
Million Songs

ece472 – Summer 2023 Team Win or Lose - Kezhi, Yinchen, Shaoze, Jiache

2 Table of contents

1 Data Preparation

2 Drill Database Query

3 Big Data Recommendation

4 Year Prediction

1. Data Preparation

4 Mounting

The following codes are added to ~/.bashrc to automatically mount
millionsongs upon booting.

1 echo "password" | sudo -S sshfs /home/hadoopuser/ece472

-o allow_other -o Port=2223

ece472@focs.ji.sjtu.edu.cn: -o

IdentityFile=~/.ssh/id_ed25519 1>/dev/null

2>/dev/null

↪→

↪→

↪→

↪→

2 echo "password" | sudo -S mount

/home/hadoopuser/ece472/millionsong.iso

/home/hadoopuser/ece472/ 1>/dev/null 2>/dev/null

↪→

↪→

5 H5 Files

Track.h5

analysis

bars confidence

...

metadata

artist terms

...

musicbrainz

artist mbtags

...

• We used python h5py
module to extract
information in .h5 files.

• We collect useful fields
in all .h5 files and
summarize them in one
single .avro file

6 avro File

• Divide the dataset into 26 parts

• Create one .avro file for all files in each part

• Use pyspark to parallelize the process

• Merge 26 small .avro files into one single big file

With 8 cores processing in parallel, the total time cost to form one
.avro file is reduced from 6 hours to 3 hours.

The .avro file generated which is consisted of all desired features of
one million songs is approximately 150Mb.

7 EDA

Table: Statistic of Raw Data

tempo hotness year time signature ...

count 1000000 581965 1000000 1000000
mean 123.889 0.356 1030 3.59

std 35.056 0.234 999 1.22
min 0.000 0.000 0 0
25% 97.995 0.215 0 3
50% 122.086 0.378 1969 4
75% 144.089 0.532 2002 4
max 302.300 1.000 2011 7

8 Feature Analysis

What features are needed to describe a Song?

1 Duration

• The duration cannot directly determine the style of songs

• Adjusting granularity & OneHotEncoder

2 Segments loudness max / Segments loudness max time

• The most load segment can be regarded as the ”musical climax”

• Classify this feature by the occurrence of musical climax.

3 Segments pitches

• Analyze emotion of song by computing the mean of pitches.

• Associate with the Segments loudness max

9 Feature Engineering

Prepare the data for Model:

• Missing & Abnormal Value

• Distribution (Left/Right Skew)

• Granularity (Year)

• Encoding (One-hot, Hash...)

• Combination

• Normalize & Standardize

10 Example: Loudness

Issues:

• Mostly < 0 with 359/1000000
abnormal values

• Left skewed

Figure: Distribution of Raw Data

Methods:

• Replace exceptions with
median

• loudness log = ln(−loudness)

Figure: Distribution of Adjusted Data

11 Pipeline

1 processed_data = process_data_gm(data, (

2 # Customized Column Transformer

3 (log_transform_negative_column, ['loudness'], None),

4 (classify_year_column, ['year'], None),

5 (proportion_fade_out, None, None),

6 (fade_out_time, None, None),

7

8 # Exception Handling

9 (drop_zeros, [List_of_Features], None),

10 (fill_hotness_na_with_0, None, None),

11

12 # Normalize Selected Features

13 (normalized_selected_columns, [List_of_Features], None),

14

15 # Select Features

16 (select_columns, ['Log_loudness', 'bar_num', 'beat_num',

17 # Add features here

18], None),

19))

2. Drill Database Query

13 Motivation

In this part, we used drill to perform simple database queries, including:

• Find the range of dates covered by the songs in the dataset, i.e.
the age of the oldest and of the youngest songs

• Find the hottest song that is the shortest and has the highest
energy with the lowest tempo.

• Find the name of the album with the most tracks.

• Find the name of the band(artists) who recorded the longest song.

14 Preparation

Given the avro file, we first created a table in drill

1 -- read avro file from local file system (~100M)

2 create table dfs.tmp.`songs` as

3 select * from dfs.`F:/avro/songs.avro`;

4 -- change path

5 use dfs.tmp;

15 Detailed Solutions

1. the oldest and youngest songs

1 select max(year_end) from songs where year_end > 0;

2 +--------+

3 | EXPR 0 |

4 +--------+

5 | 2011 |

6 +--------+

7 1 row selected (0.321 seconds)

8

9 select min(year_end) from songs where year_end > 0;

10 +--------+

11 | EXPR 0 |

12 +--------+

13 | 1922 |

14 +--------+

15 1 row selected (0.323 seconds)

Therefore, the dataset covered songs from 1922 to 2011, namely the
age of the songs vary from 12 years to 101 years.

16 Detailed Solusions

2. the hottest, shortest, highest energy, lowest tempo

1 select id, title from songs

2 where hotness <> 'NaN'

3 order by hotness desc, duration asc, energy desc, tempo asc

4 limit 5;

5

6 +--------------------+-----------------------------------+

7 | id | title |

8 +--------------------+-----------------------------------+

9 | SONASKH12A58A77831 | Jingle Bell Rock |

10 | SOAVJBU12AAF3B370C | Rockin Around The Christmas Tree |

11 | SOEWAKD12AB01860D5 | Holiday |

12 | SOAAXAK12A8C13C030 | Immigrant Song (Album Version) |

13 | SOAXLDX12AC468DE36 | La Tablada |

14 +--------------------+-----------------------------------+

15 5 rows selected (0.497 seconds)

Therefore, Jingle Bell Rock is the song the hottest song that is the
shortest and shows highest energy with lowest tempo.

17 Detailed Solutions

3. the album with the most songs

1 select album_id, album_name, count(album_id) as numSongs

2 from songs

3 group by album_id, album_name

4 order by numSongs desc

5 limit 1;

6

7 +----------+------------------------------------+----------+

8 | album_id | album_name | numSongs |

9 +----------+------------------------------------+----------+

10 | 60509 | First Time In A Long Time: | 85 |

11 | | The Reprise Recordings | |

12 +----------+------------------------------------+----------+

13 1 row selected (1.076 seconds)

First Time In A Long Time: The Reprise Recordings is the album with
most tracks. Indeed, it has 4CDs and 80+ tracks.

https://www.discogs.com/release/4483625-Fanny-First-Time-In-A-Long-Time-The-Reprise-Recordings

18 Detailed Solutions

4. the band with longest song

1 select artist_name, title, duration from songs

2 order by duration desc limit 1;

3

4 +--------------------------------+------------+-----------+

5 | artist_name | title | duration |

6 +--------------------------------+------------+-----------+

7 | Mystic Revelation of Rastafari | Grounation | 3034.9058 |

8 +--------------------------------+------------+-----------+

9 1 row selected (0.468 seconds)

Therefore, the band Mystic Revelation of Rastafari has
recorded Grounation which has highest duration.

3. Big Data Recommendation

20 Similarity Metrics

Similarity between SongA = [a1, a2, ..., an] and SongB = [b1, b2, ..., bn]

1 L1 Norm

dL1 =
n∑

i=1

|ai − bi |

2 Cosine Similarity

cosθ =

∑n
i=1(ai × bi)√∑n

i=1 a
2
i ×

√∑n
i=1 b

2
i

3 Combination

Similarity(SongA,SongB) = λcosθ − dL2

21 Similar Artists based BFS

Figure: Two layers BFS

22 Example

Input song: (Old Man Mose, The Bristols)
Recommended Song:

1 L1 Norm: (The Story of Two, Micragirls)

2 Cosine Similarity: (Kentish (demo), Modwheelmood)

3 Combination:
When λ ≤ 307, (Kentish (demo), Modwheelmood).
When λ ≥ 308, (The Story of Two, Micragirls).

https://music.163.com/##/song?id=1328484856
https://music.163.com/##/song?id=553931121
https://music.163.com/##/song?id=1880855685

23 Diverse Recommendation Implementation

Choose different λ to reach diverse recommendations!

1 import numpy as np
2 from numpy import ndarray

3 def calcDistance(song1: tuple, song2: ndarray) -> float:

4 # song1: (feature: ndarray, track_Id: str)

5 weight = 325

6 return weight * (np.dot(song1[0], song2) / \

7 (np.linalg.norm(song1[0]) * \

8 np.linalg.norm(song2)) \

9 - np.sum(np.abs(song1[0]-song2)), song1[1])

10

24 KMeans Recommendation

25 KMeans Recommendation

1 def getKMostRelatedCenter(track_id, data, cluster_centers,

k=3)-> list:↪→
2

3 song = data[data["track_id"] == track_id]

4 song = song.loc[:, features_list].to_numpy()

5 dis = []

6 for center in cluster_centers:

7 dis.append(np.dot(song, center) / (np.linalg.norm(song) *

np.linalg.norm(center)))↪→
8

9 sorted_np = np.argsort(np.array(dis), axis=0)[:,0] < k

10 index = range(0, np.shape(cluster_centers)[0])

11

12 cluster_centers_withindex = np.hstack((cluster_centers,

np.array(index).reshape(-1, 1)))↪→
13 selected_centers = cluster_centers_withindex[sorted_np][:, -1]

14 return list(selected_centers)

15

26 MapReduce Implementation

Function of mappers and reducer:

• mapper_artist.py: given an artist id as input, find all the
similar artists (according to the database)

• mapper_song.py: given the similar artists, find all of their songs

• mapper_distance.py: given the list of songs, calculate their
cosine similarity from the given song

• reducer.py: find the song with largest similarity

27 MapReduce Performance

We implement a driver.sh to run the three map reduce job:

1 # How to run

2 cd MapReduce

3 time bash ./driver.sh

4 # Result

5 + hdfs dfs -cat /project_distance/part-00000

6 ('Story Of Two', 'TRMHEEB12903C9F3C9',

0.9140447260983122)↪→

7

8 real 4m18.674s

9 user 1m27.983s

10 sys 0m5.830s

28 Pyspark Implementation

Use the same strategy, we implement the map and reduce in spark:

1 sc = SparkContext()

2 # find the list of similar artists

3 for i in range(depth):

4 artists += sc.parallelize(artists, 4)\

5 .map(artistNeighbor).reduce(merge_lists)

6 # find all the songs of similar artists

7 songs: list = sc.parallelize(artists, 12)\

8 .map(getArtistSongs).reduce(merge_lists)

9 # find the feature of the input song

10 features = sc.parallelize(features, 100)\

11 .map(lambda x: (np.concatenate((x[1:2], x[3:-7]))\

12 .astype(np.float64), (x[-6],x[-5],x[-1]))).collect()

13 # reduce to get the song with largest similarity

14 result = sc.parallelize(features, 100)\

15 .map(lambda x: calcDistance(x, songFeature))\

16 .reduce(lambda x, y: max(x, y))

For pyspark, there is an interface for you to play with :).

29 Pyspark Performance

1 Please enter the name of a song: Old Man Mose

2 Too many songs have the same name! Please choose a specific author

from the list:↪→
3 ['Jesse Fuller', 'George Lewis And His New Orleans Stompers', 'Louis

Armstrong', 'Manhattan Transfer', 'Kenny Ball And His Jazzmen',

'The Bristols']

↪→
↪→

4 The author of your song: The Bristols

5 The song you choose:

6 Name: Old Man Mose, Author: The Bristols, Id: TRYESJS12903CDF730

7 Please enter the depth of the BFS: 2

8 Num of similar artists in the 1th layer: 48.

9 Num of similar artists in the 2th layer: 1134.

10 Num of similar songs: 29818.

11 (0.9140447260983123, ("Story Of Two", "TRMHEEB12903C9F3C9", "The

Micragirls"))↪→
12

13 real 0m32.016s

14 user 0m2.668s

15 sys 0m2.587s

That is 8 times speed up than Mapreduce!

4. Year Prediction

31 Data Selecting

We want to train a model to predict the year of a song with its
features.

1 SELECT COUNT(*) AS year_num FROM songs WHERE year<>0;

2 +----------+

3 | year_num |

4 +----------+

5 | 515576 |

6 +----------+

7 1 row selected (0.402 seconds)

Approximately half of the songs have years labeled. We use 80% of
them as training set and 20% as validation set.

32 Data prepossessing

• Years are grouped by every 5 neighboring years so that total
number of classes is reduced from 88 to 18.

• Each feature is normalized to the range of [0, 1]

• Very few data are missing (less than 1%). We just fill them as 0
and it would be not a big deal to the model.

33 PCA

We fitted a PCA model on the training set, which keeps 6 principal
components from 15 original features.

1 pca = PCA(k=6, inputCol='features',

outputCol='pca_features')↪→

2 pca_model = pca.fit(feature_df)

3 return pca_model

4 pca_df = pca_model.transform(feature_df)

5 res_df =pca_df.select('coarse_classified_class_year',

6 'pca_features').rdd.map(lambda x: Row(tag=x[0],

7 PC1=float(x[1][0]), PC2=float(x[1][1]),

8 PC3=float(x[1][2]), PC4=float(x[1][3]),

9 PC5=float(x[1][4]), PC6=float(x[1][5])))

10 .toDF()

34 Model training

We trained a logistic regression model to do the classification task.

1 lrm = LogisticRegressionWithLBFGS.train(

2 sc.parallelize(data_train, 200), iterations=200,

3 numClasses=18)

4 print("Weights:", lrm.weights)

5 lrm.save(sc,'file:///home/hadoopuser/project

6 /predict/model')

35 Prediction results

1 (dfy['coarse_classified_class_year']==

2 dfp['year_predict']).value_counts()

No PCA

1 False 79282

2 True 23275

3 Name: count,

4 dtype: int64

Applying PCA

1 False 71696

2 True 30861

3 Name: count,

4 dtype: int64

Applying PCA raises prediction accuracy from 22.69% to 30.09%. For
a 18 classification task, this result is satisfying enough.

Thank you!

	Data Preparation
	Drill Database Query
	Big Data Recommendation
	Year Prediction

