Generating EEG signals using Generative Adversarial Networks

Hamlin Liu
Computer Science
hamlinliu250@g.ucla.edu

Arjun Kallapur
Computer Science

arjun.kallapur@gmail.com

Daniel Smith
Computer Science
couthelloworld@g.ucla.edu

Utsav Munendra
Computer Science

utsavm9@g.ucla.edu

Abstract

In this project, we aim to create and test different gen-
erative adversarial network architectures. We will test the
multiple different architectures used to create the generator
and discriminator networks by applying them to electroen-
cephalogram (EEG) data. The data consists of 22 channels
taken at 1000 time steps, and have 4 task labels. We in-
vestigate different types of generative adversarial network
(GAN) architectures as well as network architectures to de-
termine the performance of our various generators. Given
the very difficult process of training GANs, we were only
able to generate data that could be classified accurately
~ 25% of the time by a classifier that could classify real
data accurately 67% of the time.

1. Introduction

EEG data can be used to provide insight into the inner
workings of neural systems. Due to the non-invasive nature
of the EEG procedure, it allows for easy access of measur-
ing signals but a lot of noise also gets added in the process
[[L]. Ideally, we can create models to decipher EEG signals
and extract useful features which can aid in understanding
more of the human nervous system and brain. Being able
to generate these EEG signals from a generative network
would prove very valuable to the field, as generative models
will be able to augment current classification by providing
new unseen data to certain classifiers. Also, by being able
to produce EEG data of certain classes, the generative mod-
els might also provide certain insight on the original data
distribution that was used to train it.

A framework that focuses on optimizing generative net-
works are generative adversarial networks was first pro-
posed by Goodfellow et al. [6]. This framework proved
to be very effective at generating images and other forms
of sequential data such as audio signals [3]. GANs have

also been shown to be effective at generating EEG signals
utilizing regular convolutional neural networks (CNNs) [7]].
This project will focus on the feasibility of using student re-
sources to apply the GAN frameworks for creating classes
of EEG signals. We are also trying to see if the application
of different network architectures other than CNNs, such as
recurrent neural networks (RNNs), can take advantage of
the temporal relation of the signal.

2. Methods

We discuss the different methods and architectures used
to increase the performance of the GAN.

2.1. Dataset and Data Preprocessing

The EEG dataset used for training consisted of 2115 tri-
als. Each trial had 22 channels and 1000 timestamps at
which values were measured. The test dataset contained
443 trials [2]. Two main preprocessing methods we used
were trimming and subsampling. From visual inspection,
roughly the final 400 timesteps were noise and were hence
trimmed. The remaining data was subsampled at every 6th
timestep in order to reduce noise, for a final sequence length
of 100 time stamps. This number was chosen empirically
after our initial generative networks failed to produce mean-
ingful samples of length 1000 and 600. This preprocessing
is visualized in[Appendix B, Figure 9]

2.2. Architectures

There are multiple frameworks to train GANs. In this
project, we focused on a framework that followed the gen-
eral layout of GANs but allowed us to control the class type
of the generated data. In a regular vanilla GAN, there are
two neural networks, a generator and discriminator, that are
working as adversaries, competing in a minimax game. The
generator network takes in a random noise vector and out-
puts new instances of data by trying to learn the original

data distribution. The discriminator network will try to clas-
sify real training samples as real and generated instances
as fake. The objective of the generator is to generate sam-
ples that cannot be distinguished by the discriminator. Thus
these two networks will be competing in a minimax game
until they reach a Nash equilibrium [3].

However, because vanilla GANs cannot control the type
of data that is being generated, we modified the framework
to be similar to a conditional generational adversarial net-
works (CGANSs) [9]. In our framework, the generator is
conditioned on the label or class of the data instance that
needs to be generated. Using this class label, we are then
able to train the generator to focus on generating certain
classes. A layout of the two architectures can be seen in
Figure [0 in Appendix B. To determine what architecture
works best, we also varied the types of layers that com-
posed the generators and discriminators as well as the in-
put noise dimensions. All the model architectures tested in
our framework are described in Appendix A. By default,
most of the networks used a rectified linear unit (ReLU)
(f(z) = when x > 0 and f(z) = 0 when = < 0) as their
activations.

We designed a set of generators first around the idea that
the EEG signals are temporally related. Thus, some gen-
erators and discriminators that were tested used only re-
current neural networks (RNN) layers to take advantage of
this temporal relation. In the case of the generators, fol-
lowing Hyland et al., we inputted a noise vector that had
the same sequence length that was conditioned to a class
label at each step of the sequence [4]. Given this input se-
quence, we varied the hidden dimension of the one RNN
layer of the generator in order to experiment switching be-
tween Long-Short Term Memory layers (LSTM) and gated
recurrent units (GRU). The output of this generator had be
the same dimensions as the preprocessed data so that any
discriminator used would be able to compare it to real data
instances.

To take advantage of temporal relation on the discrimina-
tor side, we also experimented with an RNN style discrim-
inator using LSTM layers. This discriminator, consisting
of one LSTM layer, would take in a sequence of the EEG
signal and output a sequence of labels determining if step
is real or fake. This also follows a similar structure to the
discriminators to those in Hyland et al., which were used to
discriminate other types of generated sequential data [4]].

Given their performance in image classification and their
small amount of trainable parameters, CNNs are advanta-
geous when used in GANSs, especially if the problem en-
tails some sort of relation to images. Thus, we based our
CNN generators and discriminators off of deep convolu-
tional GANs (DCGANSs) [10]. Our generators consisted
of fractionally-strided convolutional layers (also referred to
as deconvolutional layers) followed by batch normalization

and rectified linear units (ReLU) for activation. For the out-
put layer, instead of using a ReLLU activation, we used a
Tanh activation, following the DCGAN framework. The
discriminator was built in a similar fashion to normal con-
volutional classifiers but removed max pooling layers and
replaced their activation functions with Leaky ReL.U.

2.3. Evaluation

Our limited experience with EEG data meant that man-
ual validation of the data would not be possible. Instead, we
first trained several classifiers on the real dataset, and calcu-
lated a validation accuracy. We then tested the pre-trained
classifiers on the generated dataset, using the obtained accu-
racy as a metric of the validity of the generated data, noting
that a classifier taking random guesses would achieve an
average accuracy of 25% since there are four classes. The
results for each of the following classifiers are noted in Ap-
pendix A.

2.3.1 Fully-connected Net

The Fully Connected classifier used had 3 hidden layers
with 1500, 1000, 500 activations respectively. This network
also had batch normalization layers, and used ReLLU as the
activation function.

2.3.2 Shallow Convolutional Net

The next architecture we implemented was Convolutional
Neural Networks (CNNs). As was explored by Schirrmi-
ester et al. [[12], CNNs can be used to capture spatial pat-
terns and thus may be useful in the current application. The
architecture involved 2 [CNN + ReLU + Maxpool] layers
and 1 [CNN - ReLU] layer. The final layer was [Linear -
Softmax]. In this architecture, the Maxpool layers play a
vital role in downsampling the convolutional layers. This is
helpful to get a larger receptive field and preventing a large
number of parameters in the final linear layer.

2.3.3 Convolutional and Recurrent Hybrid Nets

In order to further improve classification accuracy, we used
hybrid architectures. The motivation behind using a hybrid
architecture was to fully capture temporal patterns in the
EEG data (since it is a time-series) along with the spatial
patterns which CNNs manage to capture. This intuition was
backed by research from Lin et al. [8] This network had
a [Conv - ReLU - MaxPool] layer, followed by a [Conv -
ReLU] layer, an LSTM layer and then a linear layer.

3. Discussion
3.1. Results from Classifiers

As is noted in Appendix A, CNN-RNN hybrid archi-
tectures had the best classification accuracies. This result
backs up our intuition that hybrid architectures would per-
form the best since they capture both the spatially-local as

Generator Loss and Discriminator Loss vs Iteration for an LSTM-LSTM GAN

25 —— Generator Loss
Discriminator Loss

o 50000 100000 150000 200000 250000
Iteration

Figure 1: Convergence failure in an LSTM-LSTM GAN

well as global temporal patterns. Another interesting result
is that dowsampling the data with CNNs before extracting
temporal patterns with RNNs led to better classification ac-
curacy than having RNNs before CNNs. This result is in
line with those found by Zhu et al. [[13]], and could be due to
the fact that spatial correspondences are more pronounced
than temporal correspondences in the EEG dataset. It could
also be due to the fact that downsampling before finding
temporal correspondences means that global temporal pat-
terns are found, as opposed to local temporal patterns.

3.2. Results from Generated Data

The best performing GAN achitecture was a GRU gener-
ator and an LSTM discriminator, which achieved an average
of 29% accuracy, a 16% improvement over random chance.
Overall, the classifiers achieved a much lower accuracy on
the generated data than the real data (see Appendix A), and
the accuracy achieved was only a slight improvement on
random chance. Further, the amplitude range of the gener-
ated data is an order of magnitude smaller than that of the
real data. Thus, it can be concluded that the GANs were not
able to generate realistic data. Here are some reasons as to
why our results were poor:

3.2.1 Convergence Failure

In order to converge, the generator and discriminator net-
works must reach an equilibrium, but if one network rapidly
converges before the other, it will impair the learning of the
other network. In our experiments, we noted that the dis-
criminator loss rapidly converged to zero, while the gen-
erator loss remained non-zero and did not appreciably de-
crease. This means that the discriminator was able to eas-
ily classify every generated sample and hence the generator
network could not learn. An example of this is visualized in

3.2.2 Difficulty in Tuning Parameters
As is noted by Salimans et al., [11] it is difficult to train

GANSs to converge since finding Nash equilibria is a hard
problem, particularly when the cost functions being opti-

mized are non-convex, as is the case in this application.
Further, the space of parameters is a very high dimensional
space, and thus settling on choices of parameters that lead
to model convergence can be difficult.

3.2.3 Other Problems

Some specific difficulties that were reached in our case were
the distribution of the data as well as difficulties with com-
pute power. Due to our inexperience with EEG signals and
the dataset, there were not a lot of features that we knew
that we could take advantage of. Thus the data we gener-
ated might have been too difficult of a distribution for the
generator to emulate. Lacking enough computing resources
also proved to be a difficulty. Our main access to GPU com-
pute time was through Google Colab which has time limits
on user’s access to GPUs. Thus we could not train our net-
works for extended periods of time.

3.3. Future work

While the results from our analysis were not too promis-
ing, the issue of GANSs collapsing during training is not un-
common [7]. An improvement that can be made is by us-
ing WGAN:S as opposed to GANs. While the original GAN
framework tries to minimize the Jensen-Shannon (JS) diver-
gence between the real data distribution P, and fake data
distribution Py, the WGAN tries to minimize the Wasser-
stein distance between the two distributions Py and P,.[7]
[6]. This leads to the discriminator, now called a critic, to
maximize the value

W (P, Pp) = By, np, [D(x,)] — I N [D(zy)]

while the generator maximizes the value E,p,[D(zy)].
Although we did not implement any WGANs, Hartmann et
al shows it is possible to create realistic data by modify-
ing the training for the WGAN [7]. In addition to changing
our model architecture, different metrics such as the Sliced
Wasserstein Distance are shown to create the most realistic
looking EEGs. However Hartmann et al recommends using
several other metrics such as the Frechet Inception Distance
and the Euclidean Distance in order to leverage the advan-
tages and disadvantages of each of them.

4. Conclusion

With the amount of noise that is inherent in the data,
replicating the EEG data using GANs did not appear to be
quite effective. The best model we were able to create was
a CNN+GRU architecture with an accuracy score of 67%.
Although our generator was able to create data from noise,
considering it could only be classified around 25% of the
time, the model was ineffective at generating artificial data
that resembled real EEG samples. Due to the constraints on
our time and resources, we were unable to obtain useful re-
sults, however the knowledge and experienced gained will
be useful in our future projects and endeavors.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

Alois Schlogl and Mel Slater and Gert Pfurtscheller.
Presence research and EEG. http://wwwO.cs.
ucl.ac.uk/research/equator/papers/
Documents2002/Mel_presence_2002.pdf,

2002.

C. Brunner, R. Leeb, G. R. Miiller-Putz, A. Schlogl,
and G.Pfurtscheller. BCI Competition 2008 — Graz Data
Set A. http://www.bbci.de/competition/iv/
desc_2a.pdf.

C. Donahue, J. J. McAuley, and M. S. Puckette. Synthe-
sizing audio with generative adversarial networks. CoRR,
abs/1802.04208, 2018.

C. Esteban, S. L. Hyland, and G. Ritsch. Real-valued (med-
ical) time series generation with recurrent conditional gans,
2017.

1. J. Goodfellow. NIPS 2016 tutorial: Generative adversarial
networks. CoRR, abs/1701.00160, 2017.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial networks, 2014.

K. G. Hartmann, R. T. Schirrmeister, and T. Ball. Eeg-gan:
Generative adversarial networks for electroencephalograhic
(eeg) brain signals, 2018.

T. Lin, T. Guo, and K. Aberer. Hybrid neural networks
for learning the trend in time series. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI-17, pages 2273-2279, 2017.

M. Mirza and S. Osindero. Conditional generative adversar-
ial nets. CoRR, abs/1411.1784, 2014.

A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. In Y. Bengio and Y. LeCun, editors, 4t/ In-
ternational Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen. Improved techniques for training
gans. CoRR, abs/1606.03498, 2016.

R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer,
M. Glasstetter, K. Eggensperger, M. Tangermann, F. Hut-
ter, W. Burgard, and T. Ball. Deep learning with convolu-
tional neural networks for brain mapping and decoding of
movement-related information from the human EEG. CoRR,
abs/1703.05051, 2017.

J. Zhu, H. Chen, and W. Ye. A hybrid cnn—Istm network for
the classification of human activities based on micro-doppler
radar. IEEE Access, 8:24713-24720, 2020.

Appendix

A. Performance

Please note our notation. Each framework has a gener-
ator and discriminator and denoted G — D where G is the
generator architecture and D is the discriminator architec-
ture. So for example LSTM~-CNN has a generator that has a
LSTM architecture and a discriminator with CNN architec-
tures. Please note that the + represents that the network is
hybrid of both architectures. The rows represent the model
of GAN generating the data while the columns represent the

classifier network.

These table report the accuracy of classifiers on data
coming from different sources.

Data source Classifier
FCNet | CNN | CNN + LSTM
Real Data 50.7% | 60.8% | 65.0%
GRU - LSTM 25.6% | 36.2% | 24.6%
GRU - CNN 23.3% | 34.0% | 21.8%
LSTM - CNN 263% | 29.1% | 22.1%
LSTM - LSTM 28.6% | 22.2% | 20.4%
CNN - CNN 22.9% | 22.9% | 22.9%
CNN +LSTM -CNN | 24.7% | 24.7% | 23.6%
Data source Classifier
CNN + GRU | LSTM + CNN
Real Data 67.3% 54.9%
GRU - LSTM 25.6% 33.5%
GRU - CNN 23.3% 36.7%
LSTM - CNN 26.3% 24.4%
LSTM - LSTM 23.1% 23.4%
CNN - CNN 22.9% 27.0%
CNN + LSTM - CNN | 24.7% 26.8%

B. Architectures and Figures

Layer (type:depth-idx) Output Shape Param #
LSTM: 1-1 [250, 100, 44] 8,448
Sequential: 1-2 [25000, 22] -—

| Linear: 2-1 [25000, 22] 990

| LTanh: 2-2 [25000, 22] .

Total params: 9,438
Trainable params: 9,438
Non-trainable params: 0
Total mult-adds (M): 0.01

Input size (MB): 0.40

Forward/backward pass size (MB):

Params size (MB): 0.04

Estimated Total Size (MB): 13.64

13.20

Figure 2: architecture of the generator for the LSTM-CNN

GAN

http://www0.cs.ucl.ac.uk/research/equator/papers/Documents2002/Mel_presence_2002.pdf
http://www0.cs.ucl.ac.uk/research/equator/papers/Documents2002/Mel_presence_2002.pdf
http://www0.cs.ucl.ac.uk/research/equator/papers/Documents2002/Mel_presence_2002.pdf
http://www.bbci.de/competition/iv/desc_2a.pdf
http://www.bbci.de/competition/iv/desc_2a.pdf

Layer (type:depth-idx) Output Shape Param # Layer (type:depth-idx) Output Shape param #

. |-sequential: 1-1 [250, 220, 4] -
|-sequential: 1-1 [250, 18, 50] - L ConvTransposeld: 2-1 (250, 220, 4] 88,000
| Lconvid: 2-1 [250, 18, 50] 1,188 LpatehNormid: 2-2 (250, 220, 4] 440
L LeakyReLU: 2-2 [250, 18, 50] - . ‘—R:I-“i =3 250, 220, 41 -
kYR |-sequential: 1- , 154, -
—Sequential: 1-2 [250, 14, 25] - onvTransposeld: 2-4 (250, 154, 10] 135,520
onvld: 2-3 [250, 14, 25] 756 L patchNormld: 2-5 [250, 154, 10] 308
| LpatchNormid: 2-4 [250, 14, 25] 28 LReLu: 2-6 [250, 154, 10] -
l—LeakyReLU: 2-5 [250, 14, 25] - _Seq“e“t“;’ 1-3 s 27 {:;g' g:' ;:} ;; 208
” onvTransposeld: 2- . 88, .
—Sequential: 1-3 [250, 10, 13] - LpatchNormld: 2-8 1250, 88, 22] 176
L convid: 2-6 [250, 10, 13] 420 LReru: 2-9 (250, 88, 22] -
\ LpatchNormld: 2-7 [250, 10, 13] 20 seazential: 1-4 1250, 44, 49 -
L . 2o o onvTransposeld: 2-10 1250, 44, 49] 27,104
Sequei:?:{nlﬂlﬂ; 2-8 {;gg’ éu’ﬁ]] tﬂacnhnrmld: 2-11 (250, 44, 49] 88
— Pol- + by - ReLU: 2-12 (250, 44, 49] -
onvld: 2-9 [250, 6, 7] 180 |-sequential: 1-5 (250, 22, 100] -
L patchNormld: 2-10 [250, 6, 71 12 tCTuanranspOEeld: 2-13 1250, 22, 100] 3,872
L LeakyReLU: 2-11 1250, 6, 71 - anh: 2-14 1250, 22, 100] -
—Sequential: 1-5 [250, 1, 1] - Total params: 309,716
onvid: 2-12 [250, 1, 4] 18 Trainable params: 309,716
| LpatchNormid: 2-13 [250, 1, 4] 2 Non-trainable params: 0
| LLeakyReLU: 2-14 [250, 1, 4] - Total mult-adds (M): 4.9
| Lconvid: 2-15 [250, 1, 1] 4 Input size (MB): 0.10
| Lgigmoid: 2-16 [250, 1, 1] - Forward/backward pass size (MB): 30.45

Params size (MB): 1.24
Estimated Total Size (MB): 31.79

Total params: 2,628
Trainable params: 2,628
Non-trainable params: 0

Total mult-adds (M): 0.09 Figure 6: architecture of the generator for the CNN-CNN
Input size (MB): 2.20 GAN

Forward/backward pass size (MB): 3.91
Params size (MB): 0.01
Estimated Total Size (MB): 6.12

Figure 3: architecture of the discriminator for the LSTM- Layer (type:depth-idx) Output Shape Param #
CNN, CNN-CNN, CNN+LSTM, and GRU-CNN GAN tcmh 1-1 [250, 100, 44] 6,336
Sequential: 1-2 [25000, 22] -
| Linear: 2-1 [25000, 22] 990
| Lranh: 2-2 [25000, 22] -

Total params: 7,326
Trainable params: 7,326

Layer (type:depth-idx) Output Shape Param # Non-trainable params: 0
Total mult-adds (M): 0.01
l:Lsm: 1-1 [250, 100, 44] 8,096
Sequential: 1-2 [25000, 22) - Input size (MB): 0.40
| Linear: 2-1 [25000, 22] 990 Forward/backward pass size (MB): 13.20
| L Tanh: 2-2 [25000, 22] - Params size (MB): 0.03

Estimated Total Size (MB): 13.63
Total params: 9,086

Trainable params: 9,086
Non-trainable params: 0

Total mult-adds (M): 0.01 Figure 7: architecture of the generator from the GRU-
Input size (MB): 0.20 LSTM and GRU'CNN GAN

Forward/backward pass size (MB): 13.20
Params size (MB): 0.04
Estimated Total Size (MB): 13.44

Figure 4: architecture of the generator for the LSTM-LSTM Layer (type:depth-idx) Output Shape paran #
|-sequential: 1-1 [250, 220, 4] -
GAN LconvIransposeld: 2-1 [250, 220, 4] 88,000
LBatchNormld: 2-2 250, 220, 4] 440
LReLu: 2-3 [250, 220, 4] —
[-Sequential: 1-2 [250, 154, 10] -
LconvIransposeld: 2-4 [250, 154, 10] 135,520
LBatchNormld: 2-5 [250, 154, 10] 308
LReLU: 2-6 [250, 154, 10] —
e ial: 1-3 [250, 88, 22] -
. _i onvTransposeld: 2-7 [250, 88, 22] 54,208
Layer (type:depth-idx) Output Shape Param # Lnatehmorand: 208 (250, 88, 23] 16
LReLu: 2-9 [250, 88, 22] —
LSTM: 1-1 [250, 100, 44] 11,616 |-Sequential: 1-4 [250, 44, 49] -
Sequential: 1-2 [25000, 1] - LconvTransposeld: 2-10 [250, 44, 49] 27,104
I LLinear: 2-1 [25000, 1] 45 LBatehNormld: 2-11 [250, 44, 49] 88
L) ’ LReLu: 2-12 [250, 44, 49] —
| Sigmoid: 2-2 [25000, 1] -- |-Sequential: 1-5 [250, 10, 100] -
LconvIransposeld: 2-13 [250, 10, 100] 1,760
Total params: 11,661 LReLu: 2-14 [250, 10, 100] -
Trainable params: 11,661 —LSTM: 1-6 [250, 100, 22) 7,040
Non-trainable params: 0 Total params: 314,644
Total mult-adds (M): 0.01 Trainable params: 314,644

Non-trainable params: 0
Total mult-adds (M): 4.72

Input size (MB): 2.20

Forward/backward pass size (MB): 9.00 Input size (MB): 0.10
Params size (MB): 0.05 Forward/backward pass size (MB): 32.45
Estimated Total Size (MB): 11.25 Params size (MB): 1.26

Estimated Total Size (MB): 33.81

Figure 5: architecture of the discriminator for the LSTM- Figure 8: architecture of the generator from the
LSTM, GRU-LSTM GAN CNN+LSTM-CNN GAN

Original Dataset - Average Electrode value vs. Timestamp

81 —— Task Label 769
Task Label 770
67 —— Task Label 771
—— Task Label 772
4 4
7]
oA
_2 -
_4 4
=6 1 T T T T T

o 200 400 600 800 1000

(a) Original Dataset

Preprocessed Dataset - Average Electrode value vs. Timestamp

&1 —— sk Label 769
Task Label 770
61 R\ —— Task Label 771

—— Task Label 772

(b) Preprocessed Dataset

Figure 9: Original and Preprocessed Datasets

M Noise Class

Generator

‘ Real Data ‘ Real Data
vith same clas abels

Generator

Discriminator

Discriminator

Real/Fake Real/Fake

Figure 10: Left: the framework for vanilla GANs. Right:
the framework for our conditional GANs

