small .avro files into one single big file

With 8 cores processing in parallel, the total time cost to form one *.avro* file is reduced from 6 hours to 3 hours.

The *.avro* file generated which is consisted of all desired features of one million songs is approximately 150Mb.

EDA

7

Table: Statistic of Raw Data

	tempo	hotness	year	time_signature	
count	1000000	581965	1000000	1000000	
mean	123.889	0.356	1030	3.59	
std	35.056	0.234	999	1.22	
min	0.000	0.000	0	0	
25%	97.995	0.215	0	3	
50%	122.086	0.378	1969	4	
75%	144.089	0.532	2002	4	
max	302.300	1.000	2011	7	

What features are needed to describe a Song?

- 1 Duration
 - The duration cannot directly determine the style of songs
 - Adjusting granularity & OneHotEncoder
- 2 Segments_loudness_max / Segments_loudness_max_time
 - The most load segment can be regarded as the "musical climax"
 - Classify this feature by the occurrence of musical climax.
- 3 Segments_pitches
 - Analyze emotion of song by computing the mean of pitches.
 - Associate with the ${\it Segments_loudness_max}$

Prepare the data for Model:

- Missing & Abnormal Value
- Distribution (Left/Right Skew)
- Granularity (Year)
- Encoding (One-hot, Hash...)
- Combination
- Normalize & Standardize

Issues:

- Mostly < 0 with 359/1000000 abnormal values
- Left skewed

Figure: Distribution of Raw Data

Methods:

- Replace exceptions with median
- loudness_log = ln(-loudness)

Figure: Distribution of Adjusted Data


```
processed_data = process_data_gm(data, (
       # Customized Column Transformer
 2
       (log_transform_negative_column, ['loudness'], None),
3
       (classify_year_column, ['year'], None),
 4
5
       (proportion_fade_out, None, None),
6
       (fade out time, None, None).
 7
8
       # Exception Handling
       (drop_zeros, [List_of_Features], None),
9
       (fill_hotness_na_with_0, None, None),
10
11
       # Normalize Selected Features
12
13
       (normalized_selected_columns, [List_of_Features], None),
14
       # Select Features
15
       (select_columns, ['Log_loudness', 'bar_num', 'beat_num',
16
                          # Add features here
17
                          ], None),
18
19))
```

2. Drill Database Query

In this part, we used drill to perform simple database queries, including:

- Find the range of dates covered by the songs in the dataset, i.e. the age of the *oldest* and of the *youngest* songs
- Find the *hottest* song that is the *shortest* and has the *highest energy* with the *lowest tempo*.
- Find the name of the album with the *most tracks*.
- Find the name of the band(artists) who recorded the *longest song*.

Given the avro file, we first created a table in drill

```
1 -- read avro file from local file system (~100M)
2 create table dfs.tmp.`songs` as
3 select * from dfs.`F:/avro/songs.avro`;
4 -- change path
5 use dfs.tmp;
```

Detailed Solutions

1. the oldest and youngest songs

```
select max(year_end) from songs where year_end > 0;
1
2
     EXPR. 0
3
\mathbf{4}
    2011
5
6
   1 row selected (0.321 seconds)
7
8
   select min(year_end) from songs where year_end > 0;
9
10
    EXPR 0
11
12
    1922
13
14
   1 row selected (0.323 seconds)
15
```

Therefore, the dataset covered songs from 1922 to 2011, namely the age of the songs vary from 12 years to 101 years.

Detailed Solusions

2. the hottest, shortest, highest energy, lowest tempo

```
select id, title from songs
1
   where hotness <> 'NaN'
2
3
   order by hotness desc, duration asc, energy desc, tempo asc
   limit 5;
4
\mathbf{5}
6
             id
                                           title
7
8
                           Jingle Bell Rock
     SONASKH12A58A77831
9
                            Rockin Around The Christmas Tree
     SOAVJBU12AAF3B370C
10
   1
     SOEWAKD12AB01860D5
                            Holiday
11
     SOAAXAK12A8C13C030
                            Immigrant Song (Album Version)
12
     SOAXLDX12AC468DE36
                           La Tablada
13
14
   5 rows selected (0.497 seconds)
15
```

Therefore, Jingle Bell Rock is the song the hottest song that is the shortest and shows highest energy with lowest tempo.

3. the album with the most songs

```
select album_id, album_name, count(album_id) as numSongs
1
  from songs
2
 group by album_id, album_name
3
  order by numSongs desc
4
  limit 1;
5
6
   7
   | album_id |
                                            | numSongs |
8
                         album_name
9
   60509 | First Time In A Long Time:
                                            85
10
            | The Reprise Recordings
11
12
  1 row selected (1.076 seconds)
13
```

First Time In A Long Time: The Reprise Recordings is the album with most tracks. Indeed, it has 4CDs and 80+ tracks.

4. the band with longest song

Therefore, the band Mystic Revelation of Rastafari has recorded Grounation which has highest duration.

3. Big Data Recommendation

Similarity Metrics

Similarity between $Song_A = [a_1, a_2, ..., a_n]$ and $Song_B = [b_1, b_2, ..., b_n]$ 1 L_1 Norm

$$d_{L_1} = \sum_{i=1}^n |a_i - b_i|$$

Osine Similarity

$$cos heta = rac{\sum_{i=1}^n (a_i imes b_i)}{\sqrt{\sum_{i=1}^n a_i^2} imes \sqrt{\sum_{i=1}^n b_i^2}}$$

$$Similarity(Song_A, Song_B) = \lambda cos\theta - d_{L2}$$

Figure: Two layers BFS

Input song: (Old Man Mose, The Bristols) Recommended Song:

- **1** L_1 Norm: (The Story of Two, Micragirls)
- Osine Similarity: (Kentish (demo), Modwheelmood)

```
S Combination:
When \lambda \leq 307, (Kentish (demo), Modwheelmood).
When \lambda \geq 308, (The Story of Two, Micragirls).
```

Choose different λ to reach diverse recommendations!


```
def getKMostRelatedCenter(track_id, data, cluster_centers,
       \leftrightarrow k=3)-> list:
 \mathbf{2}
 3
       song = data[data["track_id"] == track_id]
       song = song.loc[:, features_list].to_numpy()
 4
       dis = []
 \mathbf{5}
       for center in cluster centers:
 6
            dis.append(np.dot(song, center) / (np.linalg.norm(song) *
            → np.linalg.norm(center)))
8
9
       sorted_np = np.argsort(np.array(dis), axis=0)[:,0] < k</pre>
       index = range(0, np.shape(cluster_centers)[0])
10
11
       cluster_centers_withindex = np.hstack((cluster_centers,
12
       \rightarrow np.array(index).reshape(-1, 1)))
       selected_centers = cluster_centers_withindex[sorted_np][:, -1]
13
14
       return list(selected centers)
15
```

Function of mappers and reducer:

- mapper_artist.py: given an artist id as input, find all the similar artists (according to the database)
- mapper_song.py: given the similar artists, find all of their songs
- mapper_distance.py: given the list of songs, calculate their cosine similarity from the given song
- reducer.py: find the song with largest similarity

We implement a driver.sh to run the three map reduce job:

```
# How to run
1
   cd MapReduce
2
   time bash ./driver.sh
3
  # Result
4
  + hdfs dfs -cat /project_distance/part-00000
\mathbf{5}
   ('Story Of Two', 'TRMHEEB12903C9F3C9',
6
    \rightarrow 0.9140447260983122)
\overline{7}
            4m18.674s
   real
8
   user
            1m27.983s
9
            0m5.830s
   sys
10
```


Use the same strategy, we implement the map and reduce in spark:

```
sc = SparkContext()
   # find the list of similar artists
3 for i in range(depth):
       artists += sc.parallelize(artists, 4)\
                  .map(artistNeighbor).reduce(merge_lists)
6 # find all the songs of similar artists
   songs: list = sc.parallelize(artists, 12)\
                 .map(getArtistSongs).reduce(merge_lists)
 8
  # find the feature of the input song
  features = sc.parallelize(features, 100)\
10
                .map(lambda x: (np.concatenate((x[1:2], x[3:-7]))\
11
                .astype(np.float64), (x[-6],x[-5],x[-1]))).collect()
12
  # reduce to get the song with largest similarity
13
  result = sc.parallelize(features, 100)
14
              .map(lambda x: calcDistance(x, songFeature))\
15
              .reduce(lambda x, y: max(x, y))
16
```

For pyspark, there is an interface for you to play with :).

```
Please enter the name of a song: Old Man Mose
 1
 2
   Too many songs have the same name! Please choose a specific author
    \hookrightarrow from the list:
 3
    ['Jesse Fuller', 'George Lewis And His New Orleans Stompers', 'Louis
    → Armstrong', 'Manhattan Transfer', 'Kenny Ball And His Jazzmen',
    \hookrightarrow 'The Bristols']
  The author of your song: The Bristols
 4
   The song you choose:
 5
   Name: Old Man Mose, Author: The Bristols, Id: TRYESJS12903CDF730
 6
  Please enter the depth of the BFS: 2
 7
  Num of similar artists in the 1th layer: 48.
 8
  Num of similar artists in the 2th layer: 1134.
9
10 Num of similar songs: 29818.
   (0.9140447260983123, ("Story Of Two", "TRMHEEB12903C9F3C9", "The
11
    \hookrightarrow Micragirls"))
12
13 real 0m32.016s
  user 0m2.668s
14
            0m2.587s
15
  sys
```

That is 8 times speed up than Mapreduce!

4. Year Prediction

(31)

We want to train a model to predict the year of a song with its features.

```
SELECT COUNT(*) AS year_num FROM songs WHERE year<>0;
+----+
J | year_num |
++----+
J | 515576 |
++---+
J | row selected (0.402 seconds)
```

Approximately half of the songs have years labeled. We use 80% of them as training set and 20% as validation set.

(32

- Years are grouped by every 5 neighboring years so that total number of classes is reduced from 88 to 18.
- Each feature is normalized to the range of [0, 1]
- Very few data are missing (less than 1%). We just fill them as 0 and it would be not a big deal to the model.

(33

We fitted a PCA model on the training set, which keeps 6 principal components from 15 original features.

```
pca = PCA(k=6, inputCol='features',
       outputCol='pca_features')
   \hookrightarrow
   pca_model = pca.fit(feature_df)
2
  return pca_model
3
 pca_df = pca_model.transform(feature_df)
   res_df =pca_df.select('coarse_classified_class_year',
5
   'pca_features').rdd.map(lambda x: Row(tag=x[0],
6
 PC1=float(x[1][0]), PC2=float(x[1][1]),
7
 PC3=float(x[1][2]), PC4=float(x[1][3]),
8
 PC5=float(x[1][4]), PC6=float(x[1][5])))
9
   .toDF()
10
```

34

We trained a logistic regression model to do the classification task.

```
1 lrm = LogisticRegressionWithLBFGS.train(
2 sc.parallelize(data_train, 200), iterations=200,
3 numClasses=18)
4 print("Weights:", lrm.weights)
5 lrm.save(sc,'file:///home/hadoopuser/project
6 /predict/model')
```


2 dfp['year_predict']).value_counts()

No PCA

Applying PCA

1	False	79282
2	True	23275
3	Name:	count

4 dtype: int64

- 3 Name: count,
 - dtype: int64

Applying PCA raises prediction accuracy from 22.69% to 30.09%. For a 18 classification task, this result is satisfying enough.

Thank you!