{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Orbital Elements\n", "\n", "**Note: All angles for orbital elements are in radians**\n", "\n", "We can add particles to a simulation by specifying cartesian components:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import rebound\n", "sim = rebound.Simulation()\n", "sim.add(m=1., x=1., vz = 2.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Any components not passed automatically default to 0. REBOUND can also accept orbital elements. \n", "\n", "**Reference bodies**\n", "\n", "As a reminder, there is a one-to-one mapping between (x,y,z,vx,vy,vz) and orbital elements, and one should always specify what the orbital elements are referenced against (e.g., the central star, the system's barycenter, etc.). The differences between orbital elements referenced to these centers differ by $\\sim$ the mass ratio of the largest body to the central mass. By default, REBOUND always uses Jacobi elements, which for each particle are always referenced to the center of mass of all particles with lower index in the simulation. \n", "\n", "For the painstaking user: When separating out the center of mass degree of freedom and reducing the N body problem to N-1 Kepler problems and interaction terms, there are a number of possible Hamiltonian splittings (see e.g., Hernandez & Dehnen 2017), and different possible choices for the primary mass in each of the separate Kepler problems. REBOUND takes this primary mass to be the total mass of all the particles in the simulation. If particles are added from the inside out, this gives logical behavior in the limit of a hierarchical system, even for large masses (one can think of it as setting up our new particle in a 2-body orbit around all the interior mass concentrated at the interior particles' center of mass). \n", "\n", "Let's set up a stellar binary," ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "---------------------------------\n", "REBOUND version: \t3.5.11\n", "REBOUND built on: \tJan 11 2018 12:06:13\n", "Number of particles: \t2\n", "Selected integrator: \tias15\n", "Simulation time: \t0.0000000000000000e+00\n", "Current timestep: \t0.001000\n", "---------------------------------\n", "\n", "\n", "---------------------------------\n" ] } ], "source": [ "sim.add(m=1., a=1.)\n", "sim.status()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We always have to pass a semimajor axis (to set a length scale), but any other elements are by default set to 0. Notice that our second star has the same vz as the first one due to the default Jacobi elements. Now we could add a distant planet on a circular orbit," ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "sim.add(m=1.e-3, a=100.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This planet is set up relative to the binary center of mass (again due to the Jacobi coordinates), which is probably what we want. But imagine we now want to place a test mass in a tight orbit around the second star. If we passed things as above, the orbital elements would be referenced to the binary/outer-planet center of mass. We can override the default by explicitly passing a primary (any instance of the Particle class):" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "sim.add(primary=sim.particles[1], a=0.01)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "All simulations are performed in Cartesian elements, so to avoid the overhead, REBOUND does not update particles' orbital elements as the simulation progresses. However, you can always access any orbital element through, e.g., `sim.particles[1].inc` (see the diagram, and table of orbital elements under the Orbit structure at httsp://rebound.readthedocs.org/en/latest/python_api.html). This will calculate that orbital element individually--you can calculate all the particles' orbital elements at once with `sim.calculate_orbits()`. REBOUND will always output angles in the range $[-\\pi,\\pi]$, except the inclination which is always in $[0,\\pi]$." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0000000000000002\n", "\n", "\n", "\n" ] } ], "source": [ "print(sim.particles[1].a)\n", "orbits = sim.calculate_orbits()\n", "for orbit in orbits:\n", " print(orbit)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that there is always one less orbit than there are particles, since orbits are only defined between pairs of particles. We see that we got the first two orbits right, but the last one is way off. The reason is that again the REBOUND default is that we always get Jacobi elements. But we initialized the last particle relative to the second star, rather than the center of mass of all the previous particles.\n", "\n", "To get orbital elements relative to a specific body, you can manually use the `calculate_orbit` method of the Particle class:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "print(sim.particles[3].calculate_orbit(primary=sim.particles[1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "though we could have simply avoided this problem by adding bodies from the inside out (second star, test mass, first star, circumbinary planet).\n", "\n", "When you access orbital elements individually, e.g., `sim.particles[1].inc`, you always get Jacobi elements. If you need to specify the primary, you have to do it with `sim.calculate_orbit()` as above.\n", "\n", "**Edge cases and orbital element sets**\n", "\n", "Different orbital elements lose meaning in various limits, e.g., a planar orbit and a circular orbit. REBOUND therefore allows initialization with several different types of variables that are appropriate in different cases. It's important to keep in mind that the procedure to initialize particles from orbital elements is not exactly invertible, so one can expect discrepant results for elements that become ill-defined. For example, " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "sim = rebound.Simulation()\n", "sim.add(m=1.)\n", "sim.add(a=1., e=0., inc=0.1, Omega=0.3, omega=0.1)\n", "print(sim.particles[1].orbit)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The problem here is that $\\omega$ (the angle from the ascending node to pericenter) is ill-defined for a circular orbit, so it's not clear what we mean when we pass it, and we get spurious results for both $\\omega$ and $f$, since the latter is also undefined as the angle from pericenter to the particle's position. However, the true longitude $\\theta$, the broken angle from the $x$ axis to the ascending node = $\\Omega + \\omega + f$, and then to the particle's position, is always well-defined: " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.39999999999999813\n" ] } ], "source": [ "print(sim.particles[1].theta)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To be clearer and ensure we get the results we expect, we could instead pass theta to specify the longitude we want, e.g." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.39999999999999813\n" ] } ], "source": [ "sim = rebound.Simulation()\n", "sim.add(m=1.)\n", "sim.add(a=1., e=0., inc=0.1, Omega=0.3, theta = 0.4)\n", "print(sim.particles[1].theta)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "import rebound\n", "sim = rebound.Simulation()\n", "sim.add(m=1.)\n", "sim.add(a=1., e=0.2, Omega=0.1)\n", "print(sim.particles[1].orbit)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we have a planar orbit, in which case the line of nodes becomes ill-defined, so $\\Omega$ is not a good variable, but we pass it anyway! In this case, $\\omega$ is also undefined since it is referenced to the ascending node. Here we get that now these two ill-defined variables get flipped. The appropriate variable is pomega ($\\varpi = \\Omega + \\omega$), which is the angle from the $x$ axis to pericenter:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.09999999999999945\n" ] } ], "source": [ "print(sim.particles[1].pomega)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can specify the pericenter of the orbit with either $\\omega$ or $\\varpi$:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "import rebound\n", "sim = rebound.Simulation()\n", "sim.add(m=1.)\n", "sim.add(a=1., e=0.2, pomega=0.1)\n", "print(sim.particles[1].orbit)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that if the inclination is exactly zero, REBOUND sets $\\Omega$ (which is undefined) to 0, so $\\omega = \\varpi$. \n", "\n", "Finally, we can specify the position of the particle along its orbit using mean (rather than true) longitudes or anomalies (for example, this might be useful for resonances). We can either use the mean anomaly $M$, which is referenced to pericenter (again ill-defined for circular orbits), or its better-defined counterpart the mean longitude `l` $= \\lambda = \\Omega + \\omega + M$, which is analogous to $\\theta$ above," ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.40000000000000135\n", "0.39999999999999997\n" ] } ], "source": [ "sim = rebound.Simulation()\n", "sim.add(m=1.)\n", "sim.add(a=1., e=0.1, Omega=0.3, M = 0.1)\n", "sim.add(a=1., Omega=0.3, l = 0.4)\n", "print(sim.particles[1].l)\n", "print(sim.particles[2].l)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "REBOUND calculates the mean longitude in such a way that it smoothly approaches $\\theta$ in the limit of $e\\rightarrow0$:" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.39999999999999997" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sim.particles[2].theta" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "import rebound\n", "sim = rebound.Simulation()\n", "sim.add(m=1.)\n", "sim.add(a=1., e=0.1, omega=1.)\n", "print(sim.particles[1].orbit)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In summary, you can specify the phase of the orbit through any one of the angles `M`, `f`, `theta` or `l`=$\\lambda$. Additionally, one can instead use the time of pericenter passage `T`. This time should be set in the appropriate time units, and you'd initialize `sim.t` to the appropriate time you want to start the simulation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Accuracy**\n", "\n", "As a test of accuracy and demonstration of issues related to the last section, let's test the numerical stability by initializing particles with small eccentricities and true anomalies, computing their orbital elements back, and comparing the relative error. We choose the inclination and node longitude randomly:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAFDCAYAAACk6n5/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8VPXV/z9nJstkDyFAJAmETRZBBKlb3ZeqrRbbumt9\nXB75ubV92lqX4lP3B7W1rdZuPNX6aN1p1Vpp3ZeqtQoIyC4gS9gTSEL2ZOb8/pjhnnPHe5NJyCSB\nOe++8uqZO9/vvd+5I/Odc+ZzziFmhmEYhmGkOoG+XoBhGIZh9AdsQzQMwzAM2IZoGIZhGABsQzQM\nwzAMALYhGoZhGAYA2xANwzAMA4BtiIZhGIYBwDZEwzAMwwAApPX1AgzDMIzUg4hyAPwGQCuAt5n5\niT5eknmIhmEYRs9ARI8Q0XYiWhJ3/DQiWklEq4noptjhbwKYw8xXAvh6ry/WA9sQDcMwjJ7iUQCn\n6QNEFATwawCnA5gA4AIimgCgDMDG2LBwL67RF9sQDcMwjB6Bmd8FsDPu8GEAVjPzWmZuBfA0gOkA\nKhHdFIF+shftF78h5lGQByG9r5dhGL4E1D93joidniF2WtA9J6zGRdT351CuDGxplCcyc+SfM5GM\nb2tqlzEFma5rULqcizLUebc1yJwh2XKuqiZZ+wH5cnzbbjleNsD9Qki9+IB6kaqxQGRLtRqjFq9e\nCAXVcQDhwXIdvyYFLeEWxw6qdTSHW9Vx9brDbkdlULv3WjYqhybT+yWhTb9/6nh7xL3WsJqknwmr\ncY2f76pi5kHoASZTDu/uhkP2OVqWAmhWh2Yz8+wEppZCPEEguhEeDuBBAA8R0dcAvNTlBSWB/WJD\nHIR03IXhfb0Mw/AlJ0vsZvWRUlYidlHcPlJfL3ad7DeYcFSBY69dUOvYow8vcuxAmnz4b19S5dgj\nvjrCdY20sjyxy+W86+7/yLErvj/Nsbf+8VPHLvnvkx17x0/fduzB95/nfiHpIbEzc8VW3wwa73jc\nsSmkNulM+YgK5KlvDwAarjvXsVsjzfBidc0axx4QkmsvqZbP54Hq+JoauZ8AcOV29UU7Q+wfcp1j\njyqQ9epNsLJeNp2WsGxuVY3yBQUAalvksd4ca5tl/kcXPbMePcRuhLv1eXkRVjUz87TORyYGMzcA\nuKynztcT7BcbomEYhpE4ge4EKCOdD/FhE4By9bgsdqzfYRuiYfQC48bJJxCrUFh1tX8/0s1bxZ4w\nSf6pLnlPvJhxXxLvJrckx7FXvaojVMKGV9e5HgdVvG/UTUc69rArD/acX/L/psqDugbPMVU3Pud6\nPPD2Mxx790+eduz8B3/g2Nm3/odjN/9SxrTOvNSx08ntIba31Th2RkC80N1t8hNWSc5Ax/60ap1j\nn7Ok0bHnHaUjkW4P8Zly8dKqmyTMOobk/biqTTzzW1t3OPZPi4fJidJkfNkb/3Zd40tDJfS8slrW\ntfwrxzt2AM+gpyD0+ob4MYAxRDQC0Y3wfAAXdvtsSaRf/JBpGIZh9BIU3RC7+pfQqYmeAvAvAGOJ\nqJKIrmDmdgDXAXgFwHIAzzLz0mS9vL3BPETD6AXmz5ev1wXyUx0Klb12nXvOsecOcWz9m2DOIPHM\nwu1y3tZ68WBGHC0/TmovMGNEoesa4Z0ikmnfKN7RlhdXO/bQc8fJuSaIN4Rs+WFUr2/gnWe6rrH7\n3n84dv6dyjHYVemYTQ/81bGz7vwvxw4pIUzrL3/nOm+az2+ILWHxskb8ZYHY6jfI5w4Rz3qY+t3u\nyrVtrmsgVwRFiIio5uGhSpQSN2UPP6ra4Ni1LfI+VZ50uGvchZ+tlMspYdP4V9/2PvFe0m0PMQGY\n+QKf43MBzE3OVXsO2xANwzBSjAB1PiYVsQ3RMAwjlaDkeYj7OrYhGkYvcOih8gmkw6d1ot7HIXE6\nls3ztjl2hsoxzBkkYbxQoYhJWusldpc/sdixIyp3kCNuZcSmtySsV3G5LKD0koMcO5Cv0ibavfPX\nBl4rghzKCLmey7/jfHnQonJJcovhRUQJUNruflCm3nCJa1xOUO5Da4uETDPV8W3nHu/YJc+/69ha\nVPP3KbKm16eICAcATl4uz/2mRF77NTtFwHRHughpQmniejW2ewum4kU1+Sq1RIdMm9q7r2LpiGSG\nTPd1bEM0DMNIJcxD9MU2RMMwjBTCPER/bEM0jF5gxQoJf02dImG1pcskrLZkmXvOyRd7q0wbtnrn\n/21YIPl3E1XINKDKtVHcJ+HwiyY4dnCwhAEjDVLyDDrMWi+hxq33v+fY6bmi4Cy+9xz3wtpF/eqq\nVJMtitesuyQnUQcKM380w7Fb4K5GU9siFXh0HqJWmeow6cqvTXLspjZ5fZmtMr4t4g4Jzz1QzpvZ\nKON+VyA2lHlzhrxnyFVVblQY+MJW9zUWbpOwbIYqT1cUkjkb0LPYhuiNbYiGYRiphIVMfbEN0TAM\nI4WwkKk//W5DJKKfAjgT0S7KawBcxsw1Hc8yjP6NLt22cKEEBYuVqDHkFme62P6pKBm1yjSgQmzl\nkyUE2a66VQSCcm3Kc3eF2fCEJIVrlSkpVWtEJfxveWqRY5fe/VU5kUps49a4QtuqVB3lFMGLxht/\n5tjZd1zl2HXpcq/iS7eFA1IU2y8x3481ddsdWxf3jmdXiyh0r9gp910X9x4Q8t5dvr5ylWOXqJDy\nk2PGusZ9rUWKtrSqIuDh5IhMAQBElojoRX/8nvAagInMfDCAVQBu7uP1GIZh7D8ksXTbvk6/8xCZ\n+VX18EMAZ/fVWgwjGUw+WL6dr1krHkG8h/jh85KHOGqM5Kct/7d4J9mqstiIqe6ybHtY97YU+m53\ndx7ChO9LsW4tqtn40HzHLv+ZlGIrHaYKYe+UUm/VD8v4eIp//m3Hbrz1UVn7fd8V+97rHTuiPFqo\nAt5ZaW5Prll5ggMfl/JwdedJh6KN049w7KAaPyp/sGPXKFHNhjqVJwkgP1PW8nCRjJugPjqvqJMW\nWjN2eDdxmD18tGPH5yGOGiAl8HQeYlZ6cnYhC5n60+82xDguB3qwzLthGEaqY6IaX/pkQySi1wGU\neDw1k5lfjI2ZCaAdwBM+55gBYAYAFPf7fd0wDMPo7/TJTsLMJ3f0PBFdCuAMACcxs2f9I2aeDWA2\nAIykkH9TOcPoB+hybYNUxTLd7aIjhhwiIb4tm7Y4dtl4CSNmqnzDcIvkuo2cLuE6bnPnwLHq1q67\nXejSbZtuflmO33isTC7yXnx8twudh5g9UzpUNN4gZdmyb71YnbfM87x1qs8hAOT8fo5jV18pPRfR\nKvmJ5S9+6NgvHSU3vjxXxD0tYbkHV26Oc53SJIT5m2K5d2tqxb4rJPdt9gD1Pb9UYuCnLFri2NPH\nukvWLVJ5iGH1cbejwaeNxl5iIVN/+p1rRUSnAbgBwHHM3LlczDAMw+gStiF60+82RAAPAcgE8FpM\nGvwhM1/V8RTDMAwjIew3RF/63YbIzKM7H2UY/Z8cEW2iQVVbKy8XlWl1tYTI8kWsCADIcKcMOugP\ns+yBolBc/a6oUidecqD35DbvbhUAkFauQqDFolgtvVLl/6kQ4tZbRdl5wK/Oc2yOU2oiU0lhM8TO\nvkV1wSgY6rmmfFbS26A7D7H52ksdu6lxnWMPzhqmRi10rK8vEMXqnEMkTKrzEP93qDv578rNYl9T\nJ2/oDyFK31uCEgKdFZFw7c2Q0O9rB0mTZYQktA0AR2+TJsZBlR84Vr23cVX99goLmfrT7zZEwzAM\nI4mYh+iLbYiGkSS0V6i9RU2lSluLz0M89twh8KJ0hHgYNWvF6xl9rIyvXyEClNAAGZ8xwp2ruP4J\n8T1G3XQkPPH59Cy5/TTP41V3v+p6POiXl3iOg8oF9KP5f37n2K0zL3U919IuEoOikIhZtilvcclJ\nIxx7aI7kUJ7zpniOb07zr1TzjEzHeZvEu74/NMCx7wqLV7ihTjzPHzVLSe5Nu0UgUxByf+y+/2XJ\nlTzrE/EW6zvw5vcGgquwkKGwDdEwDCPFMA/RG9sQDcMwUgkLmfpiG6Jh9AI6fKrLtXVU3HvzPBHJ\nbJDqa5h8TL5j6z6EGh0m3fBPicuOGp7vGqcLemsia7c6diDfp+r4ZimQza0SEqS4eFzdT5527Pw7\nL3Tsxrsec2xduk2jw6T56e7C4DtUyLSpXYQ8mUEl4oHkCDaFpVD38uNUge2GXY45rki9IQA2q+e0\noEhTlCmv95ZBpfKEUkXNaFnn2FtVsXQAOHfxJ46dpfpexo/rKUxU449tiIZhGCkFIWA/InpiG6Jh\nGEYqQQAFbUP0wjZEw0gSWlmq+yFuWC+5bjpMGp+HuE5EihhzoITr/D7MWuslbOnKSbxAUnvDle4c\nwaDqtLDu/o88z1vxw8PkQbtSPup8upB36PaLi5QwZ/bd1zm2Xz/EzF9IWLXuBrdatSBT8v82N6x1\nbN0V4/B/rHHsVWdNduymthbH1qXbIt6VIqOo1+7qh9gi7+0skvv++Q45b4HqmjF7+HjXaS/8THpS\nZqj3dpLqPuL9znQPwhfD2v0JIjoLwNcA5AN4OK4DUlKxSLJhGEYqQdENsat/CZ2a6BEi2k5ES+KO\nn0ZEK4loNRHd1NE5mPkFZr4SwFUAzutobE9jHqJhGEaKkcSQ6aOIlt90XHsiCgL4NYBTAFQC+JiI\n/gogCGBW3PzLmXmPWuuW2LxewzZEw0gSWlmqu11MnSIfRhyREF18814tatTdLhq2NsCLtR9LMv4h\nl6nSbW1ybcp2/5Nf98hix9aKU1dXjIgqZ6ZLt93/nmNrtWvxvee4F5au4sJtzWI3SlEBl8q0RSlG\nb5KwaktEwpQA0NAmj3Vifk2LqF//fdooWZcqizblXQmx/uNL7u4TfjxXpt4gaTjiUplua5R7tbNJ\nQtihNLk/P9wi1+6IUFqSNi1K3OPrKsz8LhFVxB0+DMBqZl4bvTw9DWA6M89CtKtR3PKIANwD4O/M\nvCD++WRiG6JhGEaK0U0PsZiI5qnHs2Nt+DqjFIBKHEIlgMM7GP8dACcDKCCi0cz8uw7G9ii2IRpG\nH7JqtdgjK9zPHTZdSrF98Jy4JIccL0W4m2vE4zr4zHLHbtkg3lMwU7y6YJ5b/FJ6ghTCDioRx8aH\n5jt2+TVTZELNbscs+f6X5XiR5DdyjXh+AFziGyqWNeo8REoXOUPmLPEWA0rmkHmPjAcAvmmGY9eq\nHohDn3zXsYMXnejYH2+TMnX1x46UpbN4dYt3iCgGAEpzJadxS6MIgiYMlI/OLQ3uguB7GD0g0/P4\nPYMqXI9phNz3qz6Tn976oe6lipmnJfsizPwggAc7HZgEbEM0DMNIIYjQ23mImwCUq8dlsWP9DtsQ\nDcMwUoxeTrv4GMAYIhqB6EZ4PoALO57SN9iGaBhJwi8PUQtsBik9R1rcv8YPn5fw3agx3mXDdD9E\nTbhFRDGZwyScuf6Fz1zjRl09BV6UXjbRsTf+RkqLld9yvAxSgiAqlGtU3fy861wDb/2qPKiX0Gb2\nzIsdu+m+Jz3XUdcmQqH0G//T9VyzKtemS7dtvvBYWWJEyp+NL5Kei4uqJMnznCUSCl082h3m3NXS\nBC+WVYvAZlSBvDef18l7q3MPdzWrsGpco8v/WLbIsXc0ihBn7lHyOn6Fhz3X0S2SmJhPRE8BOB7R\n3xsrAdzKzA8T0XUAXkFUWfoIMy9NygL2EtsQDcMwUgoCJamYKTNf4HN8LoC5SbloD2IbomEYRgpB\nVrrNF9sQDSNJ6DzEFStUKE1Eoq6uAztVYwXAXSVNf4A1VYuydN1C6eagVaYZ+UpNqvIQK84f57ve\n8HZZcHCCdG0ov0aF+HRypAr9caV0xxh455mu81Km6j6RozpWKHVn1l0/kOPxCZkx2ti/+4Mu16aV\nqUV/lqpfK782yXPuv48Upe2IVneIdFujqGoHZMrrHaP6LOtybz/NlnzRm5okH3JFtZz3x0F32Dqs\nqsVNK5F79b0VPVmwzU1/Lt3Wl9iGaBiGkUqQbYh+2IZoGIaRUpCFTH2wDdEwkkSWEoBqlenChRIq\n1Mn4OkkfAI49VxLzdywRdebGDdKpYeRkCRXu3iThvWCm/NPOHSJy18hOVToNQCBbwoBp5QXoFB3H\nbZYQJo2WsCPXuTtqQIdMVbcLFEi5NTRLIYGmu/7g2Pm3S+k2ZOjGv8COpkqZo1SmbRF5jbql8Kpd\nqt6aYmezzD19pTtk+vexcs3Pa2XcNY3uRst7eCBU7djpygsbp9TA/zN0jOdcALi3Wrpz3DFSuoz0\npMq0D/IQ9xlsQzQMw0gxLGTqjW2IhpEkmpSz4Zd7uFg1ySkTHUuHjDlUvBNdVHvdR+JFTrxEintH\nqmQh8cW9SXmSbWtF1RNsEC90y5+k5Fnptapy11ARkGhqf/Gm63HhHWd7jtPFvZEv3qIu3dZyt1Tw\naonrh5gWkNdekCE3dbfKXdSc+YHcnz8fIaqYopB42f871F04/UrtMWaLp/1Dlnt1f47ch8Z2736K\nev/58Wa3qEZ7knkZYv9k7TwkBVOZ+mIbomEYRophHqI3tiEahmGkEmSiGj9sQzSMXuDQQ0VUs2G9\nhE91mLRogHuOLt121DkHOPbCl0UcMvHEQY49bKpISNq3SegvTYlqKOQuAcctkvO36XkJ5ekOGeU/\nk7zCTTe/7NilPzpGzqM8joKZqlQbAKhegFwv4UzKkzBn0y0/d+ysmZfDi/z0Itfjlrt/6dhbvvsV\nub4Kn3540gjHPuKNzz3P26B6NA7Lz3U990S63MeLdsjxaUNEjHTHLnkiN0PeZ+2E3Vkg67hr1zrX\nNfTelKkfuBuT9BgEJK1Szb5Ov70rRPRDImIiSqx7p2EYhtE5sTzErv6lAv3SQySicgBfAbChs7GG\nYRhG1whYyNSTfrkhAvgFgBsAvNjXCzGMnkCrTKdOkQ+jT5eIKjE/zz1nmOogpxsEj50kHRlWvCvh\nOh0Fc1VYU6G3MV+X0B0AbFRh0lE3HSlPFBfCi9KrD5UHud6dNigj5D7Q3ur/XIysG6XzRSRXQqOZ\nM//Lsevi1KOhm69y7LI/uJsH76Hk/CPk2iFp2v6tj6Xk3StHyZoqd7tVptnp3hvHBdvltT9cJLmV\nQZLxLqdKlaO7ZdAo17lIhZR1g+DDS5IUMzV86XcbIhFNB7CJmRcR2bcYwzCMnoQodUKgXaVPNkQi\neh1AicdTMwH8GNFwaWfnmAFgBgAU97993TBc+IlqJk7wnxNRLfRGj/P+b3zYQSICKRotqpxAsXgw\nOg/x87luYcmoc8c6tqu4t/IQN17/kmO7+iEqdD/EL6A8IGQq0UqWmpMmXlpAeVN1LNVhMu9ze4EN\n10uP2doLjpbTqkLfQVXBhpvlvItOlSLng1iq76QH3KIjXdz7uRLJzdzaIOdqk8NoCcubdnNumWPf\nVC2//owrcvdDbFTF13vLKzSVqTd9spMw88lex4loEoARAPZ4h2UAFhDRYcy8VY9l5tkAZgPASAp5\nZ8MahmEYbqy4ty/9yrVi5k8BOGUfiGgdgGnMXOU7yTAMw+ga5iF60q82RMPYn8jJ8T6u+x5mq3rV\n8XmIQ6dJce9AmoRcq1eIuCRbFY1e/JKIRiZ+VRIcdR7i6EsOcl0jUCACnY2PL3XsYVdK6DCQ7pOd\nVa/KmnlXcfsCjbc+6tjZt6lSbKSuoYp452eqsKoS2AAAqSLeef/3gmNvvvBYOVVQQrEvHSUZXFKK\nHDj0vXWO/eo0/ywv3fcwpDaUopDYWxok/Prfu+T9mDxIwqTr6lSBdADFIXntl+VJyb3/2brcdy17\nhXmIvvTrDZGZK/p6DYZhGPsXBAT7bQp6n9KvN0TDMAyjhyHE5YQYe7AN0TCSRINKaVuxQpSEkw+W\nD6Pqan892OZ5UrotXZVc27heQm6h9ZKHOGqaKENXvLLJscccL4Lu0IFxcVlFxQ+l/97Gh+Y7dvl1\nKvewXvUz9Ol2wVXVrse1v3rHsQvvn6EGyj1pvEsUpNn3/MDzvPF5iOGIKD1zlIJ06JPvOvZ6lYf4\n9QXSXWPOITJ+12ESmj51mahKAeCZEeq9apL7XporodhWtY7drWI3h+W9vSAgSaW/yVjvusaMQlH6\nItA7H8mmMvXGNkTDMIxUwjxEX2xDNAzDSCnIVKY+2IZoGL3AuHHeiflaZbp2nXvOUd+UUN6ClyV8\nOmKsKEPzyqTeW7ZKxk9bKuHBzGGi1IzvcqC7XbRvrIUnFUPFrpR17Jj1umMP/um3ZEy+W15b8P0T\nvc+rSrpl36IUp811jlmXKeuN73axo6nSsTdfdrxjB5RiteKFD2RCSD7uQkHvBPhXxmW7HgdaRUl7\nQK7c97AK955TV+DYbzbJ/TnyAHUNVWygJMd97T+3rPVcyyGD8jyP7y1kKlNfTGpkGIaRagQDXf/r\nRYgoh4jmEdEZvXld8xANI0n45SH6MbLC/7lp06Ufos5D9GPE0SKk0b0Rg3lu7yR9lIhstLdYfttJ\nMmiteGIYLF7aoJul4BTXiFdHRW5PDpnK62oVUU7jfXMcO/ve6x07oj9828TTjRfVaHS5toD6nq/7\nIQ4IyZgz31np2H+fIusNxNVPPmetCGMeLhOPVhfxfjRLEkvHkHykXgJ5zx5lKc6eH/ex+63MkY79\nx92rHHvZzhYkhSR6iET0CIAzAGxn5onq+GkAHgAQBPAHZr6nk1PdCODZpCyyA2xDNAzDSCmS+hvi\nowAeAuDIhokoCODXAE4BUAngYyL6K6Kb46y4+ZcDmAxgGQDv1ihJxDZEwzCMVIKQtA2Rmd8looq4\nw4cBWM3MawGAiJ4GMJ2ZZyHqTbqXR3Q8gBwAEwA0EdFcZvWjbRKxDdEwkkRDg/fxHaoy73BVQ0zp\nLr7AtoXbHXvLJsmHm6BENa31EtJLy5J/2mlFIrZZ++Jq13lHnCEfjFvfk9zFMhVSSztAQo1b75Wc\nwpLbT5MTNcu1uUbCnACADClbRirkmn3juTJmt7w+FEq4N5+Vk5DhFry0PvikY++65uuOXdO6HV58\nXivHx6vjmUG5V20Rd1m1f06UkHJxs3TO0KKaLNXNIz9D7gPaxByeJ8KbGhU2jqcgU+5VmJPXs6Cb\nIdNiIpqnHs+ONVnojFIAG9XjSgCH+w1m5pkAQESXAqjqrc0QsA3RMAzDSIwqZp7WWxdj5kd761p7\nsA3RMAwjlUhiyNSHTQDK1eOy2LF+h22IhtELzJ8vUR+tPt0s4kPkJ5h25hdaba2XGF2oQkJ0UA1o\nR12sg4VAcICEU6FCpoHCTHhRcuNxjr311n849gG/Os+xua7eNQcBb8l+470iIsy+XUq6td72S7Fn\nXurY6e3uyFn9NWepR51H1U6fp0rKqe4hLWG5oaGgu3nvMStEPatDv7rp8VtlUlavpkXCoa9ky9w8\n1XXjGwHpRAIAb0BavWaq0m2Ds9zNinsO8n1PksTHAMYQ0QhEN8LzAVzY8ZS+wfIQDcMwUgmK1jLt\n6l9CpyZ6CsC/AIwlokoiuoKZ2wFcB+AVAMsBPMvMSzs6T19hHqJh9ALaKxx7oHdx7zp3XWm8N0eq\nnhx7vuS0pYUkH2/1v0Shk6YcirTFMiZDpR6O+Krk5QHAuqdXOPbIyyc5dmC4VMlBrohZNt38spw3\nV068/Ud/VsfdXlbBzac7tm8/RB90dZqO8hCb2us9jxN5f+ePNIk3nZ0m3nB1s/tN+GC8eNpHrZTn\n3qyQ11jTIuqpkmwZ/+JaKbz+y6GjHPutkGqICSBdeYUnZZQ59rvKc+xxkpSHyMwX+ByfC2BuUi7a\ng9iGaBiGkUr0/m+I+wy2IRqGYaQUZLVMfbAN0TB6AV3ce/VqEYB0VK6trs77eNZAEWiMVnmIESU6\nyZ9YLBOUqIby3OHMUVdPcezgYInrbrztDccuv0bGlM48QSZnK0FOoxTBpmES9gOAujtfkHXdqbQU\n2dK/EWmdFyXJvO8x1+Pw9d66jMyghHiZpWD5ipNEUDRelW47bpGEnd+ZrO4bgLaI3Lt5E1QvSV30\nO0eOL9spuY6/HDzcc30Md36hLgP3ZrgXxJeEXq9Nuq9gG6JhGEYqYSFTX2xDNAzDSCEI1v7JD9sQ\nDaOXqVeCyEoVIct2VybDEd8Qpee8FyVhcfzh0t8woL7ph1skvKc7XARUeCwYFzJd89tPHFurTMMt\nUsJMKzID7XLcLw8xnvyffNPzeOMNDzp29u2XOnbGbf8lg1SOYOZMdRxAY4uEJ8uees+xq78tJeVK\nc+UeNrbLPfnky9Jhojksr++4BW5l57xp0gty2jJRh76oSu7lZ0joeHCWCiOrZhUL8uUaWRF3judR\n7QPgxeIs/xJvewVZg2A/bEM0DMNINcxD9MQ2RMMwjFQilphvfBHbEA2jF9Cl2wYpIWOZquK1yt2I\nwsWwkd7/VCNhUSxmFniXWwsUZ3keB/xVpsFMyfIP5PiUcfvekY5ddfPzjl187zm+16v7b+lQkaab\nFecNluvVqLClUqI2cbPrXO2RVnihGwTXtojKtF11smhol7ltEVULL819n1vD3nXyhuXJmzhloyhO\nl1XI68B2CZOuqZPw7jlwl27TXf8WZEo8fWp4MJJG75Zu22ewDdEwDCOlIAuZ+mAbomH0MuXl8mG0\naZN4eAeOdo/bPE9Kt5UdIaXbGnd4iy1WvyvjVfocDr5IThxpbNNTXMW92zeKN1V62UQZpE629X4R\nr5T898mOXTzrG45ddeNzrmsU3+ctuMm++zp50KyLaIu6qI7EK8xPkzJuANAclvtQecHRjt2m+iEW\nZEopNe1REslc3W5v2TSVGwlgd301vMhJF+92WYV8jE5Yt1sdlxzR4kax1+WrOn4AKnbKa5waUe5i\nmrcHvNcQzEP0wTZEwzCMVMM2RE9sQzQMw0glyEKmfvTLDZGIvgPgWgBhAC8z8w19vCTD2CsOPVS+\nkW9YLyE6LarZ6W6C4MpX3Py85CGOGi8ily3rJcyp2/VNOF1OvPZFUeuMvuQg3zVWPivlzCpmfcWx\nN939lmOX3nisTEjz/vgYePMpvtfwJSS5lc13Sn5i/m0/cOz4bhdZabmO3RqRsGPZ4xLW3XbRiY69\nrk7uYVmfVvwgAAAgAElEQVTuQMce9b687njSjpIuFcsOlvdNv/LNDfLGpY2U826tl/We2Cyh20+z\n3J051g+U115RKyKet3kLjN6l322IRHQCgOkAJjNzCxElUWplGIaRgljI1JN+tyECuBrAPczcAgDM\nvL2T8YZhGEZXsA3Rk/64IR4I4BgiuhtAM4DrmfnjPl6TYXSZnBzv41plunyFqEwHD3KPa1WC0LHj\nJC9w4xqpCTbxRJnUrsqt+RGucitUAyp3seKHh8k1dLeL6w51bK6qcWxSZdyqfvqmY8fnIdb8ZI5j\nF952ljzRKOeCygsM3aLUpx0QUM1/dYPgzRdKWHfos2/LGs+UcPHi6vVy/FBR8OpmvwAwUHW1yFCN\nfJvVekfkD4EXuqSbVpZuq3V3tAiq1/FBmlyvPDvuP4iewn5D9KVPNkQieh1AicdTMxFdUxGAIwB8\nCcCzRDSSmV09U4hoBoAZAFDcL/d1wzCMfop5iJ70yU7CzCf7PUdEVwP4S2wD/IiIIgCKAeyIO8ds\nALMBYCSF+AsnMox+yspV3l5hfp57nBbJDDlEfkpPC4lYQ1eqWfuxHJ/4VRHVjDz7QMemkHiaABBW\nRcB1pZry206SQbmSF0g1kmeHiFy7wzzEn39bHmSKEKbxLulvmH3LJTJG5yQqryw9Q1W2AYCHHhH7\nsuMdc+hzIqqBuj+hNLmh31gsr2PjyWMdOz9DvT4ARZnyBu1Wop70gOQLhlT/xTW1nzv2UTvEC1tX\nIeecUCRCHQAo3aW9djnvola3t9pjWB6iL/3xrrwA4AQAIKIDAWQAqOpwhmEYhpEgsZBpV/9SgP4Y\na3wEwCNEtARAK4D/iA+XGoZhGHuBeYie9LsNkZlbAVzc1+swjJ5kxQrJYRt7oHzbZhV2bI+rIx2f\nl7gHLaoZmSthwIPPLHdsXdB77ZxVjj3q4vGucwUKRVQT3i4hOmqQawSy5Bpb//ipY5fcLn0HuVIK\ncg/8vspVBMC1qvxZhoRDXaXblEil6a4/OHbWLElBbovLQ6y/8uuOXZQmYcvPvzlV1k7yEZcVkJDr\n+pNkTIsS5Iz/eIPrGkgTAcwQtYmsmyr9FCOQ93ZEwXDHXpwupfSK1LXb4oqSr8z1LtFWECzwPL7X\nWMjUl363IRqGYRjJhECUGiHQrmIbomEYRqphHqIntiEaRpJo8BEJLvhEwqTDh8nxogHucYdN985v\nO/AwCaWlqXBma72E3tLCEsZrTbBpwsbHlzq2Lt2mVaYlV/p8ZKicxNqHP3I9VXjH2fIgx92xYg86\nTJo563rHji/XpklTYUidhzgwNFTW0iJ6vAylDB3yqihRt3zlKHXW9dAsPljeg5x0CUOPWlYpg5Qc\neO1oUaUOzZEQti4tlx6Q+wkAw3fI2neVyn8QRdX+r32v6OchUyIKALgTQD6Aecz8f7117f57VwzD\nMIwkkDyVKRE9QkTbY6JIffw0IlpJRKuJ6KZOTjMdQBmANgCVnYztUcxDNAzDSCWS6yE+CuAhAE6S\nKREFAfwawCmIbnAfE9FfAQQBzIqbfzmAsQA+YObfE9EcAG+gl7AN0TB6mQIlHtRh0hWr3OPq60Wl\nWDhI/qnmlkgC/bJ3JCSYLRE9jDtVEvPHXSiJ+R1R/m0pbaZLt7nG6IT9ndJpQ4dV25vjSsilqYT6\nVpWEniVdHrJuFGG56m2M/HQJscaHT3N+LyXh8kJyf2ouOcOxyae828aTp8n4JimXHD5qkusaB38g\nqtpl08rhiaqxN3KdrLFqjKw9opoQp8VtRuuK5d5lqqbHOwbkI2kkKa+Qmd8looq4w4cBWM3MawGA\niJ4GMJ2ZZwE4I24siKgS0ZQ7wP2fQ9KxkKlhGEZKQVEPsat/QDERzVN/MxK8YCmAjepxZeyYH38B\ncCoR/QrAOwm/KqIgEX0/0fFemIdoGL3MqJHeeYjxxb1HHyuCjkCafHetXiFeyITjih07W+UernpV\nPn/GnTPasSONqmI4gEC2CELWPbJY1viz0x1b90PU4hkUKVe3A4+j7idPO3b+LV9XT6hGNkUiJgmo\nhMw6Fq8uEPf9PXyNKvf2GykDl67ENqU58tq3Nq5z7LLXRfgTPOUIx84MugUvaw6XMmuDM+Rerz8o\nF14M/1xeU/F6JdBRvSOry9yeZkZQxD5Da0R8s7nQ8xJ7T/dDplXMPK3zYXsHMzcCuKIb88JEdAGA\nX3T32rYhGoZhGMlkEwD9LaAsdiwZvE9EDwF4BoCj82bmBYlMtg3RMAwj1ejd2qQfAxhDRCMQ3QjP\nB3Bhkq51SOz/71DHGMCJiUy2DdEweoFDD5UQlQ6TLlshYw4cDReb54mopuwI6dkXUuXWAkH5YKvf\nKomPOiK29sXVjh1fuk1TcfnBjh1Zv81zzNb7JX9Pl26rvldEOANvPsU9KSTrRZ507dCiGk1EhRcz\n75ZQaOTG/3SNq2+TfoqZV5/v2Dl/+otjU7rciKyzZb3Lj5MOF1lhCVMOfWe+6xrBk05wbN1/UYt1\n9HG0b3HM7WOkvFu7KteWG3B37Qiq8nL1g+S59patSApESVOZEtFTAI5H9PfGSgC3MvPDRHQdgFcQ\nVZY+wsxLOzhNt2HmEzof5Y9tiIZhGKlGkjZEZr7A5/hcAHOTclEFERUAuBXAnoK67wC4g5lr/WcJ\nCd0VIprU+SjDMAxjn2D/bf/0CIDdAM6N/dUB+GOikxP1EH9DRJmIJl0+kehuaxipTE5O52MKO2ho\nMHSaqEwXvCShON0V45BTRPmo8xNbF4gSNa2Df+WUKU/qBsER1e2idNbXHHvTzS97nmfgtUfKg+YW\n13M0wLtcW+MNDzp29s+lq0Xrbb8Ue+aljq36JX+BcETdlDZJXau7UKlaWcYckC1dKYIBfYPckTz9\nnA57aiWrVqZuGyeq1EKlSm0J6ybAbjbsXuPYk1vlP4jctAyv4XtPEkOm/YBRzPwt9fh2IlqY6OSE\n7gozHwPgIkSVQvOJ6EkiOqWTaYZhGEZ/hAJd/9s3aCKio/c8IKIvA2hKdHLCvyEy82dEdAuAeQAe\nBDCFoj1EfszMf+l4tmEYhtFv2Hc2uK5yFYDHYr8lAsAuAP+R6OSENkQiOhjAZQC+BuA1AGcy8wIi\nGgrgX4hWFjAMo4sMFfHoFxoEa6aeKQMbtnq30Vg2V5Lxxxxf4tibPhK14mePLXfNCeWpkGl60LF1\ntwsdJg2m+XyQqtJttQ+87XrK1e1CkX3fd+XBbkloD90ijYND+oM76P640ipTF0pZqkOeGSQJ8Fkv\nvODYG06VXPOs077hOlVIVQ4Lk3cIs7p5s2MXZcp91+rT7DRR1OoCAQBwYKFINLQroztk9Cj7acg0\n1iVjLDNPJqJ8AGDmuk6muUj0rvwKwAIAk5n52j1Jjsy8GcAtXbmgYRiG0cfshyFTZo4AuCFm13V1\nMwQSD5k+z8yP6wNE9D1mfiD+uGEYUXQ/xPnzxdOYOkUUe5tFK4P6OMevcpPkAh51zgHwQuchaoKZ\n4u2NPFuKe1Mo6Bq38fnPHLv0G2PkuCruXf6zM2VCzW7P63UEN8kLa7rvr46dfZuUXmu8+0+yRp07\n+D/SG1EX5waAvAwR66Q9LPObLzvXscNKCMMk70HTWWc5dqhVBEgcV0ta91Bsg5yrKSxrGZwlZed2\nqtxBPVczJHuY53EAyNi61rGDJSN9x+0dtE9scN3kdSK6Hl+sVJNQc8lE78olHscuTXCuYRiG0Z/Y\nDz3EGOcBuBbAuwDmx/7mJTq5Qw8xVij1QgAjYv2r9pAHIEntnA3DMIykkdx+iH1G7DfEi5n5/e6e\no7OQ6QcAtgAoBnC/Or4bwGLPGYZhfIFEchLjS7dFVPSu8kOJrRaNkly1SFjKwA2bKiHE1W9I7WT9\n2Tf2UnfpNl2uTechll5yEDpjx6zXHXvQTMnCKpj5Vdc4yhTBTfZMCWciW9o5ZN8unYSaf/qomqwE\nMg+o4wCCP7jKscPNokjKVQKWDQ3SZLLsH9LhQodMCzNVObk42nTuIcta0lWfRrTLGB0mHaDOG1Y5\nkLpUGwCgUn2UKhFQQ1uXfwJLkP0zZMrMkVhh7yndPUeHGyIzrwewHsCRHY0zDMMw9iH2ww0xxhtE\n9C0Af2Fm7nR0HJ2FTN9j5qOJaDeiFcOdpwAwMyexpbNhGIbR8+yfHmKM/wfgBwDaiagZXdyrOvMQ\nj479f97ertIwUplx47y7XQz1Fo8CABpVta86Je4skupgWPV+lWMfMl1azrWr0m0TL5BYLMX9dsQt\nEspbd7+EFIddNVkGra1UF5dw7aD/9yXH3nH3a3L8v091X6NR8umoQH0u6QbBKnwauuFyeNH8XXfH\noPw2CVU2X3OxY9eqvMBhueMc+4WpEj49S4VVdcgT8T6F2jjC6tYF3pPcTDpaStsFIjIoohSrdUrJ\nqkvAAUCxuj6ViiJ4QCCJvRf20w1xb/eqRIt7H0FEeepxHhEdvjcXNgzDMIyegIguVvaX45677osz\nvEn0K8hvAUxVjxs8jhmG0UV0HuLgQe7nRh8rxb13LBFPsKlaPK4DvywFpHU/xImXiKexdo54RqPj\nxDK6uHfZudIjMDBcrq2r0KBeua3tYcfUohpkx+XfKY+48WfSAchVqcaPBvGs8nPcRcKbVcHsnLDq\nofj0Pxy79iIRz3x9gVS2iYwU7y0QVrmKb7iLl9NXz5NxyitsO+okx05fIDmbBZOPk8n1svYBGbly\nPEvdTwAYpB67vFWrVNMFfgBgTzLqr+Demy4H8FAiJ0n0rpD+gTJWESAp/jwRHUJEHxLRQiKaR0SH\nJeM6hmEYqQpRsMt//Rzysb0e+5LohriWiL5LROmxv+8BWNvprO5xH4DbmfkQAD+JPTYMwzB6BNof\nE/PZx/Z67EuiXt5ViHa4uCV28jcAzOhwRvdhAHt+8S4AsLmDsYaxT+BXui2koot1cVXRNs+T0m3p\nquRaqDDT8xoblJBm3KAsxx45XUQ1HHGXJlvz208c+8Bbna457tJt1x0qE4pF/IJ8yVvUoppAXAHw\n4vsk7OjKQ2xUxbnzpSh2JCjz6wMSQsyvl7AxAITS1c2Le117KFARyPC3RJQT3K3OlSbnoZNVmTq4\nC3GXTJWfpjJ2y9rDUyRMGmFZR9raJXKibHk/aIS6nwAQUgKfbRLe1kKjHoWwL2xwXWUcES1G9NWN\nitmIPU64Bl5CGyIzbwdwfpeX2D3+C8ArRPQzRD3Yo3rpuoZhGKnB/rchju98SOd0lod4AzPfR0S/\ngofbycwJ/Crued7XAZR4PDUTwEkAvs/MfyaicwE8DOBkj3PMQMxLLU7Oz5mGYRj7IfufqCZWRGav\noY6S+YnoTGZ+iYg8Gywy8//1xCLirlkLoJCZOdaAuLazpMqRFOK7MLynl2IYPcahh8oH0OrVElYL\nqehnKE6cWedTuStNff/LVgLF0YeLCnPzYhU+vdC/2wVaZS0Zk1QJMxUa3XT3W57rKL1blWgLKN1C\nrltFWXu3KEt1ODUtz7u/YCBXjuvOF5k/dn//jqhLBlROIlqkE8XK9nWOPTZDQseRbPlIobnPiX3M\nCa5rvFm7yLFPLFNK2rBqXhlRtgrr7lDv56AM+f7PGxe6rkFD5P1py5RJ6U3yOgJ558xn5mnoAaZN\nHc3z3r+/84FxUPZZPbaG/kpnifkvUVReNImZr+9obA+yGcBxAN4GcCKAzzocbRiGYSQO7deVavaK\nTmONzByOT3RMMlcCeICI0gA0I3niHcMwjNRkP94QiSgLwDBmXtnVuYn++LYw1v7pObibLv6lqxfs\nDGZ+D8ChnQ40jH2UjHSxdZi0aIB7XFW12OMnSKhzy6YwvMgtEdVnmQpN6sT8URe7tQdrnpXPjNE5\nsrBgQ4tjl14pZdw2/a+EEHW3C1coND4sq8i/U5Vfy1K/hLRIkn3Tfc84duj2q2WMLvUGIKAT9VWo\nsilPwr1jId08GiCJ7llzpKEw63DvP93h4RNPOF2tUUKY/PE7cjxNvV5VlKB1VJkcV2FVGhQnekyT\nEHH61tVyPN+/C8des5/9hrgHIjoTwM8AZCDatvAQAHcw89cTmZ/ohhgCUI1oCHMPDKDHN0TDMAwj\nmfTvkCkRDUM0zW8ngFXMfE8Xpt8G4DBEf3IDMy8kohGJTk50Q/xDfNPFXg6jGsY+h+6B6JeH+OkS\nEbXlx5Ul1uKZjevFK5xwlBTYTssSr65mreTGFR0mVcO3q7Jv8cW9R6lybekjxUXVhb6DmeIBBdI7\n/yAtvP2brsfcKCXl0KpKv6kP5aafz3HsLO0VasLuothoVqojVQg7S+cIvvyqY+ecLwXAOc37ddBR\nx7gPNKlcSZXrSBMmyfEMERFtDsiaSiEeLK8Xz9rlUQJAa5ucN1v9RxPnEfcYScxDJKJHAJwBYDsz\nT1THTwPwAIAgovtJR5vcJABzmPlPRPRMB+O8aGPm2qge0yHhxPxE78qvEjxmGIZh9GuSWqnmUQCn\nua4WFWb+GsDpACYAuICIJhDRJCL6W9zfYAAfAriCiN4E8A90jaVEdCGAIBGNiaUMfpDo5M7yEI9E\nNDF+EBH9QD2Vj+hObxiGYexrJMlDZOZ3iagi7vBhAFYz81oAIKKnAUxn5lmIepPupRFdD+DW2Lnm\nAPhjF5bwHUTz2VsAPAngFQB3JTq5s5BpBoDc2Dgd0KkDcHYXFmkYKUeDihQWSJQTCz6RCE6wg6+V\nR32z824X6bkSSq1cLqKP7aulDpzOQ1z92FLXNTJy5CMg+Oo6xy6/aIJjb3hMSpBlFEji5KAfHe/Y\nNHigY3ONCjMCoAESOqy7Q2QH+Q/Kd+zwbgmHNt3xO8fOukGJcIqGuc6LNrkP7X98zLHTzhYHJXiu\nFNhqf+RRWVO2vG4KKbs9LixbOFTs3RLC5KUSAqVDpBNecUiNb5LwMOWr+7POXQaaxorwxyWk2bQE\nyYITLnftopiI5qnHs5l5dgLzSgFsVI8rAXTUPvAfAG6LeXrrurjGccw8E9FNsct0lof4DoB3iOjR\nnqoEYBiGYfQtzN61XzuhqjcS85l5CbrvcN1PRCUA5gB4JnauhElUVJNJRLMBVOg5zHyi7wzDMAzD\nADYBKFePy2LHehxmPiG2IZ4L4PdElI/oxphQ2DTRDfE5AL8D8AcA3klQhmH4Ulsrtg6fjqwQ+xMl\nRASAQEC6XehGwhOPlmazWmUKSMh0xNFSKkznIcYTbpF/zqNuOlKe0F0tIF+yS2eq0mb1TY7JGaKu\nrH3gbd/rFd4mDXtRvUHmqybCWT++1LFbHnxSxrS4P3oCxdJBIuP8r8gTzXIfWh97ScZcpHIKdVPg\nBXLjI2+o/EIAgZOOU+PmyxMq35CXSBQxY5ryEVQ3D66TpNK2ace6rpG+Qe4v1Upzn88KkBQY7OrK\n0Qt8DGBMLP1hE6KNIi7seEr3YeatAB4korcA3IBoG8Ee3RDbmfm33VyfYRiG0Y9gJGdDJKKnAByP\n6O+NlYiKYx4mousQFbgEATzCzEs7OM3eXH88gPMAfAvR3PlnAPww0fmJbogvEdE1AJ5HVL0DAGDm\nnf5TDMPwQleq0Z5fVpZ73NBpIqpJV6KaZR+Iu3nwScWO3ahS/DKHSRWYYSqPcMUr7khVnioWs+r2\n9xxbV57R3psLlZe37TZRx5c8GPflXysaVQ/DXTc8LkOCovJovl+qyOji3qHvfst12ubfPu953pb/\nk2Limf8hBcgj78jriygRDzdLFZm00+N+Ihsg1WZovPL41qv7qN5QXvxPOa7yDWnkRBne4hbuuO5u\nrryfY+qS9fGaPA+RmS/wOT4XwFyv53qYRxDdBE9l5i730k10Q9zT7eJH6hijC40XDcMwjP5BsjzE\nvoaZj+x8lD+JNghOuPSNYRiG0X9hRm//hph0iOhZZj6XiD6F2+kmAMzMB/tMdZHQhkhE2QB+gGgF\n8RlENAbAWGb+W1cXbhipgi7dpnMSy8slPKhzEjNVb0QA+Psft8ELPe61pySUOv07IuRb8aQIaXbu\nkvGFcUKNtla5fk6RnLhilohUll8twpSV14o99n+lRFvJL8917Jpb3SWOG7dLLHfo7y5x7DSVCxjM\nTkenDHTnIQZUTmTzL6TClxbbtL/8tmNHdkreYkD1YgwWyXj+d9xPW6tUtlm76nuoej7SGCnjxv+W\nsCyKpRQeb10jx+NLtzXKurhdYugUiouh9xjc3bSL/sz3Yv//hUT/rpBouYI/AmhFtGoNEFUKJZz9\nbxiGYfQfIt34X3+Gmfd8k7iGmdfrPwDXJHqeRDfEUcx8H4C22MUbEXVFDcMwjH0IjnmIXf3bRzjF\n49jpHsc8SVRU0xprusgAQESjoNSmhmF8ER0mPfRQ+e6pO19oJoxzP16h0gebJOUPxVIFTAs98dFz\nUh3riKulXFv7NlnIpn+5hXcjL5dwH2XKx8G6m6VLxPjbpbHNul9Izt3KKyU0mqXCjsG4foilD0jR\nkV0zn3NsHTLVatL2Kgmx6lBq0y33u84LpX5NHyF5k2nfOFnO9eIb8CLtIllTeI6oVQMHFLrGcb0q\nvzZYda/YJKFq5H6qbAmlIiRhWexUiahF7rg1FahrKkUuN+5GstgPf0O8GlFPcCQRLVZP5QF433vW\nF0l0Q7wV0fpy5UT0BIAvA7g00YsYhmEY/Yf9UGX6JIC/A5gF4CZ1fHdX0gMTVZm+RkQLAByBaKj0\ne8xc1ck0wzAMo5/RB5Vqkg4z1wKoBXABAMTaSIUA5BJRLjNv6Gj+HhJVmX4DwJvM/HLscSERncXM\nL3Rr9YaRYviFSTVaDQoAra3e4zapqOeICrErfapDLpkrT0TiltHwoESXcvMlXFdfJwOrfyQRp4FD\nRdkZKpRk+LYmaXIbblFqTAA7Zv5VzZH5Ohy6e62EFLMGynlJjQldq8q+AWh9SooBBI89SI4/8XcZ\nFJawqisZ/zXJEQ+e9CWZ+8y7rmukHyTFEdoXyWdq2kGlMihfSulFPl7m2IGD5HWgRoU/Vdk3AGCt\nOm2X8nSUlYNkwftpBU4iOhPAzwEMBbAdwHAAywEc1NG8PSQqqrk1tgMDAJi5BtEwqmEYhrEvwVEP\nsat/+wh3IRrJXBXLnz8J0YbDCZHob4heG2eicw3D8CFdpd8VDXA/t2EjPBko2g40SwobTr5YvJm/\n3SWKHJ17mK+7mgI46JKxjp0xSXrxffIjKUGWXyj//CtuVIVAlMhk+RXu3EPNiDslNWzNpVKse/Ck\nQY6dO1S8LC2WadsugqDM3R38SqPKp4U3S3Hv9PGiQEobLnXqmj+WfL/M9ogaL2sCAIyU0m1pzaIj\njGyRYt2BMrnvgVIpvUbFcj+5SvWIrIkTyyjhjhblcGsbkgGj2+2f9gXamLmaiAJEFGDmt4jol4lO\nTnRTm0dEPwfw69jjawHM72C8YRiG0S/hfp9XuBfUEFEugHcBPEFE2wE0dDLHIdGQ6XcQTcx/BsDT\nAJoR3RQNwzCMfYz9OA9xOoAmAN9HNDNiDYAzE52cqMq0AW4pq2EY3WTqFO/SbfH9EP1oVDmJU0+V\nEN17c6TU2ymXSD/ElW9udewMlRoHAMEhItzQ3S5qVNrclHslTPqva9527CPnSOm2UJ6ELHNK3GKQ\n5ec85tjpKkcx7zvHO3b9b9x9CPdAAblXVUqcA7i7cORukH6MOqexdfEOxw4OlXVlXX2qY4f/KcGu\n8OdxCv31onSioJw3UKSEMcukLFtYhXiDzUoVpYU08aXblJAG65Riamhc+NbolNhetYf/6+r8hDxE\nInqNiArV4wFE9EpXL2YYhmH0LXvSLvYnUQ0R7SaiOvW3W/9/oudJ9DfE4piyFADAzLtieR6GYRjG\nPsb+lpjPzHmdj+qcRDfECBEN25PcSETDEdfX0jCMxFi0OLF/OqdfJupF3flCq1EDqrHubiVefH+O\nhEmLlSpVl4MDgNxHJA9x1NVTHLv6rgUySCkts1UDhkXfFmVpyXiRsoZb3DluxeNkAa31EkasulvK\nw0XaZE5ehZyrXeUO5laobsZwl5rLvFDCuk2/fsux2xqVUlNXrcsQNWfbSgmLZh6m8gsBtC5W4eaj\nRzt2eJnkdganjXLstCmiauVFK+REOvxZGdfFRJd703ZGAh1Aukl/9/j2BiI6GsAYZv4jERUDyGPm\nzxOZm6ioZiaA94jocSL6E6IKnpu7t1yAiM4hoqVEFCGiaXHP3UxEq4loJRGd6ncOwzAMozswGJEu\n/+0LENGtAG6E7E8ZAP6U8Hzmzr+tEhEB+DaiatPbASwGUMLMH3V1wbHzjQcQAfB7ANcz87zY8QkA\nngJwGKKVBl4HcCAzd1hWYSSF+C4M785SDKNPmTLZ/zk/kc0AVQs6oL7S1ikPsc0nhS09zunQlWtC\nSvcxVDQ5rvNm69rVqi+jnjv2iYtc16i6UyrKtNRJLl/DViVAyRShSa4S5RSMVQW1m90fA83Voi6K\nqIo0A2fK9+iWp//t2JTn7XFFamRN6cMLPMcA7ko36SdJ4ZO2d5fL8dHiIUZ2yusLDFbnLVHV2QFg\nuxLyZHtXtwmeMXs+M7uch+4yacowfvGd67s8b1TB93psDcmCiBYCmAJgATNPiR1b3KMNggH8BtEN\nLJeZ/0ZEAwD8GcCXOp7mDTMvjy00/qnpAJ5m5hYAnxPRakQ3x3915zqGYRhGPPtlg+A9tDIzE9Ge\nzkxdqn+X6IZ4ODNPJaJPAEdUk9HZpG5QCneZncrYMcMwDKOH2I8T858lot8DKCSiKwFcDuAPiU5O\ndENsI6IgpB/iIKDjO0pErwMo8XhqJjO/mOgCOzj/DAAzAKDYqsgZ+xAFKnqWaO6hZldN52O+cbv0\nQ3z+VlHSxJdu0zmN+jl9vF3V6i4ukX9rOYMkfrprnSjbPz3nCdc18gdLGFCHRgeOk9Dh9iVSlm33\nJim91rxLwpmZ+e7v4EWHHeDYTWvlpmy5UfIVB0yUPM3INokjh44Y6tgt80U4EyyL61U4cYyMe1wK\nf7MHqRkAACAASURBVEeWr5M5g5TSqESuF1BFv3WuIa921+QjnZeo49CqNF5Psj+XbmPmnxHRKQDq\nAIwF8BNmfi3R+YnuJA8CeB7AYCK6G8DZAG7pZGEnd/S8D5sAlKvHZbFjXuefDWA2EP0NsRvXMgzD\nSEEYkQS0I/sqsQ3wNQCI1TS9iJmf6GQagMQr1TxBRPMRrRxOAM7a8ztgD/NXAE/G6qYOBTAGQLeE\nO4ZhGIYHvP+lXRBRPqLlREsR3Udeiz2+HsAiAD23IQIAM68AsKLTgQkQ66/4KwCDALxMRAuZ+VRm\nXkpEzwJYBqAdwLWdKUwNY1+jtrbzMR2hlaLHny0huteekrDjgoclTDpIhmBHXMMI3TlD91/UytLR\nI8Uedc9XHHvD7ZLvl5YhctecYhX2AxBR3STaVB5ie5PEYiuOl8BQ1qmS19f89joZX+9uEFmryrIV\nTJOczYxcCa3qPosFU6SWSPM/Kx07UCwhz9ZPpAsGANBq6WpBIfm4DG+TDhXpB3vLHMKfybmCB0go\nluL6IbqUpaqjBm9KTg92Bvq1h0hEIxFN9Stg5rNjx3IQFXe2Anjbw+N7HMAuRAWY/wngxxDnbWGi\n1+6TH9+Y+XlEQ7Bez90N4O7eXZFhGEbqEElSXRUiegTAGQC2M/NEdfw0AA8ACAL4AzPf43cOZl4L\n4AoimqMOfxPAHGZ+iYiewRc9vpHMPCl2rT8A2AJgGDM3owuYGsUwDCOF4OT+hvgogIcAOBXdY4LM\nXwM4BdHMgY+J6K+Ibo6z4uZfzszbPc5bBuDTmO0VNXQUU8wcJqLKrm6GgG2IhtFv0aXb3n5ayn01\nKQXoB3+VsFqWEjvq8OdOqUzmCp8C7hDqiAqxhylpm25C/NLX5jr2pKkSGm1tlrBopF0tMA6tWE1T\nnz7tzfJE1eOfOnbzLrk4Bd15y9kD5QXXzpP7E0iT8G3WQAlHNq6QBPjcL4kAvmGBzNUqWADIPXuS\nY/MOCb+2LJbP7HSlIG17SyXpTxYla3ijXDs4XkrhRRembrDqkEFD4jpG9yDJ+g2Rmd8looq4w4cB\nWB3z/EBETwOYzsyzEPUmE6ES0U1xIbwrrE1WRbwJQFbsMUWXxfkec75AoqXbDMMwjP2ECHOX/wAU\nE9E89TcjwcuVAtC5Jh3mlxPRQCL6HYApRLSnBNtfAHyLiH4L4KX4OcwcZOb82F8eM6cpO6HNEDAP\n0TD6Lbqgd6bSqQxRfWa2qeCSLvy0RTlp5coh2ezWjLhobPQ+rr3NEnXtjWtEAKJzGA966gLX/H+d\n8ZRj56q6Idkqj7G5xrukmy7OnRvXZ1HnK+oejE2qpFtzjXhfer4uA5cxQLzIcKO75t2uR6XI+YBv\nSm4n16txKo8wrUxuBFeLMim8TZWpG+ROJG1bK95j+oFSBJx37qX6ygfmbotqqnqjdBszVwO4Ku5Y\nA4DLkn1t2xANwzBSCu7ttIuE88v7GguZGoZhGMnkYwBjiGhErOTn+YjmCvY7zEM0jF6mo7xAP1ok\nougKk556sYTYXvnTDnixsdLzMAB3mFWXa9Nh0oiKrtWoKJ4WyGSoqmpLL5AQaTyFpRImLb/uUMf+\n7M73HXvM7cc69rp7pa5/9mDVagNAU5W3eCe/XMKWkTbxhFpVmDNUq26o6pQROsitOkrfoa6hVEBZ\nJwxzbN4pZetYtQ/R/RrTR4tAhlvdYdm0oVLiLbJNzqXzHnuSZOYhEtFTAI5H9PfGSgC3MvPDRHQd\ngFcQVZY+wsxLk7KAvcQ2RMMwjBQjWXmIzHyBz/G5AOZ6PdefsA3RMAwjpej13xD3GWxDNIxeJtEw\nqR9acarDpDlKhKnDmTrcqpsLA+7OGRmqJNxgicS68hhHTZXcvwYVstRjmuPSoQ8YLgteu0RJWR+a\n75g6HPrZrdJVomanfHCnZYmqNJ4BUyQk2bRO4rptqjzcgGNFbtv2uYxp3C5rykl3yyqCQ+Smti4R\n1W94i6hGQ8eJXqRtuShG00ZIuba21XKDAoXu0nYuZaqKT3OjT5fnvaS/l27rS2xDNAzDSCW6n3ax\n32MbomEYRgphHqI/tiEaxj6GDoFqlWiDRPFcHTE0obhGC6VSXQybNotdpuqI6HDotrckTKo7Zejz\nbohTtTarBZdVyEfO1jUSqhxzjGT8a/Vo0RAZv1uFKQEglCcvcpvqXqG7a6TnypiqV9fJ2k8a7ti5\n2TJmx0fuygUDRkvYMlMpUNMOEGVoe6Uk4LMqQde6UJV3Gyc3i9s6+P1OPRcoyPQft1fYb4h+2IZo\nGIaRYpiH6I1tiIaxD+P3udbmo8fYstX9OBj0Hrd6rdhaoKNRNa1dJeF0TiLgLuu2armcLFsVI9+2\nSLypeqWd0X0ZJ50w0HVeXa4t+8fnOXbNTY+JrfohsircrQuF1y4TldPgY9yFt7XgpW2D5AjuWiKl\nOQuPFDc7qMZHdJ6kEsvEFynn3fJmRZp9bnYPYiFTf2xDNAzDSDEisJCpF7YhGoZhpBDMSe2HuE9j\nG6Jh7ANMlrZ8WPSp/7jOyHE3jHAJcRI5ft5TRzj2sxd+6NhHHi/xz0UfuUuqLZUWga6ejarKGVat\nFlt31MhW1do++1e167wjJkuosfrbv3HsNBUaLRgunX90TmLNe1JbOtwisd+tb25wXeOA6aMdu1aF\ndfWcVp1jmC7XDhbLi9VCGorPdRwqa6RqufFhn9J0PYFtiN7YhmgYhpFi2IbojW2IhmEYKURUVGO/\nIXphG6Jh7APsTZhU4xcK7QjdYHjejyVMqp0MHSaNv0aBVDDD6NESLlyyRD6Uv/w1qSmnw5FtjRLm\nbKlTCZgAAir0uOlTUYAOGCAqzjSVY6gbBIfb1DXqpbVHaIA796/u3yKf1WXVdKm5QFCFQJWCtG1L\nveeYtFHu+nltq1UoWHXeCO9MVsjUfkP0wzZEwzCMFIKtdJsvtiEaRgqji33rQt9jRon92RrvuVog\n05HnWat6KM6fL16h9hyrP5OLL1shx4cp7zQ+v5E2SpJicYl8lOkeiDuWife1e6N4kRmqCsxAVYEm\nvgehrlyjPcy0LBnXpopwa681qLzTzENEKdT4gbtZfOY4ya8Mb5MbGSx29380ko9tiIZhGCmGeYje\n2IZoGIaRQjBcP1UaCtsQDSOF0WFSjV+YVNO0l5qPwRKpRKWKIuqyc7qweGFcL8ciFfas2SSFwiuO\nPkDmr5ITtPn0F2xW/RDblaAHcIdJQ0pIo0Or9UukJ2X2IBkTHCJ2y3zVSzHuGrqsW6vKPYyLEPco\n5iF6YxuiYRhGCmEeoj+Bzof0PER0DhEtJaIIEU1Tx08hovlE9Gns/0/si/UZhmHst3DUKe3qXyrQ\nVx7iEgDfBPD7uONVAM5k5s1ENBHAKwBK4ycbRiqgVZhaqanVnXsbtuxLatRrKlaNLKp3eh9vj4s0\nrloooU7dUaOpWm6KDpOmK9VnRq4EJHUodNdyd3m45l2iWNXh1F2qXFvWQHlDXOHQVpnbsqvZ8zwA\n0LRUum2kqzBw06Z6JIOoh5giO1wX6ZMNkZmXAwARxR//RD1cCiCLiDKZ2Z2RaxiGYXSbVPH4ukp/\n/g3xWwAW2GZoGIbRc9hviP4kbUMkotcBlHg8NZOZX+xk7kEA7gXwlQ7GzAAwAwCK+/W+bhjdQ4dJ\nNf0lTDrpILG1SrQ1Tszpl7Svw5wrPxN7iOp20ahea03c/ciQCCgKCiXatPJDkc6WVcigiCrXFlaN\neCvfkWa/+eVqUQAiypXKVc/ljpR4dq0Ks+rybrp0W6bqfNEeFwrNUCHblq1ys3ImuBsi9yTmIXqT\ntJ2EmU/uzjwiKgPwPIBLmNlX/M3MswHMBoCRFLK31zAMIwGYuV//hkhEIwHMBFDAzGfHjp0F4GsA\n8gE8zMyvJuPa/cq1IqJCAC8DuImZ3+/r9RiG4c+nS8VOtF/j8GFib93uPUZ7ggGlg893O28uwc2W\nLfIBXzE25NjbN4iYpUqJdUoGixurS8LpnokAUDR6gGM3KM+ucYcIejJyxQvNUl4kK/FM3VrxWkMD\nZH0AQKrwd2u9rIvW+CSJ9gCRJDW7IKJHAJwBYDszT1THTwPwAIAggD8w8z1+52DmtQCuIKI56tgL\nAF4gogEAfgYgKRtiX6VdfIOIKgEcCeBlInol9tR1AEYD+AkRLYz9DfY9kWEYhtEl9vyG2NW/BHkU\nwGn6ABEFAfwawOkAJgC4gIgmENEkIvpb3F9nn/e3xM6VFPpKZfo8omHR+ON3Abir91dkGIaROiTr\nN0RmfpeIKuIOHwZgdczzAxE9DWA6M89C1JvsFIqmJNwD4O/MvKDnVuymX4VMDcPo3+RIJTNUqPCn\nDpMeNN49R3evWL9B7EzVenD8WLGXrxRbZ2Zlq/xLAMguUOXTGiTUueBDCZOOHinjdam4ZqVdHzZN\nntD5hQCwYrWESQePznVsHSZtqZV+ilpgE0gPOnZmvsovrHKronTPx6yBEk5tb3SHb3sK5m7nIRYT\n0Tz1eHZMy9EZpQA2qseVAA73G0xEAwHcDWAKEd0c2zi/A+BkAAVENJqZf9f15XeObYiGYRgpRjc9\nxCpmntb5sL2DmasBXBV37EEADyb72rYhGoZhpBB9kIe4CUC5elwWO9bvsA3RMIyE0TmFS5eLPbDI\n+3hHtKiwpQ6Tjh0jduVmsQNxEsC6agkp1knvX5eCMndAuhovCs6JF4x27BXPrXbskvGqXh6AlkaR\nvDaqrhi6C0ZBRb5j16s8QvYJhaa3uftYtNVLyDWcLR/J8SXe9mE+BjCGiEYguhGeD+DCvl2SN32i\nMjUMwzD6jghzl/8SgYieAvAvAGOJqJKIrmDmdkQzCF4BsBzAs8y8tKPz9BXmIRqGkTBa5KI/I3VB\n7o7QeYhaYKNZu07sQuWw7ahyj9OPtdgnWwq/YMki8QqHqrpZy54Rr1ALbFbPc5fDSVOfkAcdIyfY\nqvobaiJtEU+7QXmO2osEgLyhItbJGiN5j7wiwZvaRZIZMmXmC3yOzwUwNzlX7TlsQzQMw0glUqid\nU1exDdEwDCOFsOLe/tiGaBhGwuxtCUy/MOnRX5GY53uvSkhxp0oLzIsr3bZ7t9g6J7JKtTTcpiKg\nefkS721rlRdSOEiEN60N7srkOUNkXdsWSq254vFSN073XywcITHe+s2Sw6gFMvGl23RotfYTn3p2\nPUzEXERPbEM0DMNIIcxD9Mc2RMMwjFTCfkP0xTZEwzB6lCFx5Zm3JRAF1GHSLFWiTfd+1CFSABhR\nIbbOfQxKxTSUl4ndUC+7gA6rFjZKmDRXBJ8AgE/el3Xp7hqNtfKidN5j865mdVyulz1QXlRbXEm2\noomiLK3bKAmVOpTak5iH6I9tiIZhGClGonmFqYZtiIZhGCmEeYj+2IZoGEaPkkiINJ5jTpdY5T//\nLurMo06QUONnn7q7ROiwp07M1yXe6lSYtVmima7k/SEVco1gSMVbARwYkLXo8nCaIQfmex7/fJFM\nKMsVlWl+uVsuq8OkukNGskKmAHe328V+j22IhmEYKQQzEE7WXruPYxuiYRgJo3sY6uLce4v2CnV5\nuH+/K17h4EHuOa3K+9NrKVDl3mpVHuLkSWJXql4LH7wl1xg1wn2NklHiSkYiUtw7lCe5i4F0cUnD\nKt8wV3mt2tur2+hWB6Wrgt6168Vb1CXdepJoyNQ8RC9sQzQMw0gxwpZ34YltiIZhGCkEs3mIftiG\naBhGwvRkmFTnCG6sFFuHRrVAZ8vWxM6rw6Q6fLpho9iFhWJ31Klj50YJk2qBzpA0ySXctabGsbVw\n54CD5CI1n7u7aGiqK2VzKh4uIdr4fMWexH5D9Mb6IRqGYRgGzEM0DMNIKUxU449tiIZhJBW/Umw6\nTKrzCLuTx+iHDmFqdFi2dKjYGRnucfpxverrm6vKwOkmwtm5EnTb9KmEUvMKJb+Q4wQthYPkBFql\n2t6cnJApM5uoxgfbEA3DMFIM8xC9sQ3RMIyk0tTU+ZiGhs7HaC8yfo6fQEd7eLo4uBbIaLGOSk8E\n4PZuc+Ou73WutDRRq7gq6eTK8XC7ezNqrJfndJWdeG+1p2CYqMYP2xANwzBSCPsN0R/bEA3DMFIJ\ny0P0xTZEwzD2CToKq+ow6fixYodCYn+ySOy6uN6KfoRUqTotqtlRJbbu/6hDnrqAuBbStLa6r5GV\nTfAiv0wVAV/kOaRbREOmtiF60Sd5iER0DhEtJaIIEU3zeH4YEdUT0fV9sT7DMIz9mTB3/S8V6CsP\ncQmAbwL4vc/zPwfw995bjmEYRmpgaRf+9MmGyMzLAYDoi6ECIjoLwOcAEtCdGYaRqqRLwwm0tYm9\nfGXnc3X4NahaIBYWuMfpsm4jKsTWClKtBl28ROxh5WLnDBGJ6vYl7o+2mlrZnA44QD4Tl//bpwHj\nXtLfRTVENBLATAAFzHy2Op4D4B0AtzHz35Jx7X5Vuo2IcgHcCOD2vl6LYRjG/ko4wl3+SwQieoSI\nthPRkrjjpxHRSiJaTUQ3dXQOZl7LzFd4PHUjgGcTfpHdIGkeIhG9DqDE46mZzPyiz7TbAPyCmeu9\nvMe4888AMAMAik0bZBiGkRBRDzFpp38UwEMAHttzgIiCAH4N4BQAlQA+JqK/AggCmBU3/3Jm/kKt\nIvr/7d1/sFxlfcfx9ydREkqRaAL+IEiAJjBiIEEIrdNURFL5wxqxKDCOktHWwRbHMkULMlVsC1Hw\n15QUbcZQtDhGsaTNDCgiCsFfJASIEAQJiZUAFYLEEIEYuN/+cZ7rnrv3nL17N7v3nM1+XjMZzp5f\n+83mXr77POd5vo+0CLgPmNp8rJt6lkki4pQOLjsROF3SZcA0YEjScxGxrOD+y4HlAIdran3b/2bW\nE/lu0vEq625ttfLFll80tuce3dh+9LHGdr7LNT+adNeOxjIhL8kNHoWR5d62PdGYMT+i+7aL5eyI\n3o0yjYg1kmY17V4AbIqIzQCSVgKLI2Ip8JY2b30SsB/wGuBZSTdERNfLC9SqaRURC4e3JV0M7CxK\nhmZm1pk9eIY4Q9IdudfLU8NkLAcDucW32ErW+CkkaTpwCTBf0oURsTQiLkrHlgDbepEMoaKEKOk0\n4ArgQOB6SXdHxJuriMXMBsOhr25s/+8vx3/9kbMb25t/0dgeyv2vOT/AZntuCcRpv2kU6m6eh/jr\nhxs3eC633uTLXjr+GNsRRKcJcVtEjJom120R8SRwTsmxq3v53lWNMl0FrBrjnIsnJhozswESE17L\n9BEgN+aWmYwuG1sLtRplamZme511wGxJh0naBzgTWF1xTIVq9QzRzKxX8t2k+TUQH3m0vesfeLCx\nvX9uYEx+TmN+ZY/8e+S7T5v9+qnGdr7U3Pbto8/thl7OQ5T0NbIBMDMkbQU+HhErJJ0L3Eg2svSq\niNjYkwD2kBOimdmA6eEo07NK9t8A3NCTN+0iJ0QzswESXu2ilBOimQ2csi7MKVNGvt61q/i8nTuL\n978yV4okX96tbCQqwCte3tjOz1HMr65Bl7tPh7xAcCEnRDOzARLEiOWorMEJ0cxskAROiCWcEM1s\n4JQtNlzWRQpw4IzGdn6B4HzZ5XxXbP5e+zUWuxj13jOmN7Y3bW5sN5d46yYnxGJOiGZmAyY8qKaQ\nE6KZDYR9921s5+cL5uXLu8HIuYtlrcJ8bim7b16+pQmwI7fsYb5VmB+U01XuMi3lhGhmNkA8qKac\nE6KZ2SBxC7GUE6KZDYR2ujOff778WKuBMWPJn9+8ikV+PcX8HMVePuZzQizmhGhmNmCcEIs5IZqZ\nDRJ3mZZyQjQzS1qtfFHWTVo24jRv8uTG9sNby9+jnW7dPeVBNeWcEM3MBolbiKWcEM3Mxuml0xrb\nT7VReHtSbin25uLeU3MFxdu5Vzd4Yn6xSWOfYmZmtvdzC9HMbMC4y7SYE6KZ2TiVradYZvfuxvak\npn65sm7S/GAdupm//AyxlBOimdkA8SjTck6IZmYDxgmxmBOimdk45QdpHjKzsd1qjuGwVmsulr1H\nV7nLtJQTopnZgHFCLOaEaGY2SNxCLOWEaGa2B9rpJq2TIDwxv0QlE/MlvUPSRklDko5vOnaMpB+n\n4/dImlpFjGZme6sYinH/mSiSDpe0QtI3c/smSbpE0hWSzu7Ve1dVqeZe4O3AmvxOSS8CrgHOiYij\ngZOA3aOuNjOzzkTvEqKkqyQ9Lunepv2nSnpA0iZJF7QML2JzRLyvafdiYCZZPuhZm7ySLtOI+BmA\nRsw8BeDPgZ9GxIZ03pMTHJqZ2V6vhy2+q4FlwFeGd0iaDPwbsIgsma2TtBqYDCxtuv69EfF4wX2P\nBH4UEf+eWo439yD22j1DnAOEpBuBA4GVEXFZxTGZme1VepUQI2KNpFlNuxcAmyJiM4CklcDiiFgK\nvKXNW28Ffpe2h7oQaqGeJURJ3wVeUXDoooj4nxbx/ClwAvAMcLOk9REx6tuApPcD708vd72Ln9/b\nfE4NzQC2VR1EG/ohzn6IERxnN/VDjNCbOA/t2p2e+O2NfPH2GR1cOVXSHbnXyyNieRvXHQw8nHu9\nFTix7GRJ04FLgPmSLkyJ8zrgCkkLgVvHH3p7epYQI+KUDi7bCqyJiG0Akm4AjqOgeZz+IZan8+6I\niOObz6kbx9k9/RAjOM5u6ocYof5xRsSpVcfQSnpUdk7TvmeA5ueKXVe35Z9uBOZK+oM0wOYNwH0V\nx2RmZp17BDgk93pm2lc7VU27OE3SVuBPgOvTM0Mi4ings8A64G7gzoi4vooYzcysK9YBsyUdJmkf\n4ExgdcUxFapqlOkqYFXJsWvIpl6MRzv92HXgOLunH2IEx9lN/RAj9E+cXSfpa2TT5WakRs/HI2KF\npHPJegAnA1dFxMYKwywlVywwMzOr3zNEMzOzSvR1QuyXEnCt4kzHXy1pp6Tzq4gvxVAYo6RFktan\nz3C9pJOrirFVnOnYhakSxgOS3lxVjM0kzZP0E0l3S7pD0oKqYyoi6YOS7k+fb63n/0r6e0khqZPp\nAz0n6fL0Wf5U0ipJ06qOycbW1wmR/ikBVxhnzmeBb01cOIXKYtwG/EVEzAXOBv5zogNrUvZv/hqy\nh/VHA6cCV6YKGXVwGfCJiJgHfCy9rhVJbyQrj3Vs+p35dMUhlZJ0CFlVq19WHUsLNwGvjYhjgJ8D\nF1Ycj7WhbpVqxqVfSsC1iBNJbwO2AL+d4LBGKIsxIu7KvdwI7CtpSkS0ucxpd7X4LBeTVTbaBWyR\ntImsQsaPJzbCQgG8JG0fADxaYSxlPgB8cvjftaR8Vl18DvgIUFbgo3IR8Z3cy58Ap1cVi7Wv31uI\nZX5fAk7SnZI+UnVARST9IfAPwCeqjqVNf0k2FaaSZDiGomoYB1cUS7O/Ay6X9DBZy6uOrYU5wEJJ\nt0u6VdIJVQdURNJi4JHhL7t94r1U3wNkbah9C7HXJeC6pcM4LwY+FxE7i1qP3dZhjMPXHg18iqz1\n3VN7EmdVWsUMvAk4LyL+S9I7gRVAJ5Wc9sgYMb4IeBnwx2S/N9+QdHhUMAx9jDg/ygT8DLajnZ9T\nSRcBzwNfncjYrDO1T4i9LgHXLR3GeSJwehrAMA0YkvRcRCzrbnSZDmNE0kyyeaPviYiHuhvVaB3G\nWWk1jFYxS/oK8KH08lrgSxMSVJMxYvwAcF1KgGslDZHV5HxiouIbVhanpLnAYcCG9AVyJnCnpAUR\n8X8TGCIw9s+ppCVkxavfVMUXCxu/vbXLtC9KwEXEwoiYFRGzgM8Dl/YqGXYqjY67HrggIn5YdTwt\nrAbOlDRF0mHAbGBtxTENe5TsZxDgZODBCmMp89/AGwEkzQH2oWaFtCPinog4KPc7sxU4ropkOBZJ\np5I953xrqsNpfaCvE2K/lIAri7NOWsR4LvBHwMfStIG7JR1UtzhT5YtvkH3x+TbwtxHxQlVxNvlr\n4DOSNgCX0lilpU6uAg5XtrDrSuBst2r2yDJgf+Cm9DvzxaoDsrG5Uo2ZmRl93kI0MzPrFidEMzMz\nnBDNzMwAJ0QzMzPACdHMzAxwQrQakjRN0t9UHUevSZqVpjmM55r5klak7SmSvpuG9Z8haaWk2b2J\n1mzv54RodTQNKEyIqdDCIPso8K9pez5ARMyLiK8DXyCbDG5mHXBCtDr6JHBEavlcLukkSbdJWg3c\n19yyknS+pIvT9hGSvp3WbrxN0lHNN5e0QNlamXdJ+pGkI9P+JZKuS9c/mF8TUNJZytaEvFfSp3L7\nd6YYN6bW2gJJt0jaLOmt6ZxZKZY705/XF8S0RtK83OsfSDq26Zz9gWMiYkMqjnANcEL6nI4AbgNO\n8ZcGs844IVodXQA8lFo+H077jgM+FBFzxrh2OfDBiHgdcD5wZcE59wMLI2I+2fqEl+aOzQPOAOYC\nZ0g6RNKryAqbn5yOn6Bs2S6A/YDvpTUEnwb+BVgEnAb8UzrncWBRRByX7j3cwstbASyB35dOm1qw\nosPxZOtBDi/P9FfAbelzeigihoBNwLGY2bj5m6T1i7URsaXVCWk5rdcD1+ZWD5lScOoBwJfT87YA\nXpw7dnNE/Cbd7z7gUGA6cEtEPJH2fxX4M7L6n78jKxUHcA+wKyJ2S7oHmJX2vxhYllqAL5AttdTs\nWuAfJX2YbLmgqwvOeSVjF9t+HHgVsH6M88ysiROi9Yv8AsrPM7J3Y2r67yRge1qZvpV/Br4fEadJ\nmgXckjuWX+vxBcb+Hdmdq/k5NHx9RAzlui7PA35F1nKbBDzXfJOIeEbSTWQLHb8TeF3Bez1L4+9a\nZmo6z8zGyV2mVkdPkxVGLvMr4CBJ0yVNIVtih4jYAWyR9A4AZYq6Dw+gsTTUkjbiWQu8QdIMSZOB\ns4Bb2/qbNN7vsdSl+W5gcsl5XyLrTl2XCtQ3+xlZofVW5pC6Vc1sfJwQrXYi4kngh2kAy+UFx3eT\nPZ9bC9xE9kxw2LuA96WVJTaStbiaXQYslXQXbfSSRMRjZM81vw9sANaPc6HiK4GzU0xHMbK1D0/k\n0wAAAItJREFUm3+f9cAO4D9Kjt8PHJAG14wi6eXAs3VcDsmsH3i1C7OaSIN3bgGOSq3JonPOA56O\niFGLDKdjOyJiRU8DNdtLuYVoVgOS3gPcDlxUlgyTLzDyOWfeduDL3Y7NbFC4hWhmZoZbiGZmZoAT\nopmZGeCEaGZmBjghmpmZAU6IZmZmgBOimZkZAP8PAPIq6rl9r8IAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import random\n", "import numpy as np\n", "\n", "def simulation(par):\n", " e,f = par\n", " e = 10**e\n", " f = 10**f\n", " sim = rebound.Simulation()\n", " sim.add(m=1.)\n", " a = 1.\n", " inc = random.random()*np.pi\n", " Omega = random.random()*2*np.pi\n", " sim.add(m=0.,a=a,e=e,inc=inc,Omega=Omega, f=f)\n", " o=sim.particles[1].orbit\n", " if o.f < 0: # avoid wrapping issues\n", " o.f += 2*np.pi\n", " err = max(np.fabs(o.e-e)/e, np.fabs(o.f-f)/f)\n", " return err\n", "\n", "random.seed(1)\n", "N = 100\n", "es = np.linspace(-16.,-1.,N)\n", "fs = np.linspace(-16.,-1.,N)\n", "params = [(e,f) for e in es for f in fs]\n", "\n", "pool=rebound.InterruptiblePool()\n", "res = pool.map(simulation, params)\n", "res = np.array(res).reshape(N,N)\n", "res = np.nan_to_num(res)\n", "\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "from matplotlib import ticker\n", "from matplotlib.colors import LogNorm\n", "import matplotlib\n", "\n", "f,ax = plt.subplots(1,1,figsize=(7,5))\n", "extent=[fs.min(), fs.max(), es.min(), es.max()]\n", "\n", "ax.set_xlim(extent[0], extent[1])\n", "ax.set_ylim(extent[2], extent[3])\n", "ax.set_xlabel(r\"true anomaly (f)\")\n", "ax.set_ylabel(r\"eccentricity\")\n", "\n", "im = ax.imshow(res, norm=LogNorm(vmax=1., vmin=1.e-16), aspect='auto', origin=\"lower\", interpolation='nearest', cmap=\"RdYlGn_r\", extent=extent)\n", "cb = plt.colorbar(im, ax=ax)\n", "cb.solids.set_rasterized(True)\n", "cb.set_label(\"Relative Error\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that the behavior is poor, which is physically due to $f$ becoming poorly defined at low $e$. If instead we initialize the orbits with the true longitude $\\theta$ as discussed above, we get much better results:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcQAAAFDCAYAAACk6n5/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXl8HNd5JXq+3tENNPaFAAmAu0RRG0XJkjdJlu3IiWQ5\nmyM7npfFL5o4ceIXT8bJjDPjyfZzXjJJXhbNyyiJ4uTF8RLHcWJH3h3LkSzFkqiFWimQBEmQ2Heg\n0ft9fwDs79xiFdAgAQoE79GPP11U36q6tXTf+k6d73xijIGDg4ODg8PljtBrPQAHBwcHB4eNADch\nOjg4ODg4wE2IDg4ODg4OANyE6ODg4ODgAMBNiA4ODg4ODgDchOjg4ODg4ADATYgODg4ODg4A3ITo\n4ODg4OAAAIi81gNwcHBwcLj8ICIpAP8LQB7At40xn3yNh+QiRAcHBweHtYGIPCgiIyLyvGf5nSLy\nioj0icivLi3+IQCfM8b8DIB3XvTB+sBNiA4ODg4Oa4VPALiTF4hIGMD9AN4BYB+A94jIPgBbAZxa\n6la6iGMMhJsQHRwcHBzWBMaY7wCY8Cy+CUCfMeaYMSYP4NMA7gEwgMVJEdggc9GmeIdYJ2HTiigA\nQESXs295JGyvE6LTXy77Ly/SM0uEzpQJ6M/7BoBwRBfE21OVdnZwTvvEaGA89pIOPkR9QmF7J+Wi\nDiY3V6y0a5ritC3tIxG+73hbuj+J2SdL6CDLOd2HtS3alIRpeV2dtjPz1nYNnWBrnVBAmy9ospa2\nq+cTNUlrH9bFKhZokDTgWI22y/4PquUQXYPlDPGDbizwOuLbLMO+tiWj442EYpV2oZyrtMMSof56\nbSISpf75SrtY1j4AEKLzkKHzUx/T+3WukKm0o3Qe+Ih4eaaYA4NPF93W1iXguzJHnSIh7ZQv2eed\n1y/QqY7Rxmbpgzhti4+7SAMMeb7EpbJ+VijzuGi8RV0ep+98hvYdpu2Wlrl/inm6//jeODM7Zoxp\nDVxxFbhWUmb2PAKy48i9ACBLix4wxjxQxapd0EgQWJwIXwfgjwH8qYj8AIAvrnpA64BNMSG2Iorf\nQg8AIEpHVKDfv+Z6e50k/W5mMv7LJya13dKs7bz+viCR0HZMf4MAAA2tuqD3wzdW2kd+87uVdnqr\nThihqH7L8nM6+LpO/fGPN9IOAWRGdPDHHh+rtK++d0elXZzUezjaQgcY4m8cfdm709Y+QnX6Y5w/\nog9/4RadSCRKE0aTjjF0++2Vtnnqe9Z2y6PT2q+expXQyRxp/WFGXs+JXPd63e6hR3X5/uutfaCo\nF8uMndbl9IQjPdfq8syUtmkyzdY16PDy9qRiIUETdZYmap6IQnST0gSajdgPyRO5oUq7NbG10h5Z\nOFlp18WaKu2p3Eil3ZzorLRHFwYq7aGM3iMAkIzotX1uTPt9X/fNlfZjQ89U2ltS+kUq0ITfVqPL\nD40es/ZRpH7TOb3PEvzASM9gR6f1x7q9Rs/J8Rn7vCfo4XAwo/vortONPXxKr0F3Wu/LZFTXHV/Q\n/dV6HgYnFvSeG81ouymh17BvcqHS3tWo34mnhuZ8+09kg++fiQH6TtD9MPPfv3EicKVVYhalyu/l\navDjOJI1xhxcq3EYY+YB/NRabW8tsCkmRAcHBweH6hE6H4KyvHKXAJwGsI3+3rq0bMNh002IHBWm\nKLgY97Da3r/PopYe8DlQYcwR88cRYseeOqvfSN9spf3cRykqbPaEkkvoe1KfDrfuTPj2Ofntk9bf\nKaJi972jq9Keel4jgVRHCmuFyBY9QaagT9bh119ZaZceebHStr532Tz/hdBOHS+SdLwjAReHojrT\nTyK2RMyn87mQFtpf1P/8IkaR6ryOI0HUtHnpCXu7u6/WP/jGSmn0xlFhKaH7YJqzWGI2CuiMd1fa\nw7kzlTZToBwVMmbzOo5nRvsq7Y5Ug193AMD1rbq/0eygb5+GuN5L/TOjlfbxgo79xrY91jrPjmnE\neEObRq7fHeyvtHPE4O2s1ygtHq7uJ4ojRMaBdj3XXziilM9/2K+Uz2w++Jd+OucfzQ3N6zUYntJj\nb03634tMk9Z4mICxcWV59u1VVnQ0o/uYCRzh6iG46BPiEwB2i8h2LE6E9wJ473lvbR2xIV5kOjg4\nODhcJMjihLjaf1VtWuRTAB4DsFdEBkTk/caYIoAPAvgqgJcAfNYY88J6Hd6FYNNFiIymRm3Pzwf3\niwdEgpGAs9Otr3PwwkvazmZnrX5t9Ar8io/pO69T9z/tu91dB/U9THYy59unZV+L/6A8aNiv/UIN\nJLCZ1RA6T+KeWHt1USS/TyxN6LsTjgoj99ym+3v0kUq78Ir9/ioyr8coV22vav++aKB3nrN2xFT8\nxpO6v7vfuvK28vRCOUfvAOkXQa68EYGopeszrtH8ZJ1GKo0ljU7zICFMyI4u5o2OhcUzHcneSnuu\noO88M0WNI0R0vNe17qq0ve8QGU+P6nhv7bqGPhmutKZy+kWaL+j1S0X1Hnti5Ii13QOt+j77yZGj\nlfbrt+hxPDxwvNIemCOhWFHPj1eMkvAIzCqjzWi4+fK43qNv3Fbv26e1ht5/ezZ5ksQwHSlldo5T\nVLinvRYroatOz09r0maIHib24fiI3nP5eZtRWSucd4RYBYwx7wlY/hCAh9Znr2uHTT0hOjg4ODic\nC+/E77AINyE6ODg4XE6Q9YsQL3Vs6gnx1MDKfQCggVIy5ogl69yi7WKAUrqe1u3ssu+y7ncqVdX/\nByrECMdXPu3JtuSKfQCg9goVbhSHic7qV/qMcxXTe7V/fJcKLGYOKdXY6Em7KA4oFVyeVRonTIKF\nMknSy4/+e6VdeGm80o5dTycUgGGRzcwcfJFRakp6VRRjDilFK2+/S/sz5QkgfP1OXedMv67Tc4Xv\n7syoqtulli4uCWw4lQMAkNTzOEe0ZbJFRSqNZ17WTbUpZZqK6Lmeztt0Zk1EqbiBrIpqaqO6Pxbl\nMDIFHQeLWryimlRUryHTpNmSXo/etNLAf3ZYt/W+K/R6zBdsQRDjeaKOE+EoLdcvaKbon5vXltTv\n1OB8cO5cPOy//K09eg6PTOq54rxFzi8co/sYsOlNzoOco3zBXU2aanFyWs9DF71eGJrTe2Ziwb5m\ntZSyhJSu01Sv98k01g7rSZle6tjUE6KDg4ODgwcuQgyEmxAdHBwcLiO4CDEYm3pCrCFHrmSN/Rk7\n0jC12qMsFw6/4L+cnWrS7Ew2ZyfqvPi3qrbLkmg0FlVapvMKO3fxLOp2kOJ0MFgiO/uiUpJlygtk\najRCbjgl2paZV+qmbrdKcvMv6zYBIE9ON+m3qxqU8xBLZPcTesPrKu347XqiWXEKALK1Xf+YIoUu\n++xRfqIZUkqxNKbqwfCLlBeY8VB3LSQ1ZiXBtFKQ5vBTOqZeyh9OKJ2ZpRy9BDy5ZkTT1hLNiQWl\nHSeblXZsJFYuH9LxxsM2TX56TvMHW2tU2jxO9CmvUx/TfcxQHuJyKtN5smWbLut4ExGyfivpffL+\nfXoeTs3pPlpr9B5j9akXIVK/jmSC+53FNWQRVRebtD7j/EHOQ/znlzU/8gMHO2h93fe3TygJ+bbt\n+l0Lp2wFaD2tc3RKv/hdab0Hnjij9HQnqUlP0+sFpk9fPWOr0be2qsJ7gfYxNbvy+TlfuAnRH5t6\nQnRwcHBw8MBRpoFwE6KDg4PDZQRHmQZjw02IIvJ7AO7GYhXlowB+yhgztfxa/lhY8G8Dy1i3UX56\ne5u2T5JXewcxfUzFlj3WRnzTsYF419W60tyQUpj9x3UD+8jLqphRyiqetum6RqKEhr+tgwwdU0qo\nLux/9zOVyvSnTNtUTaLW344qfOdbKu3yZ76sbVKZsrn3OVLdMaLAyLgbtWRtdkgTtsPdSn+yVRy7\nqsuuq6xdmDG6cEyZ1quFGGLByepnET/6rP7R7jERYIUlq1HTegM1jqhRd6lrn46XDMSXyw1juzY2\n7ubE/DxZvxWp//aa6hLzX5xQKnZrrZ5rpkPPzOs1a0sq1VhLifkZjwqXKdRTs/pFSJKZPQJUps+N\nKX3vVZnOFXSd3Q36U/a3d+v5/b+fUIXrO3eSkX6vjv0RUlF7zb3rSRHO5t55qiBzoEO3GyOzAF6X\nValMkQLAEFGj3fRZqVm/B89gbSHe0jwOADamddvXAew3xlwD4AiA//Iaj8fBwcFh82AdrdsudWy4\nCNEY8zX683EAP7Ka9aP0TpyNvr32bByssEUbPZBa1mts4u2NBM8ib6cwoa1TB3PNb6vd16FfUaPv\n1m6NFq95s0ZiHDl2HNCQtFwIdthtvlKFNGz9xjmCyV98u/Z58NuV9sRTGsG03bPb2i7nIeaoX2Ti\nK77jYFGNtZ3TtpggspNsztp07OaUiiLCBygao3wx9JHJeSddKK+z3ZxGJLI1wB6OLxwJacyEqq1y\nO7VEVGJCzwEAoIkUV/zLweWfyL4sPKmRWJjWzZbsHMq2pH7GkSCLasazGvE1xDXHsD6uJ+KVeTVC\n762jsQIYWfAcS2Xfeh76ptS6jcs/nZ7TaHFHh+YwHpv2NxwHgD2Nuv5MXmmbeFi/kLNU/ulgu977\n/3RUjxsAWhL+v9KvTOq54jzEgTnd7nROv0d7KRJLRIJ/+Tl6/DLZENZQhLgQkK/MkeN1HXae79eP\nKavAxt/PHVmZuTgfOMo0GBtuQvTgpwF85rUehIODg8OmgRPVBOI1mRBF5BsAOnw++qgx5p+W+nwU\nQBHAJwO2cR+A+wCgZcPP6w4ODg4OGx2vyUxijFm27ICI/CSAuwDcYYzxfdtujHkAwAMAsEMSlT5M\nk26jqhReG7f6ALu2RECZPAbTqlz5Iqh+IgAc+U2lSVu26k7qupTSidTo5ainPELOQyx5KNPpR7XO\nZiNZsaV6ifojgc7or3xe9037aLpeqamFQzaNlrpVabb8EaV3oj96Z6Vd/ubD8APnHkrUFiyYOVI6\nsUVbK10czk/kx9pdRP1NBVeLY5rUjOm5ki1q6QbOh6Q6idLa679Rb42+oAoZccpJnCZRDW2Xz4g3\nv/F4Rm3SttZqjcGRBbsmZmV3lJMYlKvYP2uvm4zoPm/Zovt4eULFSPua9CY/PqP0KeOzr36v0u5I\n2eenSO8YsiX9gj4/pu2WGr22XA/x2LTS517REX8VWJ/DNnBjC9qJ9/HsiN57MRKdxTwVNFgMw/16\nmvScssCG+/RN6j7Ynu2pQfvVwQxVzuD1k0Tlboh6iJcBNlxoJSJ3AvgIgFuNMZmV+js4ODg4rA5u\nQvTHhpsQAfwpgDiAry9Jgx83xvzsazskBwcHh00C9w4xEBtuQjTG7Fq5V3VgmrS5yf6MrduY6uR8\nQaZSWYi4o1fbrFad8zislcuUt0Trb2lSWiZLtmihObpLR3Ug8fQyXCzBKipM7eQWzW1KNOq2hKgt\nLhwcabR5Y1apxvboiSz8vapMBz6t1Ry233aL7uMNb6y0wx7rttz3lMIMNek+o9ft1U4T5PNf9s9V\n4zxEc+aY/RlfoLR/IVfp2q9/DFNxW6JPE5xryDmMXpAlHOrpNXlC982VJFJGKcu8p2JDU0LXn8j5\nq0F76vTrwtUy6qJ6nTriSnmydRoAJKnaRt+0WsWl6NhfJLUtq0zbatLUX0m9yZz9RWBadpCKQt+y\nRdWZ06Q4JYYfhVLANfeAmc45WodpUq52wWrOTrJVG56vrtpFNeB1udpFOGT/7KaoqsVMLkCmuoZw\nlGkwNtyE6ODg4OCwjnARYiA23YQYlIfodaYJcqrhSJLzE3t69BE0l9UnxQkyW+nuse+yCBVp6/2w\n5iFybcRXD+uT8f436tN3KOpf4C1Wa5sPB9VD5GiR6xaGKBJceFlPQqJLn9aj2+2aeYU+Pcj4Neq+\nMvylo5V21ztXDuzNvO2AE7/r6ko796XDlXb5u5o3F7piG1YER37euorkemM5rFcDEsVk6/ScJDw1\nFxGjfbSrMGWmqPlw6QitTyKXacovrDf2eT+d1agwGbVz1yrjotzFmrCOl/MW+0sa9XojxDPzKrLp\nm9L8QXaqCcLxGRW8zBU0AtqSssf68IDeZ/ua9f5lgc2rFL2FSD3TXhP8yx0N+Ggf1Sf8ygn/OptN\nNTqO+WVye8M0lhLVFW0iAVwXGXo/ckoZjV2NOo7tDRoF1nhyHbk+IrvhcN6jPz9wfhAs74p0OWPT\nTYgODg4ODsvDRYj+cBOig4ODw+UER5kGYtNNiIWC/3KvdRvbsjUROzRFGg7ON1zIGN8+PduV1pif\nsc2HyzP+VAzTod09Jd8+jNkzSvuEPDxRYk4PmAUzjPnDKraIEuWa2KbUVuL9atS98Gdft9b35g+e\nxda//vlKOzAP8ekndTvN/rUfASD+bqWUuQaiJaoJgHlexSCht9xhf+gxmq6sM6ym4ZY5eMTfyHxZ\nMIU63l9pRjvUrg1zeg2mY3pfhEW/ggWx7xfOPYyGyNaP6FCmTDNFFbbURpV+naflTKsCwBT8ffN7\n01sq7Zm8rj+c8b8ejXGlB8ezNk15oE0pYhbVbKHag1tSeo81JLT93Kj/9fOuc2hUvwdZMjlvjNOr\njpK2uZYiwyucKZGQi+nM6azSnCyeYUNvplWnSSn0vTP2OSxQHmMvUau83bWEE9UEY9NNiA4ODg4O\ny0Gs97QOCjchOjg4OFxOEEDCbkL0w6abEFllynULvdZt1YDzDWfIbamlubr1G1r9KY+2a5SvnTrm\nT1nNnFKaqnkPV7HIWv3i9UqlhSmfKn+C1n+z5qFxvmEQvCrT4snzN44qHaPKFdf0BHc8o/0QIYqW\nVaOdVKCSIFwp4/FH7c8OKhVrBpQmle1UTzFJx5uh61Gwz3UFC55rxnmJlNMY59+chH7VsgXNVWyh\n2obRUrDacSyv67BKtWT889aYVhVSlh6dsfM0O5Le8iCLeGFcz1WJ3BPZxu35cVWosmLUi+1pej8B\nvc6TOaVD2W4tSqrP7jp/ut4LroeYI9qTU1eDaFK2S7uy2X7twALUHfX6ff7yMf1ODM3rcXTX6/oL\npEp9ZVyp7Zs6g18dLNAOw+sUxQkA2cARooi8C8APAEgD+EtPBaR1hWOSHRwcHC4nyOKEuNp/VW1a\n5EERGRGR5z3L7xSRV0SkT0R+dbltGGO+YIz5GQA/C+DHzvs4zwObLkJ0cHBwcFge60iZfgKL9pt/\nU9mXSBjA/QDeBmAAwBMi8s9Y9Lb/uGf9nzbGnE2I/bWl9S4aNt2EyCpTpkmjHvaSP+N2j10/tQJO\nwM+T8K2LcrKDCgcDdjI+q0zzZOmU3qZUStetmpA+/pzSTKWsrUode0GlsGEyAuDKF0E06eTTVPg1\neOgwAVQeW7eFKRm6/Oi/+/YvH7F569AeKhXCNGkvUZBB1m28PBHzbwMwZ/oDP/MF06FULDgxQ04O\nNTalXA0my0qxddb06gdEZ2Y9XvZMh3KbLdpYTcowIa4wodttr7E9DFlByther/T0QkGVoZM5fXew\nrVa3NUF2bV7rthcmyKJPVv4hzhJ9yr/bBY913+C8HuNYVtv0NcDL42p8cYAMKo5M6DHVE53dP+2p\nJkNWaqwA5UR7rojxvTN6fu7erefnJKlPu9P2ffiPr+h3mA0DmIpdU0j1Ed9qYYz5joj0ehbfBKDP\nGHNscffyaQD3GGM+jsWqRp7hiQD4HQBfNsYcWpeBBmDTTYgODg4ODsvjPCPEFhF5kv5+YKkM30ro\nAnCK/h4A8Lpl+v8CgLcCqBeRXcaYP1v9UM8Pm25CDLJu8+Yncq3EkVH4gs26OVexVr2yMT6qT4fd\nV9kvy1kAw9Ztp+5/WrfVoRsbeUWjHo4iU60kovDYTD3yBY0W3vpTXbRvsm5jg2IaUyPVQMz++Tcr\n7dlXKRwG0Pyu3ZV27ik1kYpsr4cfzCyJJZ4YrLTrfnS/3e+kbkuu6NXlz7yiy7v96kjD9p6iPMJz\nEqwobJcWPT9swm1IHCLNRBFkNXrKtugNk8jbQpYS7TJIAtIIvYbzZO7NAhlvPcQxsn6byqmtWk/d\nvkqbxTO8rbLxjxC3p+1r0Df9jO9462N6w/dNqXE7m3vnyv45tEPz9vnprtNoKl/Wz9JkTdYY15N4\nmKK6+phe57qYfW2jFAUHiWrsc6Lr9pD4hVN7T3vyEDkXkPu1JP1/OtmuLUr36O09+tvQP23/GN3a\no1H+caqNuJ++90/57u2iY8wYc3C9d2KM+WMAf7ze+/HDppsQHRwcHByCIYKLnYd4GgCbEm9dWrbh\n4CZEBwcHh8sMFznt4gkAu0VkOxYnwnsBvPdiDqBabLoJMci6zVsPMQgnlD2z1uHqGLfcqhRQ8YxS\nHCN9lKwIW2TDohqmPXMzSm227VU6KjOiNFd9j4o75odswcIb3+WfR2aIHwoR7ZOgNtdDjN/7Zl3+\nSduGLfec0nURGktpUMdSHNBjj2ylyhlU57B0yi4xImTRxV9P4XqIx0iIw9RoC3HYLMgZs+leq9pF\nAGTbNfpHQB6iJaoxNm0dnqfPiHINzeu2JiNKFcZA54SFM57fqBahcx3XfokFvTeO5PSGbYgr9VYi\navLZMc099Fa7yBT9cy2ncnpMzYmUb594iMRhVOPvqmZb6DO6YH8vziLoNdb79l5Vaf/TsRcrbW9t\nxMaEHsvgvNK3nNPYUqNjLNN3YrZAlmwLum7MMyimafltRV1U+52e1e/wG7aqNR7XdWQRz+FR+zt8\n1y79oeFKGOs2Z61jYr6IfArAbVh83zgA4GPGmL8UkQ8C+CoW3yo8aIx5YV0GcIHYdBOig4ODg8Ny\nEMg6mZkaY94TsPwhAA+ty07XEG5CdHBwcLiMIM66LRCXzYTY7akze6xf26waZbu3NIlGuTpG/ytZ\n3z4xT5pbltioIJUpU6bVINXhT195UbdXaZgy5TqWyLHfDCttZEhluhxXE25RCjL6Y+/QfVC1i9Bt\nt2gfKp5rnvqevbG0XXmhgn5VgKKBTvCYv82dlZPo2aZ0KIVp5SSSwtVSojaS/LhW6WirQPC0KnsB\nACni1pk+5eWUO5ha0BtjOq7XJh626d35MBWkjaradjinY+9M6fFxtYuGuOYRXtcaHA3kAizX+qn4\n77Y69SqsoWogU5RvWChzzqRNKcfC+jOTL/lbzY1k9Hvwt68om7avSdWgTw4vWOsk6Ee9iejTaF7v\na6ZZOY+R54Mmou4Tnominvz3Dg3nqJ/S95w7mCQp6hOD/sWJvQWCT0zrdjtq9fxG1/E930a2bnst\ncdlMiA4ODg4OqFi3OZwLNyE6ODg4XFYQR5kG4LKZEE+esv+eJpatnYoonNE8cswR41EbwO5x8n7e\nwz61da5c4DOe9i/qm2zzV0d6l0/1qaqyQNRolBLza3cq3ceK01wApcMqUcBWkBZof6EJf+u2zO99\nvtKuua3Xdx8AFr3sV0KGeOcmVeFKryaYm0Na4UK27rJWN0MBhYDfdJsu52oXQ5qEjjq9MRJjpHZN\n22YB5sRh3W7H9kq7TL85jSE6WKLFLGsDj/ff8YyqQ5NRXb8+plTukannKm1WmebLet64uPC/nXnW\n2sdOsmi7hswHMlRYuX9G6V5OzA/B/0d1bMFWUWZI0dlM9CLTjpmAQs6n54Lty9qSSnU+O6ZfvlpS\ngLYnlZ4kvwjUkxHASEbloPGIfUysLO2q40LAuv41rWzjpivsadbvRHuN9o9H7B+Tk7O6/2E6XqZy\n1xKvQR7iJYPLZkJ0cHBwcFiEo0z9sekmRLZuY5HL+MS5fc9iiqLFTnK5ZsEM10NkG7eaWn2Km5/x\nt7ICgNMP6JP57IiKA2IkBmBD7okjGokVyWDYeHKxUhQxdvzM9ZV29jENicskpLFyEvfogSxXJ1FI\nKBBq0Ii2NKz5cCajY8yN6fHpMzKqM9f2IqlP39Km4g7T/7xfb5g+O71Jenf79gsER38B0vQXs69Y\nf+/ruVr/SOjTf6igT/ts7t04r9vNJ7X/6fk+a7s9abVoG13QCHU8q6KjnjqNiNn025CwpVDWcfRa\ntQmBOEVpRYpQm+k46qJ6Dc7M6305nlWGgSNNr7k3i0gKZPeWjll3hy84p9ALjuwa4/4CG47wmCVk\nG7bHTutx3LnDpi042hzO6FgeGdB1rqPvII93hhIRuX1Th80K8Vi2N/hbyq0pnMo0EJtuQnRwcHBw\nWB4uQvSHmxAdHBwcLieIE9UEYdNNiEEVLuIe7UqO0v9qq0jtC6p1ODsVTJP29+kAeknrUdemVNH4\ngNKLI4c194urYMTTZOHlqXZRewXVXPtDzfNrf5MKJEzOf4ylM0ptheqUzmQRDQDErlSqsjSmNGmY\n6suxqKbxfW+nlanawNco1xGAJOiiTNE+d2nSqKSVijNH1MYLDf6KHNl1lb2AxBpmSus/SmuP7/pB\n9RC52sW+6QQsUJ6dlYdI1m+NJNwppXT9hUJAbiWAEFbmzJIRHWO+pPtjEc70nFKpTIUCgNA+Hh9S\nynZrrdLpXDmjPamimjDZwE3l7FqODG9e4lnM5PXeT5KYhd8KsEXadC644ChbtOVK/jTrwJx+D7jL\nvlb9rvVN2a8OUsRbztN37/ZuPY8jGV3eRa9Q6sn27RC9XoiG7PuHq3CcplcXXKdxLSHAujnVXOrY\nsGdFRP6TiBgR8TfrdHBwcHBYPZbyEFf773LAhowQRWQbgLcDOLlSXwcHBweH1SHkKFNfbMgJEcAf\nAvgIgH9aqw3mPA5pXCD4FKWYBeUbBjEMdQ3BKtPeXargmxlXKqSxU0/7K69q/xvSSr3MUVWL/Fyw\nAnTquFJuHQfUd84UyP2fqlLE65UaZcVq+sNqw1b8qlbmAID8S+OVtkWfTthWWitBmu38Rqt6BVu0\nkXWbiRDN2asFfs2IjokTQJdTmQrtz7yquYNWfiMXCA6g+uC1H+O/uZoEUaaTUMqsMavbrYnrDbcl\ntcPa7ELRP0+U+7H6NCx6X50hxepLE3o+b+262drWoVH/AsFdRJk2xlV5myv5U6OjCzO+ywHg+TGl\nrfc1r5yby0rNbXV6TLekbFXqq1NMQ+pytl+7qlnv13hY75my4YoYug+umuHdFlOgL43rMb2hUynQ\nFyb0XmQg3+SAAAAgAElEQVQa+Fp6TfLQMfu6TmR1na46fY2wJblhCbxNiw03IYrIPQBOG2OeFXFP\nMQ4ODg5rCZHLhwJdLV6TCVFEvgGgw+ejjwL4r1ikS1faxn0A7gOAlioOwyuqqeYzdq3hCJFFOCeO\n6xMl5ycCwNSoPvld9/HXV9ps7n3zm3TnNc36pJklp5m6To0iwnHbvSI3o0+qg0+o6XPHDRotJrfQ\ngFlNUA7O8WKUl3ELqWyWxDbmK/+m433n92mnrGc7rIs5o4Iizj3k3MXCF/+90o7cTrl/BNlmi2XY\n0Fs6e7W9u1P7TGqUZUZPaJ8WjyP8WYSD7zdzXPMjZed1ukpIo8h5uoQx6zV+sGikiaK0o9Ma1XH0\nxubeibDeM2/sPFhpvzJFTjwAWmv0InSQ8Of0nOYbcoTZm9ZX+mz0/cK4MhVXNln+OzjQpuerLqbX\ndjij4w3KN+RIbGdD8Pmx8g3p/H7rlN5XzBKyy80TZNq94BGtvXmrRnYcPb6tR5cfJ2ZonGorHqA+\njw3qcdyz26ahvtav3513bNfv6nAmWLB3oXAqU3+8JhOiMeatfstF5GoA2wGcjQ63AjgkIjcZY4a4\nrzHmAQAPAMAOSVT3y+7g4OBwucOZewdiQ1GmxpjDACo6exHpB3DQGDMWuJKDg4ODw+rgIkRfbKgJ\nca0RJJzx/h1EmQbZvY3S9HzwRqVeTp+yKY7uHdWYeyvttDCuIgxTUupm9oy+hG/YbtNR/KS35Ual\nz+ZonfQOMvemfEOue5ileoiRbjvHL1Trb7kW/dE7K+3CZ75caYfvfFOlXfwHWt7hEdUwOslSjA29\neX93v67SNnNKM8k+rTWJvC36YJo0CMLm3iH6ShT8x/GiDFt/X3nilG8/RprGy6bh00RzTmQtEgQd\nyd5Km+lQzj1sSSj1e3JO+xTJrm2Och231Wp/wM4xnMn750QyTTqcUZ/DFFm6vWGLbvfozIi1fozO\n6eiC5pty/h6bZR9o09zafx9SytPDZlo5irNkID44rx0nKHfxp/YpBf7YoL4PubNXc2WfHrHVdyy+\n2V6vx+Edy1mwTd2Tw3oNbtuqPzKPDdr7aCE7xS8d1e/tzZ0rW9udF1yEGIgNPSEaY3pf6zE4ODg4\nbC4IEHYKVj9s6AnRwcHBwWGNIbDYIQfFpp4QvTRpNRij9LaryQWMq13kSSw5Pqo0aYPNZlp47qPf\nrbQbiQopkq1aMatKxPpe3ViU8qSyUzbdskCVJRKNSsvUU74gW7cVSA0abfP3rCscsbliSfpTv/m/\n/RftE2DNzzRpecqmM0NEjVlI07jmgi3BzsK8+ETwh2lS9B3TG0JuUVoXjWRz99jXtc/1StEy9kmX\nvaCH9lGim6Os13MyqbRzmp7Ok1QnMZ6ya11yxYos5f/VUD294QX1ruCqFkG2bzGPbdhgRs/Jc1Tz\n8UCbqnX7yPKuK6X08qk5vU9SUb33dpLdnrcf10DcVqevG6JEqx4e03cSnPvntW6L03uwFqo3yO0C\nKamZJn34lJ7Pt/bo/ban0b7XWdTNDoisOK2P6The36nnYWzBX336ug77FUScVMtD89pertLHhcKp\nTP2xqSdEBwcHBwcPXIQYCDchOjg4OFxWEKcyDcBlOyGyApULBHNy/Qjliic8BQ7OgqtgJGtX/6L6\nTJ9SN03N/utHa5XGyc3YlGmIqMrJPlUJRojrqd+tB1Ui3ofJIaZSaw7Yngne6hdnIcwnETVV+Py3\ndB/33qVjffQRa/3y0dP62dU79QNO0k8HlCLhYsMnyUGhpcHqJk1a8dnMqILPPPW4dtqhN4NcS4rV\nIMQD/P0AIKU0cJl+c1JEZ4ZJQRym5PaQsa8/V69gMO0ZCdH6RJPOBVTRODpzzPo7Sfu/tesa7Tet\nylku/psp6v3HNCmjf9bOkuKqGCMZXb+FaOQ5UvQ21zCVqu102VZxh8jJapQKVGep29f69d79gR1K\n3//wHr2GYwt6PcoFm6ZsjOu5zhEdfkWTLj9J30kOvKL0B++DVbCL29I2q2Wj6xTFiVOZBsJJjRwc\nHBwuN4RDq/93ESEiKRF5UkTuWrn32mFTR4jL5SEykpTuc4LqazTTk1uGtB0cFXLkyDUMAaDvaX06\njfmn8qG5VZ+A267RXLyFcRXLPPcljaS6dtq5SSnaJ4tqwvXaFrqZEwECmWiLCjqyz9h5drHtDd7u\n5yBM6yNAYGNFdQBCEYowydAb+8jkekLDdzNEkUct7Y+iwuXqIbLRNyiHDpyHOE25gHFb5FLBgif6\nqtH15yhfsLZItfRCGgHFyrrvfEhvptNzasjtBdc3zJd1WwNz/ZV2Kqrj5RxGNgD3gk25qxHV1ET0\n/pkvaGTEZuCTOTWTB+wIsblG12eBzVhGr1NDgiNdjfxaEva9P5bV78iWWr3fh+d1W790g+ZHPnJa\n76XetJ6rBsqBfHzQNinn3MMtKR1vhu6rHfW6raLR8DRHfXaTef1gxhaKJaO6XSoxaoly1hTrGCGK\nyIMA7gIwYozZT8vvBPBHAMIA/sIY8zsrbOpXAHx2XQa5DDb1hOjg4ODg4MW6vkP8BIA/BfA3lb2J\nhAHcD+BtAAYAPCEi/4zFyfHjnvV/GsC1AF4EEPCiav3gJkQHBweHywmCdZsQjTHfEZFez+KbAPQZ\nY44BgIh8GsA9xpiPYzGatIcnchuAFIB9ABZE5CFjgmqxrS029YS4HE3Kn7VT2lQPlcNLk9MY5yFy\ntYsilcIbOmKLT7gfV8uIJiO+baZJGZ3b9UGpXLTvi1p6I18cVqpqvl+pn7rrlIo1s1qBozytlFeW\n9p1+s13lwbJ7CwBXuwg1+T/YmXH7/Mh2FbzgDNl9nSTasjbAvipTXS3GoGoXVp9ntTqHbKExBVGm\nNcEUcq3wOmTFR5UsSgnts0DiF289RP4NmCloLp83l/AsoiSwGcko9y8S/P4nHdPz20OWcvmyfw3O\nBjonTJmOZ1WwlIrYYpsS2Z9lS7rdMNWR7KBah4Uy06S6rUfO2HTmzgb97hRJcLOnUXN4Z/N6Da5p\n1fPD4qDvDSm1eZMnR5Ap1D2Nuj+mOWdoHy01+qU/Qnm3W+t0AvKKahJhPSd8rnY3rJN1G86bMm0R\nkSfp7weWiiyshC4A7G84AMA/yReAMeajACAiPwlg7GJNhsAmnxAdHBwcHNYMY8aYgyt3WxsYYz5x\nsfZ1Fm5CdHBwcLicsI6UaQBOA2DaaevSsg2HTTchsjI0qFoFYCtQYyS8PHpc20ylMkPHVGiemKXu\nq+xqDmPHlCLc/5v+BYKZMuWiwMk2pabqe1RhWPLY7M+9rAdZoEK+UapQwTQp5xvGqHJGgr4gTH8C\ndh5ijCzhGKwy5f5czlial6l2sYu46pGAC5elHMwWShilC2ieYUYHkP2aW2fG9DsoWzTvUTrJio3y\nCEGUnoUZuyoFwkSzNdNxzCgd2kQ0K2sHOY9wcN7OEayL+VvbTedVbduZ0v1xRQy2d2Pbt/Yae5uz\nBaU6Oc+uf2YUK2FbrW5rgpSlM0WbzmYrtyGqljGyoP266/QeH6dC0pM57eO1VTs5o9dnOqZU4/iC\n7qO7Tu/LuYJut4lo6y0p3c6pWfuav46sB5nuzRS0vSWlY+fqGNe16nj7pug8eyzZDo3otg626zpl\nrJd1m9jvcNYfTwDYLSLbsTgR3gvgvRdzANXC5SE6ODg4XE6QRS/T1f6ratMinwLwGIC9IjIgIu83\nxhQBfBDAVwG8BOCzxpgX1u34LgCbLkKc8TdVsSJHLzgqvOpKbfND1JCdmlcBR5cnX5gN/OzxD6u5\n93X3KHsw9pK6iXMeIeObn1LByW0/0mJ9NkFG3BxJMsoZfQLlfEMLFHmGPX1YVJOn/YVb9KU/R5Wx\n971d9/01rbNoynZ0G0ov4/jiA+nVSI7rIVqCHI8Ih0U11gVhRFYWDVlI204+Vg1Gjiq5tmLAEznX\nLdye3GN9djxzpNLmPESO/soBeoNZEuFESYQTC3sEORQhniCHmcaE7mOeXGTydHws1mGxTXPCZgJO\n0nYTEc6503UKJIppjCsFEw8H1xS9sknPL4+Rt5Ut6r3fntRxHZnUKHJbnW7n2VEyZwcwS9vNlTRi\nq6fEYjYmD5N7zo56FbNtrdXzxg47gC0IWqDcRY6g1xzrlIdojHlPwPKHADy0LjtdQ2y6CdHBwcHB\nYRlc/HeIlwzchOjg4OBwWUGcl2kANt2EWPBPnzpHYENsjUWnzpHr1JyySWhT9sPCxKS2Wzx6E2YI\nb/4DFdUc+hWlTzuv8BeaZEaUhjv4eqW5vLmKbBfHNm6haBgrwcwT/UVG3UFm3oBd95DrLEa2KMVm\nnn5Wx/H2O3S5x9zbGsvL/bqPJqUHLbu1TIDYJrmMocUQFbjsDLiIVA8RGbJlo3y4BNmawZvXR/l7\nmCN7OapzNwm9no3Qm4/pz+NzSpECQFftLl0/p7TweFZt7phiY4FNycrlU/uy5yees/bBFGgDUZVM\ngdaSifdEVr8g6Zguf3ZMx7QlZVsYMk1aR5Z5owt6n/XPKDWZjOiP9dY63VZ9zKbDWcByclYFRemY\nnnc+juMzSpNe1axf1mdG9R55R2+7tY8BquW4u0Hvn1cmVXTUENdxsEm5ofHFwkyr2vfPWFbPw4kZ\n/QG7Iahe6IVCcNG9SS8VbLoJ0cHBwcFhGTjKNBBuQnRwcHC4jCBw5Z+CcNlMiF6VaZB1W5ZK0HWS\ni1c/VcHgPESun8h1FYHgVJ/WbqV+pk7605MtZMl25jmlbbYesFWmZ55Rio5zDxnpA2TJdVwHGW3T\nA5GE3gqRrTaNa+UVtus6kXe9rdIufObLut3bbvEdh5m3aznyV1Ku6NU/KA/R9L+qy6nmolXtgtWq\nRbtCQPkFvXDhAzfododVWiwpOl7KxbPqHnJ1DK91W4zGQupMrofYmFPKtEQ2bgtF4uU94OoXrDJN\nRrS9UNTrz3mInMP4yuTzlXZzwlb2TlH+INuGMeqius4w5RFyXh7nEXphqTCpvmFdTM9pW1LPe2/a\nn9oueuohgipLbK3Va8jVNlhlur9Z6dAz8/quo7OW7v2Q/aphd4Ouc3pO17mySb9TrHDlc9KZ0h+H\nVyaV8uYaiwDQVqP5wF0p/dEYXrCt6tYM4goEB+GymRAdHBwcHJbgIkRfuAnRwcHB4XLCUmK+w7m4\nbCZEr8qUrdu4XmeEzsiZQW1vVaHeOdToWQx6HL22UP721/5PVZZeeb1Splwto22vUidDz+uAe16n\n9Ex2kjhdAJ3XKYXKif3FBd1wadi2YjsLSenBlkdVvTr3mG0zmH779kqbE/PN33+l0vYm81e2S4n5\nkrKNB8b/SKtMNP+Xt8EXGT3ewMT8PqrssJ9UqQBCV/fqOkPEe7MN3PbraX+kMqVCwNl6Os/5AEs3\nABhRmjNECfyTVCC4cUq3W88KVw9YgcoqU0aQdRsn/J8ipWSHJ5G/K6VjPD2vN/AUUbyDRaUK22qU\nGp0nhWsD0cYvTdpfhMa43u9tSV1/f/MVlXY6dqLSHsnocaSIqq6L2vdPjihUrl7RN6W05c1kvcbU\nZpLMGJjanM3bKu7BeX1dkKL915BhANPQg/N6bVnB20m0PCf7A8CJWT2/17cG3w9riotr3XbJ4LKZ\nEB0cHBwcgEUvUxch+mFTT4gcBXprI/LfYXqPvpV8nllgM0bpbBzVcXub5+Gus1ufIvPz/gmSdS3+\ndm0d+1UUEa3V7XjNvYPqIYYprzBLOY28LQaLampv6bI+y5O9HJt7m4JH5OCD5fIQmz/0Jv3siEYI\nwnmFaRXxFL/2VKUdfj157CU1AjEztkhFutXE2zL3pvxGc1pFJ8IRGxl9W3mIXuu2HCes7oIfGjMU\nsTfodlnCEQ/bUfZygpuz4KiQxTYhynW7rlXHxDUTAeDMvNIgVzbuq7SHMv2V9vEZvX/yZc5b1PEO\nkkiFLdK8/RZI5DKeVT9ErssYFv8cWt734n40suPo77aten2OTWu+INcqTJAhe46EMAmPVRyPK0pR\nlZD9GtvncbTIgiWOQjknEbCjygxF3d5Ics0gcBFiADb1hOjg4ODg4AM3IfrCTYgODg4OlxPEUaZB\n2JATooj8AoCfx2LpuH8xxnzkfLbDtKg3D5Gt2zL+mhPLro2raHDRBE578xZTmBpVKoYfyLr3q0Aj\nTzUMn/+6Ukh7btEBF+Z0OzEP5Zl5Vamqxncr5TX+Ka2uktyiVFGJKl+wdRvDWw+R7dqCYNVMpOUs\nqvFawkXJmkr29Og6z5AwpUVz/sJ7iKokatQM6zkQT7WLQJBYQ7r263KirFCk/LIWpVIT42pTtjhI\n+hqxKIdqI05G9Fxzxl6hbFdXYHCtxJYonQcSnTyXU7s33lYITO9pu2Tsa852bX1TL1fatZQjuJ3y\nAmdIdBIL6b3YkgiudcnWbbw+V4ZgizShDFXOCzw0QrZ4AN7cpeedK2z0Tauo5+pmpf85z5Kt5rjq\nxl6PyCkd1/OVKZBwZ1q/q0yHskgpS/cSt4f4HgGwhdZnMRPTug4XBxtuQhSR2wHcA+BaY0xORNpW\nWsfBwcHBYRVwlKkvNtyECOADAH7HGJMDAGOMv97cwcHBweH84CZEX2zECXEPgDeJyG8DyAL4ZWPM\nExe6UW8eYobSjbgqBaencVHgq/YpjTM6qtQLCRxRm7ZvsggpPWfG/VWmo88rDbTroOYhMpUarYnQ\ncns7kYTuY/4rSjWmeqliBDnbh5JEuVJybuL9b6m0i1+1T7eXQj2L8qyO0Wv3VtkfqUyjHpWpOanU\nlpCaNLQnIBcrQYpcsm6TLuWtZddV9jrFYErSD+ZpHaNcoVRq/DhVke66Eha4QDApA8sBr2nCk0rX\nhZuUVs0V7PMcFr3ucwWl2eag7fZkp2+fIAxnRq2/mcJk2nNwXpNtuaAtK0YzRCmnY3W03D6O4zO6\nz221qlJ+fKi/0r59q55rHmOM6Oi7d2jeIgDM0/liqvH61t5Kezyr1DrnGB5oVSqV1atzeSp3A9su\njunbnek23+X5MuXNWlQ128wFV7FgJWs85K9Av2C4d4iBeE0mRBH5BoAOn48+isUxNQG4GcCNAD4r\nIjuMsY0WReQ+APcBQMuGnNcdHBwcNihchOiL12QmMca8NegzEfkAgM8vTYDfE5EygBYA1qOtMeYB\nAA8AwA5J+LsSL4MFihBZcMPimSv2UP+M7oJFOBxdzszaOYLdO/TJ8Zrf1nqI2YdPVdqpNn+HlyLl\nrVl5iJO2QfYY5QjW92iEKdSPRTUcIeZOqjhDPv2dSjvcaAtThGorFvpUwBJq8q9DyPUQSwMUtXjs\nosJXaXRkBjQcD6qHaI7Z9QIrIGWTGeizP6MLJJ29/usT5KoD+sessvVSRy7uMfualRL6d/iMClNC\nAXdlqVGjOs64i3hyBAfnj1XaHcneZUa9CM4xrCURzkxe6ZGWRKO1TmNcIzuOaJLkyvLShEa0nEPX\nXaeRPOdMHp2233Jc2aTH20/RYktC77Pnx/VYu0hkkopqn9EFOwLmHEF2qjk1q98JrjXYkdRzwnmE\nnPc47XGqqSFB0KFRzWO9rUuj1d87pDUm/+N+dXVqSuj+ciUyd/eYqLM4qUD365akp8DqWsHlIQZi\nI56VLwC4HQBEZA8WRYtjy67h4ODg4FAllijT1f67DLARucYHATwoIs8DyAP4CS9d6uDg4OBwAXAR\noi823IRojMkDeN9ab3e5PESuafjsYW0f1lQ+XLnXvz/fV957jPMQX/51NfdOtSjVk5uxKdCzaNih\ndEthzl+QAwAN27Ufm3uH67U9TbRqw37NKYt3+Qthpv71pPV37W494KpyEo9qQB/p0XW99RAZnIdo\n1UN85pAuT9u1/Cro1GOSth7rI3NSaVY295YGqmmY9NQ3PAvKVbTyEPMe8cs8KbY6NRcUJOhIxZUG\n5jxCpl8THsqUadKZgkcVtgRDtmGch8h2YizOMWLT+hHKGjVUp1Ggx95So/dJVPyv/7FptYDbWW9n\nSn3hqNa0fAt5IzYk9JxMk/0dC1m+dUrXvb7Nlh0UyDx7d4Nul6njE6fUlm97Wq/h94ZfrLSvaVHq\nvqvWFnRlCnqt3tGzrdI+NqNWgz+yS+8/FvHUxlK0XMU6W2u1xiIADMzp64J6ooG9FPqawVGmgdhw\nE6KDg4ODw3pCrHeoDgo3ITo4ODhcbnARoi823YQYpTS7AjGNM7ZrmJWXOEL61R5lT5AmRpGrWpwk\nSziun9jtSZ/jnEbOUTRlfSVa26G0SpmWDzyjA9x+C9VDnLId8ONp/1yl+X6lepgmZRiycQOPaXej\nT+9FRHfpZ6E7btXVv/lwpR3eotTmcjSphZmAyg5cYaBDLe+seojUxxxRigyA5acnDUS5EqVoXnhM\nl1N+oyUkIMoUHrUjgmoaUuWD+bzSyLGE8vdjBVVktoSCTZnaI/rZ6bzegEyrpaO63VlSlvaklcZ9\neVIrhgC2wnFgTqn1bXV6z3DuIYOp2CaygPNGHz+0S/M262N6DdlGjvP/WlOqSj1IFG0nLQfsvMsU\nVfp4efJopX1X782V9kJJ77Gb2vWcHJ/R85mm8QFA37QqS69p0ePoTOn5mc5pziYrSHMlvfd3pJXK\nf3TwGWsft2y5ptIeW9D7YSa/cl7peWGDU6ayKHf+TSy6HD5pjPnri7XvjXtWHBwcHBzWAeunMhWR\nB0VkZEkUycvvFJFXRKRPRH51hc3cA2ArgAKAgRX6rik2XYTo4ODg4LAM1jdC/ASAPwXwN5XdiYQB\n3A/gbVic4J4QkX/GYhruxz3r/zSAvQC+a4z53yLyOQDfxEXCppsQCwGCzCYPCzgc4JB6ggSWV5ML\nWJ/mDWMP1YBlKnVKmRMANuWamVOKrkyWV1y9Ik32Z9lJ/+KgaY9FWrlY9u3HyJ5WvjgRoCxleG3Y\n8odHffsV/v4rlXa4SdVxJSpUHL33rkq7+AXtD9hJ6ZijhOhdqubDhOeknsUUKTWniA9v88iJyaPP\nNFASOiXHg9SKVoHgoB+NGo8qdZLLqhDnPqo3TYoo14mC0qdWwd6MrSSNpHQ/wzm1uauL6TFO5/y3\nVRNRuvbYtCaO10bta8vK1B31qtTkYsU1VKmDqVhuc3WMsQX7/cS2Ot0nJ6gfHlcFKVfUiIV0W6mo\nHtN41v7SNsT1PLBl2s76bb7L5wo6Ls7kmiBlKKtKAWBvo1KdRTpXmSLd42RW0BrXZPqo6NgLRtd9\nYyeZP8C+VozHhw77Ll8TrFNeoTHmOyLS61l8E4A+Y8wxABCRTwO4xxjzcQB3efpCRAawmHIHACv/\nwK0hHGXq4ODgcFlBFh/2VvsPaBGRJ+nffVXusAvAKfp7YGlZED4P4PtE5E8APLxMP/uoRMIi8kvV\n9vfDposQg5CxHZkQDvv3C0JQ5FnXQAbesyXrs2P92v6hT6l126n7n/bd1ghFYpG4XprxI/oknmq1\nBQ7RWn0KjZAJeJC5N0PIxm05c++ZU/rUXHP1m3XfbRr1sKgm+kO0LYoKw62eJ+E8nVQOtfup3iAp\nk1iMhAaqKtimT+XSQtEl7DxEqbUFE5XllG/Idm0I6G/1AYLzGOtUCBMr6PGxsISFIdmkfX5GMhph\nsjUaRyqpqJ4H3hZHWcvls7FBdjsdB++PwaKRZETvxRCJX2Y89mc8lmfGXqq0r29VCobHzvtOkljm\n8Lhty5eK6vligQ5HytmSRogcFT42pHmEb+++utLmCBYA6iIahfJ531q7s9J+cliFSg0UIZYpuDk9\np+Kcq5tvsPbxub6HKu23bjtYab+580asC86fMh0zxhxcuduFwRiTAfD+81ivJCLvAfCH57vvy2ZC\ndHBwcHB4TXAaAD+pbl1ath54VET+FMBnAFR4bWPMoeBVFG5CdHBwcLjccHG9SZ8AsFtEtmNxIrwX\nwHvXaV/XLf3/N2iZAfAWn77n4LKZELMejUqJ2M0WMpWPEbvE+YmkC0CeSuzNDOqGGrTYBACge0cU\nfpgeohp0O3TDnJOYpWoVzXuUtikV7HfM9W9UKj73ggosDNm9FQs6xty0Dp7zDbN/rkKuSDfRkQDa\nfkzzr3L/oHRq4gMB+XeEyLvurLTLX/OIxbI6FkNjDHHdQxLJCFGjVh4iVQgwEx6VdtGmsf1gqIYh\ni2oKdbrv+He/rivc8CZ7A7mAHMpVwkvXtSZoLCTKYDHLwFx/pd0QV8qzI6y07HMLntxMa596nzDt\n6B2L7kOvQWNMKeFPvPTlSvst27Zb67BA54bWq+GHMu2bK3UwlbrXk+/J1DPTpEOZ/kq7tUbX4W29\ne7cq4/qmtEJJb3qHtY/BeVXZJSJK/SaJqt7bqMf72KAKmG7u0BqPXMViKmdT7t/f+8ZKm0VS4dA6\n/TyLrJvKVEQ+BeA2LL5vHADwMWPMX4rIBwF8FYtaugeNMS8ss5nzhjHm9gtZ/7KZEB0cHBwclrBO\nE6Ix5j0Byx8C8JDfZ2sJEakH8DEAZ8UODwP4DWNMgFzdRlVnRUT8H+scHBwcHC49bN7yTw8CmAXw\n7qV/MwD+qtqVq40Q/5eIxLGYdPnJamfbjQSvSnQbsS+cP5ggweGYOllZdOir6gxlbWc59P+BUo1M\nueZm9I+aZv+CuwzOWwSA0YdUiVjMKT3YeqNWBoiGlYKMtih9NUSFijvepAdSGrPpslCd0lExom+L\nX/g6/BD4lOUpECzdOkZJ0rFniN8mJaoZorKYnHu4gy7Cy8ftfW61KwtUtnVaFYuym4Rzg1oFIUr2\nbtithYrPAatUufJFmPj3APqL7c9qQ7bKdMHoeagJ62ez0H10pjTvkbc1E8r79mFaFLDpO6ZiOTeu\njizhWE369JiqK+/dc6tvH8CmKlk1+tjQk5X2jW1qX5YpqqqZVbTHx206nK3qON9we1qpSi6OPLYw\n6tueys379l8cr35feB/DRMvyMXGOYd+U/lDU0j3SlqRcVQADc6qEPj6jVUMOtttq1DXDOlKmGwA7\njdynH0wAACAASURBVDE/TH//uog8E9jbg6rOijHmTQB+HItKoadE5O9E5G2rG6eDg4ODw4aAhFb/\n79LAgohUXsqKyBsALCzT30LV7xCNMa+KyK8BeBLAHwO4XhZdfP+rMebzqxiwg4ODg8NriUtnglst\nfhbA3yy9SwSASQA/Ue3KVU2IInINgJ8C8AMAvg7gbmPMIRHpBPAYFp0FNjTinqIQTIcGgenTWmKz\nOoiF44T/8jImQxPDSv21dpPNWa7o193C9AmlkGo7bVqt6aYtlXaRLNMYZapqEaJk/PYbO/y6ozyb\n913uhSTUlECi2i7+07cr7ciPfj/19ySIMwVKtKf09Fba5pQmUFuJ/AFUqLzeowAt+h+LtFXBdZN6\n1LygVKrc4jlvTIdShQuMkw8g06pp/4oPZY+BQris2+WkcKborIoRRE121aqKcqKktm9NcXvsLQm1\nsJsnqnJwXql4TqxnBejOelVXsirVa7G2p+G6Spvp1Fs6lKo+Oav0Yjrmby94oNW2PONjZwu6MBFf\nXPS4N620Nx8Tw6vsPDGr1z1b1PtvT4PKKlgBzNu9ukXvBVaylsr2d57P6Q1tem/wNVhTbFLKdKlK\nxl5jzLUikgYAY8zMCqtZqPas/AmAQwCuNcb8/NkkR2PMGQC/tpodOjg4ODi8xtiElKkxpgzgI0vt\nmdVOhkD1lOk/GmP+P14gIh8yxvyRd/lGRa7KsnwcOc5TwMW5igwqt2fVPASAqVF9oowEnOlEoz5R\nTh1Xdc/QsPa59u2a7+XNQwxCfkSf2KP1/jUTDW1L6IE5uj3AigxAnnIdw1s0b5LNvSP33Kbj/eev\nVtqhLo/Detrf1NjMUx24qVnfPpZ1Gxt4L1MP0aqNuPM6+KKVnNspQpSrtH6e17rNZHS80kNRDBt9\nT3ryI5fA4pUTMy9an8XCelE6kr2V9gQZfXeldLwc4bFJ9fEZjb521ds3IkdsPBbe7iQJb16aVMPp\nG5teV2l/d0xrSh5s0+UAME21IFn4w1EvR2+ct8hRL+8bAG5sUzZgdEHPb8H42+T1U7TXGNfvFOf+\nZYq2oKxEwqqu2h74IUHjZZs8PlZvfiODc0m3JJW5mMz554JeOOSSmODOE98QkV/GuU41E8GrKKo9\nK/+Hz7KfrHJdBwcHB4eNhE0YIS7hxwD8PIDvAHhq6d+Ty65BWDZCXDJKfS+A7Uv1q86iDkBVM66D\ng4ODwwbC+tZDfM2w9A7xfcaYR893GytRpt8FMAigBcDv0/JZAM/5rnEJggU3TI0m/JlGTExqu2ub\niklSbXYlirkZpfvYEi7Iui0U0Zu0d69/hYLslMeD7mV9Lkk06oBjNJYi1VZkUU21yL9EPHJ05S9S\n+dtKn4Xf+X06Dm89xKuIMu1TAQpXteBcRSSVlrXUTES9Svceax/mmFZXsIQ0VAPPqlYxR0IfEj9k\nqZ5hIm+LIqSG6FuqrYgxEkW0KGUWLikNFyY7sC0pm1YzRNcxddhWo1QsV4ZgmrS5RsUy7UmqNRi2\nxSR5qgZRpv2x0IOpP4u6Lei9xzQp9weA58e5wsW1lTbbn/HYWTTEuZEHWm+xtvvqtPo1Zwr6TqQ+\nrjTpqTnNN+W8Rc6tPDWruavb6/da++Bj4XYC+v08OqdU7M605lPmibrl/EamhAFgW61ed8673NsQ\nXKXkwrA5KVNjTHnJ2Pv6893GshOiMeYEgBMAblmun4ODg4PDJYRNOCEu4Zsi8sMAPm+43leVWIky\nfcQY80YRmcWiY3jlIwDGGJMOWNXBwcHBYUNic0aIS/iPAD4MoCgiWaxyrlopQnzj0v/9E4MuYdST\nFRvnD3KFi3TAUXPljFdeVru0pmFbEcmUK++jvkOpvyRRmyGiI7naxeyZOd8+AFB7BVmpBeQhsl1b\ngWzZwlSEmJd7fQtjV/pLbIuDOi62e4v+yB2VNle4OIeu5TzEXUoDygi9niYbN6vahe+IfECWcOVv\nf0fHcjOpTJkyjRGdRe9ZEuNatNhM0U0CQHZSIVd+N9Ou9O0kKS2ZtkwhmBbjPDtWL3LOXy10W1xz\nI0R6uS1JpeS8tmopsoTLG/+cTd43j4lzGq18SmMroW/r1AIEY6SQPTGrdOb+5psq7fEFPddM0Xq3\n20j776HKJE8MK2XfnlRlc1NC+4fzel9d26IE2NEZ+03QXF6/U9c26nUu0WlklSkrcr3n+iy8OZCs\ntmXFq6znpLVJJ8QLnauqNfe+WUTq6O86EXndcus4ODg4ODhcDIjI+6j9Bs9nH6x6O9XQrCLyNIAD\nZznZJTXPk8aYA8uveXGwQxLmt+CfIxQENuXmqNByoaGgiV1rOAjgyK/oMZ3hCJPXaezUCLG+VyP5\nl/9Vkw87enSH9T3aJzdjJ1RylMfm4BxhRshRJtGlg2IHm+SHtG5h8atqRA7YkSCbe4fuUEPn8jcf\nrrRLEyp4id57V6VtHn3E2i7XOsx9SXPMYtdpjpglqiGxjWUA3qmiEczYtQmlN8CUm51jOK+wTvcN\nikiydRpFekU11rbCej3KFGjnKL+NI8Qw3T+TRVu43SgavZmTen6kVzUD+ZBuIEalHxdExxgng+pQ\nxs5VXoiRITiJZNqjdN4pmhjNa4TH203TWL31IefpHmVxEEdKnBeIBR3jZIgMziN23mqCS13SGPN6\nuyNW0PNQitF5J4EM10/siNA4PNu19kHnnSNXHtOM6Ng5iozl7Eg8G/MX6/C5bk/9xFPGmINYAxy8\nfod54l9/Y+WOHoQa/8OajWGtISKHzs5H3Pb7ezlUGzcLv6BccgRYl1qKInKdiDwuIs+IyJMictPK\nazk4ODg4VAuR8Kr/bXBIQNvv70BUOyEeE5FfFJHo0r8PAVgnoz38LoBfN8ZcB+C/L/3t4ODg4LAm\nkM2YmG8C2n5/B6LaKO9nsVjh4teWNv5NAPdVu5NVwgA4yxHWAzizTN/zxil/Jy2cID/mdmJPuGbi\n/gNKvRSIdpyfYQ4HSDeriKT3w/pC/tT9T1faGbJYa2r2v+mYJk22Jj2frWzEHSN7uEGqgdh5l4ot\nsn+u4pdIty3IYpqUkfmdT1faNT9dqbiCaHObX/dlEX83CVNGqvB8YK6aadKyfe+bAc0xk63b4Qv+\nsjN9Wqv5bNEQi188lGmB6FsSqYRoKFxLr4YpVxL01Id1fwDAEpJQJ+XHUX4k07KgMdYYPaZ5ylWc\n9vhpxIp6b7TT/heg9xXnKraGSIDE4pCs0pz5GvseTdHXIkdjZBrRMmEn2vnUrD53X9Fo2+2VotSP\nagqyeKZA23r89Lcq7Ts6btPtcI3IqC14ObPQX2l3xlX4NZEl4U9Jj6MfJBQjdFKO6YJHGBfm+4/u\npXUT1QguhQlutbhCRJ7D4tHtXGpj6e9g3zwPqpoQjTEjAO5d9RDPD/8XgK+KyP/EYgT7+ou0XwcH\nB4fLA5tvQrxyLTayUh7iR4wxvysifwKfsNMY84vns1MR+QYAv9pDHwVwB4BfMsb8g4i8G8BfAnir\nzzbuw1KU2rI+rzMdHBwcNiE2X/mnJROZC8ayKlMRudsY80UR8S2waIz567UYhGef0wAajDFmqQDx\n9EpJlawyjVKqW6EQsAKAGnIBYzUoq0nbOnWiHTmjtEo+79/fa/VmsXqUothERR/ar1QKiuse1jRz\nzUTlnMJx++U2V8tglenCuFIvbIWW3qv0J1OjxZO6b/HsI7pLB1wc0AORpJ4fQ2OMvedtupzqCJ5T\nMJKrXXBOYhMliXINRaZDuTZiLVNvHjpzSG3n5OabdTlTY5yHSJUrUKILzerTvKcKAefHpYheJrVk\nIaFjjBKdiaJeJ1ZBAkB4QanOybCOpbFM/XjfRKWORbQ/U4ihkucaEKXItnN5UqnGOPE2yOaOxjHp\nSa1sZFaf6g2+WuyvtHfHqMoIWeGxNV1N1mNbmNB+86D7PcCCjq8H05asXuU8QgBojND1JFqYr3OZ\nyG2myRcoX9RSyC7YSl++B2YSen64bmJzzXvWTmV6YJd58tHfX7mjB5J814ZVma4VVkrM/6Isyouu\nNsb88kUa0xkAtwL4NoC3AHj1Iu3XwcHBYfNDNrVTzQVhRa7RGFPyJjquM34GwB+JSARAFusn3nFw\ncHC4PLGJJ0QRqQHQbYx5ZbXrVvvy7Zml8k9/D7vo4udXu8OVYIx5BMAN57t+EE3a7BFKjpPYboEK\nJ1xFr2ZfPKyUBVfBYMqTGbq2XbZr0KHvKL34/X+l2iBWmTIdWteptMoMUZONRFkmGmxeNj/nf8BC\n9mt1u3V9tmjLntZ9cML+1NNUnRgAlwtm+rTQp2U/wu1aLLj86L9re0LpIKZbASB+U5f+sYOcEshu\nDc+rvRe2kmsCn3iiTKVlm7UPEzuCFcEUKKtM6+k1NytJPYnnTANiWpOpyw26fpSLvc7TzUe0X9jD\nZjI92cgqTKIRx8I6rhYqhtvCVCgl45dq7OT2sQWVVXNyfKxIgwmilMnmrkx0b6OHlp0P67Gzpdzu\nJKlGmX6FnpMaLojtUYAGge3sLMqV+jw7rpUybk6oxV5jra30XTB6fmNJulbUJzQ1BD/U8HizenxZ\njwo3QbRu2rq31lEbscneIZ6FiNwN4H8CiGGxbOF1AH7DGPPOatav9ownAIxjkcI8CwNgzSdEBwcH\nB4f1xMamTEWkG4tpfhMAjhhjfmcVq/8PADdh8ZUbjDHPiEhAvtW5qHZC/Atv0cWLTKNWjSBRzZzH\n95qt29iijcUvXn3GWZwZ1HZDg38fAOje6r+c8wqjJEyRsEZ1XBuxSLmOk2MUzsI2B2ewkGbqefWm\na9ivNmcRepIvkt1a85122k7hqEaCheMaIYSa9AnY5PRkhd6gNrflL6qlW/yg1ugDYBl6s0jGPKNM\nh2XdVqSEtgbSWU2RSMF+wIfp07xLaaYP+el9PiDvkWsbJpViMEN21ClbrtA/KGoKkSiGBRnzab1p\nUnTesEDRF2DlQVriGfoxyxR1u9OU41cf0XW/OfG9SvuOOq3XBwCt9XqTWoIbioys8xPwQ8qRH+Zs\nYUqKxEkFipqtmpTc5siTItpzIrG4fpYiYQpE91dDfVigdXOInLxY5OIxEK+Zo89qWeBFPxoNdF9z\nBB2h/sRCTHmEOx2i9xbncHot3tYM65iHKCIPArgLwIgxZj8tvxPAH2ExuP6LFSa5qwF8zhjztyLy\nmVUOoWCMmV7UY1ZQdWJ+tWflT6pc5uDg4OCwobGuTjWfAHAnL1gSZt4P4B0A9gF4j4jsE5GrReRL\nnn9tAB4H8H4R+RaAr2B1eEFE3gsgLCK7l1IGv1vtyivlId6CxcT4VhH5MH2Uhk2jOzg4ODhcKlin\nCNEY8x0R6fUsvglAnzHmGACIyKcB3GOM+TgWo0l7aCK/DOBjS9v6HIC/WsUQfgGL+ew5AH8H4KsA\nfqvalVeiTGMAapf6sWJkBsCPrGKQFw1BopqcXSTCsm5jizZ+11yrOhE0Nwst1wi8plafC0b6bNGI\nN+3uLCTk7zVbJIHN1rconZgdVL5XQnYuFm+Lcw95OdOk1rpRHXvtr+h96a12Eb+uHX7gqhbhFn/q\nNvLD76i0zVPfsz+cmvVtS8xTN7GysYBnsDkdh+l7wfpIqKKGRW2N92u7kbhtpimZ/hrUfEqLIgUs\nStGc0v3Ltqu0DwlvLJqU4clvZEuxMI+FbtJushOzqE2jFOQd7W+utE/lyJsQwLZJGgvnWjJdzOPi\nPEsW+vD4ih6qjwQ+Uf5OEM15NK7j3VnSfYwu6Be1Pe55P8HCIQTkZgaBJwQ+vrLn2vA+WPBCYijr\n2Ln/KNk9t+priI6wfRxjBaVQWwxfA494aw1hqra7ttAiIk/S3w8YYx6oYr0uAKfo7wEAy5UP/AqA\n/7EU6fWvcoxXGGM+isVJcdVYKQ/xYQAPi8gn1soJwMHBwcHhtYWp5qHhXIxdjMR8Y8zzOP+A6/dF\npAPA5wB8ZmlbVaNaUU1cRB4A0MvrGGPeEriGg4ODg4MDcBoA50NtXVq25jDG3L40Ib4bwP8WkTQW\nJ8aqaNNqJ8S/B/BnAP4CQGmFvhsS3jzEJDF8c8yEBKQ6nTqlNGkbMZDjo3o6uq+y8xCzk0oJPfmf\n9b1u97VqTTZzSqnC9DZd/zRVpWgOqDYB2GrSeFpVbWwDV7vTXworKb38Y7/6D5V2w+3dVr/8S2p/\nFruyGX4ojXGumaL4D1+utMO9nnXHVL2ae0qrB8R/nATMA5QTyZZufUT9XUGqak+BYKZZzWGlbGXv\nfu1jUV6kDGSVYINHIRsA2U1MEOfWMRfPy1kFmbKvc3i0X/8IygVkmpNyIK3jIEpwW9RzHJQfhykq\nLMPUHx/7JL1rYNoxTerRWVtFyVZsrKQ9HdJ7dGdK1a+cO9gYouPLeAoPE7OeYjs8LoI8o+fkDH0/\nOoWocabJvYpjUiOXU3oNJrK63ZYpuh7tmtMYqGQu2K89WtrIto5p2SD18wXCwFhFjS8CngCweyn9\n4TQWC0W8d712ZowZAvDHIvKvAD6CxTKCazohFo0x/+95js/BwcHBYQPBYH0mRBH5FIDbsPi+cQCL\n4pi/FJEPYlHgEgbwoDHmhWU2cyH7vxLAjwH4YSzmzn8GwH+qdv1qJ8QvisjPAfhHLKp3AADGmPV5\nhLkAcCTIbjTePET+7Nqrtf0cMc5t/loUDFHQwg42fU/bopqtvfoIe/D31Knm+f+m0WLLDjuqPItI\nXC+NFe112k4jtVfoAY/8mz69szl4mfIYQ0kdk5lXAUG83uPITDBBIhBCkKjG2s64fX5k+xbd/w9q\n2zLu5naGnqzZGJyiL3PSzlUL3UFG44NH9QPLkabTfzk/4WfoHDR6Ekz5qX7gOW1zxMduNhwhsDjD\nq/zj/fC4+Omeo7qASAwROo64ff9grF/bHSQW4kiQxSFBEe2w5maWtlCUBCA8SHmbFG125emeoWgo\nQfsTirhKKZvpSA33wRd8TknZ1sm1Q8lY3Lo2XiaAznWI8k9b+JzG2FzeY0Dut13vdR4JOI7kMknO\nF4T1ixCNMe8JWP4QgIfWZac2HsTiJPh9xphV19KtdkI8W+3iP9Myg1UUXnRwcHBw2BhYrwjxtYYx\n5pYLWb/aAsFVW984ODg4OGxcGIOL/Q5x3SEinzXGvFtEDsN2phEAxhhzTcCqFqqaEEUkCeDDWHQQ\nv09EdgPYa4z50moHvt4YDyBxvXmIbN02QHqnbtJCcTocM3cTk/7Ld11v058nX1CKsJeW13fUYDWo\n71EKqFQIvpGb9qjxdrheTcC5VqHJKvUnRJ9GifJkgQxg5yHmjxC19YEfrLTL31SLNjb3Zns32Wrn\nMxafUAozcqvm7JWfVmoqtJsuFNdD5PzCjOYhhm661toH06SSJld2pkO9Zt1nwfQg05wTJ4P7NZMg\nie3ImMLk/pwD5zVcZkNwHi/n+VWzrdIyFmBMsw69rG2i9Rba9JhqRujYWXhD9J4lBvKMJU+qtRhT\ngiQIkgQdE53rcMRD6zNVGURJ8xib6NpwviHRvRZVDFjn3cxN6xjb6f7ja8D3ElPKU8Hs3UKTCpJq\nztBYgu7LC4Y537SLjYwPLf3/nET/1aBau4K/ApDHomsNsKgUqjr738HBwcFh46B8Hv9tZBhjzjpM\n/5wx5gT/A/Bz1W6n2glxpzHmdwEUlnaewWIo6uDg4OBwCcEsRYir/XeJ4G0+y97hs8wX1Ypq8ktF\nFw0AiMhOkNp0o4Jp0VMeJmRMU+uQ9hd64iSt00FsH1u6cQ6j17qtrVMpycc/rMrSBkqna+jWnbN1\nG1exmB9VKiwcsZ9hRh9VvjfRqPROdEEpoWJWtzv+sh54772qKjSzyv0WPHULy7NKuc32KfUX/Zdv\nVtqS0FspdJDoz8cO64Y8OYJMp1rLW+t9l0uH5ouZY3RxqIoBuj3lLiaIQ2eKLUPLqZIFU4VmwnPT\nnO1SZ+/DUF6hMEXHFCbnujH1x1Sal1ZjtSTVZjTHKJ/SSyOeBVdKYFWj11aNx8jUKu27hrfFx85U\n4YKO3WQ8VTtI6Rk99qwubydpwoJ/Lp85rk5h5zyB0znlHEGuJtHEok8a16vQ8e5OBuf5FppUHRpl\nCpRVv0Rtl1uUlh3JKN3bPqn9pWuftY+aMbrPWFnsvVZriE34DvEDWIwEd4gISb1RB+BR/7XORbUT\n4sew6C+3TUQ+CeANAH6y2p04ODg4OGwcbEKV6d8B+DKAjwP4VVo+u5r0wGpVpl8XkUMAbsbig9qH\njDFjK6zm4ODg4LDB8Bo41aw7jDHTAKYBvAcAlspIJQDUikitMebkcuufRbUq0x8E8C1jzL8s/d0g\nIu8yxnzhvEZ/kcA0aTxuf8YJ9fkAZoKpUS4izAn7Uyo8O6e6xdSo0pBNJHDk5P83kvAtEvev5pBq\nJQWoR2UqYd1HTbNSkFz5ItWl1BbbuIUbVe2aP6POBQlPdQsuCtzyQ0pn5Z5RhwJDtGzyNk0FCr3l\nTZV2+Vv/Zm0395SuX3P1Tt3WlFKr0qCUshmgpPsYKxwD/PYASypshvQ7IZzYT6pGi/5MEmXJCkWv\n+o8ttrjYbDEgAZ/bTOOWPAYITGGS2lLitA4rWUMBVmqsJGXjAACm4H/zC6swmQIlBWepVinEMP3A\nSq2HtmaadZx+l/hcMa3LieqsLPZulyjF0MlnKu0mVpzycVAy/e4knZ8wfac8FHSUizwHWe4RfRoa\n1jG1T2phbqnzfw1wzrbYfq9Ku8Dzgbk0HThXhIjcDeAPAHQCGAHQA+AlAFctt95ZVCuq+djSDAwA\nMMZMYZFGdXBwcHC4lGAWI8TV/rtE8FtYZDKPLOXP34HFgsNVodp3iH4TZ7XrbggsVw+Ro8cQ6UmS\nlC7IZuCch9i1TaO6VJttXzZ0RDe257+pdVvN/U9X2vMjGnqyUTe3267WkDRWG1Ar0IO6vfr0XhjR\n6C9PhuPlfg1vk736BFsatn3uorsa4QdLFJPXL0zxoe9on3pPaE6oue9WWl8jXenu8OkNYIbGlabw\nnS/UOaIRShTl9RsoB47ELJZIhQQnpu+Q9klTxAVASGxhxgf1A47Y8lo9Tbh+Iue2pTzqrhoScWQp\nmuLIgSMKigpNv3/Vm3PG3qjbMqOnvN0XwUKPMbVVCx19StflbdbZ94s5/Jh+tpfyRDnnjyNa/vHN\nnPFf7v2bokKTofqhW4h5GD6uyzlqpu2YE5SLCUDa6diJGTDTKk4ze9TQnSNVFCkKS5NJ+bjN3pkZ\n/UHhXFlzbFWVi6qGwXmXf7oUUDDGjItISERCxph/FZH/p9qVq53UnhSRPwBw/9LfPw/gqWX6Ozg4\nODhsSJgNn1d4AZgSkVoA3wHwSREZATC/wjoVVEuZ/gIWE/M/A+DTALJYnBQdHBwcHC4xbOI8xHsA\nLAD4JSxmRhwFcHe1K1erMp2HLWXdVGDxTC293+b8xGLRvz/Dm4fY0OpPby5MqNVYeqvuJBT1fz4p\nUE4h108EgKa9SrEU5pQezE4qDZPc4j/gxDaljeZe1f7eeohFqrYhNEamTMNNSlsK2a2VDlGlhLCd\nSRaeomPhNolkzGkSuaSIfm2wqb9K/yGPmGyIEk5ZfMMCDRaNkAjDTLFAhuzvQp6qHVa1A6LJiL6V\nVlJi0T5k+/U0Vpuus2hS3gdTd2OU38Z19ehYhW3fyrZwx7BlWo1eQ8M1BfuV4pcW8jbkPlxxZN6T\nh1hLYyd62lA9TPC5ptcFspO0EB7VmhkhGrprr34wRrmORE8Xdihd+/+39+bxdZ3VufCzdDRZlmXZ\nluXZlh3bseM480AIKQEShgI3DKG/8NHeMtzmprdwO1y+Fpr+Cr23abhtP/ox9YM0UC4QCCkQyEiI\nSSBz4sTxPMWDbMvzJFuyZp31/XGOtJ739d7SkS1ZsrSe388/77PPHt797vfo3evZz3pWyUbL5eSa\nmTKPKn4A0L1v2HcsjCklEVG90ekBTV5O9ok7N9r2k8O8R5lsIjZtoGuaOQuOgSE/V/Xg/wx0/4Ii\nRBF5UkSq6fMkEXlioCdzOBwOx/CiJ+1iNIlqRKRJRE7Svyb+v9DjFPoOsSavLAUAqOrxfJ6Hw+Fw\nOM4zjLbEfFVN8RsbGAqdELMiMrcnuVFE5iEUlp13YFs3zhHkvMJDh5O34WLDLa1GkZWnCypR/+WV\nvcvjiF5ku7ZSoiNbSH06iVSeHeVhrmLb8WQHvcoFRu9wtQvGoRfM9m3azfN6lzu3hsYOQVUMagtb\nunGFjOIrjXfOXEElM/dRh/YFyh2UC0hRmU0Zcsxnt0X9UUf7k3Uc27JJNakztxFtyUpWpkKLo59N\nR1gdpPe4F15px+WKClzouIPyAlkRCwTSaJlIKkpSsjL9pq+ssPWLyJZvj6krgxIu0Wc9QArZyUQP\nMl3cRjmCPODJw1BmhJQ7t1ebaLuplAzMSk+mRskWTY9R+wBIDVGKR+ttmfZnFW9pJ93b6dRGpjk7\nwwK/Msmobt1PZXEqQ0V5L6qJij9EdOs0Os6h8HcgS2ycoIoo/mlhoeXBxEiP+M4GIvIWAItU9d9F\npAbABFXd2d9+QOGimjsBPCci3xeRHyCn4Pn8mTUXEJGPiMgGEcmKyFXRd58XkW0iskVE3nWm53A4\nHA5HEhSK7ID/nQ8QkS8A+CvY/FQK4AeF7l9ohPgEgL9BTm36dwD+GkBKslhBWA/gQwC+xStF5CIA\ntyHnKjATwAoRWayqg26rwO40bPTND/8Hyb+XSu5hLvvvUnASO9Uw6v7i6t7lPZSHyO40LJgprbR8\nOM5J7G6LuoK0JexU00X5hpmKZHFP7ZvtCbtjpz1Jj7sivLVdkdl3b7s6k28L56Epd1BXV8LWeVRS\nLmEzRVzcqewuwzhGYX1HeI7u1fW9y5k3kfCCz1FGoqGZdO0ssOHotDF8JaE1JMq48Bpbv448hSma\nkgl0HRwZIUKbDVLl3MUlVBScokLOx9R1FHmSKXpwbkRONTPpLUiRCaCEjLP1IOUF8v3kSHMny7d3\nLgAAIABJREFURZHRsYJok03ZOQLnSJ7uk8wm0RAQiqHI6UbmUu7heusHJdcjmUz9zvczLfIDTo/g\nE6CNB5PXswtRc8go6DbKXaTz6/aVGAqMxgLBhA8CuBzAKgBQ1X0iUjCdWuiE+K8AsgAqVfUREZkE\n4KcAru57t2So6iYAEDnNv/4WAPerajuAnSKyDcA1AF6MN3Q4HA7HmWBUFgjuQYeqqoj0VGZKyQlI\nRqET4rWqeoWIvA70impS6s6cFWYhtNlpyK9zOBwOxyBhFCfmPyAi3wJQLSJ/BOCTAO4tdOdCJ8RO\nEcnA6iFOBfruURFZgWRa9U5V/UWhDezj+LcDuB0Aas7ARY7p0AkUULN4ZhoxSOWUynWAWJGTxCYu\nJP1IjLV3Wj3ESTPHJW5TNYdzEpOp1GwKTRnj2BbL8Zp6uV1I5R1mtt3+M8ufKqlJp4qKJgzs2afz\nZ0/1LhffYLXfYnFPwA9wHiLTkyxsCYQeREExTVoZ9m1mgYkZhIQUutqunelQIdf3IE+OqbSK6P6R\nSEafftSOdZURKLp7uy0fTTkunw+AkPJLd5G5975f2kZMIzMVt4B4fRbxVEU/yXVkOMX9S/SgNtCA\n5/MRzRn0bVeUC8r3toYs89hKj8RQcgGJSabaj0pXWf1NAEH+YGD9N4P+HrAJPAuK2ACc35NEdGYg\nuGHql2l6Pi63qbk1eZuY+i9KkXIcGJqCQqPZuk1V/1lEbgZwEsCFAP5WVZ8sdP9CZ5KvAngQQK2I\n3AXgVuTeKfbVsJsKbQRhLwDK/MXs/Lqk498D4B4AWCDl57Xi1eFwOM4dFFkdvX8y8xPgkwCQ9zT9\nmKreV8i+hTrV3CciryHnHC4APtDzHnCQ8RCAH+Z9U2cCWATglb53cTgcDkfBGIWiGhGpQs5OdBZy\n88iT+c+fBbAGwOBNiACgqpsBbO53wwKQr6/4NQBTATwqIqtV9V2qukFEHgCwEUAXgD8ZqMK0hJiJ\n6VTWL655yJRpEzE6XPewuo8SZknbsBIVALJUD5Gp1cXvNNXfwdXWkBKqZNF2wOikKYst1yyuh7j2\n10arXHOrvW5lS7ciUpk2f9NqEpbRcUs/fH3vctcTobotqGpB6D5iF1zKbSRrOqbSUE8KRSDMGWQF\nH9GIJ79v1GbVh41+DXLgplM+W0x5EUXHikPU0avpQ1S5YP0WW59C18pUJjEA3UTHnWyyX131qu3z\n1t+19SuNUg6o3+pQDKeHKV+NVarTZ9g29fW2DfUbV+3QA5ZzqZHSVy6zSg1hdQ/7qcuSpbb+EN1D\nun/aQJUk5i0Kr6PL8vHA9GtAYZL12y6jl3GC+iC+t0zZLiZqlUrZyCWk+t1INPk++gPAKtzIVi3I\nGUypthLkm75o91aW0euC7aS8jW0H2VKQfxPlQyHTyFGmIzlCFJEFyKX6TVTVW/PrxiMn7uwA8JuE\niO/7AI4jJ8D8L8hlQvQEb6tRIIalhJOqPogcBZv03V0A7jq3LXI4HI6xg+wQ+aqIyHcAvA/AIVW9\nmNa/G8BXAGQA3KuqX0o7hqruAPApEfkJrf4QgJ+o6sMi8mOcHvEtUNXl+XPdC2A/gLmq2oYB4Lyq\naehwOByOs4MO7TvE7wL4OoDv9azICzK/AeBm5DIHVorIQ8hNjndH+39SVQ/hdMwGsC6/nMQa9lJM\nqtotIg0DnQyBUT4hphUBjnHpcluuJ4FcWh7uUXI2u5DYocqqUC3GSfdFRXaw3c9YIVaudtFMNCnv\n2xeueO+0xPXdpOjMtCRfSBcl42f/zRR8xXNDSoct2ph+zdSY2rJzmykkS99jHcpUmp4KbdW0iahV\nosykzujeqo9RNQimlli5uINu9MLQNiygoNjGjelbpqbmGh2JQ3Sjma4rt8Tx0xCoEokGfJQedvkc\nfE1cmQMAaom+IwWqNtD1ssKWlaH1NsbkQkto1+2hg5VupcoQh0LLvt5tKriv6IfE9CdRyrq/PjwA\n9x3b8i0wu8CAmmS1K91bucLoTwDQfVZJRRuojaz63U1vefgHnUbX1odFkmUhJfkXkXUc28P9luoc\nsGq4jBXA9D4lUpken2GK4EnPU9YZUbmDjaF6h6iqz4hIXbT6GgDb8pEfROR+ALeo6t3IRZOFoAG5\nSXE1kh3WLiUTbwEwLv9Zcs3S5PI4EQq1bnM4HA7HKEFWdcD/ANSIyKv07/YCTzcLAD9p9JlfLiJT\nROSbAC4XkR4Ltp8B+LCI/H8AHo73UdWMqlbl/01Q1WJaLmgyBEZhhNiZEtXFNQz5Qb641D5UT7Qn\np+aUQGAqPbhNqLZI7viRMJIvLqZj0fv4tDxErodYOaswt6HyOnuaPv6q1barvtgayfl/nG/YRDUQ\nJ0y0J//OnWE9u+KZyZZpJf/pLb3LXY+TmRA9AXc+YsKS4hmRbRjZ0BVdOd++YBPw4EalRM38tL87\nNIAOchopApIlFDUdo8iI8+Euucy2WWvv5TU2KefcR24jR73XkbhjL/1toGhGlka1+JooL5Gvg6IT\nucysgJVqDWIj5T3utBp7QWQNQI/YvZaZVLOR8/omkYH4mg22DVu9cZQdi6c4aqKxoeyZyDl3fA+X\n2LjQF0wQdhpmc01BqhHJ56bcQaXIWjhqXUz2fkBo3M5sA1sK8j2nZd3Ilmw0RpjRADCJbes4OuZc\nx0FEzrrtjCjTI6p6Vf+bnR1U9SiAO6J1pwB8YqjPPeomRIfD4XD0BT3XaRcF55cPN5wydTgcDsdQ\nYiWARSIyP2/5eRtyuYIjDmMmQoxL2JFDFxr22NMSW7SxeKaS2L5aYpZ27TS6I652wXmQVQUwoFzh\ngnFil7nxV0b0ZdNGo50qao0eOlVv+7A1Wfkko0bHTzceWduMQipZHOZide037jhDlGvnQ8/ZRnSO\ntn9/xs53HT0YRnlVmYlU+WAbiUCqUzqL6T62JmPLs1gJxaIVFp3sM3o5EJNQfpluXGfrWZCzORSm\nyBz6bkqd7V+/3pbX2XJa1Y4gVw0I6WKmM1lg85z1NdOGAY3MtCEfB4CkCYeYglxHHhw15G3IfU30\nnlxL1TgQiWx2JwtTAqERb5MiyAEQiY6I+mV6MrAEJKq5OtmCTleTyAhRtQ2mM1P6KsglpaodgWAq\ntmrjBGamoeO8y0HCUOYhisiPANyI3PvGBgBfUNVvi8inkaualAHwHVXd0Mdhhg1jZkJ0OBwORw5D\nlYeoqh9NWf8YgMeG5KSDCJ8QHQ6HY0zhnL9DPG8wZibExkiwxbQnU5vHiH1jG7h9xOIw3crVMWIm\npHKSHSCtQDCjlKzbGncYBTTzWqOTmvaEKsESolkzlLtYSvQpq0w5jzBw7yfKs3UV0YkAxr/Vcvs6\nthrFxnmI3cdMLVlMuZXdB6y9Uh6qRIuqjM4Uakv2oN2EomnWwVnKWwy6minI2D+PKMFsK1F8fI6J\nXMnC2qT1dtOF6a8o11E3maIze9TubdEssgRjVetaoyCzJ4wW42sFEFLMXLGCaUC+h9xGpveYMl0f\n0bKk4gxAxYlDazM7bvZVYr1o/OjTTweHEq5wQX2na7fa7i+ZZV7xO8kKjWnZSCGLYymFfdmWjSuT\nMM3OOZR8PxvCAr9BRRamm7dRwjL3OytWa4z+VG5rrJbm3M6tpAiO6O3Bwki3bhtOjJkJ0eFwOBzI\nm3v7hJgEnxAdDodjDMEjxHSMmQkxTsxnWzemU7nyhRBfMpfEknysrcRA9VUg+KW/sALBU6cZZbJr\ni1F8i68xOqp6gdFMnc1GG7WfDMt2FFdEyrsEZKYRfdpECdfj7faXLjV6R9aHtBGDq1oE9ClVxMhM\no0oARGXp8cjpIJbl9uxDxZED+nSSUaPdL5slV2a5WYCx2hAA5E2WR1z0kpkEBLJjUk7qbqKLiY5U\nohAlSqxmlWLR1OQSKbpqfeL6onEpalAgTAQn5WWWLPAyb7cqJfrGG4nbB7Qhq2WBUDHL1B3Rk7LM\n/Al1DVXBoCoj2TfsfEVLw2ogXNGDaVIhdWZmMtmtcf/SGOneE1rLBfQ/mVrwcblPeczwvkImBvF7\nDyVKG832Y1e2M+TtefxVEXXLFHRtqOIOxixR/rq5HkMDf4eYhjEzITocDocjB48QkzFmJkS2TovB\n6U0spGEbuOmzqabgcftiNjnyxQFP4+FkHznON1x4efItaDlkT6YstonzEMsm9l8zrWm1WY1NuCz5\nRX37K2YcEZt7M9JENVJu1yH0BNzxnD1Vl14Unjt70qKCoskUVU6mun6cR0gGyZkrTaQSCGeOh6Ka\novUb7TsS1UiZ/UEQtsgicYhwTiLXwotENdmVdg6Q8CfzOyak0i1EJaS4xmss6GAxCuXpFZHYpuPH\nK3qXizkyX5oSNXeF9oLKn+ka2dAdDVYfMzOT6j3uM7u1omXWJ9k3wgi6aAqNJ67nySIZvtbgfhqr\nUDQhHOsym0Qru6jvWFRDER/vH+xLVnwS5coKsRLBD5zHyTvea8d61KraZQ9YvxfRb17mhuOne7vZ\nHjJjoJ0DKgVbMJwyTceYmRAdDofDkUMWTpkmwSdEh8PhGENQHdJ6iOc1Rt2EOIXeVx9NLu8GAJhD\nKUkssOH9WXdx8qjRXFy6jXMS41zHatJXvOnLb7bzpeQhnqQcQ66HOI4op5NRHmIaZcrWbZUXGB3V\nQTUQS2ojpVEe3Uciy6iMJG4XVGDotuXsdhOmdOy2dpTMJ1oMIY2UPUZ03S4T0hQvN4GGksBG95MV\nVncfP24WvHC+Id9ctvSaTJTgYaqOQNZ2wjlo0fk5t7L7GaMaiy4wbj27lWr8kYCIhSEAkN1tA61o\nuo2/LLUrEIdMIdswqjjRtdfuQfH14T1gMEWXmU+UIlGu2kT5kDQugpzNsujPColq+BqzR61dRfTe\nIqBJaewLFy4F0P3U87Yd9W9QOYNpTh6jO0kERLSotoQ1ZbWJ2jLVtmNqleshZo9Qjc8J9P6FhD7Z\nF2xcAEDRfKPDu14zkVMRCdUGGz4hJmPUTYgOh8Ph6Bs+ISbDJ0SHw+EYQ8iJavwdYhJG3YR4sil5\nfXt78noAmEYG80yBcv1SLo4wm1K50uhTIGRr1t5peYicXtZIAsDLbjSOtf1EmG/Yg0kLQ8qrhIru\ndh002nF8XbJStPIDF9n2263xxXOIVo3yEDs2EAVFKkFW7WVqiEIi6q18ebr9VNdeoojnG1fNtCPT\nr0VzrIOZPs2esA4tiiqGdG0nJSQVQS6aaefLHiRbLabV6LhBlY+tYYHgzFRT23btMTqzeFZK5YNu\nVrKSqjBSgLLSU8qp4sj1l9o+W+ttB8p14wK4gTozyqHsYgp9Kd2rRusTWVJH5zNrMd6XbflKPhH6\nO3f94AFr+zWW0yhUtaNrg6mcgzzUDvqB7A8LBBddTcV8yQ6te621kdsVKKE5e5BUw8L9CUD4uPus\nT7LN1teBKptyV7v32e+xaKmdm8cVAEiTXXswfvt6FXBW8HeIaRh1E6LD4XA40qFu3ZaKUTchdian\neJ0Gjv7YyIMjPo7wWCBzgAKoKno43LYjPMcVV9vTf8cpaxjXXJy7LLn2X1ujvdw/WG8v6udcHEZ+\n7FwzbooduHmHPb2Pn2VR5IkfW42/8jl2rBPP2VNq9dsi8+o2qhfXktzBndvIUaa6LHGbbLQvR4Wd\nWymSY7EN7ZOhdukOyh0jYQlHgUAohOCctK5NJqoonmM3t/MNU2LxsYJoMToHRwKBAKna+pcjIKUn\n/24SYcQiCo7sOrdYu0orzJGmu4EENpQXyiIgbnv3wVAwJRUcuSTX3+t6fHXvMhu3s0CmeJHRLNnH\n0mu/dj5DtRWJbcjMpJxPclPi/tEo0VdWrLWmUJTGDkwspOoisVYgRqKormNDyI6Uvt+MxuWUueyU\nUF8HtRxPmCim5FKiktiBhu4NAGSI5eFc2a6GFLrLMWQYdROiw+FwOPqGR4jJ8AnR4XA4xhAUQ/h6\n8jzHqJ4QOdfwUKiDQCs5fKV4TAdCHM5pXLbUlsdV2kv3yVPSR1kbpTex8KeK27jF6K8JNUbLLVpO\nlF5rSLcw3VPI+vJZyRTtlM/f3LvcTbXpAAQ0INN6QrmSwjl0dO4uykMsfwfZrUUouclyzDqfMiPs\nbqKNOh9+uXeZ6da25y0vsOjK6cFxO8iSjvMmy353mZ1jkwlNmM7qIqqRrzUzNTThjus89h6LLOEC\noQjXdST6tXtfaH5e+o4ltjzXBC+cF5il9naTrR7TrQHtPImoPkR0KlGYgVCJRTkdtk3JTZf0Lnc9\nbVR8LGwK+o6WmRIMaNIT9mMRorklLjhK97Nrv/Ud1//s2kWCKRrHLIqRB1/pXS5dFBpvd79oFC/T\nrHy+4ioyQqffQdcbZiEXj5kAZC4PEpEF9PQgwyPEZIzqCdHhcDgcITxCTEdR/5sMPkTkIyKyQUSy\nInIVrb9ZRF4TkXX5/98+HO1zOByOUQvNBdcD/TcWMFwR4noAHwLwrWj9EQDvV9V9InIxgCcAzIp3\nLhRsyVbSf9lAAMB0KqVWRYwFu09tIKHc/DqyBotYypoZRg+RyCy18kZ5hT2fjJ+ebKvWvDdUns18\n13xrI+UhdrdTHhpRPW20f2mV0XUdpCSMabViVsGdSE7oVKLb2om6q/x9U+m1/mxtsE9QAaB8T+8y\nW7wJ07W0fecmUplmrN86VlOlA4QqSlbLdr1eb+uJYgtqORL91UnUb+eu0KOv9OIaO9Yp6vc32bV3\nfNvsvZiW1RZbLr2MEmIBtP2CVJTUJ0yB8r3pPkZULNGcxRdY+9qerQ/OUX6z5fJ1bTK7N6bcS66g\nShZkJ9f5qzV2PhpjGv31zMwgyp9UnMXzSBlKlLJ2J1eV0CisKVlg9Gb766YaLplv52MFMtP32UZS\nDRM12RX9voqvN9q6/WH7jbCqtXO99VtJnd0nruDStdN+E93HInu4l02ZyveWay4OJnIR4hiZ4QaI\nYZkQVXUTAIhIvJ5NPjcAGCciZaraR1q9w+FwOAaCsRLxDRQj+R3ihwGs8snQ4XA4Bg/+DjEdQzYh\nisgKANMTvrpTVX/Rz77LAPxvAO/sY5vbAdwOADUFXEYsUGMFaktyPnKgTJ01y6LZGdOTR1NpH7V6\n5ywx+mRWZ7KstWqOUTdcIJhRvSC0bmvaaA4DnJjP6CAqlVWmTN3t/YUVsJ378bCqQKAypEdLVgMy\nVVh5xw22/W5TzWUmhe0TLthK1Cgn+bMysItUmJz8z9ZZcfI/t50Vh2zjxcnqmWmmBuSE+7J3mSq1\n/RFTVAJANqLAetc/a1UNuK9Ll5oFXefO5OLEAFD+4cutLavre5dLlhi1ytZ0TFt3HrHjltK1xqYJ\nWaoawspLpj07mNI7bLRsCV1H8busmkvzP/wsvI7LyKqOFLntRG9zv2cmkpJ5grU9UIwC6D5s44Ep\nXqZJ21calVr+tgts/Qtm7xZU+agJ1aBtPzQFahFZ9HGhbKbcA5Up2+ItnJS4DRAqtwNDhSEM4zxC\nTMaQTYiqetOZ7CciswE8COA/q+r2Po5/D4B7AGCBlPvtdTgcjgKgqiP6HaKILABwJ4CJqnprft0H\nALwXQBWAb6vqr4bi3COKMhWRagCPAvicqj7f3/ZJYPEM27jF5t7NlPLFghde7qB32hUVNoAmU9rQ\n7tArOUBNuzVg1uLk8PFYvb3Er1lE5t4nrcG1ZJDdHUWX5ZOSbdL2b7BctdqF9gRbezXVXqM8sJlv\nn9e73Ph0WO+vcpFdcNsee0ovq7Wnac6na//Ja73LQU24qK4iW6DxE3f5O8wAuv039kwU5HIR58NP\n+N37w1y+7Ak7P5twcxTKgpX210z0wTl+xbMt0oittzjC7KRakmWLKaeNHsnbV5JhOffbK3YOAJC1\nRFFw5EHikMwMYx44Um5/zc4hFXaOkgto8AKQmTa2SohGaXnWRE5ly0yUw3mIHAF1fuNRa0cUZXHU\n3r7ZItJSam/pUhIUkYKt7WUTrMS2fEE0RdEtR+xll5lKrnMjOfRzDiP1J0d7QCi44fGqdI1swl58\nqQmQii+wPybBuePfATEn3cTmjPtdE/Tgy09iMJGWe322EJHvAHgfgEOqejGtfzeArwDIALhXVb+U\ndgxV3QHgUyLyE1r3cwA/F5FJAP4ZwJBMiMOVdvFBEWkAcB2AR0WkR4L3aQALAfytiKzO/6tNPZDD\n4XA4BoSed4gD/Vcgvgvg3bxCRDIAvgHgPQAuAvBREblIRJaLyCPRv/7+3v9N/lhDguFSmT6IHC0a\nr/97AH9/7lvkcDgcYwdD9Q5RVZ8Rkbpo9TUAtuUjP4jI/QBuUdW7kYsm+4XkUhK+BOBxVV01eC0O\nMaIo08FAWrWLKaEjU1CTkMFUwkwysWfhDVfHmJkkG8qjeqrRdVtWGRWyaLkdgMU+J0g0MG6KbVNS\nacc5+DxZkQEYT3lzUygf7sL31/Uun9prNGLrKhK5UO7XuPcbPSMVRpcBwO4HrbrCgv9mQo9WEiww\nFccUJtOypYvDm9C+zihBFlW0/dKs40qJrus6ZH3YSX1VRKKRsiiXr4NoRybDWGzT9Jzx3mVEixVP\ntnvQRtcaW5MxFcsUMVN3bAOXKaP2vt3oYa6IAQDtm4xeZNqS6UGma1tJpFJMfcKVREresjg4R8eK\njb3LpZfYYC4jwQznSnKeJiNz8Rw73yth2Remsce/1SjFDrq+poetkkQZ1fzsZPozqgaSVimkk+h3\nFv4wxcv0ckC5x/Z5lxilzHZt7dvslUQ53ZuOp+06gnxMCrH4ngNA032WbcbX3v5MVD5nkKB6xnmI\nNSLyKn2+J6/l6A+zAPAflQYA16ZtLCJTANwF4HIR+Xx+4vwMgJsATBSRhar6zYE3v3+MugnR4XA4\nHH3jDCPEI6p6Vf+bnR1U9SiAO6J1XwXw1aE+t0+IDofDMYYwDHmIewHMoc+z8+tGHMbMhBjbpbHq\ntIzEa2zd1pacXhYoSy9cYrTjwf2hQg2Hjb+tmYJEMEU7maysmg9Yg49sMGqpInLNLyeFWhvlLo6j\nnMYKUiLyL4FVe22/tjzE2INu9tuN5uK8uRKyDevcbqpNzofLUCFVtj8DovxBrixBdN+JX1u+WOUV\ndnMyFcnq1Y4NRg8CQBfRixmu5kA02Xg6LttldR+3AcA0aVwkuWW10cJV77VctxMPW59yMWbOBdSD\n1m/F80IFaNPLRNNuNhpQKllKbddUSnRmO9F7ZZz/2RAWwGXquPkRo/uYTq+46/be5Y5v3W/noHte\nQUV5tT1U4TLtzdRz2ZXW73z/mQ5n2jGudlH2iRt7l7t/TTmfZD2YmWV9WkT0fWBzx7ZzkYqb6WK2\n/itPo2LpN6yNyRVDTj1glncAUMZWc9TvJUsnYpRgJYBFIjIfuYnwNgD/1/A2KRnDojJ1OBwOx/Ah\nqzrgf4VARH4E4EUAF4pIg4h8SlW7kMsgeALAJgAPqOqGIbu4s8CoiBBLS4A5+YdNFr9wDcM4D7EQ\n1Nr79LCGYUqZso4+vHgrk7UImFyXfDB+QmdUzw+fGou57h3lZTXvoEiODK7ZqUboqb6TBCul0Tk6\n6AlYuylqoty4IjLY7uKaghRxZbvCp+8JN1nuIz+lc7RZQTmQHN2Wf/x6a9+D9p6/IzJnDgyhKZIs\nnW3ihVOrLGoqo4iW6/jxE353Z8gElC+2Np5aUW/noMgscDChCKiFhEUVl4aCIL72tnq7B+XUxq4T\ndt9KKOIvo+g9cFVpiepp0tgI3F7o2lvuNN0ER6c8TtpfMbFW+ZtmBudofNRySSvqkqMhZhJAkTmz\nEIFjEoCT/+vnvcv8O2Dm4xTlMU4gI/wTj1CbqJ87m8MfcScLx5gl4NxDigr53nI9Q84v7GyOlH8U\nuXKu41DxmkNJmarqR1PWPwbgsaE56+BhVEyIDofD4SgQY6ic00DhE6LD4XCMIbi5dzpGxYTY0Wm1\nD+N8wzSwuTebeO8i17Ll5uccgAU6E+l81dE7cM5D7IosoXpwioQwJUQbcj3ENqKQGl4K7b3GE9U0\nZak1hmnS0knJpt8sXmC6rIVEPABQscSO27bd8q+YJu0gqmnifzWj584XLIcx/hV2vG55c2zIzJRX\nBwlxKt9plNfBv3mkd5lzNmOUX0B1BCmnjU2mg3wxElV0E/XL9F4n5b8BAOhzOeVasuikZT9Rm3Rv\nsiz0iY7L+XETb7H8wcP32euXknF2rJJSomVJVNNNY++0WoUkgOExwEbWbVvtOsZTnmcn5RGeIhHY\nuFlk9QZg0u8TfbvS0tFOPm55dtwPTKu2vGHnlh029gCgk+hfFqYcJwu8ypl0bspJLSehGdPsPF4A\noJXOz0IsFl+whRyPK87B5X05rxgIcz47Kb9RJyT/zRgMDKVx+PmMUTEhOhwOh6MweISYDp8QHQ6H\nYyzB3yGmYtRNiKwsZZQlF4U4DfMs5Q7rSBi89EJb5koZu3YarXHRtaFidPcGo0xiOrUH46liRGmV\nNfLkLlMVTqJaasVlofq0mKjGo5vs4jtbTclWTdUcyiaaUq64MrkCRyauKsB5hXR+VpO2Et3X9ZVn\ne5enfNR4Z+0I1XWce9ZM1NT4udaPTKUd+fHm3uWqedahXZQX2NYYyokznHtG1CHb2TGF2ULXMeVj\nvWb9aH/Jkk9jtWwX5acJ0aTlVKWkmNrBlOv45UYvZiaF1C9XHdGW+t7lKrLo43qYpTcYrdqy4cXe\n5XFEQbZHKlzu33FLjLrLBlZzds8bV1heKIP7sOPFsGrbqXWWG1o8Llnx3ExUfBONBT4uV1cBAKF+\n5IoTVVQztJOug4+VmWiU6annLEe8JMpDrLzWFLOZufY7PP5Dq4lZTOOPc0HbiCbnKjX8GwSAVq5q\nwjiYUqj1LOERYjpG3YTocDgcjr5RaF7hWINPiA6HwzGG4BFiOkbdhJhWIDjGHrJfm5ZSgYtVpjvq\nbbmOaNVxlUYnHdoW0lG1M60xLSesMa1kG3Xc8oYxfSklupOqkVWmTKsCoWpwHCtOp5qQDrznAAAg\nAElEQVTakRWA2m1tatxiFOsEsnrj7QFASE3KyktOzBdKes/Q+iP3rU9sKxAqJIto/yYyFSirooR4\nUkRyInfzWqM/x00JFbWcBM0J2CWk7i0mheI4+ktx/H7jzCuIhmNDAQA49RtTTjYTFdt+wmg8psm4\n35pWG11WdS2VVwFQwRQh9U8r0YtcIPrEv73Uu8wUXSsl9aepnQGgjGjH42tMAczjimnH8W+eZeeg\nBHY9FSb/l5MKmKtS8HUweLyPm2L9HtuqMZV7ksZyFd/nlNcCjc/YHwB+bdEe2QueoH6Yepu1fdws\nU68KVS85RoWZGdyO4uiVRDf1e8dJW26OKm8MHvRMq12Meoy6CdHhcDgc6VAFurP9bzcWMeomxL6i\nwjQctIfAQFSzj1L+is7A9fXIfnrZTg+qE2rtibmKxQixpVPPuSmiiKM3jiI44mpkw2F6kuZIjp/8\n2SybRQlAaBrOEVsjRXIZyr8SyknkfMps9ITP4pTO1jCq6AELYWrev7B3ueUlC61LKa9LImNyNu5m\nE+ZOEkKUk8k4W2y1kyCjmyKQzGn5cBSF0v0YR6Ka5lctcmDj9VbKOyumaAQAKq+zCCxL5+DIfsoy\nS6jlaLP1qLEQ1QssAs5Eoiy+ByfW2/48TlgI00X3ie8BW6e17QmjLGY1Oik/ksd1+0nrax4nPC45\nNxIAMh223QRiMThiO0F9VU7nCH4TNH5ObApzcLmNzU/W9y63HE4WvKSNd2ZHmAGJwb9hzqEcTOQo\nU48QkzDqJkSHw+Fw9I1uz7tIhE+IDofDMYag6hFiGnxCRHqOYhultKXVM+wLNTOMimmoN8prUtLG\nCKk/FtV0pFCQQEjFsBiB0UKUJ+/fFAhA0suBMPXTTRRbILCg4zJtWX6JKZaO/NKsuoDwGrOdyWKP\nTnrZcfjnZgMX1smz802sCxM+W6maRDl9x4KFkt+aKIZt45g25HvDFnsAUEo0coaowyNEsbHI5QRZ\n5jEt1hpZt7VTf7GwiS3LDj5peYE8TqaRxRpT22WRoIOpQ74fEy6yAc8CphYSEBUVW5s4/zO+l3xd\n/FqA+7eG7MuaS4y2Pkr1LadcQuVnADTXWz9ylYoqqj7B5yslYQtbJnK/1SwLbeeaiP5lepnFSZOp\n7e2xrV8C+PcIABOpvTxOmoZMVOPvENPg9RAdDofD4YBHiA6HwzGm4KKadIyZCTEuEJwhsR3bqnHl\ni4qUIgpc7aJhn1EnceHgKqJZ+TumaNhijYsCMw3IKsbG3SGNUjXDVI3T33dB7/IBKoA6nQq2NnFO\nGikGmRKM1aBMbbUdNlq2gvLLWA3KVGxxeXJlByBdkcdKWqaB2cKuYpl17oFf1vcuF9WEN+3k86Yy\nZOqw9k2W83fwBVNLVpEClKlJKbJ2MOUJANNutrzExpdNmsy0XCVd6xSyXmOKLaa8J9C1jCPlb+tT\nZuk2gSlXUpYeJjswrmww7d1WMQQIlbcMLoB7kNSkXKD6CFVFYTUmKyXjdnFlkinvsH5reMBs+Wa8\ndU7v8l6yrzv0Spjjx8rmqTfaPsdftPbW0tjf95TRy9wnTLfGdHga5cq0J69v5soZVGWG723lrPAP\nBfdPM4197tPBhKq6qCYFY2ZCdDgcDkcOHiEmY9RNiGlONXGdxDQT8Fp6b9+c8k6b11eSxmVypJY5\n0GANuOovlvcu7//FNmsvCVP4KXL8dHuK5CfuODrhyIyjQsZhqjvIYpTQBcaOc7IhdNwpr7Yn3Ylk\nqs3iiZN7bJ8ucpQ5ts2MmicvDDuII1/enyNSfprm/jnx2M7Ea4qdRkqj2nM9aFx/JHEbztPj3Lip\n11NO4LEwktv3iIlfWCDB7TpB7Zr6gUW9y0d+tMnWXz09OG4T5yhS/l7gCkTtDZfJBYjacZQiLiCM\nSGaR80w33Ru+b3w/ayhK57zXiYvC+8yCm0lX2TXue9BEUiwa4uvm6CuOmDjq3v2Trb3LLChqpX5P\nq5vJAhkeh/E5j1COIkeSlQHTQWKb6y1H9OSqg9amo6HwZtrNdb3LU7LGlAR1SV/CoEHhopo0jLoJ\n0eFwOBzp8HeI6fAJ0eFwOMYSPA8xFaNuQkyzbkujSAGgkXQF08kbmsUzleSiNN3cwNBFjmOHorJm\ncxcYrbL2a1Y/bepco26O1VPNxLl2Ek3hNFiQE4MpUM5hqppttGOGRC6VJCDZ/WsTHExZEiZdssiF\nzbOPE7XFIiCmkJjinbw45K1Z5DL97eaZt+WHW3qX695i4pfmfXZzmW5l+orbBIS0J1NpTL8yhcV5\nYEV0TbsoB5Ip5Nxny+3LBHl9RreVkX1ZB+XWsYjnVH1I9wY1Jul6+bjcv2wnxu1gyvNUlAPHxtZ7\nX9iLJNRS/h/32z46FufodUQ5rbN/b4ldB1GrbY12rFqyueOcWBZbMR0NAEeJwuT8ykOUexoIXqi+\n4Di6Z2xNF1v/daQIblqINt/znBmF829nxw/MHH7cZLJJLA/t87roFcVBolbn3nGpbfS95zBYyFGm\nPiEmYVjyEEXkIyKyQUSyInJVwvdzRaRZRD47HO1zOByO0YxuHfi/sYDhihDXA/gQgG+lfP9lAI+f\nu+Y4HA7H2ICnXaRjWCZEVd0EACJy2nci8gEAOwGcOu3LAWKOibyC+ocAMIkKOrSQ6GsXifC4TiLn\nJJIQDMdMdHeavdu+3UZzsRqVcw8rJhoNwxRZliggpsU62kIqtbTcgnyuKpA5mmwhxXlSjIqpRp0x\nPQeEtNGh1WFFhh5wrmPLfrt1TFMeoJp5AFBL3+1fYZRtxUQblg0v2T7Vc41enE0U65HXk9sEAN1d\n9sPvajMFIF9vNdnL7VtR37tcTBQZ17M7dTAcmrXXmHLyjYdM/Vo9i85B+XvrH7RrnVZnA4vHBQCM\npzayUrOblIzFZcl0H9O9TJOyQhUAptB9O/WQqZ+ZgjxI95xpb6Zo2QKO8++AMMewrcmusY7yNxvY\nPo8o4dnvWdC7vIOUpACw5Atv7l3e9+21vctM2XNNSqZJua/4Ovj1AgDM/bfbepe3//73e5eLS6m6\nBucMs83itPGJ67mGJRBSvyWkeN7ypVcwFBjpohoRWQDgTgATVfVWWj8ewG8BfFFVHxmKc48o6zYR\nqQTwVwD+brjb4nA4HKMV3Vkd8L9CICLfEZFDIrI+Wv9uEdkiIttE5HN9HUNVd6jqpxK++isADxR8\nkWeAIYsQRWQFgOkJX92pqr9I2e2LAP5FVZuTosfo+LcDuB0AakafNsjhcDiGBLkIccgO/10AXwfw\nvZ4VIpIB8A0ANwNoALBSRB4CkAFwd7T/J1X1NMpHRG4GsBFAefzdYGLIZhJVvekMdrsWwK0i8o8A\nqgFkRaRNVb+ecPx7ANwDAAukPPH2Mk3aV2I+fxdbvPWAaVWmP+fNN6ro1MnQ5X/qVKJSOoi6I8s0\npl9bSABYU2FfcCWAw6RQBMLk7wNr7btiurPHSb1YRxZXDaQqrCZrsIbVoSS3eqrROGyfxmq+Y0T7\ndJLdVdMR69DaC8NKFMe2Gt/MhXW5AkQDKfhYkcvJ1EyRxf2TKbZ7ML7OVIpv/NyS6WdfaQpHpklZ\nUclJ3dlIAMw06YQao8NYIcnHnVhtbTpYT4V8J4eEDRsksM1dcbfd3L1bjb5le0AeF6VEf2aKw3Ps\n/IkpejOlNpaP7bHBOPMS+4Ec22pjI6geQcrQtKorufPbtR96zRSVLc3WV+Xltty63VTDcb9vu9uy\n1Xn8MIXJ6ldWA3PVFkb7yVDF/dq7/r13eeJk658uKk7MVD4Xup600H5TzWRn2HY8/CPDFGrrUeu7\nruSa2WcPHTqVqao+IyJ10eprAGxT1R0AICL3A7hFVe8G8L4CD30jgPEALgLQKiKPqeqg2wuMqNBK\nVW/oWRaRLwJoTpoMHQ6Hw3FmOIt3iDUi8ip9vicfmPSHWQD20OcG5IKfRIjIFAB3AbhcRD6vqner\n6p357z4O4MhQTIbAME2IIvJBAF8DMBXAoyKyWlXfNRjHTrNui8GCG84fnDc3ef1BCuJnEBE8i/IT\n4yfYU82a+B3nITYdsghh9nKq10e5f/tet4YUR3eMRQ78ZMxP6dUL7Lg7nrJxufDDZiG2+nuWZ1cd\nBnI4edQ68hh1xMLfsYTMQ2QmHeTc0QP3gU2hkTT3SS0JKTY/ZsqmSdPtWJXTqdbgDrJ6o+s+ejT8\noS+4wi5m008sKiwn4oX7t4gCqBLKFzu80+7H5Jkha3PykPU15/81bOWcP+s3ZgtK7ZJOy4E7djRL\n37Ukbjdjvo0lzuvjiPLQNotOKqvCCJGjkNLxRbTeInA2suZzs+Ud51OyuTsQioVY5MSoqLRzc1TH\nLERRpHhoa6EInCJUJT6QcwzZPo/HJR83PseC64w9OLrFouM2CoLZBL71GBl1U95jxWQbM/t2hhF0\nV5fts/gaG698PwcTCj3TCfGIqp6WJjfYUNWjAO5I+e67Q3nu4VKZPgjgwX62+eK5aY3D4XCMIeg5\n9zLdC2AOfZ6dXzfiMKJUpg6Hw+EYdVgJYJGIzBeRUgC3AXhomNuUiBH1DnEwUKh1W4W9gw8oQrZx\n49xDFtKkIaZbmBKMqc4elFWQkGG7nbxmiVGhJZSfGOcwNe4w0QELKVpbbJkFIUwVrb/PaFIWZNRc\nZPX6AGDfahOqsIUdu/8fOmgXO7mD2kvsYklpSAlyuw5sNZqNKWW2XjtxyJYrJ1mHMp05/9LQ3ovp\nsymz7bh7t1sb+T6Pr7L7wQKiE69YHzQfCaksFly1bSeajI7L+/A9r61Lrh4CAKdO2ngIRSe0DY0N\nvrd7Vlp/BlaDHWFowG1pPEz2cDSWi6kiC9N9x48YbV1ZSQKgqCYli294uYYs4eqf3IUktNE47oh+\n23WXWd/Vr7a+uuBaGwP8+zhCxSMWX2e/ryOb7Y9DR+SMuPW5w4nfLbne9t/2su0/ZQrlgoKEdFQB\nJq6zyuOHryN+BTNYGMo8RBH5EXICmBoRaQDwBVX9toh8GsATyClLv6OqG/o4zLBh1E2IDofD4egb\nQ6gy/WjK+scAPDYkJx1E+ITocDgcYwjq1S5SMWYnxNjKrQesMmUFHlOKTL00NXYnbh+DKdP9O40j\nYWFhTLkmbT8pUp4dPmwDe9Z8zrMyerFhFRXDJVVjmrqOc82AkEZedKXRUYe3mWqvnJjc2ouNcu0m\nquiNV8JKFLMqre+qqq0Be96w6+Wiy0wVTqBcxe52a+DejVGBYLresnLr7JO0Gd/bYqoG0kR5gHzu\nlrBgBOZfYflmnGN2tMGug/uw+JRdd3uL9fXEWSEvz/eEq35sXmF2dtwuvtZl19l92rKS8lAvTM9r\nruig4rakXj5ORYH59QIXyuY+OfZGaBs4Z1FyYd5tjxtNyv3DFohzr7KxxNQ9ABzaYjsFdPEq+4Hy\n/iUV1uAD663fmbJceF34uqBxp43ZmVfbPdj6K1NrX/I+K6x8gKpVcL4x2/A1Hg7HaKzq7sHJZJfF\nQcFQ0bHnO8bshOhwOBxjEQoN9AYOg0+IDofDMZag8AkxBWN2QuTEfKYPOOGW1zNNWmviuICqaYts\n31iZysWGp00z6m7/fkoiprvBVSmYUomL05Y2Gt/DSeFchWPaDFvPCdTbXzU6iJVv4yrCHwtTcZzc\nzKidb5RQCakST+4yWiumhI/usw6bUJXsXcv7lI63RHCmX7nty37PqiMAwGvft2T8WTV2IQsuMMni\nkcN2o+fdYHzdmkf29S7zuGAaFwj7MU2xHFCNNBbKptq9YRs2IBxbr/7CaFKmFPlYTP2ueZZoUisq\ngR2bQsp9zjw7/27yEjl02ChFpsnZmuzYcaoSQeduDP0XAuqYfyOsCG5eY+2dMMN+OJufNZq0LcpT\nX/47RlVXUEHsxsPWRt5/5lwbP9xvrAzd9mJIy/J1cWI+06y7n7WUurk3GH3K9Hlf18HqWX7tUoiy\n/UzhE2IyxuyE6HA4HGMV6qKaRIy6CTHNui0292bstUAgENXso/J9M+19ehB9MeIcpiCyI9EJC2H4\niZAFElxTrvk4WadtDwULpXS9bBXGeVabn7cn29Zmi2a4vVOnWaRwcH+YD8dPtLwPCynqd9uHBftt\neTeJl+qob4Ew+tu50/qEI3C2z8Ph5CTTGUss0tjwwI7gO277rjeSndv5Hux61gYDXx/fGzY7B4AM\n1SRkm7KqCWT0TBZ0E9ps/dHD1tdx5MDt4ihiXKXdq2YS6JRPsHZcfB1ZhW226IkjQgDYud3258iT\nz83m8Dz2OXri9YuWhyIatiDLUmRydIcdl6M0zitlYUltqHfBhudsLPN18T7cxs0brBMX1Nl6jpbm\nLQ/zWNlCced6W+bfM0fW1VS7dPNKytOkaC8W37E46eLrrMFrnx8iVY1TpqkYdROiw+FwONLhopp0\n+ITocDgcYwkeIaZi1E2IhVq3sYCljOgPpgTZ3i3Nxo0pPaacgHRqlcH0IIPplvkXWgOPRbXU0qzm\n2I6K6Z16KyQRiIay2fR8yvkXGB3FFBuDz800Kfdn3B98D7ivWcDE4oWrbrTcw7UvGM/UetQ2is/B\nIg7u6wOWLhZQ20yTBjZ11KbGNeEgm15rn7m9fO3ZrDXkAFVO6Us4wcdi6o9zX3n8tVDVhQrKuQtF\nLuH943vAfcfCIX51MNs0I0Efzl9qA4BFNEB4HRfdaDeBK1ls2Wp/oHm8Tq+15Visw+N3ApWdObne\nNqxbyEIaElKxSG6acfcvrwhFY9wPTMXyufl1yrbXmxLX82/qQFT+9uJLrY1FVPVl6eX0o3oagwqf\nEJMx6iZEh8PhcPQNnxCT4ROiw+FwjCU4ZZqKUTEhlpQAs/JMDCtG+wLTL+1Eq7HyMY0a5bw8ppxi\nSictR4ypu63bks/H51i3yhrIFBIQ0lF8/rkLjIbp6EiuYsAK1TffvrB3ecVXqFEAjh8xmo3bPrHW\nuK01ryYrOGdSMWWmIAFg42Zb5uOWp7iLrX7OaECm1bZutOuLq4pwnwYWbSS25H7je8YUYhq1DQC1\nc63Ba181ReWSJdbZa9cax3bREtt381ZbjqlqpnKZoktTevI2PF55m5iu436kmsABpchjhhWV3Cdr\nXqEKJ2FBlmD/lx62hjEdycu8Pf8+liwOjztlnt3cE6Tu5P3XE73NtD7T2Vx1pbwszAVNy/nkexUo\noQncV/x7jqtdHGig3+c+G4x9WUGeDVxUk45RMSE6HA6Ho0B4hJiKUTEhdnYWHhn2gKPCDEUL/BTI\n+UEc3XSliB1iJxZ+Cc+R3Jp1tjzJzDaCyIif0Pnpsjl8gA1Mqrnu3drX7amTn9hZNMJtf/Dv7VF8\nAq2Pz3lwpy3POWWdyE+9aQbi8RMvR3PzLrQDbFhlnRXkadJ1BDmbtD4W1XDUxNfOIh4WAXGbrn5L\ncptOREzAkaMWFXI/NOyxk3OfsLCJr+NksgnQaeBr4uNyX3Fkw+MwdtlJy9lLc+bhccz78vl47MbH\nYvD5eHkbpZJWUVogi3gAoKLSGsOiHG5vkENLWihmR7Kd1qE8LgBg/cbEpgeCGb4fgUl+iqguZjE4\nwmyl/r1gfvL+gwFPzE9GSn0Fh8PhcDjGFkZFhOhwOByOwuGUaTLGzIRYFr3oZ2rrOJXpS6MUY6qy\nByzOiOkWpj+YzkqzkeMajdxepgQPRqKIaSSyYXoozUyaKR2mbqaSLVYsfmmk/plBIpk0I3QWqfD6\nuA+5f7nmI+MU7ZNGvTG1HQubmHJjKq+OrpHpcx4XK5+zNvG9ZZo7PifTdZe/1zrrxZ8eSGp6IGRh\nE24AaNiLRDDNGufX9oDHD19fTTT20mhaphRZiMOirjTqN7YwZHqR7yFToEwv8m+lL1P1bJcNroXk\n6V5caoP80EHbhu9TB439116w+xyLp9hukKl1biO/qmDwuOT7xIUF4nP2Rf8PGvwdYirGzITocDgc\nDleZ9gWfEB0Oh2OMwSfEZIyZCTGmcZhGGkc0GVOKrKhjSzjentV1W94Iz5FGWzF1w3QS0yppdO20\nKA8xrsGYtA/TTqxKDOpA0nGWXRc6/h8gOyumU1llmHaOoK0R5cm0Ln/HKk6ml5hCTLtuthYD0vP3\nVq+1Zb5PfM95X6bImFYH0utjrnvCaFKmRplKCyp+9FHcgJXQacpmptt4PV9HR2RtyGJDpv/T1ME8\nrjjHk8duSVgMJAAfiylQ7sN1G2y5m/otphDj33QPiovtgtOoTbaj47zQWCHLfRdQ/AeSl3m8XnqD\n/Y5WPmW/IT43ANzwu7bdbx+x7WKKeNDglGkqxsyE6HA4HI4cfEJMhk+IDofDMZbgEWIqRt2EmFYg\nuK881NZkgWMqmIbZUW/LU6MCpkxPtadQfHGycQ8OH7FlsdqpgeoyBp9/zhzbadXryRfPx+J+27M+\nlB5y/zBtyX3KbVy6xD6sWWsbxepVTkhefrHts/+A7ZPWP0yXMbUU02h8Dqbl+B7yveF+KERlDJyu\n/E0CF7dlejitOksMpjCZcgsoT1KQniywtixfL9OefD/5HDxmWG3L28dKTVZP83Z839Lsz2575UO9\nyz+9/mfBd3yNfD9ZPZ3Wv0zFcvJ93HamUPlYaX9n+FqPHbffEd/zSy+hTgDwm4eTpb5pCuKzhUI9\nMT8Fw5KYLyIfEZENIpIVkaui7y4RkRfz368TkRRnS4fD4XCcCTSrA/53riAiC0Tk2yLyE1pXJCJ3\nicjXROQPh+rcwxUhrgfwIQDf4pUiUgzgBwD+QFXXiMgUAAU+Q+dQ6BM3gwUL3cnl/gIhDUdM/MQb\nv/TnYy290JbZ0DntfAx+mItzmPiJlKPK8nLbia3Y+Ek6ra/iaGg8iSfSIlRu4+HD9oGvL7Y8435P\ni2LT2phWx48FEkAYefDTflq/83E5P5UR34OZcy1cePXl5NqIHM2kXVMsmOK2cITI95zbwuvTwH0O\nhPmDfL60Mc73mfuH2xGLRnj8lKcImDgan0e5f/dfY1Fh3Pa0e8j9y6wJ/z74WCxsixkGPhZHxGlj\nIw3c1p07w7HObWTB3Zn8LSsIQ0iZish3ALwPwCFVvZjWvxvAVwBkANyrql9KbZ7qDgCf4gkRwC0A\nZgM4CqCAkX5mGJYJUVU3AYCIxF+9E8BaVV2T3+5ovIHD4XA4zg5DGPF9F8DXAXyvZ4WIZAB8A8DN\nyE1mK0XkIeQmx7uj/T+pqkkvIS4E8IKqfis/Uf56CNo+4t4hLgagIvIEgKkA7lfVfxzmNjkcDseo\nwlBNiKr6jIjURauvAbAtH/lBRO4HcIuq3o1cNFkIGgD0xO/ZvjY8GwzZhCgiKwBMT/jqTlX9RR/t\neQuAqwG0APi1iLymqqc9DYjI7QBuz39s/xi2rj/jxhZAWyJNeMPjqq/jbAEA1AA40sdW/aNQsmCg\npALTM4fOsp2FnruQfk9Da0ob152+6YDOV4jAKr6+tOvNHavwvixAnNNvW/pD3AdGgae3s5C/nX21\n41TKMqOQfu8+g3GZtjX3Q6F9WDhNmmtn2rUOkG7NY17/mxSIw6eewDdfrul/w9NQLiKv0ud7VPWe\nAvabBYCqQ6IBwLVpG+dfld0F4HIR+Xx+4vwZgK+JyA0AfjvwpheGIZsQVfWmM9itAcAzqnoEAETk\nMQBXICE8zt+Ie/LbvaqqV8XbjDR4OwcP50MbAW/nYOJ8aCMw8tupqu8e7jb0hfyrsjuidS0APjXU\n5x5p5Z+eALBcRCryApu3AkipSOZwOByO8wB7Acyhz7Pz60Ychivt4oMi0gDgOgCP5t8ZQlWPA/gy\ngJUAVgNYpaqPDkcbHQ6HwzEoWAlgkYjMF5FSALcBeGiY25SI4VKZPgjgwZTvfoBc6sVAUAiPPRLg\n7Rw8nA9tBLydg4nzoY3A+dPOQYeI/AjAjQBq8kHPF1T12yLyaeQYwAyA76jqhj4OM2wQdyxwOBwO\nh2PkvUN0OBwOh2NYcF5PiOeLBVxf7cx/P1dEmkXks8PRvnwbEtsoIjeLyGv5PnxNRN4+XG3sq535\n7z4vIttEZIuIvGu42hhDRC4TkZdEZLWIvCoi1wx3m5IgIp8Rkc35/h3R+b8i8j9EREXkTNIHhhwi\n8k/5vlwrIg+KSHX/ezmGG+f1hAizgHuGV5IF3B2qugw5TnuojJAKQWI7CV8G8Pi5a04i0tp4BMD7\nVXU5gD8E8P1z3bAIaff8IuRe1i8D8G4A/5p3yBgJ+EcAf6eqlwH42/znEQUReRty9liX5n8z/zzM\nTUqFiMxBztVq93C3pQ88CeBiVb0EwFYAnx/m9jgKwEhzqhkQzhcLuD7aCRH5AICdSE9ZPidIa6Oq\nvk4fNwAYJyJlqppSv2No0Udf3oKcs1E7gJ0isg05h4wXz20LE6EAeqrATgSwbxjbkoY/BvClnvua\nYp81UvAvAP4SQJrBx7BDVX9FH18CcOtwtcVROM73CDENvRZwIrJKRP5yuBuUBBGpBPBXAP5uuNtS\nID6MXCrMsEyG/SDJDWPWMLUlxp8B+CcR2YNc5DUSo4XFAG4QkZdF5LcicvVwNygJInILgL09D7vn\nCT6J4WeAHAVgxEeIQ20BN1g4w3Z+EcC/qGpzUvQ42DjDNvbsuwzA/0Yu+h5SnE07hwt9tRnAOwD8\nuar+VER+D8C3AZyJk9NZoZ82FgOYDOBNyP1uHhCRBToMMvR+2vnXOAdjsBAUMk5F5E4AXQDuO5dt\nc5wZRvyEONQWcIOFM2zntQBuzQsYqgFkRaRNVb8+uK3L4QzbCBGZjVze6H9W1e2D26rTcYbtHFY3\njL7aLCLfA/Cn+Y//AeDec9KoCP208Y8B/Cw/Ab4iIlnkPDlTSvcOHdLaKSLLAcwHsCb/ADkbwCoR\nuUZVD5zDJgLof5yKyMeRM69+x3A8WDgGjtFKmZ4XFnCqeoOq1qlqHYD/F8A/DNVkeKbIq+MeBfA5\nVX1+uNvTBx4CcJuIlInIfACLALwyzG3qwT7kxiAAvB3AG8PYljT8HMDbAEBEFhkLo28AAAV+SURB\nVAMoxdka0Q8yVHWdqtbSb6YBwBXDMRn2B8nV//tLAP8p78PpOA9wXk+I54sFXFo7RxL6aOOnASwE\n8Lf5tIHVIlKbeqBhamfe+eIB5B58fgngT1T1bOppDCb+CMD/IyJrAPwDrErLSMJ3ACwQkfUA7gfw\nhx7VnBW+DmACgCfzv5lvDneDHP3DnWocDofD4cB5HiE6HA6HwzFY8AnR4XA4HA74hOhwOBwOBwCf\nEB0Oh8PhAOATosPhcDgcAHxCdAwRRKRaRP7bEB7/4yIy6DmbInJv3igcIvLXZ7B/XT51YSD7jMvb\npZWJyKvRd38mIhX0uXmAx75RRN5cwHbvE5H/OZBjOxyjDT4hOoYK1QASJ8S8WcKIhKr+F1XtMXEY\n8IR4hvgkci4x7QD2i0gdffdnACqSdioQNwLod0JEznzh/Tz5OhxjDT4hOoYKXwJwQT4p+Z/ykcqz\nIvIQgI1xJCUinxWRL+aXLxCRX0qu/uKzIrKkrxPlj/VUvvbcr0Vkbn79d0XkqyLygojsEJFb8+uL\nRORf8/XqnhSRx+i734jIVSLyJeQqe6wWkfv6ae+VIrImn3j/J7RNJn/tK/Nt+68pl/AxWOWGXyJX\nvgoi8t8BzATwtIg8Tce9K3++l0RkWn7dVBH5af5cK0Xk+vzEegeAP89fxw0i8n7JGXi/LiIrevbP\nJ+H/BjmrMYdjTMInRMdQ4XMAtqvqZar6f+fXXQHgT1V1cT/73gPgM6p6JYDPAvjXfrb/GoD/k689\ndx+Ar9J3M5Azen8fcpM0kKunWAfgIgB/gJzrTQBV/RyA1nz7P9bP+f89395Lo/WfAnBCVa9GzjD7\nj/K2cr0QkVIAC1S1Pr+qd0JU1a8iZ/v2NlV9W/778QBeyp/rGeRccADgK8gZxV+NXFWSe/PH/GZ+\n/WWq+iyA5wC8SVUvR86RhivBvArghn6u1eEYtRix1JVjVOIVVd3Z1waSK4n1ZgD/IVYBpKyf416H\n3CQH5AoYcwHen6tqFrmodFp+3VsA/Ed+/QGOvgaKvNdrtar2FCz+PoD35JffCeCSnugTuVqIi5Cr\nf9mDGgCNPR9UdbuIzBGRUlXtSDhlB4BH8suvAbg5v3wTgIuoz6ryfRljNoAfi8gM5PxKuS2HkItI\nHY4xCZ8QHecSXAS5CyFDUZ7/vwhAY766/GCAazeeTY2ttPb2BUEucuzLu7Y14VjPIzdpP5WwfSd5\njHbDfsNFyEV+bUEDTi8r9jUAX1bVh0TkRuRKkPWgPN8eh2NMwilTx1ChCTlz4zQcBFArIlNEpAz5\nd1eqehK5ivcfAQDJIaYiY7wA4Lb88scAPNvP9s8D+HD+XeI05IQnSegUkZJ+2tsIoFFE3kLn78ET\nAP645xgislhExvMJ8kb0GRHhSfFx5GlT9N+PPfgVgM/0fBCRngeKeP+JsLJYfxgdYzGAASlkHY7R\nBJ8QHUMCVT0K4HkRWS8i/5TwfSeA/4lciaYnAWymrz8G4FN5kcoGALf0c7rPAPiEiKxF7p3gn/az\n/U+RKx20EcAPAKwCcCJhu3sArBWR+/pp7ycAfENEViOMQu/Nn2NVXpDzLSSzMr9CLiLswW9gk/Q9\nAH5ZAK373wFclRfvbEROTAMADwP4YI+oBrmI8D9E5DWcXt7pbcipTR2OMQmvduEYkxCRSlVtFpEp\nyE1y1w9XXT0RuQLAn6vqH9C6xwH8kao2nKM2TAPwQ1V9x7k4n8MxEuHvEB1jFY/kBTGlAP7XcBaZ\nVdVVIvK0iGR6ajiq6nv622+QMRfA/zjH53Q4RhQ8QnQ4HA6HA/4O0eFwOBwOAD4hOhwOh8MBwCdE\nh8PhcDgA+ITocDgcDgcAnxAdDofD4QDgE6LD4XA4HACA/x+cD9++MBCpDAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def simulation(par):\n", " e,theta = par\n", " e = 10**e\n", " theta = 10**theta\n", " sim = rebound.Simulation()\n", " sim.add(m=1.)\n", " a = 1.\n", " inc = random.random()*np.pi\n", " Omega = random.random()*2*np.pi\n", " omega = random.random()*2*np.pi\n", " sim.add(m=0.,a=a,e=e,inc=inc,Omega=Omega, theta=theta)\n", " o=sim.particles[1].orbit\n", " if o.theta < 0:\n", " o.theta += 2*np.pi\n", " err = max(np.fabs(o.e-e)/e, np.fabs(o.theta-theta)/theta)\n", " return err\n", "\n", "random.seed(1)\n", "N = 100\n", "es = np.linspace(-16.,-1.,N)\n", "thetas = np.linspace(-16.,-1.,N)\n", "params = [(e,theta) for e in es for theta in thetas]\n", "\n", "pool=rebound.InterruptiblePool()\n", "res = pool.map(simulation, params)\n", "res = np.array(res).reshape(N,N)\n", "res = np.nan_to_num(res)\n", "\n", "f,ax = plt.subplots(1,1,figsize=(7,5))\n", "extent=[thetas.min(), thetas.max(), es.min(), es.max()]\n", "\n", "ax.set_xlim(extent[0], extent[1])\n", "ax.set_ylim(extent[2], extent[3])\n", "ax.set_xlabel(r\"true longitude (\\theta)\")\n", "ax.set_ylabel(r\"eccentricity\")\n", "\n", "im = ax.imshow(res, norm=LogNorm(vmax=1., vmin=1.e-16), aspect='auto', origin=\"lower\", interpolation='nearest', cmap=\"RdYlGn_r\", extent=extent)\n", "cb = plt.colorbar(im, ax=ax)\n", "cb.solids.set_rasterized(True)\n", "cb.set_label(\"Relative Error\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Hyperbolic & Parabolic Orbits**\n", "\n", "REBOUND can also handle hyperbolic orbits, which have negative $a$ and $e>1$:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "---------------------------------\n", "REBOUND version: \t3.5.11\n", "REBOUND built on: \tJan 11 2018 12:06:13\n", "Number of particles: \t3\n", "Selected integrator: \tias15\n", "Simulation time: \t0.0000000000000000e+00\n", "Current timestep: \t0.001000\n", "---------------------------------\n", "\n", "\n", "\n", "---------------------------------\n" ] } ], "source": [ "sim.add(a=-0.2, e=1.4)\n", "sim.status()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Currently there is no support for exactly parabolic orbits, but we can get a close approximation by passing a nearby hyperbolic orbit where we can specify the pericenter = $|a|(e-1)$ with $a$ and $e$. For example, for a 0.1 AU pericenter," ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "sim = rebound.Simulation()\n", "sim.add(m=1.)\n", "q = 0.1\n", "a=-1.e14\n", "e=1.+q/np.fabs(a)\n", "sim.add(a=a, e=e)\n", "print(sim.particles[1].orbit)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Retrograde Orbits**\n", "\n", "Orbital elements can be counterintuitive for retrograde orbits, but REBOUND tries to sort them out consistently. This can lead to some initially surprising results. For example," ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "sim = rebound.Simulation()\n", "sim.add(m=1.)\n", "sim.add(a=1.,inc=np.pi,e=0.1, Omega=0., pomega=1.)\n", "print(sim.particles[1].orbit)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We passed $\\Omega=0$ and $\\varpi=1.$. For prograde orbits, $\\varpi = \\Omega + \\omega$, so we'd expect $\\omega = 1$, but instead we get $\\omega=-1$. If we think about things physically, $\\varpi$ is the angle from the $x$ axis to pericenter, measured in the positive direction (counterclockwise) defined by $z$. $\\Omega$ is always measured in this same sense, but $\\omega$ is always measured in the orbital plane *in the direction of the orbit*. For retrograde orbits, this means that $\\omega$ is measured in the opposite sense to $\\Omega$, so $\\varpi = \\Omega - \\omega$, which is why we got $\\omega = -1$. \n", "\n", "Similarly, the retrograde version of $\\theta = \\Omega + \\omega + f$ is $\\theta = \\Omega - \\omega - f$, and `l` = $\\lambda = \\Omega + \\omega + M$ becomes $\\lambda = \\Omega - \\omega - M$. REBOUND chooses these conventions based on whether $i < \\pi/2$, which means that if you were tracking $\\varpi$ for nearly polar orbits, you would get unphysical jumps if the orbits crossed back and forth between prograde and retrograde. Of course, $\\varpi$ is not a good angle at such high inclinations, and only has physical meaning when the orbital plane nearly coincides with the reference plane." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exceptions**\n", "\n", "Adding a particle or getting orbital elements from particles in a simulation should never yield NaNs in any of the structure fields. Please let us know if you find a case that does. \n", "\n", "In cases where it would return a `NaN`, `REBOUND` will raise a `ValueError`. The only cases that should do so when adding a particle are 1) passing an eccentricity of exactly 1. 2) passing a negative eccentricity. 3) Passing $e>1$ if $a>0$. 4) Passing $e<1$ if $a<0$. 5) Passing a longitude or anomaly for a hyperbolic orbit that's beyond the range allowed by the asymptotes defined by the hyperbola. You will also get errors if you try to initialize particles with orbital elements manually with `rebound.Particle()`.\n", "\n", "When obtaining orbital elements from a `Particle` structure, REBOUND will raise a `ValueError` if 1) the primary's mass is zero, or 2) the particle's and primary's position are the same.\n", "\n", "**Negative inclinations**\n", "\n", "While inclinations are only defined in the range $[0,\\pi]$, you can also pass negative inclinations when adding particles in REBOUND. This is interpreted as referencing $\\Omega$ and $\\omega$ to the **descending**, rather than the ascending node. So for example, if one set up particles with the same $\\Omega$ and a range of inclinations distributed around zero, one would obtain what one might expect, i.e. a set of orbits that are all rotated around the same line of nodes.\n", "\n", "**Jacobi masses**\n", "\n", "There is a classical Hamiltonian splitting for the N-body problem (see e.g., Wisdom & Holman 1991) that when expanded to first order in the planet/star mass ratio, gives an interaction Hamiltonian with the same form as the disturbing function for an exterior perturber. This makes it particularly attractive for analytic or semi-analytic studies. In this splitting, the masses of the primaries for each planet take on a particular form. One can add particles using these jacobi masses with the `jacobi_masses` flag. By default, this flag is false and the primary mass is the total mass of all particles in the simulation (see the top of this notebook)." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "import rebound\n", "sim = rebound.Simulation()\n", "sim.add(m=1.)\n", "sim.add(m=1.e-3, a=1., jacobi_masses=True)\n", "sim.add(m=1.e-3, a=5., jacobi_masses=True)\n", "sim.move_to_com()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The jacobi mass and default mass assigned by REBOUND always agree for the first particle, but differ for all the rest" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0 4.995009980039918\n" ] } ], "source": [ "print(sim.particles[1].a, sim.particles[2].a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can calculate orbital elements using jacobi masses by using the same flag in `sim.calculate_orbits`" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0 4.999999999999999\n" ] } ], "source": [ "o = sim.calculate_orbits(jacobi_masses=True)\n", "print(o[0].a, o[1].a)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 1 }